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Geophysical Research Letters

Dispersion Aerosol Indirect Effect in Turbulent Clouds:
Laboratory Measurements of Effective Radius

K. K. Chandrakar1 , W. Cantrell1 , A. B. Kostinski1 , and R. A. Shaw1

1Atmospheric Sciences Program and Department of Physics, Michigan Technological University, Houghton, MI, USA

Abstract Cloud optical properties are determined not only by the number density nd and mean radius
r̄ of cloud droplets but also by the shape of the droplet size distribution. The change in cloud optical depth
with changing nd , due to the change in distribution shape, is known as the dispersion effect. Droplet
relative dispersion is defined as d = 𝜎r∕r̄. For the first time, a commonly used effective radius
parameterization is tested in a controlled laboratory environment by creating a turbulent cloud. Stochastic
condensation growth suggests d independent of nd for a nonprecipitating cloud, hence nearly zero albedo
susceptibility due to the dispersion effect. However, for size-dependent removal, such as in a laboratory
cloud or highly clean atmospheric conditions, stochastic condensation produces a weak dispersion effect.
The albedo susceptibility due to turbulence broadening has the same sign as the Twomey effect and
augments it by order 10%.

Plain Language Summary Clouds cover a large fraction of the Earth and play an important role
in determining Earth’s climate. Their optical properties, such as how much sunlight they reflect back to
space, are determined in part by the number of aerosol particles in the atmosphere. In addition to the mean
cloud droplet size, the range of droplet sizes influences cloud optical properties, and that influence is called
the dispersion effect. A positive dispersion effect means that an increase in cloud droplet number leads
to a more reflective (brighter) cloud. We have carried out experiments in a laboratory cloud chamber to
observe how the average size and the range of droplet sizes changes as aerosol concentration is varied. The
laboratory chamber creates a turbulent environment. The results show that the the dispersion effect
is positive, but small in magnitude. Cloud droplet activation, condensation growth in turbulence, and
sedimentation are enough to reproduce stratocumulus observations.

1. Introduction

In a significant way, aerosols affect cloud albedo and lifetime by altering the droplet size distribution. A higher
cloud condensation nucleus (CCN) concentration tends to cause a higher concentration of smaller cloud
droplets; that, in turn, enhances the cloud reflectivity and also increases the cloud lifetime by suppressing pre-
cipitation formation (Albrecht, 1989; Pincus & Baker, 1994; Twomey, 1977, 1974). Collectively, these are referred
to as the first and second aerosol indirect effects. Semiempirical parameterization of aerosol and cloud micro-
physical properties and their influence on cloud optics have been implemented in large-scale models and
used to estimate aerosol effects on the radiative balances at a global scale (Brenguier et al., 2000; Feingold &
Siebert, 2009; Martin et al., 1994; Seinfeld et al., 2016; Slingo, 1990).

The optical properties of cloud can be expressed through optical depth, single-scattering albedo, and asym-
metry parameter. These are functions of two microphysical variables, effective radius of the droplet size
distribution re = r3∕r2 and liquid water path (Brenguier et al., 2000; Hansen & Travis, 1974; Stephens, 1978;
Slingo, 1989). Coarse-scale atmospheric models and remote sensing retrieval algorithms often depend upon
assumptions on how re is related to the mean volume radius rv = (r3)1∕3 and cloud droplet number den-
sity nd (Brenguier et al., 2000; Chen et al., 2007; Han et al., 1998; Platnick & Valero, 1995; Szczodrak et al.,
2001). For example, it has been empirically observed that the two are approximately linearly related: r3

v = kr3
e

(Martin et al., 1994). This empirical observation is then utilized to parameterize re as a function of nd and other
microphysical variables.

The ratio k can be expressed as a function of the relative dispersion of the drop size distribution d = 𝜎r∕r̄ and
its skewness  (Liu & Daum, 2000; Martin et al., 1994; Pontikis & Hicks, 1992):
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k = (1 + d2)3

(1 + 3d2 + d3)2
, (1)

where𝜎r is the standard deviation of the droplet size distribution and r̄ is the mean droplet radius. The effective
radius of a droplet size distribution can then be expressed as (Lu et al., 2007; Martin et al., 1994; Pontikis &
Hicks, 1992)

re ≡
∫ r3n(r)dr

∫ r2n(r)dr
≈
[

3L
4𝜋𝜌lndk

]1∕3

, (2)

where𝜌l is the density of liquid water, nd is the droplet number concentration, and L is the liquid water content.
Equation (2) suggests re ∝ n−1∕3

d as a parameterization (Bower & Choularton, 1992; Pontikis & Hicks, 1992;
Slingo, 1990). However, this assumes constant k and liquid water content, L, neither of which need be true.

With equation (2) in mind, we consider how an increase in the aerosol concentration not only increases nd

but also may change the shape of the droplet size distribution. Equation (2) suggests that the cloud optical
properties are affected not only by nd (i.e., the first indirect effect) and liquid water content L but also by the
relative dispersion d through k. For example, an increase in nd enhances cloud albedo directly and also indi-
rectly by decreasing precipitation efficiency and therefore tending to decrease the size dispersion (assuming
constant L; Feingold & Siebert, 2009).

Atmospheric observations suggest that the dependence of relative dispersion d on nd has wide scatter and
therefore that the first aerosol-cloud indirect effect (Twomey effect) can be enhanced or suppressed due
to changes in the shape of the cloud droplet size distribution (Ackerman et al., 2000; Feingold et al., 1997;
Liu & Daum, 2002; Lu & Seinfeld, 2006; Lu et al., 2007, 2012; Peng & Lohmann, 2003; Tas et al., 2012). This
can be expressed through the albedo susceptibility obtained from the expression of cloud optical depth,
𝜏 ∝ L2∕3n1∕3

d k1∕3h, where h is the cloud depth (Ackerman et al., 2000; Feingold et al., 1997; Lu & Seinfeld, 2006;
Twomey, 1991):

d ln 𝜏

d ln nd
= 1

3
+ 2

3
d ln L

d ln nd
+ 1

3
d ln k

d ln nd
+ d ln h

d ln nd
. (3)

Here the first term on the right side is the classical effect of droplet number concentration on 𝜏 (Twomey
effect). The third term (1∕3)(d ln k∕d ln nd) is known as the dispersion effect and is the focus of this paper.
Equation (3) implies that the dispersion (and liquid water content and cloud thickness effects) can enhance
or offset the overall aerosol indirect effect beyond the Twomey effect. And yet even the sign of the dispersion
effect remains uncertain, with field observations suggesting that it likely depends on CCN spectral width,
entrainment, and precipitation development (Feingold et al., 1997; Liu et al., 2006; Yum & Hudson, 2005).
Here we consider just the dispersion effect resulting from activation and condensation growth in a turbulent
environment (i.e., assuming no collision growth).

Previous studies have generally suggested that condensation growth of cloud droplets leads to narrowing of
the droplet size distribution and associated reduction in the relative dispersion, whereas collision-coalescence
leads to broadening and increase in d. In recent experimental work, we identified a turbulence-induced size
distribution broadening effect that also depends on the CCN concentration (Chandrakar et al., 2016). The
results show that as CCN concentration is reduced, the droplet size dispersion 𝜎r increases dramatically even
though droplets only grow by condensation. The droplet size dispersion is thought to be a result of modifi-
cation of supersaturation fluctuations by cloud droplet growth in a turbulent environment, and a stochastic
theory predicts that d = 𝜎r∕r̄ should be a constant (Chandrakar et al., 2016) or slightly increasing (Chandrakar
et al., 2018) depending on assumptions made about droplet removal rate.

In this letter, we explore the dependence of re, k and d on CCN concentration using cloud chamber experi-
ments. The experiments are designed such that measurements are made in an environment with steady state
turbulence and microphysical properties: droplet growth occurs by condensation and other processes such as
entrainment or growth by collision-coalescence can be neglected. These idealizations allow the behavior of re,
k, and d to be explored in the context of droplet activation, condensation-growth, and sedimentation within
a turbulent environment. The experiments therefore provide a way to avoid the complexity that has led to
widely varying estimates of the dispersion effect from atmospheric measurements. Furthermore, results can
be compared to theoretical predictions for stochastic condensational growth. Our aim is to provide physical
insight into aerosol effects on cloud optical properties.

CHANDRAKAR ET AL. 2
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Figure 1. (left) Variation of the mean volume radius for different aerosol injection rates: measurements of mean volume
radius (black dots) for different steady state cloud droplet concentrations are shown, and its variation is compared with
constant liquid water content contours (solid curves). The constant liquid-water-content L contours

(
rv = (3L∕4𝜋nd)1∕3

)
were drawn for the lowest, highest, and intermediate L observed in the measured data set. (right) Variation of the
effective radius with the droplet number concentration: steady state values of re (black dots) are shown for different nd
(corresponding to different aerosol injection rates). The solid center line is for L = 0.3 g/m3, k = 0.84 or L = 0.22 g/m3,
k = 0.62, and upper and lower dashed lines are for L = 0.3 g/m3 , k = 0.62 and L = 0.22 g/m3 , k = 0.84 respectively.
These values of k are obtained from the fitting in Figure 2. The measurements almost, but do not quite, have a n−1∕3

d
dependence. Red circles are the theoretical estimates using equations (2), (1), and (4) (please refer to section 3 for
detailed discussion).

2. Measurements of Size Dispersion and the Effective Radius Parameter k

Experiments are performed in the Michigan Tech Π−chamber by creating a turbulent mixing cloud (Chang
et al., 2016). An unstable temperature difference is applied between water saturated top and bottom bound-
aries of the chamber to create a turbulent supersaturated environment (moist Rayleigh-Bénard convection).
In this supersaturated environment, salt aerosols are injected at a constant rate to create cloud droplets.
By changing the aerosol injection rates, a range of steady cloud conditions ranging from highly polluted to
clean is achieved; that is, in an individual experiment, steady state is achieved through balance between con-
stant aerosol injection and droplet settling. The cloud droplet size distribution and relevant thermodynamic
variables are measured for each set of steady state cloud properties. The droplet size measurements were
truncated at diameter ≈ 5 μm due to lower detectability at smaller sizes. This truncation will influence esti-
mates of nd and moments of the size distribution, most notably for high aerosol concentrations (Chandrakar
et al., 2018). Quantities such as re that depend on high moments such as r2 and r3 are not strongly influenced
because of their dependence on the large-size tail of the distribution. Fitting of the measurements with a
gamma distribution and computing changes in re and k confirms that variation with nd only change slightly.
The details of the experiments and the data set that are used in this paper, as well as an overview of the
stochastic condensation growth theory are provided by Chandrakar et al. (2018). Here we focus on analysis of
those results in the context of re, k, and implications for the dispersion effect via equations (1)–(3).

Steady state experiments in the cloud chamber with different input values of CCN result in observed depen-
dence of rv and re on nd as shown in Figure 1. The left panel shows the decrease in rv with nd in response to an
increase in the aerosol injection rate, along with contours of constant liquid water content L. It varies from 0.06
to 0.77 g/m3 with increasing aerosol injection rate, which is a result of the decreased droplet settling speed
and associated increase in droplet lifetime. The re corresponding to these cases is shown in the right panel
of the figure, along with curves obtained from equation (2) assuming constant L and k. Deviation of the data
points from the curves implies departure from the simple re ∝ n−1∕3

d parameterization (Bower & Choularton,
1992; Pontikis & Hicks, 1992; Slingo, 1990). Moreover, the solid and dashed lines in the right panel of the
figure demonstrate that the assumption of a constant parameter k does not fully describe the data. As can be
seen, different data points follow different constant k lines, and the L and k combination for a data point is
not unique.

CHANDRAKAR ET AL. 3
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Figure 2. (left) The nearly (not exactly) linear relationship between r3
v and r3

e : experimental results (red dots) are fitted
with a linear curve (black line), resulting in k = 0.66. Inset figures reveal that the nearly linear behavior of r3

v versus r3
e is

not precisely true; rather, the slope k is different for the clean (lower right) and polluted (upper left) regimes. (right)
Variation of the parameter k = r3

v∕r3
e with the relative dispersion (black square) and its comparison with the estimates

(open red square) from equation (1). The solid red line shows equation (1) for zero skewness. Dashed lines are for three
skewness values, showing that S ≈ 0.5 to 1.5. For comparison, Martin et al. (1994) observed k = 0.67 and k = 0.80 for
continental and maritime stratocumulus cloud cases, respectively.

These results suggest that insight can be obtained into the linearity assumption r3
v = kr3

e using steady state
cloud data from the Π-chamber. The left panel of Figure 2 shows r3

v and r3
e for a range of different aerosol

injection rates, with constant turbulence forcing in the cloud chamber. Each of the data points in the figure
corresponds to a steady state droplet size distribution (averaged over a time scale ∼ , 200 min) for differ-
ent aerosol injection rates. The figure confirms an approximately linear relationship between the cubic mean
volume radius (r3

v ) and cubic effective radius (r3
e ). The slope of the best fit line to the data is k = 0.66, which

is close to the range of k (0.67–0.8) observed in the atmosphere (Martin et al., 1994). However, closer exam-
ination reveals that k does vary, for example, with aerosol loading: the two insets show linear fits for just the
polluted cloud (upper left) and clean cloud (lower right), resulting in k varying from 0.62 to 0.84. The results
are numerically similar but opposite from the in situ observations of Martin et al. (1994), which resulted in
k = 0.67 ± 0.07 for continental stratocumulus clouds and k = 0.80 ± 0.07 for maritime stratocumulus clouds.

In the right panel of Figure 2, the parameter k is calculated directly from each steady state cloud droplet
size distribution using equation (1). The measurements (black squares) show a monotonic dependence of k
on relative dispersion d, decreasing with increasing d as expected from equation (1). The experimental data
points lie away from the theoretical curve with  = 0 (red line), showing the importance of the skewness of
the distributions as expressed in equation (1). Skewness is observed to range from S ≈ 0.5 to 1.5. The primary
contribution to the observed variation in k is from d, with skewness making a smaller contribution. Martin
et al. (1994) and Liu and Daum (2000) showed that the effect of skewness in re parameterization is significant
when d is large. In the current study, the effect of skewness is explored without assuming any distribution
shape. But taking a gamma distribution as an example, the relative dispersion d and the skewness S are both
proportional to a−1∕2, where a is the unitless shape parameter, and are independent of the scale parameter.
Therefore, a gamma distribution is only able to describe the current observations if a is taken to be a function
of d, and therefore of nd . Finally, as a consistency check, calculations of k from equation (1) are made (red
squares). The results adequately follow the values from a direct calculation, confirming that higher moments
do not contribute and equation (1) is a reasonable representation of the dependence of k on d.

The change in d observed in the measurements is a direct consequence of varying the CCN concentration
and the resulting cloud droplet concentration. In Figure 3 we show the dependence of k on nd for each
observed, steady state cloud droplet size distribution (black squares). The measurements show that k is a
weak function of droplet number concentration nd , consistent with the original findings of Martin et al. (1994).
The parameter k is observed to increase nearly linearly with increasing nd in relatively clean clouds, similar
to the observations from marine stratocumulus clouds by Lu et al. (2007). This is in contrast to Martin et al.
(1994), who observed larger k for maritime compared to continental stratocumulus clouds, and therefore an

CHANDRAKAR ET AL. 4
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Figure 3. Variation of the parameter k with droplet number concentration
nd : steady state values of k (black squares) obtained for the nd that occur for
different aerosol injection rates. Inset figure: An estimate of the dispersion
effect, as defined in equation (3). The albedo susceptibility due to droplet
size dispersion is obtained using a power law fit of the k versus nd
measurements for the range nd < 103 cm−3 (since k is nearly constant after
that point). The magnitude of the dispersion effect in the inset is to be
compared to the Twomey effect 1∕3 defined in equation (3). Calculated k
values using equations (1) and (4) are shown as red squares.

opposite sign of the dispersion effect. Interestingly, the data seem to sug-
gest two regimes: a nearly linear increase in k with increasing nd under
low-nd conditions, and a nearly constant k for relatively large nd . How-
ever, the variation of k with nd is modest, changing by only 22% for a
factor of nearly 200 increase in the droplet concentration. The inset in
Figure 3 shows an estimate of the magnitude of the dispersion effect
(1∕3)d ln k∕d ln nd for the low-nd regime, using a power law fit to the data.
The dispersion effect is observed to be of order 10% of the Twomey effect
value 1/3.

3. Dispersion Effect and Atmospheric Implications

We now attempt to interpret the dependence of k on nd using the stochas-
tic condensation approach outlined by Chandrakar et al. (2016). The
approach can be qualitatively summarized as follows: supersaturation is
assumed to vary randomly due to mixing, entrainment, fluctuations in ver-
tical velocity, or variations in cloud microphysical properties (Desai et al.,
2018). Given so as the expected value of the mean supersaturation without
any cloud droplet formation (i.e., it is the expected value of the supersat-
uration that would exist for the same forcing if there were no water vapor
loss due to cloud formation), the mean supersaturation in the presence
of cloud, s̄, is given by s̄ = s0∕(1 + 𝜏t∕𝜏c). Here 𝜏t∕𝜏c, is the ratio of the
turbulence correlation time scale, 𝜏t , and the phase relaxation time, 𝜏c =
(4𝜋D′

v r̄nd)−1, where D′
v is the water vapor diffusion coefficient modified to

account for heat conduction (Kumar et al., 2013; Rogers & Yau, 1989). The
𝜏c corresponds to the characteristic time for adjustment of supersaturation
resulting from droplet growth by condensation. Chandrakar et al. (2016)

showed that the width of a cloud droplet size distribution becomes much broader for small 𝜏t∕𝜏c, correspond-
ing to relatively low CCN and nd , in what can be termed the slow microphysics/fast turbulence regime. The
data set used in this study spans a 𝜏t∕𝜏c range of 0.44 - 40.23, with the 𝜏t∕𝜏c = 1 transition occurring between
the nd = 75.9 and 198.4 cm−3 data points. Thus, the observed saturation of k with increasing nd in Figure 3
corresponds to clouds in the 𝜏t∕𝜏c > 1 regime, that is, to fast microphysics and slow turbulence.

Equation (1) suggests that the parameter k depends mainly on the relative dispersion. As just discussed,
however, the relative dispersion resulting from stochastic condensation depends on the aerosol loading and
corresponding cloud droplet concentration. Using the central result of Chandrakar et al. (2016) for 𝜎r2 and the
fact that r2 ∝ s̄t (Rogers & Yau, 1989), the relative dispersion for r2 can be written as

da =
𝜎r2

r2
∝
(
𝜎s0

s0

)( 𝜏t

t

)1∕2
. (4)

We can take t as the average droplet lifetime 𝜏l . This is an interesting result because it suggests that da has
no explicit dependence on nd . For the Π chamber results shown in Figures 1 and 2, however, there is at least
a modest change in da as aerosol injection rate and nd are increased. It is indeed reasonable to expect that
the droplet lifetime depends on the rate of droplet growth and therefore the mean supersaturation. Follow-
ing Yang et al. (2014), that dependence is 𝜏l ∝ s̄−1∕2, and as discussed earlier, mean supersaturation has
a dependence on the phase relaxation time s̄ = s0∕(1 + 𝜏t∕𝜏c). Consequently, 𝜏l ∝

(
so∕(4𝜋D′

vndr̄𝜏t)
)−1∕2

,
where the expression for the phase relaxation time 𝜏c has been used. The implication is that da should
have a dependence on the product ndr̄ since other factors such as 𝜏t are held constant during the experi-
ments. Taken together, these results lead to the following scaling for relative dispersion in the Π chamber:
da ∝ (𝜎s0

∕so)
(

1 + 4𝜋D′
v𝜏t r̄nd

)−1∕4
. A more complete derivation is given by Chandrakar et al. (2018), but this

simpler approach is adequate for our purposes because all other factors in the final expression are constant
in the experiments except r̄ and nd .

Figures 1 (right panel) and 3 show estimates of re and k using equations 1 and 4. To compare, we make the
approximation da ≈ 2d. The individual points are based on the measured values of r̄ and nd , and use the same,
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constant proportionality factor for equation (4), obtained through best fit of the measured droplet size statis-
tics. Equation (4) with the functional dependence of droplet lifetime reasonably captures the behavior of the
experimental data points. Thus, we conclude that the weak observed dispersion effect in the cloud cham-
ber experiments is fundamentally a result of the droplet size dependence of the removal rate. The stochastic
condensation process itself suggests constant k, assuming constant environmental conditions leading to
supersaturation variability, and therefore zero dispersion effect; the positive and small dispersion effect results
from larger droplets being removed more rapidly than small droplets.

Using the expression for droplet relative dispersion, equation (4) and the definition of k, equation (1), the
albedo susceptibility due to the dispersion effect can be obtained. It is relevant to droplet condensation
growth in the presence of turbulent fluctuations of water vapor concentration and temperature, and in the
absence of collision-coalescence. It also is based on the assumption that droplet removal is due to gravita-
tional sedimentation, as occurs in the cloud chamber. This scenario has atmospheric relevance as well, for
clouds in extremely clean (low CCN concentration) environments where cloud droplets growth solely by con-
densation are removed as precipitation (Mauritsen et al., 2011). The dependence of sedimentation rate on
droplet radius, along with the dependence of mean radius on nd , leads to a dependence of d and k on nd . The
resulting albedo susceptibility due to the dispersion effect has a positive sign. We obtain a quantitative esti-
mate of the dispersion effect by fitting a smooth function to the observations of k in Figure 3, and then taking
its derivative. The result is shown in the inset to Figure 3 for the range nd < 103 cm−3. As expected from the
nd dependence of droplet lifetime in equation (4), it increases with an increase in nd . Its magnitude is small
in comparison to the Twomey effect, with a maximum value around 15%. That is a direct result of the relative
dispersion having a weak dependence on droplet concentration; that is, da changes by a factor of 2 with a
≈ 200 times increase in nd .

As can be inferred from equation (4), the relative dispersion of droplet size distribution is independent of nd

if droplet removal is not size dependent. It just depends on thermodynamic and turbulence properties, and
the cloud droplet lifetime. If there is no size-dependent droplet removal (like, sedimentation in case of the
cloud chamber) and activation, that is, a closed parcel, the stochastic theory suggests dependence of the size
distribution width on aerosol concentration. However, the relative dispersion at a fixed growth time t turns
out to be independent of aerosol number. This statement is based purely on stochastic condensation with-
out any influence of other factors, such as the activation-based dispersion effect for different aerosol-cloud
interaction regimes (Chen et al., 2016; Liu et al., 2006; Yum & Hudson, 2005). Consequently, it implies that the
albedo susceptibility due to dispersion effect based on stochastic condensation alone will be zero for a cloud
with no size-dependent removal. This condition is nearly true for nondrizzling stratocumulus clouds where
size-dependent removal processes (such as gravitational removal and droplet collision-coalescence) are not
active. However, more subtle effects are possible: for example, a change in the aerosol population might indi-
rectly affect the dispersion effect by suppressing the onset of droplet collision process and enhancing the
cloud droplet lifetime. Observations in the atmosphere indeed show differing relative dispersion trends with
aerosol concentration: some suggest an increase in relative dispersion (negative dispersion effect; Liu & Daum,
2002; Martin et al., 1994; Miles et al., 2000; Pawlowska et al., 2006; Peng & Lohmann, 2003), some a decreas-
ing relative dispersion (positive dispersion effect; ; Lu et al., 2007, 2012, 2013; Miles et al., 2000), and some
a relatively constant or unclear trend (Arabas et al., 2009; Lu et al., 2008; Miles et al., 2000; Tas et al., 2015;
Zhao et al., 2006) with aerosol concentration. These observation of nonconstant behavior of relative disper-
sion might result from a variety of processes, like onset of collision-coalescence, dynamic effects (entrainment
and mixing), or predominance of an early growth stage in which the initial aerosol distribution influences the
size dispersion (Feingold et al., 1997; Lu et al., 2013; Peng et al., 2007; Tas et al., 2012; Yum & Hudson, 2005).
Consequently, one needs to be cautious in comparing the dispersion effect from clouds having different ther-
modynamic conditions, different stages of development, or the different regions or stages where entrainment
and mixing dominate the overall growth process (Schmeissner et al., 2015).

4. Discussion and Conclusions

Physically based representations (i.e., parameterizations) of aerosol-cloud microphysical processes are
needed for remote sensing retrieval methods and for coarse-resolution atmospheric models, including those
used for climate studies. Much effort has been made to develop empirical microphysical parameterizations
using field measurements of clouds. However, variability in the atmospheric cloud conditions and complex
feedbacks make it attractive to test some of the parameterizations in a controlled laboratory environment.

CHANDRAKAR ET AL. 6
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Therefore, we have generated turbulent cloud conditions in an isolated laboratory chamber and have tested
some commonly used expressions using the resulting statistically steady cloud microphysical data set. This
approach allows us to have well-characterized thermodynamic, turbulence, and microphysical conditions,
and long enough, steady data sets for critical scrutiny of these parameterizations. Furthermore, the exper-
iments allow certain physical processes, namely, condensation growth of cloud droplets in a turbulent
environment, to be isolated from other processes, including dry-air entrainment and collision-coalescence.
We address the influence of condensation growth in turbulence, modulated by aerosol concentration, on
calculated cloud radiative properties; specifically, this study is focused on the effective radius and the disper-
sion aerosol-indirect effect. Observations are interpreted in the context of a theoretical description of cloud
droplet growth in a turbulent environment. A positive, weak albedo susceptibility is observed for the cloud
chamber conditions, resulting from the droplet size dependence of the removal rate. It is hoped that this work
will help in establishing a physical foundation for further development of microphysical parameterization for
atmospheric clouds.

A commonly used parameterization of the effective radius (r3
v = kr3

e ) developed based on measurements
of the stratocumulus clouds is observed to also hold for turbulent clouds generated in the Π-Chamber. The
measurements of slope parameter k are consistent with the range of values from stratocumulus cloud mea-
surements (Lu et al., 2007; Martin et al., 1994). The validity of this linear fit over a large range of nd suggests
that the parameter k is weakly changing over this range. Pioneering work has shown that the parameter k is
a function of the relative dispersion and skewness of the cloud droplet size distribution (Liu & Daum, 2000;
Martin et al., 1994; Pontikis & Hicks, 1992). Given the dependence of k on the width and skewness of the droplet
size distribution, we expect from prior work there will be a link to aerosol (CCN) concentration when droplet
growth occurs in a turbulent environment (Chandrakar et al., 2016, 2018; Desai et al., 2018), and indeed, a
positive, albeit weak dispersion effect is observed.

Martin et al. (1994) suggested that measurement data points from stratocumulus and cumulus clouds some-
times deviate strongly from a linear r3

v = kr3
e relation. They interpreted this deviation as a result of entrainment

of cloud-free air from cloud top and edges. This indicates the importance of turbulent flow conditions and
demands further investigation of the influence of turbulence and entrainment. The results presented here
also suggest an influence of turbulent fluctuations on the microphysics and related cloud optical parameters.
A particularly intriguing possibility arises if the main droplet removal mechanism is entrainment and subse-
quent evaporation. If the dilution and removal of droplets through evaporation takes place via homogeneous
mixing, then there is a preference to remove smaller droplets earlier, which would tend to result in a negative
dispersion effect. In contrast, if the removal of droplets through evaporation takes place via inhomogeneous
mixing, then all droplets have equal probability of removal, resulting in zero dispersion effect.
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