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1
OPTIMAL CONTROL OF WAVE ENERGY
CONVERTERS

CROSS-REFERENCE TO RELATED
APPLICATION

This application claims the benefit of U.S. Provisional
Application No. 62/322,712, filed Apr. 14, 2016, which is
incorporated herein by reference.

STATEMENT OF GOVERNMENT INTEREST

This invention was made with Government support under
contract no. DE AC04-94A1.85000 awarded by the U.S.
Department of Energy to Sandia Corporation. The Govern-
ment has certain rights in the invention.

FIELD OF THE INVENTION

The present invention relates to wave energy converters
and, in particular, to a method for optimal control of wave
energy converters.

BACKGROUND OF THE INVENTION

Waves can provide a reliable source of renewable energy
compared to the solar and wind sources. There is a wide
variety of wave energy extraction concepts depending on the
mechanism of absorbing energy from the waves, the water
depth, and the location (shoreline, near-shore, offshore). The
energy extraction concepts can be categorized in three
classes: oscillating water column devices, oscillating body
systems, and overtopping converters. See A. F. de O. Falcao,
Renew. Sustain. Energy Rev. 14(3), 899 (2010); M.-F. Hsich
etal., IEEE Trans. Sustain. Energy 3(3), 482, (2012); and A.
Sproul and N. Weise, [EEE Trans. Sustain. Energy 6(4),
1183 (2015). The class of oscillating body systems includes
single-body heaving buoys, two-body heaving systems,
fully submerged heaving systems, and pitching devices.
FIG. 1 is a widely used illustration of a typical heaving buoy
(point absorber).

In point absorbers, the energy extraction results from the
oscillating movement of a single body reacting against a
fixed frame of reference (the sea bottom or a bottom-fixed
structure). In one typical configuration of these Wave Energy
Converters (WECs), hydraulic cylinders are attached to the
floating body. When the float moves due to heave the
hydraulic cylinders drive hydraulic motors which in turn
drive a generator. See J. Falnes, Marine Struct. 20(4), 185
(2007). This type of WEC extracts the wave heave energy.
There are other types of WECs that extract surge energy. See
E. Renzi and F. Dias, Eur. J. Mech. B Fluids 41(0), 1 (2013).
The mechanisms that translate the motion of oscillating
bodies in water to useful electrical energy are usually called
Power Take-Off (PTO) systems. See F. Fusco, Real-time
Forecasting and Control for Oscillating Wave Energy
Devices, Ph.D. thesis, NUI MAYNOOTH, Faculty of Sci-
ence and Engineering, Electronic Engineering Department,
July 2012.

SUMMARY OF THE INVENTION

The present invention is directed to a wave energy con-
verter and method for extracting energy from water waves.
The method comprises providing a wave energy converter
comprising a buoy in water having heave wave motion;
estimating an excitation force of the heave wave motion on
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2

the buoy; computing a control force from the estimated
excitation force using a dynamic model, wherein the model
comprises constructing a Hamiltonian as a function of buoy
states, computing partial derivatives of the Hamiltonian with
respect to the buoy states and the control force, and com-
puting the control force at which the partial derivatives
vanish; and applying the computed control force to the buoy
to extract energy from the heave wave motion. The Hamil-
tonian can be a linear function of the control force, whereby
the control force comprises a singular arc. The buoy states
can comprise a heave position and a heave velocity of the
buoy, and can further comprise a radiation state. For
example, the excitation force can be estimated from a wave
elevation in front of the buoy or, more preferably, from
pressure measurements on a surface of the buoy and a heave
position of the buoy. For example, the buoy can be a
spherical or cylindrical buoy, although other buoy shapes
can also be used.

The goal of the method is to maximize the energy
extraction per cycle. Both constrained and unconstrained
optimal control problems are described as examples of the
invention. Both periodic and non-periodic excitation forces
are considered. Analysis and numerical simulations demon-
strate that the optimal control of a heave wave energy
converter is, in general, in the form of a bang-singular-bang
(BSB) control; in which the optimal control at a given time
can be either in the singular arc mode or in the bang-bang
mode. Unlike prior work, the analysis and numerical results
show that the singular arc portion is not negligible and can
be a major portion of the optimal control solution if the
maximum control level constraint is high. It is also shown
that the optimal control derived for periodic excitation
forces is still valid in the case of waves with non-periodic
oscillatory excitation force. Simulations show that BSB
control outperforms the bang-bang control, and difference in
extracted energy between the BSB and the complex conju-
gate control is negligible. However, a main benefit of BSB
control is that it finds the optimal control without the need
for wave prediction; it only requires the knowledge of the
excitation force and its derivatives at the current time.

The excitation force and its derivatives at the current time
can be obtained through an estimator, for example, using
measurements of pressures on the surface of the buoy in
addition to measurements of the buoy position. The excita-
tion force can be expressed in the Laplace domain as a
summation of the Laplace transforms of harmonic functions
of the wave frequencies, amplitudes, and phases. From this,
it possible to compute the derivatives of the excitation force
at the current time. Knowledge of the derivatives of the
excitation force at the current time eliminates the need for
the future prediction step when using the singular arc
control. This provides a feedback control approach where
only measurements at current time are needed to compute
the control. Numerical experiments were conducted and the
results show that the estimated excitation force accurately
matches the simulated true excitation forces. A main advan-
tage of this approximation method is the ease of obtaining
accurate measurements for pressure on the buoy surface and
for buoy position, compared to wave elevation measure-
ments. Also, the excitation force is related to the integration
of pressures on the buoy surface; which means that the
estimated quantity is more directly related to the measure-
ments, which further enhances the estimation process.

BRIEF DESCRIPTION OF THE DRAWINGS

The detailed description will refer to the following draw-
ings, wherein like elements are referred to by like numbers.
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FIG. 1 is a schematic illustration of a point absorber wave
energy converter.

FIG. 2 is a schematic diagram of dynamic model of a
wave energy converter.

FIG. 3 is a graph of the control force as a function of time
for a periodic excitation force.

FIG. 4 is a graph of the buoy position as a function of time
with a periodic excitation force.

FIG. 5 is a graph of the extracted energy as a function of
time for a periodic excitation force.

FIG. 6 is a graph of the control force as a function of time
for the arbitrary initial condition.

FIG. 7 is a graph of the energy as a function of time for
the arbitrary initial condition.

FIG. 8 is a graph of the force as a function of time for
constrained control case.

FIG. 9 is a graph of the energy as a function of time for
constrained control case.

FIG. 10 is a graph of the control force as a function of time
for non-periodic excitation force.

FIG. 11 is a graph of the energy as a function of time for
non-periodic excitation force.

FIG. 12 is a graph of the energy difference between
bang-singular-bang control and bang-bang control for fre-
quency-dependent radiation WEC model.

FIG. 13 compares the bang-singular-bang control and the
complex conjugate control.

FIG. 14 compares the velocity of the buoy as simulated
using both the complex conjugate control and the bang-
singular-bang control.

FIG. 15 is a high-level block diagram of the simulation
tool.

FIG. 16 is a graph of wave elevation versus frequency.

FIG. 17 is a schematic illustration of an experimental
WEC with locations of pressure transducers.

FIG. 18 is a graph of the estimated excitation force.

FIG. 19 is a graph of the estimated frequency vs. true
frequency.

FIG. 20 is a graph of error and error boundaries of one
estimated frequency amplitude.

FIG. 21 is a graph of the error percentage in estimating the
excitation force for different values of modelled frequencies
in the EKF.

FIG. 22 is a graph of the extracted energy using BSB
control and EKF.

FIG. 23 is a graph of the actuator control force using BSB
control and EKE

FIG. 24 is a graph of the buoy position using BSB control
and EKE.

FIG. 25 is a graph of the error in the buoy estimated
velocity.

FIG. 26 is a graph of the estimated and simulated true
excitation force.

FIG. 27 is a graph of the estimated and simulated true
histories for one radiation state.

FIG. 28 is a graph of the estimated frequency along with
its true value.

FIG. 29 is a graph of one estimated wave amplitude along
with estimation error boundaries.

DETAILED DESCRIPTION OF THE
INVENTION

Most WEC dynamic models assume linear hydrodynamic
devices. Some references, however, use linear models with
uncertain dynamics to account for nonlinear effects and
modeling errors. See F. Fusco and J. Ringwood, IEEE Trans.
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4

Sustain. Energy 5(3), 958 (2014). The present invention can
use a linear dynamic model. FIG. 2 illustrates a heave WEC
that simplifies deriving the equations of motion. Considering
only the heave motion, the forces on a point absorber (buoy
or float) can be described as follows. The hydrostatic force,
f, is the difference between the gravity and buoyancy forces.
It reflects the spring-like effect of the fluid. Let the displace-
ment of the buoy from the sea surface be x, the hydrostatic
stiffness be k, then the hydrostatic force is f=-k x. The
pressure effect around the immersed surface of the buoy is
called the excitation force, f,. A periodic excitation force can
be represented by Fourier series as follows:

- M
o= Asin(wit + ;)

i=1

where A,, ¢, are the amplitude and phase associated with the
frequency w, and t is the time. The radiation force, f,, is due

to the radiated wave from the moving buoy. It can be
modeled as:

£0) = =) - f (D) - 7)dT @

where 11 is the added mass and h, is the retardation function.
See W. E. Cummins, The Impulse Response Function and
Ship Motions, Tech. Rep. DTNSDRC 1661, Department of
the Navy, David Taylor Model Basin, Bethesda, Md., 1962.

Let u be the control force (PTO force in FIG. 2), positive
in the opposite direction of increasing x. The motion dynam-
ics of a buoy of mass m can be described as:

3
See J. Falnes, Ocean Waves and Oscillating Systems—
Linear Interactions Including Wave-energy Extraction,
Cambridge University Press, 2002.

In order to simplify the model, it is possible to neglect the
frequency dependence of the hydrodynamic damping and
the added mass; in this case the dynamic model can be
written in the form:

XS A, f 1

HiX+ex+kx=f,—u

Q)

where  is the buoy mass plus the added mass and c is the
radiation damping coefficient. See G. Li et al., Renew
Energy 48(0), 392 (2012). The extracted energy over a time
interval [0 T] can be computed as:

T ®)
E= f {u(D)x()}de
0

The optimal control is first derived using the simplified
model (Eq. (4)), then it will be derived using a full model
that accounts for the frequency dependence of the hydrody-
namic coefficients. The objective is usually to maximize the
extracted energy defined in Eq. (5). Within the framework of
optimal control theory, and using the Pontryagin minimum
principle, the process for computing the optimal control can
be summarized as follows. First, a Hamiltonian H is con-
structed, which is usually a function of the system states and
the co-states that are appended to handle the problem
constraints. Then the necessary conditions for optimality are
derived by computing the partial derivatives of H with
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respect to all the states, all co-states, and the control; these
partial derivatives should vanish at the optimal solution. In
other words, these optimality necessary conditions are a set
of differential equations that the optimal solution has to
satisfy. In solving this set of equations, there is an interesting
case when the Hamiltonian H is a linear function in the
control u. In this case, the partial derivative of H with respect
to u will not have the control u in it. Hence, the necessary
conditions of optimality do not yield an expression for u. In
such case, the control is said to be on a singular arc.

In the heave WEC problem, the Hamiltonian is linear in
the control u, and hence the optimal solution, in general, is
expected to have singular arcs. Some references, however,
present a bang-bang control as a solution to this heave WEC
optimal control problem. See G. Li et al.,, Renew. Energy
48(0), 392 (2012); and E. Abraham, Optimal Control and
Robust Estimation for Ocean Wave Energy Converters, PhD
thesis, Department of Aeronautics, Imperial College, Lon-
don, 2013. A bang-bang control is an on-off controller in
which the control force can only take one of two fixed
values, switching abruptly between them. See J. A. E.
Bryson and Y.-C. Ho, Applied Optimal Control Optimiza-
tion, Estimation and Control, CRC Press, 1975. For
instance, Abraham presents a derivation for the WEC opti-
mal control and shows that the optimal solution is a bang-
bang control with no singular arcs in the optimal solution.
Abraham, however, assumes a specific form for the control
force which makes the search domain only a subset of the
solution domain. Specifically, Abraham assumes the control
as:

u=—Bu,(t)x,()+u, (G (6)

where u, (v)E[-1, 11, u,(t)[0, 1], B is a constant damping
coeflicient, and G is a positive large constant. There is no
guarantee that outside this subset there are no better solu-
tions. i et al. also addressed the optimal control of a heave
WEC with the simplified dynamic model in Eq. (4). They
find the portions of bang-bang control and ignore the por-
tions of the singular arc assuming that the times in which
singular arc happens are negligible, without rigorous proof
for that. See G. Li et al,, Renewable Energy 48(0), 392
(2012).

The present invention is directed to a method to compute
the optimal control using the Pontryagin minimum principle
for the heave WEC problem in its general form. It is shown
that, in general, the optimal solution includes portions of
bang-bang control and other portions of singular arc control.
The singular arc solution is first described below for a WEC
system with a periodic excitation force. The case of non-
periodic excitation force is then described. Simulations for
both periodic and non-periodic excitation forces are then
described. Comparisons with the bang-bang only control are
also described. First, the optimal control is developed for a
simplified WEC model; then a more common model with
radiation states is used to develop the optimal control.

Optimal Control Analysis Using Simplified WEC
Models

This section describes the optimal control solution when
the simplified dynamic model in Eq. (4) is used, where the
radiation force is assumed to be independent of frequency.
The following section describes the optimal control solution
for the more general case when the radiation force is
considered as a frequency-dependent force.

Let x; be the vertical (heave) position of the center of
mass and x, be its vertical
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velocity, then the equation of motion in Eq. (4) can be
written as:

X =%

M

®

1
Xy = Z(fe(xs) —cxp — kxy —u)

This is a non-autonomous system. Hence, the time variable
is considered as a state, X5, and the state space model of the
system becomes:

®

Xj=xp,43=1

1
X3 = Z(fe(xs) —cxy —kx; —u)

Two exemplary cases are considered. The first case is
when there are no limits on the control force while the WEC
is subject to periodic excitation forces. The second case is
when the excitation force is not periodic in the presence of
saturation limit on the actuators.

WEC with Periodic Excitation Force and No
Control Limits

The solution on the singular arc is derived below for
periodic excitation forces in a similar way to that was
derived to optimize vibration dampers in Kasturi. See P. D.
P. Kasturi, Sound Vib. 215(3), 499 (1998). Assuming no
limits on the control value, the optimal control problem is
then defined as:

. T i (10)
Mm:J((x(t), u(n) = f {L{x, u)}dr = f {—u(D)xy (D)}dr
0 0

subject to Eq. (9).
The Hamiltonian in this problem is defined as:

H(xy, %3, X3, fit, A, A, A3) = an

A;
—uxy + A X + —z(fg()g) —cxp—kx; —u)+ A3
m

where 7:[7»1, Ao, As]7 are Lagrange multipliers. See J. A. E.
Bryson and Y.-C. Ho, Applied Optimal Control Optimiza-
tion, Estimation and Control, CRC Press, 1975. The neces-
sary conditions for optimality show that the optimal solution
(X, 5%, % X% 0 A * AL A ) should satisfy the Euler-La-
grange equations:
H, =xH, =-hH,=0 12)

Evaluating the Hamiltonian partial derivatives in Eq. (12),
it can be found that the optimal trajectory should satisfy the
motion constraints in Eq. (9) in addition to:

2 a3

14
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-continued

_Lofn),
m O0x;

1s)

4= 2

Since the Hamiltonian H is linear in the control u, the
optimality conditions (13)-(15) do not yield an expression
for u, which means that the solution is a singular arc control.
For this singular arc, it can be shown that the optimal control
is given by:

m 0 f(x3)
u = folxs) —cxy —kxy — % Bx:

(16)

For periodic excitation forces, the system response is also
periodic, and this periodicity of the response can be used to
derive the initial conditions as follows:

x1 (1), (1o +7), X5(l0)=%5(ig+T)
See P. D. P. Kasturi, Sound Vib. 215(3), 499 (1998).

Substituting the optimal control u from Eq. (16) into the
system model in Eq. (9), and solving for the states, gives:

an

1 (18)
0O = L0+ C

! (19)
x1(0) = X1 (5p) + —ffg(o')do'+ Cr
2¢ 0

where the constant C is defined as:

1 (20)
C=x(t0) - %fe(to)

Since t, is arbitrary, it is possible to show from Eq. (19)
that C=0, by setting t=t,. The initial conditions are then
derived from periodicity conditions and Eq. (20) as follows:

1 & A 21
x1(to) = —%Z JCOS((UI[O +¢i)
=1
1. (22)
X2(lo) = %Z Ajsin(w;to + ¢;)
]

The above equations describe the solution for optimal
control of WEC systems, with periodic excitation forces and
with no limits on the control level. The following section
describes the optimal control when the excitation forces are
not periodic and when there is a saturation limit on the
control.

WEC with Non-Periodic Excitation Force and Saturation
Control Limits

The Pontryagin’s Minimum Principle shows that if there
is a saturation on the control and the motion is periodic, then
the optimal control is defined as:

Cc=0
u=1:7%, C >0
-y, C<0

@23

Usa,
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where v is the maximum available control level, and u,, is
the singular arc control defined in Eq. (16).

Wave excitation forces typically are not periodic. How-
ever, they have an oscillatory behavior. It is possible then, at
any arbitrary time 1, to write:

x,()=x, (2+7) (24)

where 7T is a variable unknown period of time. Considering
the analysis above, the value of the period T does not impact
the solution except for the constraints on the initial condi-
tions in Egs. (17) and (21)-(22). The variableness of T does
not impact that analysis either, except also for the constraints
on the initial conditions. Hence, it is possible to state that the
optimal control defined in Eq. (23) is valid for non-periodic
oscillatory excitation forces. The initial conditions, however,
will be constrained as in Eq. (17) only when C=0. In the
other two cases of C in Eq. (23), there are no constraints on
the initial conditions. Numerical analysis will be presented
in the following sections to highlight this conclusion.

The solution described previously for periodic excitation
forces imposed constraints on the states at initial time.
Specifically, the initial states need to satisfy Eqgs. (21) and
(22). If a given set of initial states does not satisfy these
constraints, then the optimal control solution will initialize
in a bang-bang mode, not the singular arc mode. Depending
on the available maximum control level, the optimal solu-
tion might switch from the bang-bang mode to the singular
arc mode, as will be demonstrated through numerical simu-
lations in a following section. The switching surface is
described by Eq. (15). When the solution is on the singular
arc, Eq. (15) is satisfied and the constant C is equal to zero.
When Eq. (15) is not satisfied (or C=0) then the optimal
solution is the bang-bang control.

Optimal Control Analysis for WEC Models with
Radiation States

The more general form of motion equations is described
by Egs. (2) and (3), where the radiation force depends on the
frequency. In this case the radiation force described by Eq.
(2) can be represented through adding radiation states to the
model. The system model can then be represented as:

X =x (25)
. 1 5 (26)
Jp2 = = (Feu(x3) = CpXy —kxy — 1)

m
=1 (27
X = AZ + Bxp (28)

where x=[X;, X,, Xj, ?,] is a state vector of length n,
Aer™¥r B eR™*! C R and n~-n-3. See G.
Bacelli, Optimal Control of Wave Energy Converters, PhD,
National University of Ireland, Maynooth, Maynooth, Ire-
land, 2014. The cost function is the same as that defined in
Eq. (10).

The Hamiltonian in this case is defined as:

H= (29)

A2 o EPP
—uxy +Apxp + Z(FEXI(XS) = CoXp —kxy —u) + A3 + A (A X, + B.x2)
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—
where A ,ER '*" are the co-states associated with the radia-
tion states. The optimality conditions are the state Egs.
(25)-(28) and:

k 30

A=, (30)
m

lz = —ll +I4—err (31)

A2 0Fealxs) (32)

s=——
m  Oxs

— A 33

=2 a4 G
m

A 34

X2+ 2 =0 G4
m

The optimality conditions in Egs. (25)-(28) and (30)-(34)
can be solved for the control u(t). One way to solve these
equations is to use a Laplace transform to convert this
system of differential equations to a system of algebraic
equations in the S domain. The obtained optimal control
force in the S domain, U(s), is of the form U(s)=U,(s)+U,(s)
where:

_Nis) 35)
Ui(s) = D®
Ni(s) = (ms? + (Cr(sl + A,) "B, = B,)s + k) F oy (5) (36)
Di(s) = s(Cr(sI + A;) ' B, — Cu(sl - A)"'B, - 2B,) (37)

_ Nas) 38)
Ua(s) = D:0)

— -1
No(s) = [Aao + (st + A BJs =) 39
(ms? + (Co(s] — A,) "B, + B,)s + k)

Dy(s) = s2(Cr(sl + A,) "B, — C.(s] — A,)"'B, = 2B,) 40)

The U,(s) is a transient term that depends only on the
initial values of the co-states and is independent from the
excitation force. So, for the steady state solution, the U,(s)
term can be dropped, and U(s)=U,(s). The inverse Laplace
of the Uy(s) term depends on the size and values of the
radiation matrices, which would vary depending on the
desired level of accuracy. So, the time domain formulae for
the control is deferred to the numerical case study below. In
general, the inverse Laplace of U,(s) will have harmonic
terms and exponential terms. All exponential terms are
dropped when considering the steady state solution.

Simulation Results

Numerical simulations were conducted to demonstrate
that the optimal solution of a WEC system, in general,
includes portions of singular arc control in addition to the
bang-bang control. Comparisons between the control of the
present invention with the prior art bang-bang control are
described below. The control of the present invention will be
referred to as bang-singular-bang (BSB) control, versus the
prior art bang-bang control. Both periodic and non-periodic
excitation forces were tested. The tested bang-bang control
is of the form:
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x> 05 1)

Y
U=
=Y, X2 <0;

The numerical parameters are selected as follows: the
mass of the buoy is m=2x10° kg, the stiffness of the
hydrostatic force is k=1.2x10° N/m, the damping coefficient
is chosen to be c=10> Nm/s, and the maximum thrust used
in bang-bang control is y=1.5x10° N. The simulation period
is selected to be 50 s.

Periodic Excitation Force

The initial conditions of the states x,; and x, are selected
to satisfy the constraints in Eqgs. (21) and (22). The optimal
control solution then starts with the singular arc solution.
The value of H,, remains zero over the whole simulation
period; hence the optimal solution remains on the singular
arc throughout the simulation period. As can be seen from
FIG. 3, the control force is always below the control limit
value, y. If the value of y is reduced, the optimal control
solution will switch to bang-bang mode as discussed in the
sections below. FIG. 4 shows the history of the buoy
position. FIG. 5 shows the accumulated extracted energy.
Unlike prior work in Li et al., these results indicate that the
singular arc part of the optimal control cannot be neglected
and significant portions of time may become on singular arcs
depending on the initial conditions and on the maximum
control level. See G. Li et al., Renew. Energy 48(0), 392
(2012).

Arbitrary Initial Condition

For the more general case, the position and velocity states
are initialized to (0, 0). In this case the periodicity conditions
are not satisfied; yet the solution presented by Eq. (23) is still
valid as discussed above. In this case, no limit is assumed on
the control (or equivalently the limit on the control, y, is high
enough so that singular arc control is always below v).

At the very beginning of the simulations, the H,, is not
zero but it converges fast to the zero value. Hence the control
starts in the bang-bang mode with a control value at —1.5x
10° N, for a short period of time as shown in FIG. 6; then it
switches to the singular arc mode. The energy extracted in
this case is shown in FIG. 7.

Constrained Control

Consider the case when there exists a limit y on the control
force. Both the bang-bang control method described by Li et
al. and the BSB control method of the present invention are
compared with the control force limit. See G. Li et al.,
Renew. Energy 48(0), 392 (2012). Starting from arbitrary
initial conditions, both methods are tested using periodic
excitation forces. The control force computed from both
methods is shown in FIG. 8. The BSB control is clearly
having periods of bang-bang and other periods of singular
arc control. FIG. 9 shows the extracted energy using both
methods. Clearly the BSB solution optimizes the objective
more than the bang-bang control does.

Non-Periodic Excitation Force with Constrained
Control

This section presents simulation results when excitation
forces are not periodic. Both the bang-bang and the BSB
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methods are simulated. FIG. 10 shows the control for both
methods. Clearly, the BSB control has periods of both
bang-bang and periods of singular arc control. FIG. 11
shows the extracted energy for both methods. Again, the
BSB control generates more energy.

Results Using WEC Model with Radiation States

Consider the case of a spherical buoy of radius 1 m. The
equilibrium level is such that half of the sphere is sub-
merged. The mass of the sphere in this case is 2.0944x10°
kg. The corresponding added mass at infinite frequency is
1.1253x10° kg. Three radiation states are included in the
system dynamics model. A regular excitation force is
assumed with a frequency of w=2m/3. Substituting the above
data into the optimal control given in Eq. (35) and perform-
ing the inverse Laplace transform, gives:

u(1)=—4688.0 sin(2.091)+897.0 cos(2.09¢)-1.66e58(¢)
-5.14e4 cos(0.2081)e~025415 144 cos(0.2081)e%254

—3.72e4 sin(0.2081)e~%284_3.72¢4 sin(0.2087)e%254+

3.4e6e408 42)

The above form for u(t) has unstable terms due to the fact
that the derivation did not assume any constraints on the
displacement nor the control. In reality the control is limited;
hence these unstable terms are dropped to yield the final
form of the optimal control. The complex conjugate control
is a steady state solution. For the sake of comparing the
obtained control to the complex conjugate control solution,
all the transient terms are dropped from Eq. (42) to obtain
the final steady state singular arc control in the form:

u(1)=-4683.0 sin(2.09/)+897.0 cos(2.09¢) @3)

This control is simulated and the results are shown below.
The analysis of this problem in the frequency domain yields
the complex conjugate control as the optimal control. In
FIG. 12, the singular arc control is compared to the resistive
loading control and the theoretical limit as computed from
the complex conjugate control, in terms of extracted energy.
The energy extracted from the singular arc control coincides
with that obtained from the complex conjugate control. It is
noted that the singular arc solution is referred to as BSB
control since a limit on the control was assumed; this limit
is assumed high enough in this case to demonstrate the
singular arc control characteristics shown in FIG. 13. FIG.
13 shows that the control of the BSB control coincides with
that of the complex conjugate control. FIG. 14 compares the
velocity of the buoy as simulated using both the complex
conjugate control and the BSB control; plotted also in FIG.
14 is the excitation force (scaled) to demonstrate that the
velocities are in phase with the excitation force; which is the
resonance condition for the complex conjugate solution.

As can be seen above, the BSB solution is in the form of:

u(t)=bgsp sin(wt)+agsy cos(wt) 44)

The complex conjugate control can also be represented as:

u(t)=bcc sin(wi)+a ¢ cos(wr) (45)

Hence, the comparison between the two methods can be
carried out through comparing the coefficients for different
excitation force frequencies. Table 1 summarizes the coef-
ficients for both methods for different frequencies. There are
small differences in the coefficients values between the two
methods because the BSB uses a 3x3 radiation states sys-
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tem; this difference, however, is negligible as can be seen in
FIG. 12. The two methods produce essentially the same
solution.

TABLE 1

Singular arc and complex conjugate
solutions for different exciting frequencies.

2 o o
o 2 3 4

dcc 507.2073 897.1070 1.1349+03

bee 91.8833 -4.6111e+03 ~1.5609+04

Apsn 507.2073 897.1070 1.1349+03

bass 35.8059 -4.6834e+03 ~1.7024e+04

The implementation of complex conjugate control usually
requires wave prediction as described in several references.
See F. Fusco and J. V. Ringwood, IEEE Trans. Sustain
Energy 1(2), 99 (2010); and U. A. Korde, “Up-wave surface
elevation for smooth hydrodynamically control of wave
energy conversion in irregular waves, In: IEEE Proceedings
of OCEANS, San Diego, Calif. 2013. The BSB control of the
present invention assumes knowledge about the excitation
force and its derivatives at the current time; which can be
obtained using an estimator (an estimator using pressure
measurements is described below). Hence, no wave predic-
tion is needed in the BSB control. This is a significant
advantage compared to other optimal control strategies, such
as the model predictive control. See J. A. M. Cretel et al.,
“Maximization of energy capture by wave-energy point
absorber using model predictive control”, in: IFAC World
Congress, 2011. Finally, this BSB control method is appli-
cable only when a linear dynamic model is valid. Hence, it
is assumed that the displacement of the buoy is small at all
times. When the displacement is large, this linear assump-
tion might be violated.

Estimation of Excitation Forces for WEC Control

Most prior art control algorithms for wave energy con-
verters require prediction of wave elevation or excitation
force for a short future horizon, to compute the control in an
optimal sense. The method of the present invention uses an
estimation of the excitation force and its derivatives at
present time with no need for prediction to compute the
control. According to the invention, an extended Kalman
filter can be used to estimate the excitation force. As an
example, the measurements are selected to be the pressures
at discrete points on a buoy surface, in addition to the buoy
heave position. The pressures on the buoy surface are more
directly related to the excitation force on the buoy as
compared to wave elevation in front of the buoy. These
pressure measurements are also more accurate and easier to
obtain. Singular arc control can be used to compute the
steady-state control using the estimated excitation force. The
estimated excitation force is expressed in the Laplace
domain and substituted in the control, before the latter is
transformed to the time domain. As an example, numerical
simulations are presented for a Bretschneider wave case
study.

As described above, waves can be a reliable source of
renewable energy. A key technology is the control system
used to maintain economic energy-harvesting levels. To
achieve that, the control system needs to be designed so as
to maximize the energy harvesting. To highlight the chal-
lenges in optimizing the control of a wave energy converter
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(WEC), consider the dynamic equation describing a WEC in

a one-degree-of-freedom heave motion (known as the Cum-
mins’ equation of motion):

(m+a())%, = +u-Bok -Kx, ="k, (0)F (-T)dT (46)

where X, is the heave displacement, m is the buoy mass, K
is the hydrostatic stiffness due to buoyancy, () is the added
mass at infinite frequency, f, is the excitation force, u is the
control force, B, is a viscous damping coefficient, and h, is
the radiation impulse response function (radiation kernel).
See W. Cummins, The impulse response function and ship
motions (Report; David W. Taylor Model Basin), Navy
Department, David Taylor Model Basin (1962). The radia-
tion term is called the radiation force, f,., and the buoyancy
stiffness term is called the hydrostatic force. The control
problem is to compute the history of the control force u(t)
over the interval [0 T] such that the harvested energy is
maximized over the same interval.

The radiation force term is frequency dependent. For
control optimization, a short time prediction of the incoming
waves is crucial. See F. Fusco and J. V. Ringwood, IEEE
Transactions on Sustainable Energy 1(2), 99 (2010). In fact,
many existing control strategies do require some sort of
prediction in the future of the wave elevation or the exci-
tation forces in order to compute the control in an optimal
sense. For instance, Li et al. implements dynamic program-
ming, while Hals et al, uses a gradient-based algorithm in
searching for the optimal control, given a wave elevation
prediction over a finite future horizon at each control time
step. See G. Li et al., Renewable Energy 48(0), 392 (2012);
and J. Hals et al., Journal of Offshore Mechanics and Arctic
Engineering 133(1), 1 (2011). A model predictive control
(MPC) can be used to compute the optimal control, given a
prediction for the wave over a finite horizon as in Cretel et
al. Soltani et al., and Kracht et al. See J. A. M. Cretel et al.,
Maximization of energy capture by a Wave-energy point
absorber using model predictive control, IFAC World con-
gress, Milano, Italy (2011); M. N. Soltani et al., “Model
predictive control of buoy type wave energy converter” In
The 19th international federation of automatic control
(IFAC) World congress, Cape Town, South Africa, Interna-
tional Federation of Automatic Control (IFAC), Cape Town,
South Africa (2014); and P. Kracht et al., First results from
wave tank testing of different control strategies for a point
absorber wave energy converter, 2014 Ninth international
conference on ecological vehicles and renewable energies
(EVER) (pp. 1-8), Monte-Carlo, Monaco (2014). Bacelli et
al. utilized the pseudo spectral method, whereas Abdelkhalik
et al. developed a shape-based approach that exploits the
available wave prediction data to work with a fewer number
of approximated states compared to the pseudo-spectral
method. See G. Bacelli et al., “A control system for a
self-reacting point absorber wave energy converter subject
to constraints,” Proceedings of the 18th IFAC World Con-
gress (pp. 11387-11392), Milano, Italy (2011); O.
Abdelkhalik et al. “Control optimization of wave energy
converters using a shape-based approach,” in ASMFE power
& energy 2015, San Diego, Calif.: ASME (2015); and O.
Abdelkhalik et al., Journal of Ocean Engineering and
Marine Energy 1 (2016). As described above, Abraham has
proposed bang-bang control as a suboptimal control in the
presence of limitations on the control actuation level, where
wave prediction was assumed available. See E. Abraham,
Optimal control and robust estimation for ocean wave
energy converters (Doctoral dissertation), Department of
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Aeronautics, Imperial College, London (2013). In all of the
above control methods, a prediction for the wave elevation
or excitation force is needed.

In recent WEC research, it has been common to predict
the wave elevation; and then use that to estimate the exci-
tation force. See A. K. Brask, Control and estimation of
wave energy converters, Norwegian University of Science
and Technology, Department of Marine Technology, Trond-
heim, Norway (2015). Deterministic sea wave prediction
(DSWP) has been studied extensively, in which the water
surface elevation is measured at one or more locations, and
then those measurements are propagated forward using a
wave dispersion model. Zhang et al. developed a directional
hybrid wave model for short-crested irregular ocean waves
for use in DSWP. See J. Zhang et al., Applied Ocean
Research 21(4), 167 (1999). The disadvantage of using the
standard discrete spectral DSWP processing techniques is
that they force a periodic structure on the sea surface
prediction models while the sea is aperiodic in nature. See
M. Belmont et al., Ocear Engineering 33(17-18), 2332
(2006). This can be alleviated by using finite impulse
response prediction filters to provide the necessary disper-
sive phase shifting required in DSWP systems. See M.
Belmont et al., Ocear Engineering 33(17-18), 2332 (2006).
More recently, Halliday et al. investigated the use of Fast
Fourier Transform (FFT) in making predictions of wave
elevation and concluded that the method is not always
reliable. Specifically, the periodic nature of the FFT does not
fit with the non-periodic measured signal. See J. R. Halliday
et al., Renewable Energy 36(6), 1685 (2011). There are still,
however, other challenges in using DSWP such as the need
for many wave measurement buoys to make predictions for
one location, in addition to adjusting the prediction model
for the location of the VVEC as it moves around in its watch
circle. See B. A. Ling, Real-time estimation and prediction
of wave excitation forces for wave energy control applica-
tions, Corvallis, Oreg.: Oregon State University (2015). For
wave prediction, LIDAR devices also can be used to scan
the incident wave field in front of a NEC, and then propagate
the measured wave field forward in space and time using a
wave model for prediction. See M. R. Belmont and P.
Ashwin, Journal of Atmospheric and Oceanic Technology
28(12), 1672 (2011). Predictions with LIDAR, however, are
less accurate and have their own challenges. See M. Bel-
mont et al., Journal of Atmospheric and Oceanic Technology
31(7), 1601 (2014). The collected measurements, from a
single VVEC, for wave elevation over time can be recog-
nized as a stochastic time series, and hence can be used for
forecasting wave elevation in the future. See F. Fusco and J.
Ringwood, A study on short-term sea profile prediction for
wave energy applications, 8th European wave and tidal
energy conference (EWTEC), Uppsala, Sweden (2009).
There are a number of candidate techniques that can be used
for this type of problem, such as the extended Kalman filter
(EKF), the linear autoregressive model, and neural net-
works. See F. Fusco and J. Ringwood, 4 study on short-term
sea profile prediction for wave energy applications, 8th
European wave and tidal energy conference (EWTEC),
Uppsala, Sweden (2009); and S. Hadadpour et al., “Wave
energy forecasting using artificial neural networks in the
Caspian Sea,” in Proceedings of the Institution of Civil
Engineers-Maritime Engineering (Vol. 167, pp. 42-52),
London: Institute of Civil Engineers (2014).

Recently, Ling used an EKF, with a simplified linear
frequency-invariant state-space model, for estimating the
excitation force on a point absorber VVEC. See B. A. Ling,
Real-time estimation and prediction of wave excitation



US 10,197,040 B2

15

forces for wave energy control applications, Corvallis,
Oreg.: Oregon State University (2015); and B. A. Ling and
B. A. Batten, “Real time estimation and prediction of wave
excitation forces on a heaving body,” in ASMFE 2015 34th
international conference on ocean, offshorve and arctic engi-
neering (Vol. 9), Ocean renewable energy, ASME: St.
John’s, Newfoundland (2015). The estimated excitation
force is then used for predicting the excitation force in the
future. The measurements are the WEC positions and veloci-
ties over time. The excitation force is modelled as a sum-
mation of three modes at different frequencies; the frequen-
cies are allowed to change over time in the EKF model. The
results show that this approach makes accurate predictions
of excitation force over short time horizons. See B. A. Ling,
Real-time estimation and prediction of wave excitation
forces for wave energy control applications, Corvallis,
Oreg.: Oregon State University (2015); and B. A. Ling and
B. A. Batten, “Real time estimation and prediction of wave
excitation forces on a heaving body,” in ASMFE 2015 34th
international conference on ocean, offshorve and arctic engi-
neering (Vol. 9), Ocean renewable energy, ASME: St.
John’s, Newfoundland (2015).

Estimation of Excitation Forces for WEC Control
Using Pressure Measurements

The present invention can use pressure measurements
collected only at the WEC location to estimate the excitation
force on the buoy surface, and then use the estimated
excitation force with a controller that maximizes the energy
harvesting. As pointed out in Fusco and Ringwood, it is
possible to use past time history of wave elevation mea-
surements collected at the WEC location only to forecast
wave elevation over a short future horizon. See F. Fusco and
J. V. Ringwood, IEEFE Transactions on Sustainable Energy
1(2), 99 (2010). The present invention, however, does not
need to use wave elevation measurements. Rather, the
invention can measure the pressure values at different loca-
tions on the buoy surface, in addition to the position of the
buoy itself. The excitation force on the buoy surface is the
quantity to be estimated. The estimated excitation force at
the current time can then be fed to a singular arc control
algorithm, as described above. This control does not require
the prediction of the excitation force in the future; but rather
it evaluates the derivatives of the excitation force at the
current time and uses them to compute the control in an
optimal sense. Computing the derivatives at a current time
provides information about the future. See D. Mugler and W.
Splettstosser, [EEE Transactions on Information Theory
33(3), 360 (1987). This method has several advantages.
First, it is easy to collect accurate measurements for pres-
sures on the buoy surface and for the buoy position. Second,
the linear wave theory provides a mathematical model for
the pressure distribution on the buoy surface which can be
used to enhance the estimation of excitation forces. Also, the
excitation force is related to the integration of pressures on
the buoy surface; which means that the estimated quantity is
more directly related to the measurements, which also
enhances the estimation process. Finally, this control method
eliminates the wave prediction step, and hence it saves on
the computational cost. This method can be thought of as a
feedback control strategy since current measurements are
fed back to the filter which produces estimates to the
controller. As an example of the invention, the method was
tested on a Bretschneider wave and the results show that the
harvested energy is close to that of a complex conjugate
control, in the absence of motion and control constraints.
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An estimator should be accurate yet fast, so that it fits in
a real-time implementation. The function of the estimator is
to compute the best estimate X for the system state vector,

X, given a system’s truth model:

T=7 X, u@), 20 (0) @7

and the measurements vector:

PR, 047 ) (48)
— —
where o (t) is the process noise, v (t) is the measurement
noise, and u is the control input. The system’s truth model
is usually developed from the physical laws known to
govern the system’s behavior. See J. L. Crassidis and J. L.
Junkins, Optimal estimation of dynamic systems, Boca
Raton, Fla.: Chapman & Hall/CRC (2004). One classifica-
tion for the estimation problem is linear versus nonlinear
problems, depending on whether the system’s model and/or
measurements’ model are linear or nonlinear functions of
the states. See Y. Bar-Shalom et al., Estimation with appli-
cations to tracking and navigation, theory algorithms and
software, New York, N.Y.: John Wiley & Sons (2001). One
of the popular linear filters is the Kalman filter (KF). See R.
E. Kalman, Journal of Basic Engineering 82(Series D), 35
(1960). Another example is the H_, filter, which reduces to
a Kalman filter with proper selection of the weight matrices.
See D. Simon, Optimal state estimation, Kalman, H,_, and
nonlinear approaches, New Jersey, N.Y.: John Wiley & Sons
(2006). The system is considered nonlinear if the function

?(Y(t), u(t), t) and/or the function H(Y(t), t) is a nonlinear

function of the states vector X. Of the most popular non-
linear estimation algorithms is the extended Kalman filter
(EKF). Another classification for the estimation algorithm is
sequential vs. batch estimators, depending on whether the
measurements are processed all in a batch, or the states are
updated each time a measurement is obtained. The batch
filters are more computationally intense and might not be
suitable for real-time implementation. The EKF is a sequen-
tial filter, and is the estimator used in the example described
below.

Estimation of Excitation Forces for WEC

To build the EKF for this problem, it is necessary to have
a model for the WEC system and a model for the measure-
ments, in addition to the EKF update equations. Each of
those is detailed in a separate section below. To improve the
performance of the EKF, the velocity can be added as a
pseudo measurement.

Define the state vector X as

=[x, Xz Xy« s X A1 L, o, »
3
8, 0y, ..., PR (49

where x, is the buoy position, X, is the buoy velocity,

— T .. .

X,=[X,;, - . ., X,»]" are the radiation states, a, is the wave
amplitude at frequency m,, and ¢, is the phase associated
with ®,. The EKF estimates the most 8 dominating fre-
quencies in the wave; X is a design parameter. The heave

dynamic equations in terms of the state vector X can be
written as

(50)

X1=%;
(m+a(e))i, =1 (61

a~0,v~1... N (52)
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o~0,V~1... N (53)

-0, v~1... N (54)

where f; is the total heave force on the buoy including the
excitation force, radiation force, hydrostatic force, viscous
damping force, and control force. The changes in the fre-
quencies, amplitudes, or phases states are usually slow and
small; and hence these changes are modelled as noises; these
noises are added to the above mathematical model to gen-
erate a truth model as detailed below. See B. A. Ling,
Real-time estimation and prediction of wave excitation
forces for wave energy control applications, Corvallis,
Oreg.: Oregon State University (2015).

The excitation force is two components. The first com-
ponent is the Froude Krylov force which is due to the
potential field of the wave flow. The second component is
the diffraction force. For low frequencies, the diffraction
forces are small compared to the Froude Krylov force. See
J. Falnes, Ocean waves and oscillating systems—linear
interactions including wave-energy extraction, Cambridge:
Cambridge University Press (2002). In this example, the
diffraction forces are neglected, and hence the excitation
force refers to the Froude Krylov force. The excitation force
is modelled as the integration of the excitation pressure over
the wet buoy surface. The excitation pressure distribution on
the buoy surface can be computed in terms of the state vector

X using a potential flow theory as follows. The surface is
divided into a grid of cells, where each cell is assumed to
have uniform pressure over its area. Each cell is identified by
two indices j and k; the index j determines the vertical
position of a cell and k denotes the surface number at a
certain vertical position j. The excitation force is then
computed as

(63

fe:Z E Atk
i

ul cosh(X, (x; + z; +h)
Z (pgan v e——

cosh(X,h) coS(XpXj — Wyl + ¢n)]

n=1

where the vector ij is the normal to the surface #jk, X,, is
the wave number, X =27/A, where A, is the wavelength
associated with the frequency w,,, K is the downward unit
vector which is [0;0;-1], h is the mean water level height,
X, and z, ; are the coordinate of the cell #jk, and X,, has to
satisfy the dispersion relation

o,>=g X, tan h(hX,)

See H. E. Krogstad and @. A. Arntsen, Linear wave theory
(2000).
The hydrostatic force can be modelled as

(6)

fi= Z Z AT R(—pg(x1 +2j1) 57
7 x

One way to model the radiation force f, is to introduce a
radiation state-space model in which X, is a state vector
subject to:

=47 4B x, (58)

£=C%, (59)
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where the radiation matrices in Eq. (58) are obtained by
approximating the impulse response function in the Laplace
domain H,(s) as follows:

DS+ P18 L+ S po (60)

H. =
Hs) GnS™ + Gmo1STL L qis + g

-
where n<m. Finally, a process noise o (t) is added to the
mathematical model, as shown in Eq. (47). See Z. Yu and J.
Faines, Applied Ocean Research 17(5), 265 (1995); T. Perez
and T. 1. Fossen, Identification of dynamic models of marine
structures from frequency-domain data enforcing model
structure and parameter constraints (Technical Report
2009-01.0), ARC Centre of Excellence for Complex
Dynamic Systems and Control, New Castle, Australia
(2009).

The radiation force on the buoy is a function of the buoy
motion and hence it can be computed in real time. The
hydrostatic force is also a function of the buoy position and
hence it can be computed as a function of the buoy state. The
excitation force, on the other hand, is a function of the buoy
motion as well as the wave potential field. Therefore, it is
necessary to know the wave and its potential field in order
to compute the excitation force so that the control force u(t)
can be computed. Hence, measurements are collected to
estimate the excitation force. Typically, buoy position is
measured. The buoy position, however, is a result of the
interaction of the wave with the buoy body and hence it is
not a direct measurement of the excitation force. Sensing the
pressure at few points on the buoy surface provides mea-
surements that are more direct to the excitation force.

In this analysis, it is assumed that the measurements are
the position of the buoy, the pressure values at N points
distributed on the buoy surface. The pressure at each point
is measured using a pressure sensor. The locations of the
pressure sensors are known. Hence, the output model for this
system is constructed as follows:

Il (61)

Y=1[x1. p1a p2s e s P

— — — T
= [ X)), (X, o iy (X))

where the pressure at a cell of vertical distance c; from the
center of gravity is

62

R
cosh(yp(x1 +c; +h
pi= ZPW%M X COS(= Wyl + Bp) —
n=1

cosh(x,h)

where A is the total surface area of the buoy. The first term
in Eq. (62) is the excitation pressure; the last term is the
radiation pressure; the second term is the hydrostatic pres-
sure, and the third term is the viscous damping pressure. The
output model described above is related to the actual mea-

surements, v, through Eq. (63).
TV

(63)

-
where v (t) is the vector of sensors noises.
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To implement the EKF, it is necessary to compute the
partial derivatives of the functions in the dynamic model Ah; cosh(yn(x1 + 24 +h)) ont s (73)
. . . =pg————F———cos(—w, -
(right hand sides of Egs. (50)(54)) with respect to the state da, cosh(y,h)
vector deﬁned in Eq. (49). These derivatives are collecteq in on; coshxaxt + 26 + ) a4
the Jacobian matrix F. Note that the pressure on a vertical B, :Pg“nwmn(—wnf +dn)
surface does not contribute to the heave motion. In this
analysis with a focus on the heave motion, the cells on Ohj . cosh(i (%1 + 2 +h))sin(_w b 5
. . . A, P8 cosh(x,h) " "
non-vertical surfaces will be referred to as heave effective 0 " "
cells. Assuming that the pressure sensors that are on heave-
effective cells are always submerged in the water, then F can Forj=2, 3, ..., N+1, the gradient functions with respect to
be computed as shown in Eq. (64), where the heave position are:
0 1 0 0 0 0 0 0 0 0 0 0 0 0 64
Ofr ofr Ofr Of O/ ojr Ofr Ofr Of Ofr
Ox;  0xr 0xn dxpn Oa;  dax Owp dwx 9y T I¢x
afr Ok dfr
Fe 0 E o o 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
afr 1 - sinh(x, (1 + Zia + W)X ©9
a = ZZ Z Ajk”ij{Z [Pgan WCOS(Xan,k —wpl + )| = Pg}
ik "
% =- tiisc (66)
x> m
ofr _ 1o ©7
9%, m
le} 1 _, . cosh(y,(x +zj, +A) (68)
BZ T m Z Zk: AnlliRog cos}i()(n;l)k X COS(YnXjk = Wnl + Pn)
4
Yn=1..R8
le} 1 oo cosh(xn(xX1 + 24 +H) (69)
T Y iainga, I D) s - ot )
n ~ 4 n
Yn=1..R8
¢} 1 . cosh(y,(X1 + 2k + 1) | (70)
# - ZZ Z AR koga, )ZOTX;L; Xsin(ynXjx — wnl + Pn)
n ~ 4 n
Yn=1..R8
The Jacobian matrix, H, of the output equations is evaluated 5,
as follows: Ah; sinh( v, (¥ + 2 + W) xn (76)
B_xf = ZngnTxﬁz)cos(—wn[“' #n) —pg
. Ah; ] an
HU. = ™ ss ar, ~ B/
AX (D 2
dOh; 78
! =_cr/A, 78
. dx,
where for j=1:
The WEC system under consideration is a continuous
ahy ahy (72) system while the measurements are collected at discrete
— =1, —=0,¥¢/=2,... ,N+1 . . .
ax (1) ax () points. Hence, a continuous-discrete extended Kalman filter
can be implemented, See J. L. Crassidis and J. L. Junkins,
65 Optimal estimation of dynamic systems, Boca Raton, Fla.:
For j=2, 3, . .., N+1, the following gradient functions can Chapman & Hall/CRC (2004). Associated with the esti-

be written for each frequency m,, n€{1, ..., N}:

mated state vector )A((t) is the matrix P(t), which is the
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covariance of the state error vector. The covariance matrix
propagates in time according to the Riccati equation:

PO &0, 0PO+POF &), n+Q(1) 79

where Q is the covariance matrix associated with the process

noises vector $(t).

The process of the continuous-discrete EKF implemented
on the WEC system is:

(1) Propagate the current state using Eqs. (50)-(54) to the

next measurement time r; the resulting state is Y,‘
(2) Propagate the covariance matrix to the next measure-
ment time T using the Riccati Eq. (79). The resulting
covariance is P_~
(3) At time T, evaluate the output Jacobian matrix H_, also
evaluate the measurements’ noises covariance matrix

R,
(4) Compute the Kalman gain using Eq. (80).

(5) Update the state X~ using )A(::)A(TWF?[}NQ—?O:(;)]

(6) Update the covariance P~ using P_*=[I-T" . H.(X, )]
P~

(7) The current state is Y: and the current covariance is
P.*. Go to step 1.

=P H X &P H X )+R ] (80)

The pressure and heave position measurements, at each
time, are collected in the vector .. This vector is used to
update the estimated state vector X, as described above. The
estimated state vector X includes the estimates of the wave
amplitudes, frequencies, and phases, at the current time.
Using the estimated state vector, X, an estimate for the
excitation force T, can be computed using Eq. (55), where
the states x,, m,,, ¢,, and a,, are replaced by their estimates.

The EKF needs to be initialized with initial guesses for the
state vector and the covariance, X(0) and P,, respectively.
This EKF generates an estimate for the state vector X at each
time step T. This EKF is a sequential algorithm which means
that at each time step the optimal estimation is computed as
a function only of the measurement at the current time and
the estimated state at the previous time, as can be seen from
the EKF steps listed above. This is computationally very
efficient compared to other batch estimators.

The velocity is not being measured in the problem setup
described herein. Preliminary simulation results show that
the estimated excitation force converges to the true excita-
tion force with reasonable accuracy after a transient period.
In this transient period, the estimates of the amplitudes,
frequencies, and phases deviate away before they converge
to their true signals. Aiming at eliminating this deviation in
the transient period and to improve the estimation accuracy,
a pseudo measurement can be added. That is, the velocity
can be computed by taking the derivative of the position,
capitalizing on the available very accurate position sensor;
yet the computed velocity can be included in the model as
if it was an actual measurement. This pseudo measurement
is appended to the measurements vector and is handled
similar to other measurements. The new output model is

8D

¥ =[x 20 p1 p2s e s paYT

— — — T
= [ (X)), (X, ... (X))
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Singular Arc Control

There are several control strategies that can be imple-
mented on WECs, as described above. The harvested energy
over a time interval [0 T] can be computed as

E=foH{u(ni@}dt

The optimal control maximizes the harvested energy in Eq.
(82) (which is the same as Eq. (5)). Singular arc control is
a closed form analytic solution for the control force in terms
of the excitation force, in the Laplace domain. The roots of
singular arc control were developed by Kasturi and Duponts
for vibration dampers. See P. Kasturi and P. Duponts, Sound
and Vibration 215(3), 499 (1998). The control is adopted for
the VVEC system defined in Eq. (46), after converting the
system to its equivalent state-space model, with radiation
states added to model the radiation force. The singular arc
control is derived using the principals of optimal control
theory, where the necessary conditions of optimality are
derived. These necessary equations of optimality for the
WEC problem are a set of differential equations in the states,
the co-states, and the control. These differential equations
are transformed to the Laplace domain to solve for the
control. The mathematical detail as well as several numeri-
cal test cases in which the excitation force is assumed known
perfectly was described above. Below, the excitation force is
estimated in order to examine the performance of this
control when using the estimated excitation force in com-
puting the control.

If the maximum control force is y, then it can be shown
that the singular arc control for the VVEC system defined in
Eq. (46) is

(82)

Uy, C=0; (83)
u=< v C>0
-y, C<0;

(Eq. (83) is the same as Eq. (23)). The u,, is a singular arc
control; C is a switching function that is equal to the
derivative of the Hamiltonian with respect to the control. An
easy way to compute the switching points in Eq. (83) is to
compute the u,, term as detailed below, and then compare its
value to the control boundaries+y. If its value is outside the
boundaries, then it gets replaced by the nearest boundary
value.

The singular arc term u,, in the Laplace (s) domain,
U,,(s), is of the form U_(s)=U,(s)+U,(s), where

Nl (84)
Ui(s) = Do
N1(s) = (ms? + (Cr(sl + A,) "B, = B))s + k)F,(s) (85)
Dy (s) = s(Cr(sI + A,) "B, — C(s - A,)"'B, - 2B,) (86)
_ Nals) (87)
Ua(s) Do
No(s) = (88)
((/120 + 00T+ A,)ilB,)s - Alo)(msz +(CosI— A)™ B, + B)s +K)
Dy(s) = s2(Cr(sl + A,)" B, — Cu(sI — A,)"'B, —2B,) (89)

(Egs. (84)-(89) are the same as Egs. (35)-(40)). The A, B,,
C, are the matrices of the radiation state-space model defined
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in Eqs, (58) and (60), F, is the excitation force, I is the
identity matrix, and A, are co-states. The U,(s) is a transient
term that depends only on the initial values of the co-states
and is independent from the excitation force. The U, (s) is the
steady-state term that depends on the excitation force. If
only the steady-state solution is of interest, then U,(s) can be
dropped, which means that it is not necessary to solve for the
co-states. The steady-state control U, (s) is a function of the
excitation force only. The estimated excitation force can be
used in Eq. (84) to solve for the control. The control U, (s)
has more zeros than poles (the order of the numerator is
higher than the order of the denominator). This control then
needs to evaluate the derivative of the excitation force. This
is consistent with the notion that wave prediction in the
future is usually needed to compute the optimal control,
since the derivatives at a current time carry the information
needed for prediction in the future. See D. Mugler and W.
Splettstosser, [EEE Transactions on Information Theory
33(3), 360 (1987), The singular arc control then replaces the
wave prediction step by computing the derivatives of the
excitation force at the current time.

The estimated excitation force can be computed in the
Laplace domain as follows. The equation for excitation force
in time domain is expressed as

X 90)
Fo() = ) R(Crepane ™" )

n=1

where R (x) is the real part of x, Cp,,=A, +tB, is the
excitation force coefficient which is a complex number,
Hence,

[CIY)]
Fo(0) = ZAncos( Wnl + @) = BySin(—wnl + ¢

n=1

X
= Z AncoS(Wnl — ¢ + Bysin(wnt — )
n=1
X
= Z A, (cos(@y)cos(w,i) + sin(g,, )sin(w, 1) +
=1

R
> Bu(cos(n)sin(wnt) - sin(@, Jeos(wn)

n=1
The Laplace transform of Eq. (91) is

92)
Fus) = ZA (cos(gan) — +sm(¢n)%]+

n=1

R
Z B, (cos(¢n

n=1

—sin(¢,,) o wz]

The excitation force coefficients A,, and B,, can be evalu-
ated numerically for a given buoy shape. They can also be
estimated using the estimated excitation force in Eq. (55)
along with the estimated wave amplitudes, frequencies, and
phases. Estimating the excitation force coefficients can be
carried out by adding these coeflicients as additional states
in the EKF, or simply by solving a least square error
problem. Expressing the excitation force in the Laplace
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domain, Eq. (92) enables the calculation of the derivatives of
the excitation force, which is needed by the singular arc
control.

Simulation Results

A simulation tool was developed to test the excitation
force estimation and control system. FIG. 15 shows the
block diagram of this simulation tool. A dynamic model that
propagates the system’s state vector in time is developed and
is labeled ‘dynamic model” in FIG. 15. This dynamic model
simulates the true model and assumes 32 frequencies in a
Bretschneider wave (N=32), as shown in FIG. 16. To
propagate the true model, process noises are added to the
right-hand side of Egs. (50)(54) to account for any non-
modelled effects, such as nonlinear viscous effects. The
process noises are assumed random with a normal distribu-
tion, the statistical properties of which are listed in Table 1;
zero mean noise is assumed for all the states. To create the
measurements vector ¥,

TABLE 1

Statistical characteristics of the process noise.

State Standard deviation

Position (x;) 1
Velocity (x,) 8
Radiation states (X,.) 0.1
Frequency (w,) 0.01
Phase (¢,) 0.01
Amplitude (a;) 0.01

TABLE 2

Statistical characteristics of the measurement noise.

Measurement Standard deviation
Pressure p; 1000
Position x, 0.01
Velocity pseudo measurement X, 0.5

a noise is added to each element in the output vector (?) of
the dynamic model. The noise of each measurement is
assumed to be random with normal distribution; a zero mean
noise is assumed for each output and the standard deviation
values are listed in Table 2. The EKF block in FIG. 15 has
the EKF propagation and update equations. The EKF uses a
dynamic model for propagation; this dynamic model is Eqgs.
(50)-(54) assuming only 10 frequencies in the wave and the
excitation force (X =10), as opposed to 32 in the dynamic
model that simulates the true model. Finally, the ‘Controller’
block computes the singular arc control using the estimated
state vector X.

Two case studies are considered as examples. The first
case assumes a buoy, with no control force applied, moving
only due to the wave effect. The purpose of this case study
is to verify the EKF is working and to compare the results
of the EKF with results obtained from numerical simula-
tions. The second case study implements the singular-arc
control method of the present invention, along with the
estimated excitation forces from the EKF.

The test cases considered an experimental buoy configu-
ration. The experimental device, shown in FIG. 17, has a
mass of 858.4 kg, a volume of 0.8578 m?, and a diagonal
inertia matrix of [83.9320, 83.9320, 137.5252] kg m?. It is
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assumed in the simulations that there are eight pressure
sensors on one quadrant of the buoy surface at different
heights.

Case 1: Buoy with No Control

In this case, it is assumed that there is no control force
applied on the buoy. FIG. 18 shows the estimated excitation
force as a function of time compared to the simulated true
excitation force. The estimated excitation force is very close
to the true excitation force. The accuracy of the estimated
state vector is also very accurate. For example, FIG. 19
shows the estimate of one of the frequencies versus its true
value, where the initial state error is assumed to be 0.01
rad/s. The error in estimating the wave amplitude at that
frequency is shown in FIG. 20. An initial error is assumed
to be 0.007 m.

The above results can be further improved if the number
of estimated frequencies in the EKF is increased. FIG. 21
shows the percentage error in estimating the excitation force
over time for various values of N, which is the number of
frequencies modelled in the EKF; note that the number of
frequencies in the simulated true model is assumed 32.

Case 2: Buoy with Singular Arc Control

In this case, an actuator is assumed to control the buoy.
The control logic is based on the bang-singular-bang (BSB)
control, as described above. This BSB controller requires
also the estimation of the excitation force at the current time.
The excitation force is estimated in the EKF as shown in
FIG. 15. FIG. 22 shows the energy absorbed using a
complex conjugate control assuming perfect knowledge of
the excitation force (ideal CCC), the energy absorbed using
a BSB control assuming perfect knowledge of the excitation
force (ideal BSB), and the energy absorbed using BSB
control assuming noisy measurements and using the EKF to
estimate the excitation force (Real BSB). The energy har-
vested using the baseline resistive loading control based on
the estimated buoy states (Real RL) is also shown in FIG.
22. The energy of the ideal CCC matches that of the ideal
BSB, which highlights the effectiveness of the BSB control.
As expected, the real BSB produces lower energy harvesting
due to the presence of measurements noises and model
uncertainties, which result in errors in estimating the exci-
tation force. Yet, the energy harvested using the real BSB is
high compared to the energy harvested using the real RL
control.

The corresponding applied control force is shown in FIG.
23. The history of the buoy position over time is shown in
FIG. 24, where both the true position of the buoy and
estimated position of the buoy from the EKF are shown,
along with the wave elevation. FIG. 24 also shows that the
buoy does not leave the water in this simulation. The
estimated position matches the true one. The true buoy
velocity and the estimated buoy velocity are shown in FIG.
25. The error in velocity estimation is very small and is
within the 3oboundaries all the time.

FIG. 26 shows the estimated excitation force along with
the simulated true excitation force in this case. FIG. 27
shows the estimation accuracy for one radiation state; the
rest of the radiation states are also accurately estimated. One
estimated frequency is shown in FIG. 28. The error in
estimating one wave amplitude is shown in FIG. 29 along
with the 3oerror boundaries.

The excitation force estimation described above uses an
EKF. There are several publications that address the problem

10

15

20

25

30

35

40

45

50

55

60

65

26

of wave (or excitation force) estimation and prediction; and
some of them have implemented EKF. The EKF implemen-
tation, however, varies among these studies. For example,
Fusco and Ringwood have implemented the EKF for wave
prediction, but their study focused on the single frequency
case. See F. Fusco and J. V. Ringwood, IEEE Transactions
on Sustainable Energy 1(2), 99 (2010). The measurements
used in Fusco and Ringwood are the free surface wave
elevation measurements. Ling and Batten, on the other hand,
used the EKF to estimate the excitation force on the buoy
where the measurements are assumed to be the buoy motion
(heave position and velocity). See B. A. Ling and B. A.
Batten, “Real time estimation and prediction of wave exci-
tation forces on a heaving body,” in ASME 2015 34tk
international conference on ocean, offshove and arctic engi-
neering (Vol. 9), Ocean renewable energy, ASME: St.
John’s, Newfoundland (2015). In Ling and Batten, the
excitation force is modelled as the summation of three
modes at three different frequencies. Hence, the state vector
included the three frequencies, amplitudes, and phases. In
both Fusco and Ringwood and Ling and Batten, the fre-
quency model allows a change in the frequency value over
time through the process noise term that is added to the
WEC model. One way to understand how the EKF works is
as follows. The EKF collects measurements ¥, and it also has
a mathematical model that describes how the states evolve
over time, f. The mathematical model alone can provide an
estimate for the states at any time; this estimate, however,
when used to compute the output (pressures and motion)
may not yield the measured values. The EKF searches for
the optimal estimate of the states X that is a weighted
satisfaction for both the measured values and the estimates
based on the mathematical model. The weights depend on
the levels of measurements noises versus the process noises.
Hence, there are two elements that are crucial for an efficient
use of the EKF: the mathematical model and the measure-
ments. The more representative is the mathematical model
and the more accurate are the measurements, the more
accurate is the estimated state vector.

As descried above, the EKF mathematical model includes
the WEC equation of motion; and hence it includes models
for the radiation force, the excitation force, and the math-
ematical relation between the measurements and the esti-
mated quantity. This implementation of the EKF is then
expected to have good accuracy, as evident from the numeri-
cal results. It is noted here that while the inclusion of this
mathematical model may increase the estimation computa-
tional cost compared to the other implementations in Fusco
and Ringwood and Ling and Batten, the prediction step is
eliminated in this method while both of the EKF implemen-
tations in Fusco and Ringwood and Ling and Batten carry
out a prediction step after the estimation step. As described
in this EKF implementation, the measurements are more
direct to the buoy motion and to the estimation states, similar
to the implementation in Ling and Batten, but unlike the
implementation in Fusco and Ringwood. Also, this EKF
implementation assumes N frequencies in the EKF model,
where Nis a parameter that can be varied. Usually, the
higher the value of X, the higher is the computational cost,
but the estimation is more accurate, up to a limit.

The present invention has been described as optimal
control of wave energy converters. It will be understood that
the above description is merely illustrative of the applica-
tions of the principles of the present invention, the scope of
which is to be determined by the claims viewed in light of
the specification. Other variants and modifications of the
invention will be apparent to those of skill in the art.
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We claim:

1. A method for extracting energy from water waves,
comprising:
providing a wave energy converter comprising a buoy in
water having heave wave motion;
estimating an excitation force of the heave wave motion
on the buoy;
computing a control force from the estimated excitation
force using a dynamic model, wherein the model com-
prises
constructing a Hamiltonian as a function of buoy states,
wherein the Hamiltonian is a linear function of the
control force and wherein the control force com-
prises a singular arc,
computing partial derivatives of the Hamiltonian with
respect to the buoy states and the control force, and
computing the control force at which the partial deriva-
tives vanish; and
applying the computed control force to the buoy to extract
energy from the heave wave motion.
2. The method of claim 1, wherein the buoy states
comprise a heave position and a heave velocity of the buoy.
3. The method of claim 2, wherein the buoy states further
comprise a radiation state.
4. The method of claim 1, wherein the excitation force is
estimated from a wave elevation in front of the buoy.
5. The method of claim 1, wherein the excitation force
estimated from one or more pressure measurements on a
surface of the buoy and a heave position of the buoy.

6. The method of claim 1, wherein the buoy comprises a
cylindrical buoy or a spherical buoy.
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7. A wave energy converter for extracting energy from
water waves, comprising:

a buoy in water having heave wave motion,

a controller for computing a control force, wherein the

controller:
estimates an excitation force of the heave wave motion
on the buoy;
computes a control force from the estimated excitation
force using a dynamic model, wherein the model:
constructs a Hamiltonian as a function of buoy
states, wherein the Hamiltonian is a linear func-
tion of the control force and wherein the control
force comprises a singular arc,
computes partial derivatives of the Hamiltonian with
respect to the buoy states and the control force,
and
computes the control force at which the partial
derivatives vanish; and

an actuator for applying the computed control force to the

buoy to extract energy from the heave wave motion.

8. The wave energy controller of claim 7, wherein the
buoy states comprise a heave position and a heave velocity
of the buoy.

9. The wave energy controller of claim 8, wherein the
buoy states further comprise a radiation state.

10. The wave energy controller of claim 7, wherein the
excitation force is estimated from a wave elevation in front
of the buoy.

11. The wave energy controller of claim 7, wherein the
excitation force estimated from one or more pressure mea-
surements on a surface of the buoy and a heave position of
the buoy.

12. The wave energy controller of claim 7, wherein the
buoy comprises a cylindrical buoy or a spherical buoy.
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