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Abstract 
Caspases are known to be involved in animal programmed cell death (PCD). The 

objective of this thesis was to use gene expression analysis and reverse genetics to 

determine if Arabidopsis metacaspase (AtMC) genes play a role in plant PCD. The 

majority of AtMC genes were found to be expressed nearly constitutively in various 

tissues, developmental stages, and under various inductive treatments. Transgenic 

Arabidopsis plants generated with AtMCpromoter::AtMCgene::GUS fusions showed 

expression of the reporter gene in leaves, vasculature, trichomes, siliques, anthers, and 

during embryo development. Preliminary phenotypic characterization of single and 

double Arabidopsis AtMC loss-of-function mutants suggested that the expression of the 

AtMC genes are highly functionally redundant. Nevertheless, our results suggest that 

AtMC1, 2, 4, 6 and 9 may be directly involved in rosette and/or stem development. 

Although this study does not provide a definitive role of MCs in plant PCD, it lays the 

foundation for their further in-depth analysis.   
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1 Introduction 
1.1 Introduction to the components of programmed cell death  

1.1.1 Introduction to Programmed Cell Death 

Programmed cell death (PCD), also known as apoptosis, is a process which 

maintains constant cell numbers during development through elimination of unwanted 

cells (Watanabe & Lam 2005). PCD also creates structures entirely composed of dead 

cells, for example plant xylem treachery elements (TEs) which function in the transport 

of water and nutrients from the soil (Greenberg 1996, Cooper 2000). In animals, the 

active process of PCD is characterized by condensation of the chromatin, membrane 

blebbing, chromosomal DNA breakage, condensation of the cytoplasm, and 

fragmentation of the nucleus (Cooper 2000.) Several of these cellular events can be 

observed in plants as well. For example, plants also undergo cytosolic condensation, and 

fragmentation of the nucleus (Greenberg 1996, Woltering et al. 2004).  However, in 

plants PCD is also associated with vacuolar collapse (Nieminen et al. 2004, Bonneau et 

al. 2008) which is especially important during PCD of TEs. Cell death is also important 

during plant reproduction, senescence, flowering, and defence against pathogens 

(Greenberg 1996). It has been suggested that PCD may be involved in self 

incompatibility responses (Bonneau et al. 2008, Love et al. 2008). PCD in plants is 

enabled by the proteases that can elicit, en masse, cellular proteolytic degradation. These 

enzymes and their function in plant development are the focus of this study.  

1.1.2 Enzymes Involved in PCD 

Protein degradation, or proteolysis, is the breakdown of proteins via cleavage by 

enzymes known as proteases. Cleavage can be a regulatory process which activates or 

inhibits protein activity, or can destroy it altogether. It is important in regulation of gene 

expression, in the cell cycle and in PCD (Sheth & Yadlapati 2009).  Proteases cleave the 

proteins’ peptide bonds using hydrolysis. Each protease contains a catalytic diad or triad 

made up of two to three amino acids, plus a pocket (S1Pocket), which together creates the 

active site.  The substrate binds to the pocket and the catalytic dyad/triad induces 
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cleavage of the peptide. Water enters the active site and the part of the substrate still 

located inside the pocket is released (Cooper 2000).   

Cells control protease activity and thus the amount and rate of PCD via protease 

inhibitors (Solomon et al. 1999). Two well known protease inhibitors are Inhibitors of 

Apoptosis (IAPs) and Serpins (Thornberry & Lazebnik 1998, Vercammen et al. 2006). 

Protease inhibition is utilised as a regulatory step in processes like PCD and plant defence 

against pathogens and insects (Ryan 1990). There are several kinds of proteases. The 

largest protease families are serine proteases, aspartate proteases, and cysteine proteases 

(Beers et al. 2004). Though not much is currently known, it has been shown that 

proteases can have different substrate specificities (García-Lorenzo 2007). Each protease 

has a cleavage preference for a specific amino acid and cleaves the peptide bond after this 

amino acid. For cysteine proteases, a nucleophilic cysteine is first activated by a histidine 

amino acid via deprotonation and the cysteine nucleophile cleaves the peptide bond of the 

substrate (Berg et al. 2005, van der Hoorn 2008). An asparagine residue is present in 

order to orient the histidine side chain in the appropriate direction (García-Lorenzo 

2007). Examples of cysteine proteases are papain, an enzyme in papaya fruit, and 

caspases, enzymes involved in apoptosis in animals  

1.1.3 Caspases and Proteins with Caspase-like activity   

Caspases are cysteine dependent aspartate-specific proteases (Lee 2010). As their 

name implies, caspases cleave substrates after an aspartate (Asp) amino acid residue.  

The first caspase was isolated from Caenorhabditis elegans (C. elegans) and since then, 

fourteen have been discovered in mammals with seven of those playing a role in 

apoptosis. Caspases are first synthesized as an inactive pro-enzyme, called a zymogen. 

The caspases undergo autoprocessing (autocleaving) which generates a large (p20) and a 

small (p10) subunit, which brings about conformational change allowing access of the 

substrate to the active site for cleavage.   
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Plants have several different types of caspase-like activities (reviewed in Bonneau 

et al. 2008). Plant caspase-like activities are named according to the target substrate (eg. 

YVADase, DEVDase, VEIDase, and Saspase) (Woltering et al. 2004). It is difficult to 

determine the full spectrum of caspase-like activities in plants, but it is believed that there 

are up to eight different activities observed in different plant species (see Bonneau et al. 

2008 for a complete list). Caspase-like activities have also been demonstrated in several 

different locations of the cell, such as the vacuole, cytosol and nucleus. It is also currently 

unclear whether the caspase-like activities observed in plants are directly involved in 

PCD (Bonneau et al. 2008) and what role they may play. To date, the identity of the plant 

cysteine proteases with caspase-like activities has only been solved for the caspase1-like 

YVADase, which is believed to a large extent to be dependent on the activity of plant 

vacuolar processing enzymes (VPEs) (Hatsugai et al. 2004). The VPEs are stored in an 

inactive form in the central lytic vacuole, and are activated after the vacuolar collapse 

which leads to PCD (Bonneau et al. 2008). No other enzymes responsible for the plant 

caspase-like activities have been described. Their identity and function(s) in plants 

remain to be discovered and studied. 

1.1.4  Introduction to Metacaspases 

Following the discovery of caspases in animals, homologous proteases were 

identified in other organisms. Exhaustive bioinformatic analyses identified two groups 

structurally similar to caspases, the paracaspases (PCs) and the metacaspases (MCs) 

(Uren 2000). PCs are present in metazoans, while MCs can be found in plants, bacteria, 

fungi, chromista, and protozoa (Uren 2000). There are two types of MCs, MC type I and 

MC type II (Bonneau et al. 2008). MCs type I contain a proline rich prodomain which is 

structurally similar to the prodomain found in animal caspases involved in PCD initiation 

and inflammation. MC type I can be found in all lineages between algae to flowering 

plants, and are also present in protozoa, fungi and chromista as well (Cambra et al. 2010). 

MC type II, on the other hand, lacks a prodomain but instead contains a longer linker 

region than that found in type I MCs, which connects the p10 and p20 subunits. MCs type 
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II are found only in plants and algae (minus two algae) and not in protozoa, fungi or 

chromista (Cambra et al. 2010, Uren et al. 2000). The lack of MCs in the two algae is 

believed to be due to gene loss from environmental adaptation (Cambra et al. 2010). 

Another difference between the two MC types is the presence of a LSD1-like-finger N-

terminal motif in MC type I. LSD1 has been shown to halt PCD when the hypersensitive 

response is initiated, and all three MC type I can strongly interact with LSD1. MC type II 

can only weakly interact with LSD1 (Coll et al. 2010). There is no known connection 

between the gene numbers of MC type I vs. MC type II within different species. 

1.1.5 Similarities and differences between caspases, and MCs 

One common characteristic among caspases and both types of MCs is the 

presence of a histidine/cystein (His/Cis) dyad (Cambra et al. 2010). Predicted analysis 

suggests that MCs contain a caspase/hemoglobinase fold consisting of a histidine-

cysteine pair, and has thus been placed into the CD cystein protease clan (Aravind & 

Koonin 2002, Barrett & Rawlings 2001, Vercammen et al. 2004). This clan contains all 

enzymes that use a catalytic cysteine to hydrolyse peptide bonds of their substrates 

(Cambra et al. 2010). MCs also share the S1 pocket forming residues and maturation sites 

seen within the caspase/hemoglobin fold (Sundström et al. 2009). Similar to caspases, 

MCs also show the presence of a heterodimer made up of the p20 and p10 subunits 

(Woltering et al. 2002, Vercammen et al. 2004). Studies have shown that MCs along with 

caspases need to be activated via autoprocessing and that this process is cysteine 

dependant (Vercammen et al. 2004, Belenghi et al. 2007, Watanabe & Lam 2011).  

Even though caspases and MCs both contain a His/Cis dyad, show a similar 

secondary structure, and share a basic mechanism of catalysis, there are still defining 

differences between the two. One of the largest differences between the two protease 

families is the amino acid after which they cleave (Bonneau et al. 2008). In caspases, 

cleavage occurs after acidic aspartate, while MCs cleave after either a basic lysine (Lys) 

or arginine (Arg) residue (Vercammen et al. 2004, Watanabe & Lam 2005, Watanabe & 

Lam 2011). A second major difference is the low sequence homology between the two 
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protease families (Cambra et al. 2010). The overall similarity of the two sequences is not 

high (Belenghi et al. 2007, Cambra et al. 2010), and while MCs have two cysteine 

residues in their sequence, caspases only have one (Belenghi et al. 2007). Due to these 

differences, it is considered unlikely that MCs are indeed homologs to caspases 

(Vercammen et al. 2004, Bonneau et al. 2008). Despite the fact that MCs have similar 

morphology and secondary structure as caspases, since MCs do not show cleavage 

specificity for Asp, they can not be defined as a caspase (Woltering et al. 2002).  

1.2 Analysis of MC Functions  

1.2.1 Enzyme activity and substrate/inhibitor analyses  

There are a total of nine Arabidopsis MC genes making up a gene family (Figure 

1.1) which consists of three MC type I (AtMC1-3) and six MC type II genes (AtMC4-9). 

AtMC mutants do not show obvious phenotypic differences, most likely due to significant 

functional redundancy (Bonneau et al. 2008). Overexpression of MC genes in transgenic 

plants have been equally uninformative of their function (Bonneau et al. 2008), likely due 

to post translational modifications by the serpin enzymes (Vercammen et al. 2006), or 

because overexpression is merely not creating any visible phenotype.  

 

 
Figure 1.1: AtMC phylogenetic tree. Relationship 
between protein sequences of the nine MC 
Arabidopsis genes (created by Mega5).  

 

 MC4       
MC6                  
MC7              
MC8             
MC5          
MC9             
MC2          
MC1           
MC3 

1.0          0.8         0.6         0.4          0.2         0.0 

Type I 

Type II 
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Up until recently, there were no known substrates for MCs. It has been shown that 

the human Tudor staphylococcal nuclease (TSN) is a substrate for animal caspases 

(Sundström et al. 2009). Discovery of conserved plant TSN suggested this may be a 

substrate for MC cleavage. A recent study in Picea abies (P. Abies) and Arabidopsis has 

shown that in both plants, TSN was cleaved by MCs at Lys or Arg in vivo (Sundström et 

al. 2009). 

In support of the initial discovery that MCs cleave after Arg and Lys, two purified 

Arabidopsis MCs (AtMC4 and AtMC9) were tested using five oligopeptide substrates 

containing an Arg or a Lys. All five substrates were cleaved by both MCs at the predicted 

amino acids, while neither of the two MCs was capable of cleaving three chosen caspase-

specific oligopeptide substrates containing Asp (Vercammen et al. 2004). The same MC 

cleavage specificity was observed in P. abies, as well. A fluorometric peptide cleavage 

assay of Escherichia coli (E. coli) expressed recombinant mcII-Pa (spruce MC) zymogen 

showed cleavage after both Arg and Lys, separating the p20 and p10 subunits from the 

linker region (Bozhkov et al. 2005). There was no cleavage when caspase-specific 

substrates were added to recombinant mcII-Pa.  

To further test the functional homology between caspases and MCs, the effects of 

protease inhibitors which normally affect caspases were tested on AtMC4 and AtMC9 

(Vercammen et al. 2004). These inhibitors were unable to block either MC from binding 

to their synthetic substrate at very high concentrations (up to 100µM). However, addition 

of arginal protease inhibitors instead of caspase inhibitors at concentrations as low as 

1µM fully prevented AtMC9 from cleaving its substrate, while AtMC4 was moderately 

blocked (Vercammen et al. 2004). After determining that AtMC4 and AtMC9 were 

Arg/Lys specific, Vercammen et al. 2006 went one step further and used an Arabidopsis 

Serpin1 inhibitor (AtSerpin1) identified in a yeast two-hybrid system to test AtMC9 

substrate specify and discovered that this plant protease inhibitor did indeed inhibit 

activity of AtMC9.  
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It was previously believed that MC proteins may be localized in the cytoplasm of 

plant cells due to their lack of a signal peptide (Woltering et al. 2004). Several studies 

showed that different AtMCs have different pH optimums. AtMC9 requires a low pH 

(between 4.5-6.0) while AtMC4 requires high pH (between 6.5-9) for activation 

(Vercammen et al. 2004). Activation of AtMC8 has been shown to occur at the slightly 

basic pH of 7.5-8.5 (He et al. 2007). This leads to the speculation that if different AtMCs 

do localize to the cytoplasm, yet require different pH environments, the function of these 

MCs must be correlated with events triggering significant ion exchanges which can 

significantly change the pH of the cytosol. Studies in tobacco show that the elicitor 

cryptogein induces acidification of the cytosol, while NaCl can significantly lower the pH 

in less than an hour (Vercammen et al. 2004). It seems likely that AtMCs will have 

different activation conditions depending on their localization, their signalling pathways 

and their overall role in plant development.  

Another study has suggested that AtMC9 localization takes place in the apoplast. 

Due to the low pH required for activation of this AtMC, apoplastic localization is logical 

(Vercammen et al. 2006). It is also possible that AtMC proteins localize in either the 

nucleus or the vacuole. When AtMC9 under a 35S promoter was fused to GFP, a strong 

GFP signal was observed in the nucleus and a weaker signal in the cytosol. No signal was 

observed in the vacuole, but this could be attributed to masking of the vacuolar signal 

sequence by the reporter gene fusion (Vercammen et al. 2004). A study using 

35S::AtMC1::GFP fusion showed that AtMC1 localizes in the chloroplasts (Castillo-

Olamendi et al. 2007). To date, no systematic study of all AtMCs’ localization has been 

performed.  

The identification of AtSerpin1 as an inhibitor of AtMC9 may suggest a possible 

regulatory role for AtSerpin1 in Arabidopsis MCs’ regulation. In addition to AtSerpin1, 

autoprocessing and S-nitrosylation have also been suggested to play an active role in the 

control of MCs at both the transcriptional and post-transcriptional levels. Studies on 

AtMC9 have shown that enzyme activity is conditional on cleavage at Arg183 
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(Vercammen et al. 2004). It is currently unknown what triggers autoproccessing in MCs 

but possibilities include initiation by a change in pH, by other proteases, by metacaspases 

themselves, or by the addition of Calcium (Ca2+). According to Vercammen et al. in 2004 

in Arabidopsis type II MCs overproduction of all AtMCs in bacteria lead to 

autoproccessing similar to the way some caspases initiate cleavage. Caspases are capable 

of cleaving themselves and are broken down into two groups, initiator caspases, and 

effector caspases. Initiator caspases are auto-activated and are required for activation of 

effector caspases, (Riedl & Shi 2004). Also shown in this publication was the fact that 

AtMC9 requires an acidic pH for activation. A recent study has determined that in some 

AtMCs Ca2+ is necessary for conversion of the proenzyme into the catalytically active 

form by promoting cleavage of the highly conserved Lys-225 residue found in all type II 

MCs. This Ca2+ dependency was observed in AtMC4, but not in AtMC9, suggesting that 

not all MC type II proteases require Ca2+ for activation of the zymogen and thus may 

have a different function and activation mechanism (Watanabe & Lam 2011).  

Another process thought to regulate MC activity is S-nitrosylation. This occurs 

when the active Cys residue in MCs is nitrosylated in the presence of nitric oxide (NO). 

Nitric oxide is a signalling molecule that exists in both the intracellular and intercellular 

regions of plants and is transported via the plant xylem (Ohashi-Ito et al. 2010). When a 

NO is covalently attached to a cysteine, the protein undergoes post translational 

modification (Belenghi et al. 2007). S-nitrosylation and its link to enzyme inhibition was 

first described in animal procaspase 3. MCs can also be regulated by S-nitrosylation. It 

has been shown that Cys-147 S-nitrosylation impedes AtMC9 autoprocessing (Belenghi 

et al. 2007). Cys-29 in the same protein, however, is immune to S-nitrosylation and is 

able to restore the autoprocessing function of the metacaspase (Belenghi et al. 2007).   

1.2.2 Developmental Functional characterisation 

Saccharomyces cerevisiae (S. cerevisiae) (baker’s yeast) was the first organism 

used to study MCs and their relationship with PCD. The single S. cerevisiae metacaspase, 

yeast caspase 1 (Yca1) is required for hydrogen peroxide induced aging and apoptosis, 
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while overproduction of Yca1 results in early aging (Madeo et al. 2002). A recent study 

has shown that Yca1 also plays a role in the control of aggregate formation of insoluble 

proteins by controlling their removal (Lee et al. 2010). P. abies somatic embryos have 

been a valuable system in understanding the role of a MC in embryogenesis in general 

(Helmerssoon 2007). RNAi down-regulation of a P. abies type II metacaspase (mcII-Pa) 

led to a decrease in PCD of the embryo suspensor cells (Suarez et al. 2004). Further 

studies have shown that mcII-Pa moves from the cytoplasm to the nuclei of 

undifferentiated embryonic cells, leading to DNA fragmentation, and disassembly of the 

nuclear envelope resulting in PCD of those cells. After silencing mcII-Pa, the cells no 

longer disintegrated suggesting that MCs do play in role in plant PCD (Bozhkov et al. 

2005). It has also been shown that Arabidopsis MC8 is upregulated by H2O2 and other 

types of stresses. In the AtMC8 loss-of-function mutant, cell death was reduced after 

H2O2 treatment suggesting that AtMC8 is induced and controls a response to oxidative 

stress through promoting PCD (He et al. 2007). 

It has also been shown that PCD can be activated in response to pathogens. Plants 

with insertional disruptions in two AtMC type I, and five AtMC type II genes were 

inoculated with Botrytis cinerea, a necrotrophic fungi known to affect a range of different 

plants. After infection, all seven MC mutants showed a significant reduction in cell death 

over the Wild-type (van Baarlen et al. 2007). Other studies have suggested differential 

roles for the two types of MCs in response to bacterial pathogens. Two of the type I 

Arabidopsis MCs (AtMC1 and AtMC3) were upregulated by various bacterial pathogens, 

while none of the type II MCs showed any induction (He et al. 2007). A different study 

concluded that all three type I MCs and two type II MCs (MC5 and MC8) were activated 

upon infection with various bacterial pathogens (Watanabe & Lam 2005).  
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1.3 My Thesis: The value in determining the function of MC genes and their 
connection to programmed cell death in Arabidopsis thaliana 

1.3.1 Value of the project 

Manipulation of tree biomass is of substantial interest to timber, bioenergy and 

pulp/paper industries. Trees provide long-term carbon storage with mitigates the negative 

effects of CO2 emissions and associated climate changes. The main biomass of trees 

resides in the woody tissues of the stem, which is the secondary xylem of the trees. 

Xylem plays a role in water and nutrient transport as well as providing mechanical 

strength. It contains three different cell types, parenchyma cells, fibers and treachery 

elements (TE) (Ohashi-Ito 2010). Parenchyma cells are alive and are only a relatively 

minor part of xylem total biomass. Fibers are highly lignified and provide mechanical 

support to the tree. Treachery elements can be either tracheids or vessel elements (VEs). 

One venue to increase biomass is to manipulate genes responsible for PCD in the tree 

xylem. Postponing PCD would lead to the development of thicker cell walls in xylem, 

thus leading to increased biomass.  

In order to fully understand, and to be able to manipulate PCD in plants, the 

players involved in the process of PCD should first be discovered. PCD is a highly 

organized process and thus the mechanism and interaction between the different players 

should be subsequently well-understood. This thesis focused only on the first step, 

identification of the key players. The objective of the thesis was to determine if the 

distantly related MC genes play a role in plant PCD similar to the way caspases play a 

role in animal PCD. The long term goal of this project is to prolong the lifetime of xylem 

fibers through modification of genes involved in PCD to create thicker cell walls leading 

to higher wood density, and thus higher biomass.  

1.3.2 Why study MCs? 

The primary interest in MCs is in relation to their putative role(s) in PCD in 

plants. Although the role of MCs in PCD is yet unclear (He et al. 2008, Cambra et al. 

2010) they are the closest known homologs to caspases in animals and thus good putative 
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targets that can provide an entry point to our understanding of PCD in plants. In addition 

to playing a direct role in PCD, MCs may also be indirectly involved in PCD via a 

signalling pathway(s) which ultimately leads to cell death (Bonneau et al. 2008). For 

example, the deactivation or activation of other proteins could be necessary for PCD, and 

proteases such as metacaspases could be speeding up the reaction (Bonneau et al. 2008). 

It is also probable that since MCs comprise a large gene family, some of them may play a 

more direct role in PCD than others. PCD is not the only known function for caspases, 

they have been implicated in activation of the immune system and differentiation of 

different cell types (Lee et al. 2010). This suggests that MCs may have other functions in 

plant growth and development which are not even speculated. Thus the function of MCs 

in relation to PCD, and in general, is still a mystery (Cambra et al. 2010). Thus, study of 

MCs may provide new fundamental insights into plant development and provide useful 

means for manipulation of woody biomass.  

1.3.3 Objectives and goals of the thesis  

Due to the many experimental advantages, we choose Arabidopsis for the analysis 

of MCs’ roles in plant PCD. Though it is not a tree species, it can produce secondary 

woody-like xylem in the hypocotyl and thus can be used as proxy for studies of wood 

development. Of the nine MC genes in Arabidopsis, the most heavily analyzed has been 

AtMC9, and yet, information regarding even AtMC9 is minimal. Some work has been 

done on AtMC4 and AtMC8, but there is relatively nothing known about the other AtMC 

genes, other than their structure and the fact that they do indeed fall into the MC 

category. Therefore, this work focused on a broader and more general characterization of 

the whole AtMC gene family, however, particular focus was placed on AtMC9 because of 

its putative importance for wood development. Previous expression data from poplar 

suggests that a putative aspen ortholog of AtMC9 is expressed during the stage of PCD of 

xylem development.  
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There were three main objectives of this thesis.  

• To analyze the expression pattern of the Arabidopsis metacaspase genes 

using the rich expression databases for this species in order to understand 

the expression pattern of the different genes across different 

developmental stages and in response to stress and other stimuli.  

• Generate and preliminarily analyze transgenic lines expressing 

translational beta-glucuronidase GUS fusions of each AtMC gene. The 

goal was to produce AtMCpromoter::AtMCgene::GUS lines for each of 

the AtMCs in Arabidopsis. This study would point to organ/tissue specific 

level localization of each MC genes’ activity.  

• To study the developmental function of the different members of the 

Arabidopsis metacaspase gene family. This was performed using reverse 

genetics on both single mutants from each of the gene family members, 

and on double mutants created by crossing each of the single mutants with 

the AtMC9 mutant.  

The hypothesis was that AtMC genes do play a direct role in PCD.
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2 Materials and methods  
2.1  Plant Material 

Arabidopsis thaliana (A. thaliana) ecotype ‘Columbia’ (Col-O) were used as 

Wild-type controls. Arabidopsis MC homozygous T-DNA insertion mutants were 

obtained from the Syngenta Arabidopsis Insertion Library (SAIL), the Salk Institute for 

Biological Studies (SALK), and from the GK project (GABI-KAT). See Table 2.2 for a 

complete list of single and double mutants analyzed.  

2.2 Growth Conditions 

Plants were grown in a controlled growth chamber at 22⁰C during the day and 

19⁰C at night. Light conditions were typical long days with 16 hours of light and 8 hours 

of dark with a PAR of 150µmol/m-2/s-1. More information can be found at 

http://www.upsc.se/ under “Resources-Controlled environment.”  

2.3 DNA Extraction 

Genomic DNA for PCR was extracted from A. thaliana leaves using extraction 

buffer (See section 2.12), heated and centrifuged to produce a supernatant, precipitated 

with equal volume of isopropanol, washed with 70% ethanol dried at room temperature 

and resuspended in 50µl Tris. DNA was analyzed using a Nanodrop spectrophotometer. 

2.4 Gene expression studies 

We studied the expression of the 9 AtMCs using Genevestigator 

(https://www.genevestigator.com/gv/index.jsp). This meta-profile analysis tool was used 

to collect expression data on the tissues, developmental stages, and stimulus treatments 

for the 9 Arabidopsis MCs. The data in Genevestigator was compiled from a large 

collection of Affymetrix microarrays.  

 

http://www.upsc.se/
https://www.genevestigator.com/gv/index.jsp
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2.5 GUS histochemical staining  

Leaves were incubated at 37⁰C for 24h in 1mM K4Fe(CN)6, 1mM K3Fe(CN)6, 

50mM sodium phosphate buffer (pH7) and 0,1% Triton X-100. After incubation, samples 

were destained in 70% EtOH, mounted in 50% glycerol and viewed with a Zeiss 

Axioplan light microscope. 

2.6 Genotyping 

Prior to genotyping, seeds from mc9-1 mc4 and mc9-2 mc4 double mutants were 

grown on regular MS media and were selected for reduced growth. mc9-1 mc5 double 

mutant seeds were plated on antibiotic medium and selected for survival. mc6 mutant 

seeds were sown directly into soil. DNA from these mutants was extracted from young 

leaf tissues as described above. A list of primer sequences can be found in Table 2.1. 

Table 2.1 
Primers used for genotyping. Genomic Col-O was used as negative control

GK forward                                                                                                CCTTTTTCCTTTTAGAGTACACCAC 

GK reverse TTCGGATTCAAACAAGACGAC 

GK LB                       GGGCTACACTGAATTGGTAGCTC 

Sail 856D05 forward                                                                                                          AACTTCTTCACTTTCGGGCTC 

Sail 856D05 reverse  AATGTCTCGTTGAACGGTACG 

Sail 856D05 LB1                                                                                                              GCCTTTTCAGAAATGGATAAATAGCCTTGCTTCC 

Salk LB1.3                         ATTTTGCCGATTTCGGAAC 

Salk 006679 forward                                                                                                          AAACCGAGCATTGACATAAGC 

Salk 006679 reverse                                                                                                          CCATTACAGTGGACATGGGAC 

Salk 145461 forward                                             ACACATGTTGGGAACAAGCA 
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2.7 Phenotyping  

2.7.1 Mutants and experimental design 

Single mutations for all genes, with the exception of AtMC5 and AtMC8, for 

which there were no mutants available, were crossed into the mc9-1 or mc9-2 mutants’ 

background. Plants from Table 2.2 were sown directly into soil. Trays were rotated 

around the growth chamber once a week. 

Table 2.2 
AtMC single and double mutants analyzed in the phenotype screening. Asterisk (*) 

indicate genes for which mutants were unavailable for pheontyping  

Single Mutant 

T-DNA 
insertion line  

AtMC  
gene 

TAIR 
Accession 
Number 

AtMC  gene 
number 
abbreviation 

Double Mutant T-DNA insertion line  AtMC  gene 
number 
abbreviation 

Col Wild-type 
(Control) 

     

SALK075814 
(Salk 14) 

MC9 At5g04200 mc9-2   

GABI 540H06 
(GK) 

MC9 At5g04200 mc9-1   

GABI 096A10 MC1 At1g02170 mc1-1 GABI 540H06 x GABI 096A10 mc9-1 mc1-1 

SALK 002986 MC1 At1g02170 mc1-2 GABI 540H06 x SALK 002986 mc9-1 mc1-2 

SALK 009045 MC2 At4g25110 mc2 GABI 540H06 x SALK 009045 mc-9-1 mc2 

GABI 545D06 MC3 At5g64240 mc3 GABI 540H06 x GK 545D06 mc9-1 mc3 

SAIL 856D05 MC4 At1g79340 mc4 SALK14xSAIL856D05 mc9-2 mc4 

SALK 
145461C* 

MC5* At1g79330 mc5 GABI 540H06 x Salk 145461* mc9-1 mc5* 

SALK 063453 MC6 At1g79320 mc6-1 GABI 540H06 x SALK 063453 mc9-1 mc6-1 

SALK 006679 MC6 At1g79320 mc6-2 GABI 540H06 x Salk 006679 mc9-1 mc6-2 

SALK 127688 MC7 At1g79310 mc7 GABI 540H06 x SALK 127688 mc9-1 mc7 

 MC8* At1g16420 mc8   
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2.7.2 Phenotyping Data Collection  

Data collection on rosette development and stem height was separated into three 

different experiments. Experiment one contained mc9-2 mc4 mutants, the second 

consisted of mc6-2 mutants and the third analyzed the remaining mutants with the 

exception of mc5 and mc8. The number of leaves, minus the cotyledons, per plant was 

counted after three weeks of growth under long days. During week six, data on the 

number of leaves per rosette, the width of the broadest leaf per rosette, and the size of 

each rosette was collected. Leaf width was determined by measuring the distance across 

the widest leaf per mutant per line. Rosette size was determined by measuring the length 

from the tip of the longest leaf to the tip of the leaf directly horizontal to it. The largest 

distance per mutant plant per line was recorded. Senescence occurred until week seven 

and individual plant senescence was analyzed by recording the number of leaves showing 

yellowing and dividing that number by the total number of leaves on the plant.  During 

week seven the stem of each plant was measured from the base of the rosette to the tip of 

the main stem. Photographs of each phenotypic characteristic during week six were taken 

using a Canon EOS 450D. For bolting time, data was not collected from mc9-2 mc4 or 

mc6 and thus one control was used. The percentage of plants in each line showing the 

presence of bolting during weeks 3-5 were recorded. After week seven, nine out of the 

ten plants were dissected and the hypocotyls were removed and fixed in FAA (see section 

2.12). The remaining plant was grown to full maturity and seeds were harvested.  

2.7.3 Data analysis 

Excel was used to record, analyze and graph data. In order to combine data from 

three different experiments each trait in the mutants was calculated as a proportion from 

the Wild-type in its own particular experiment. Statistical significant differences were 

determined using a two independent sample two-tailed t-test with 18 degrees of freedom. 

Lines were considered to be significantly different from the Wild-type control if the p-

value was less than or equal to 0.05. 
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2.8 Production of Promoter::gene::GUS constructs 

2.8.1 Primer design and PCR of AtMC1-9: 

The Arabidopsis Information Resource (TAIR) database was used to locate the 

sequences of AtMC1-9 genes. Primers were designed for the promoter::gene construct 

using Vector NTI 11 (Invitrogen). The promoter was cloned in order to incorporate the 

endogenous promoter into the construct while the genes themselves were included in the 

construct in order to insure that any transcription machinery coded for within the gene 

would be included along with post-transcriptional regulatory sequences.  In the reverse 

primers, a cytosine was added immediately after the last nucleotide of the attB sequence 

in order to maintain the proper reading frame.  Inset primers (p800) were designed as 

needed to cover gap regions during sequencing (Table 2.3). Phusion® polymerase 

(Finnzymes) was to amplify the different gene fragments during PCR. 

Table 2.3 
Forward, reverse and inset primer sequences for cloning in the 5’-3’ direction.                   

The additional cytosine is underlined. 
 

Gene  Primer Sequence  Inset Primer Sequence (p800) Fragment 
Size (kb) 

At1g02170-
MC1F 

GGGGACAAGTTTGTACAAAAAAGCAGG
CTTACCAATGATGTCTCAGAAC 

TCAACGACGCCAAGTGCATGC 2.0 

At1g02170-
MC1R 

GGGGACCACTTTGTACAAGAAAGCTGGG
TACGAGAGTGAAAGGCTTTGC 

CGGCGAGCCCTTTTCCTT  

At4g25110-
MC2F 

GGGGACAAGTTTGTACAAAAAAGCAGG
CTTACTTCCCCCTTGATCTTCGTCG 

GCGCTCCCTGACAATTGC 2.9 

At4g25110-
MC2R 

GGGGACCACTTTGTACAAGAAAGCTGGG
TACTAAAGAGAAGGGCTTCTCATATA 

TTCATGGGTTTCAACAGC  

At5g64240-
MC3F 

GGGGACAAGTTTGTACAAAAAAGCAGG
CTTAAGATACGCAACAGAGTTC 

TTCTTGTCGTTCATTACA 2.0 

At5g64240-
MC3R 

GGGGACCACTTTGTACAAGAAAGCTGGG
TACGAGTACAAACTTTGTCGCG 

ATCATCACCAAACGCATCAA  

At5g64240-
MC3R 

GGGGACCACTTTGTACAAGAAAGCTGGG
TACGAGTACAAACTTTGTCGCG 

  

 



26 

 

Table 2.3 continued  

Gene  Primer Sequence  Inset Primer Sequence (p800) Fragment 
Size (kb) 

At1g79340-
MC4F 

GGGGACAAGTTTGTACAAAAAAGCAGGCT
TAAGGAAATTTAAATTTAGATCCGGTT 

GGGATGCGTCAACGATGT 2.1 

At1g79340-
MC4R 

GGGGACCACTTTGTACAAGAAAGCTGGGT
ACACAGATGAAAGGAGCGTT 

  

At1g79330-
MC5F 

GGGGACAAGTTTGTACAAAAAAGCAGGCT
TATTCATATCCCAAGTACTG 

GCTCTCTCCGATCTGCTCTT 2.1 

At1g79330-
MC5R 

GGGGACCACTTTGTACAAGAAAGCTGGGT
ACACAAATAAACGGAGCATT 

  

At1g79320-
MC6F 

GGGGACAAGTTTGTACAAAAAAGCAGGCT
TATTTGACTATTTCTTATAAGC 

ATACTGGTTACGATGAGT 1.7 

At1g79320-
MC6R 

GGGGACCACTTTGTACAAGAAAGCTGGGT
ACACATATAAACCGAGCATT 

  

At1g79310-
MC7F 

GGGGACAAGTTTGTACAAAAAAGCAGGCT
TAATCTTACCTTACGGTACA 

AATGTTTAGTATTTTAAT 2.3 

At1g79310-
MC7R 

GGGGACCACTTTGTACAAGAAAGCTGGGT
ACGCATATAAACGGAGCATT 

  

At1g16420-
MC8F 

GGGGACAAGTTTGTACAAAAAAGCAGGCT
TATATGGAGGCTTTAGTGGTACAG 

AAAGCACTTTTGATAGGAATCA 2.3 

At1g16420-
MC8R 

GGGGACCACTTTGTACAAGAAAGCTGGGT
ACGTAGCATATAAATGGTTT 

  

At5g04200-
MC9F 

GGGGACAAGTTTGTACAAAAAAGCAGGCT
TACATAAATGGTTCGTCTCA  

TGAAGACGTTTAATTTCTG 1.6 

At5g04200-
MC9R 

GGGGACCACTTTGTACAAGAAAGCTGGGT
ACAGGTTGAGAAAGGAACGT 

  

 
 

2.8.2 Production of constructs using Gateway® cloning 

The promoter::gene::GUS constructs were created using the Gateway® 

manufacturer’s instructions. A BP reaction inserted the amplified fragments into the entry 

clone, pDONOR207, and the LR reaction inserted it into the expression binary vector, 

pKGWFS7.0. A colony PCR was used to confirm the presence of the entry clone. DNA 

was isolated using a miniprep and the concentration was measured. Plasmid DNA was 
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sequence validated and transformed into Agrobacteria after the LR reaction as described 

below.  

2.8.3 Transformation of E. coli and Agrobacterium  

Electrocompetent E. coli strain DH5α cells and Agrobacterium strain 

GV3101::pMP90RK were transformed using electroporation via a BioRad Gene Pulser. 

E.coli cells were incubated at 37⁰C on a shaker for 1 hour while Agrobacterium was 

incubated at 28⁰C for 48 hours. After PCR validation, the starter culture was incubated 

on a shaker for 24 hours at 28⁰C. A. thaliana Col-O with newly opened flowers were 

dipped into the respective Agrobacterium solution. Three plants per construct were used. 

Plants matured for 4 weeks until harvesting.  

2.9 Sequencing 

Plasmid DNA from Entry clones (50-100ng) was sent to Eurofins MWG Operon 

for sequencing DNA. L1 and L2 primers were provided by Eurofins and p800 inset 

primers were added to the samples prior to sending in order to cover the middle region of 

the sequence.  

2.10 Sequence Analysis 

Each MC nucleotide sequence from the sequencing result was aligned to the 

original MC nucleotide sequence from Vector NTI using MultAlign 

(http://multalin.toulouse.inra.fr/multalin/multalin.html).  Nucleotide sequences of AtMCs 

from TAIR were converted to protein sequences using the European Molecular Biology 

EBI: Transequence Nucleotide to Protein Sequence Conversion 

(http://www.ebi.ac.uk/Tools/emboss/transeq/index.html) and a phylogenetic tree was 

produced using Molecular Evolutionary Genetics Analysis (Mega5) software.   

 

 

http://www.ebi.ac.uk/Tools/emboss/transeq/index.html
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2.11 T-DNA insertion sites 

T-DNA insertion sites for all AtMC genes were located using 

http://signal.salk.edu/cgi-bin/tdnaexpress. The relative location inside the gene between 

the start and stop codons were determined using http://arabidopsis.org/ (Figure 2.1). 

 

MC1 (At1g392654-432654) 
 

                      At1g412654 

 
 

MC2 (At4g12868845-12908845) 
 

                              At4g12888845 

 
 

MC3 (At5g25676379-25716379) 
 

                       At5g25696379 

 
 

MC4 (At1g29823608-29863608) 
 

                                              At1g29843608 

 
 

MC5 (At1g29819429-29859429) 
 

At1g29839429 

 

 

Start Codon  
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Stop Codon  

 

Start Codon  
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http://signal.salk.edu/cgi-bin/tdnaexpress
http://arabidopsis.org/
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MC6 (At1g29817297-29857297) 
 

                                       At1g29837297 

 
 
MC7 (At1g29814699-29854699) 

 
                                   At1g29834699 

 
 
MC8 (At1g5593066-5633066) 

 
                                                      At1g5613066 

 
 
MC9 (At5g1134381-1174381) 

 
At5g1154381 

 
 
 

Figure 2.1: Schematic representation of the DNA insertion sites for all AtMCs. The 
size of the gene is noted along with the location on the chromosome where the T-
DNA was inserted. Start and stop codons are depicted at the beginning and endings of 
each gene. Information was obtained from http://signal.salk.edu/cgi-bin/tdnaexpress. 
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2.12 Supplemental Material and Methods  

Extraction Buffer                      50ml   Formalin-Acetic-Alcohol  (FAA) 
200mM Tris-HCL pH 7.5 10ml 1M   50% EtOH                                                                    
250 mM NaCl          10% formaldyhyde                                                     
2.5ml 5M                                              5% acetic acid                                                            
2.5ml 0.5M                                                                                                                               
25 mM EDTA                                                                         
0.5% SDS 2.5ml 10%   

Plate medium-Plants (pH5.8)  Plate medium-Bacteria (pH7.2) 

4.4g/L MS media   1x Luria-Bertani Buljong                                             
2.56ml/L MES   15g/l Bacto-Agar                       
10g/L sucrose   1/1000 antibiotic                                        
10g/L plant agar                                                                                                                              
1/1000 antibiotic   

PCR reactions-Genotyping   PCR reactions-Cloning 

95⁰C 1 min.     95⁰C 1min                                                      

95⁰C 30 sec.     95⁰C 20 sec.                                          

50⁰C  20 sec.    44-61⁰C 20 sec                                                               

72⁰C 3 min.     72⁰C 3 min                                      

72⁰C 10 mins.                               72⁰C 10 min                                                                         

8⁰C forever    4⁰C forever                                                  

35 cycles    35 cycles 
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3 Results  
3.1 Isolation and validation  of AtMC mutants 

Previously, the effect of each T-DNA insertion on gene expression was analyzed 

for reduction or complete absence of expression (Table 3.1). All mutant lines were 

previously genotyped to confirm homozygous mutations, except for mc9-1 mc5 which, 

after genotyping, showed no conclusive data for the presence of a double homozygous 

mutation.   

3.2 In silico expression analysis of the AtMC gene family  

With the exception of AtMC4 which showed consistent and relatively similar 

expression in all developmental stages, each AtMC showed a noticeable peak in different 

developmental stages, in different tissues, and in response to inductive stimuli (Table 

3.2). High expression values were determined for AtMC1-4 and 9, with AtMC4 having 

the highest expression levels in all developmental stages. Expression for all AtMCs was 

detected during all stages analyzed.  AtMC9 was highly expressed in root xylem, while 

AtMC1-4 showed higher expression values than AtMC5-8 across all of the tissues studied. 

AtMC7 was not expressed in young leaf tissue (Figure 3.1). During response to inductive 

treatment, AtMC5-8 showed higher expression while AtMC1-4 and AtMC9 consistently 

displayed minimal expression. Neither AtMC7 nor AtMC9 were expressed in response to 

heat treatment (Table 3.2, Figure 3.1). 
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Table 3.1  
RT-PCR expression analysis of each Arabidopsis insertional mutations. (*) represents 

strong or Wild-type like band, (**) represents full silencing, and (***) represents down 
regulation. Lines without an asterisk indicate no data to date.  

AGI code Name Line Used in Publication  

At1g02170 AtMC1 GABI_096A10** Coll et al. 2010 

    Salk_002986*  

At4g25110 AtMC2 SALK_009045** 
van Baarlen 2007, Coll et al. 
2010 

At5g64240 AtMC3 GABI_545D06*  

At1g79340 AtMC4 Sail_856_D05** Watanabe and Lam 2011 

At1g79330 AtMC5 SALK_145461C  

At1g79320 AtMC6 SALK_063453**  

    SALK_006679  

At1g79310 AtMC7 SALK_127688 **  

At5g04200 AtMC9 SALK14** van Baarlen 2007 

    GK540**  

 

Table 3.2 
AtMCs highest expression in various developmental stages, tissues and in response to 

inductive stimulus. Data collected from Genevestigator 

AtMC 
gene 

Developmental stage 
where most highly 

expressed 

Anatomical tissue where most highly 
expressed 

Stimulus treatment where most highly 
expressed 

1 Young Flower Pollen Cycloheximide, NAA+FLG 

2 Young Flower Adult Leaves IAA, FAA+FLG, Salicylic acid 

3 Young Flower Root Phloem Drought, Hypoxia 

4 Seedling Lateral Roots NAA+FLG, Hypoxia 

5 Mature Siliques Lateral Roots Salicylic acid, IAA 

6 Flowers and Siliques Lateral Roots, Root Phloem Cold, Drought 

7 Young Rosette Endoderm, Root Phloem MeJa 

8 Young Flower Adult Leaves Clycloheximide, NAA+FLG 

9 Mature Siliques Root Xylem Heat, MeJa 
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Figure 3.1 Expression Analysis of AtMC1-9. A, Developmental expression. B, 
Anatomical expression. C, Expression in response to stimulus treatment. 
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3.3 Reporter gene analysis of the AtMC gene family  

Sequence alignment showed perfect matches for AtMCs 1, 2, 4, 5, 8 and 9 

constructs.  AtMC3 and 7 were not successfully amplified and AtMC6 had a single 

mutation of an adenine to guanine. The mutation was located in the promoter region 

approximately 300bp upstream from the ATG start codon of the gene. Due to its location 

in the promoter, it was determined that MC6 could progress to the transformation stage 

back into Arabidopsis. The constructs containing AtMC1, AtMC2, AtMC5, AtMC6 and 

AtMC8 were transformed into Arabidopsis T1 plants and were inspected for localization 

of the GUS signal. AtMC1was expressed in both the leaf tissue and vasculature (Figure 

3.2a), AtMC2 was observed at the tips of vascular tissue in leaves (Figure 3.2b), and 

AtMC8, to a small degree, appeared in leaf tissue (Figure 3.2h). AtMC5 was expressed in 

trichomes and in leaf tissue where vascular patterns diverged, along with being expressed 

in pollen grains within an anther, seeds within a mature silique, and in developing seeds 

in an embryo (Figure 3.2c-g).    

   

      
A) Promoter-AtMC1::GUS        B) Promoter-AtMC2::GUS         C) Promoter-AtMC5::GUS         D) Promoter-AtMC5::GUS
   
 

    
 E) Promoter-AtMC5::GUS         F) Promoter-AtMC5::GUS      G) Promoter-AtMC5::GUS       H) Promoter-AtMC8::GUS                    
                  

Figure 3.2: Expression of promoter::gene::GUS constructs in Arabidopsis. Pictures 
depict expression of AtMC1, AtMC2, AtMC5, and AtMC8 in various plant tissues.  

MC6 

  100µm
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3.4 Functional characterization of the AtMC gene family by reverse genetic approaches  

There were no statistical differences between the mutants and Wild-type for the 

size of the rosette, the leaf number per rosette, or in the proportion of senescing leaves.  

Five of the mutant lines did show significantly different development than the wild type. 

Significant differences were observed in leaf width, in stem height and bolting time (data 

not shown) (Figure 3.3). These differences are summarized in Table 3.3. 

Table 3.3 
Mutant lines with statistically significant differences in rosette and stem development and 

bolting time  

Mutant Characteristic with significantly different phenotype 

mc6-2 Smaller leaf number 

mc6-2 Smaller stem height 

mc9-2 mc4 Smaller stem height 

mc9-1 mc1-1 Smaller rosette leaf width 

mc2 Faster bolting time 

mc9-2 Slower bolting time 
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Figure 3.3: Morphological changes in AtMC single and double mutants. Data is 
presented as percentages of the mean value for each mutant line in comparison to the 
Wild-type (wt) mean value. Significant differences were analyzed using a t-test with a p-
value of 0.05 and are marked with an asterisk (*). A, The size of the rosette was analyzed 
by measuring the rosette length from the tip of the longest leaf to the tip of the leaf 
directly horizontal to it. B, The number of leaves per rosette was counted. All leaves that 
were not fully degraded were scored as one individual leaf.  C, The width of the leaves 
was analyzed by measuring the width of each leaf perpendicularly to the leaf petiole, at 
the middle of the leaf. The leaf per rosette with the largest width was recorded. D, The 
height of the main stem was measured from the base of the rosette to the top of the stem.  
E, The number of leaves showing any amount of senescence was noted per rosette per 
plant and the number of leaves per rosette was recorded. Next, for each plant, the number 
of leaves showing senescence was divided by the total number of leaves per rosette. This 
yielded a percentage of leaves which showed senescence per plant per mutant. This 
number was then used to determine the percentage value from the Wild-type mean as 
stated above.  
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4 Discussion 
Following the discovery that caspases play a role in animal PCD, homologous 

proteases like metacaspases (MCs) were identified in plants and other organisms. Even 

though caspases and MCs may be structurally homologous, they do not share functional 

homology. To date, the function of MCs in plants is still unknown. The nine MC genes of 

Arabidopsis were studied in this project in order to try and determine the function of 

AtMCs in various growth stages including plant PCD. The information learned from this 

project could be applied to other plants as well, such as Populus spp., spruce, and wheat 

and rice in agricultural systems. All of these plants, except spruce, have fully sequenced 

genomes allowing for more efficient interspecific MC sequence comparison.  

In order to help elucidate the function MC genes play in plants, this project 

utilized expression analysis and reverse genetics. Based on in silico expression analysis, 

all AtMC genes are expressed in developmental stages ranging from seedling, rosette, 

stem, flower and silique maturation (Figure 3.1a). This data was further supported by 

promoter::gene::GUS experiments. Transformed Arabidopsis plants containing these 

constructs showed that AtMC expression is indeed present in leaves, leaf vasculature, 

pollen, and siliques, along with trichomes and during what is believed to be embryo 

suspensor development in the siliques (Figure 3.2a-h). If indeed this expression 

represents embryo development, these findings support previous data from two 

publications where a type II metacaspase in P. abies was down-regulated resulting in a 

decrease in PCD in cells of the embryo suspensor (Suarez et al. 2004), and supports data 

which suggests the possibility that MCs may be involved in P. abies PCD affecting 

pattern formation during embryogenesis (Bozhkov et al. in 2005). The reporter gene in 

this project was detected in mature siliques, though this expression was confined to small 

localized areas throughout the tissue within some seeds (Figure 3.2g). Reporter gene 

expression was also detected in some pollen grains within the developing anthers (Figure 

3.2g-h). Our result suggests that PCD could be involved during seed and pollen 

development.  
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In silico expression analysis suggested that AtMC genes are not only expressed 

during various developmental stages, but in individual tissues as well, including leaves, 

stems, roots, flowers and in the vasculature (Figure 3.1b). Transformed Arabidopsis 

plants in this experiment showed that MC expression is indeed present in leaf tissue, in 

pollen and in leaf vasculature (Figure 3.2a-h) Using Arabidopsis mc single and double 

mutants, the function of MCs in rosette, leaf, and stem development was studied. Based 

on the data collected during these functional analyses, significant differences between the 

mutants and Wild-type were observed in both leaves and stems (Table 3.3, Error! 

Reference source not found.) in five of the nine mutants. According to this data, it is 

possible that AtMC1, 2, 4, 6 and 9 may be directly involved in leaf or stem development 

in Arabidopsis.  

Even though significant phenotypic differences were not observed for the 

remaining mutants, roles for these genes during development or in PCD are possible.  

One reason for a lack of an obvious phenotype in the remaining mc mutants could be 

contributed to the need of correct identification of environmental or external conditions to 

expose the phenotypic differences. It is possible that at least some of the AtMC genes are 

pseudogenes. This possibility may be supported by the fact that MC type II are 

completely absent in two algae species (Cambra et al. 2010). This means that only 

homologues of AtMC1-3 are completely conserved in the algae and that AtMC4-9 may 

play dispensable roles in plants. However, because all MC genes were expressed during 

the expression analysis of this study, and because algae are much simpler than higher 

plants, this alternative seems unlikely. The results from this study, together with the 

published work on the type II MCs have clearly shown that MCs do play some role in 

higher plant development.  

Although it is unlikely that the AtMC genes are pseudogenes, gene redundancy 

due the close evolutionary relationship between some of the AtMCs (Figure 1.1, Table 

2.2) may account for the lack of significantly different mutant phenotypes for the 

majority of the mutations. To my knowledge, this is the first report where significant 
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differences between mc mutants and Wild-type have been reported in Arabidopsis. Other 

publications have failed to reveal any major alterations in the growth and development of 

mc mutants (Coll et al. 2010, He et al, 2008, Wantanabe and Lam 2011). According to 

the expression analysis from this project, AtMC1 and AtMC4 show high expression 

values during development and in various anatomical features, suggesting they may take 

over the role of other genes. Of course, with the consistently high levels of expression 

seen in AtMC4 it may not be completely reasonable to focus attention on the analysis of 

this gene since it could have other roles deviating from development or PCD. It is also 

possible that with its ubiquitous expression level throughout the plant, AtMC4 is playing 

a role in redundancy leading to the lack of a phenotype. It would be interesting to see if 

any significant developmental differences exist between an atmc1 atmc4 double mutant. 

Also, to better study the roles of AtMC genes, crosses producing plants with more than 

two MC silenced genes per plant should be analyzed. Due to the interest of this lab in 

AtMC9 and xylem formation, it would be interesting to analyze the phenotype of the 

triple mutant mc1 mc4 mc9. Other possible triple mutants of interest according to the 

expression analysis data would be mc1 mc3 mc4, mc2 mc4 mc9, and mc3 mc4 mc9. Even 

with the support of this expression data, the other AtMC genes should not be ignored 

since even low expression levels located in either specific tissue or within certain cell 

types could be important, and the lack of a high level of expression in pooled microarray 

database does not indicate that other MCs are not important.   

Even though AtMCs1-4, and 9 may be the key players in development and have 

the highest expression in various tissues, according to this project the other AtMCs appear 

to be most affected by stimulus treatments. As stated above, mutant plants which have 

been crossed to provide more than two silenced genes per plant could provide valuable 

information on the role of the genes more highly expressed under stimulus treatments. 

Unfortunately, there is no chance to create mutant crosses between these genes due to 

their close proximity to each other on the chromosome (Table 2.2). Previous studies have 

shown that AtMC8 is highly induced by stress treatments such as UV, and H2O2 (He et al 
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2007).  Data collected from database expression analysis in this project supported this 

hypothesis by showing high expression levels of AtMC8 in plants treated with 

cycloheximide, auxin and cold. Surprisingly, in one transformed Arabidopsis plant during 

the project, which contained the AtMC8 promoter::gene::GUS construct, expression was 

observed around small areas of vasculature in leaf tissue (Figure 3.2h). This could be due 

to unintentional wounding of the plant tissue prior to analysis, GUS leakage, or it could 

suggest that AtMC8 plays more of a role during development than was previously 

believed. In the future, it would be interesting to study the phenotype of AtMCs while 

under external stimuli after application of exogenous plant hormones, application of 

stress factors known to promote expression in the various genes (Figure 3.1c), or under 

pathogen infection. Also, transformed plants containing the 

AtMCpromoter::AtMCgene::GUS constructs could be placed under various stress 

treatments, or grown with the addition of exogenous hormones, and the effect on GUS 

expression could be observed. 

When the database expression data is combined, it suggests that each MC may 

have a role to play in plants, and that MC genes not strongly involved in natural plant 

growth may be induced by external conditions. Due to their structural similarity to 

caspases, it is believed that MCs may play a role in PCD. It appears from the results of 

this project that AtMC genes alone may not contribute to PCD in plants as much as was 

previously believed and that there are other players involved in the process. This would 

not be surprising since biology is complex and in many systems multiple interconnecting 

components are necessary to allow for full functionality of the organism. It is possible 

that AtMC genes may have a complex system among themselves; a system which acts as 

a sort of checks and balances to provide PCD stability throughout the lifespan of the 

plant. This idea is supported by a recent study which showed that AtMC1 and AtMC2 

acted antagonistically with AtMC1 positively regulating PCD and AtMC2 negatively 

regulating it during pathogen attack (Coll et al 2010). It is possible that not one but a 

combination of all these suggested processes contribute to Arabidopsis PCD in various 
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degrees depending on internal and external conditions. Yet another possibility is that 

AtMCs do not play any role in PCD which is ongoing during normal growth and 

development. 

4.1 Future work  

On a broad scale, obtaining the full genome sequence of spruce will give more 

insight into the roles of MCs by providing another organism in which to study. The study 

of Poplar and spruce together could lead to significant discoveries regarding the role of 

MCs in xylem development since they are woody plants containing a large amount of 

xylem. Also, different plants contain different numbers of MC genes, for example, there 

are nine in Arabidopsis and four in Populus. Within the ancestors of modern plants, 

cyanobacteria, there are at least 58 MC genes within 33 different species which have 

been identified (Jiang et al. 2010). The difference in number may or may not influence 

the way in which MCs interact and the mechanisms behind their roles in each species. 

The more plants species to be fully sequenced, the more information science can obtain 

regarding how MC genes have evolved in different species over time, their various roles, 

and how they function both similarly and differently among species today. This 

knowledge could allow increased production and conservation techniques in both the 

forestry and agricultural sectors providing solutions to some of the world’s most 

challenging problems such as declining resources, the need for increased productivity, 

and yield loss due to pathogen attack.  

On a more detailed scale, the expression work performed during this thesis could 

be continued in a variety of ways. To date, only AtMC1, 2, 5, 6 and 8 were transformed 

and observed for GUS expression. The remaining lines should be analyzed and future 

GUS analysis should include other tissues such as roots. After all AtMC constructs are 

transformed and all tissues are observed for GUS expression, the various expression 

patterns should be compared to provide insight to possible roles each AtMC may play. 

Another alternative for expression study could include In situ hybridization which may 
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provide supporting information regarding the expression patterns of the AtMC genes. 

Since the GUS constructs also contained GFP, AtMC protein localization could be 

analyzed to give further insight and/or support into the function of each gene.  

Future phenotyping projects could include the use of RNA interference (RNAi). 

Theoretically, RNAi would be able to silence anywhere from one to all nine genes at 

once without the logistical restrictions of genetic crosses. This technique was presently 

attempted in this laboratory for AtMC9, and produced interesting results suggesting a 

function for AtMC9 together with still unknown additional members of the MC gene 

family in the overall growth of the seedlings and secondary cell wall properties 

(Unpublished).  RNAi can target genes that it was not designed to target and it is not 

always able to fully silence the genes of interest, thus a more gene specific technology 

such as artificial microRNA (amiRNA) analysis could be a better option. 

 Combining DNA analysis with proteomics could give a more detailed indication 

of the functions of AtMCs. Other proteases such as serine proteases and other cysteine 

proteases are believed to be involved in PCD. A vacuolar cysteine protease, along with an 

aspartic protease, has been shown to influence proto- and meta-xylem formation in barley 

through immunohistochemical staining (Runeberg-Roos & Saarma1998). A yeast-two- 

hybrid may be able to determine which enzymes may also be interacting with MCs.  

Initiator caspases contain two domains, a death effector domain (DED) and a 

caspase recruitment domain (CARD), both of which are located in the prodomain. 

Caspases which contain these domains can autoprocess while caspases without the 

prodomain must use another protease for activation (Lee et al. 2010). The yeast MC type 

1 gene (Yca1), like all other MC type I genes, contains a prodomain, but lacks a DED or 

CARD motif (Lee et al. 2010), while MC type II genes do not contain any prodomain 

(Cambra et al. 2010).  Currently, it is unknown how MCs in yeast, or other fungi, plants 

or protists, are activated (Carmona-Gutierrez et al. 2010). Future work could shed some 

insight on how autoprocesseses in both types of MCs is initiated.  
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According to database expression analysis in this project and from previous 

microarray data in Poplar (Courtois-Moreau 2009), AtMC9 is most dominantly expressed 

in root xylem. If AtMC9 does play a direct role in xylem PCD, it could be expected that 

the mutants would show a reduced rate of PCD causing xylem to develop later than in the 

wild-type. It is unlikely that full mutations in these genes would completely halt PCD 

development, though. If this were the case, xylem would not develop and thus the 

mutants would obtain a lethal-like phenotype. Electron microscopy analysis of cross 

sectioned roots and hypocotyls could provide data on xylem development and PCD in 

Arabidopsis mc9 mutants. An alternative for mc9 study would be the development of 

assays which would identify xylem specific mutants. Even though treachery elements 

(TEs) are the current focus for increasing xylem biomass, it may not be advantageous to 

the health of the plant to manipulate the rate at which these cells undergo PCD. For 

example, altered TE development could lower the rate of water transportation, decrease 

the overall growth rate, or produce plants that are more sensitive to drought. Ultimately 

we are interested in manipulating the structural components of xylem, the fiber cells, 

rather than TEs. First, though, the promoters of fiber genes need to be isolated. After 

identification of these promoters, work can turn to increasing biomass via fiber 

manipulation rather than TE manipulation.  

The work done in this thesis was only a small part of the bigger picture. After 

determining the role of AtMCs, the next step will be to elucidate the other key players in 

the signalling pathways and determine the mechanisms behind how they all interact 

together. To do this, other components need to be identified such as upstream 

transcription factors which can act as either activators or repressors and the cis-elements 

of AtMCs, along with discovering which substrates besides Tudor staphylococcal 

nuclease (Sundström et al. 2009) MCs act on. Other genes involved in PCD could to be 

studied to determine possible connections between them and AtMCs. Potential candidates 

could be ACAULIS5 (ACL5), whose mutation has been shown to cause premature death 
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in xylem, (Muñiz 2008) and VASCULAR-RELATED NAC-DOMAIN6 (VND6), a 

regulator of xylem PCD (Ohashi-Ito et al. 2010) 

4.2 Conclusion  

In conclusion, the role of AtMCs in Arabidopsis PCD is still unclear. Even after 

determining where each AtMC protein is expressed within the plant, we still need to 

discover if AtMCs play a direct role in PCD, if they play a role but interact with other 

players, or if they do not have a role in PCD at all and have another role entirely. It 

appears that AtMC genes do play a role in PCD due to their similar structure to caspases, 

and the data collected to date. Judging by the lack of a strong mutant phenotype, it is 

likely that they do not act alone, but interact with both each other, and other components, 

creating a complex interaction whose mechanism is modified depending on different 

internal and external conditions. The key is to identify those players and to develop a 

hypothesis on how the players interact in order to regulate PCD so effectively.  
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