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Abstract

Promising applications of wireless sensor networks (WSNs) and mobile ad hoc net-

works (MANETs) have stimulated growing interest to model and optimize their per-

formance in various environments. In most of these applications, nodes operate at

the ground level; however, near-ground channel models are scarce. In this research, a

new computationally tractable path loss model is proposed for WSNs working above

a dielectric rough terrain. Principles of the Fresnel zones are exploited to split the

proposed path loss model into three segments. The distances that define the edges of

each segment are derived theoretically. The effective reflection coefficients used in the

proposed model include the effect of higher order surface waves and are applicable

to grazing propagation when the surface roughness is less than a wavelength. Path

loss predictions offered by the proposed model are consistent with the measurement

results in rural and urban areas reported by independent researchers. Moreover, it is

verified that by adding an empirically modeled foliage loss to the proposed model, it

is possible to accurately evaluate the near-ground propagation in a foliage environ-

ment. Next, the proposed model is used to examine the influence of communication

and link parameters on coverage range and network connectivity.

In view of exponential growth in data traffic demand, the wireless communications

industry has aimed to increase the capacity of existing networks by 1000 times over

xxi



the next 20 years. A combination of extreme cell densification, more bandwidth,

and higher spectral efficiency is needed to support the data traffic requirements for

5G cellular communications. In this research, the improvements achieved by using

three major 5G enabling technologies (i.e., small cells, millimeter-wave spectrum,

and massive MIMO) in rural and urban environments are investigated. This work

develops SPM and KA-based ray models to investigate the impact of geometrical

parameters such as the TRx range and height, soil physical and electrical properties

such as roughness, textural composition, and moisture content. In addition, the

impact of antenna parameters such as polarization and radiation pattern on terrain-

based MU-MIMO channel characteristic parameters such as received power, power

delay and angular profiles, RMS delay and angular spread, coherence bandwidth, and

coherence distance are examined.

Moreover, Integrating Kirchhoff approximation (KA) and a ray-tracing (RT) algo-

rithm, a new directional 3D channel model is developed for urban millimeter-wave

(mmW) small cells. Path-loss, spatial correlation, coverage distance, and coherence

length for line-of-sight (LOS), obstructed LOS (OLOS), and non-LOS (NLOS) sce-

narios are studied in urban areas. Exploiting physical optics (PO) and geometric

optics (GO) solutions, closed form expressions for spatial correlation are derived. Co-

herence length is calculated for horizontal and vertical linear arrays as well as planar

2D arrays. It is deduced that LOS availability, frequency, and surface roughness scale

highly impact spatial diversity.

xxii



Chapter 1

Introduction

1.1 Motivation

Multiple-Input Multiple-Output (MIMO) communication systems exploit antenna ar-

rays at both the transmitter and receiver to offer parallel sub-channels to enhance

the system capacity and quality of service (QoS) without requiring additional band-

width or carrier power (see Figure 1.1) [1]-[3]. Nevertheless, realistic MIMO channels

suffer from significant degradation of diversity gain and MIMO capacity due to the

spatial correlation between the signals at different receiving antennas [4], [5]. The

performance of adaptation techniques such as power allocation and antenna selection

algorithms are also influenced by the spatial properties of the multipath channel.
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Figure 1.1: Schematic representation of a MIMO channel.

Spatial correlation is a measure of the similarity of signals at different antennas and

it is a function of the spacing between antenna elements, radiation patterns, mu-

tual coupling, array geometry, angular energy distribution of incoming waves, and

the frequency of operation [6]-[9]. Lower correlation coefficients are highly desired to

improve the performance of multiple antenna systems. In order to achieve a large

diversity order, both base station (BS) and mobile station (MS) antenna elements

should be separated sufficiently. There are practical limitations for accommodating

more antenna elements in small portable devices, while multiple antennas can be

readily implemented at the BS. For mobile terminals, ignoring the mutual coupling,

antenna spacing of about λ/2 is suggested, as they are usually surrounded by scat-

terers providing a rich multipath environment. For elevated base stations, however,

an inter-element separation of more than 10λ may be required to maintain a similar

correlation coefficient [10]-[12].

In a scattering environment, several waves arrive at the elements of an antenna array

2



through different angles with different phases which reduces the correlation of signals

received at antenna elements. In general, in order to have highly decorrelated signals

at two antenna elements, we need to maintain a large inter-element spacing compared

to the channel coherence distance. In addition, higher spacing reduces the mutual

coupling [1], [13]. The correlation across antenna elements can be analytically calcu-

lated assuming a certain angle of arrival (AoA) distribution for the incoming waves

at the elements of the multiple antenna system. Derivation of these statistical models

is fairly simple, but to gain a physical insight into the propagation characteristics of

a realistic environment, it is imperative to develop a geometry-based spatial MIMO

channel model [14]-[17].

Surface roughness generates incoherent scattering, a.k.a. diffuse scattering, which

results in correlation across spatially distributed antenna elements in a MIMO sys-

tem. In-depth investigation into diffuse scattering effects on communication systems

operating over a rough terrain is crucial to characterize a wireless channel [18]. Elec-

tromagnetic scattering models are divided into three categories that are empirical,

numerical and analytical. Empirical solutions are based on measurement results and,

hence, are site-specific and inflexible and do not provide an understanding of the var-

ious scattering mechanisms. In addition, development of a measurement campaign

can be very costly. Numerical solvers can be categorized as frequency domain, such

as method of moments (MoM), and time domain, e.g., finite difference time domain

(FDTD) method. These techniques do not rely on simplifying assumptions and can

3



provide reliable results for any random roughness distribution and scale. However,

the insurmountable computational burden of realistic scattering problems limits their

usage to relatively small computational domains. Analytical solutions offer fast ap-

proximate results using certain simplifying assumptions. These powerful methods can

provide physical insight into the scattering mechanisms with much lower computa-

tional cost and can be readily integrated with ray tracing algorithms to solve large

three dimensional scattering problems [19]-[22].

Ray-tracing routines are used extensively in wave propagation modeling in outdoor

and indoor environments. Surface roughness results in the scattering of the energy

into the coherent and incoherent components. The coherent component is the mean

value of the scattered energy while the incoherent component is the fluctuation around

this mean value [23], [24]. To include the effects of the diffuse scattering compo-

nent, a suitable scattering model should be implemented into the ray tracing routine.

Kirchhoff approximation (KA) and SPM are the oldest and most common analytical

treatments in scattering from random rough surfaces that address different scattering

regimes. KA does not consider the curvature effects; hence, it is only applicable to

smoothly undulating surfaces and it is only valid for surfaces with a large correlation

length [25]. SPM is a low frequency approximation to the electromagnetic scattering

from rough surfaces. SPM performs well for small roughness and slopes [25]-[29].

Because of the presence of scatterers in the environment, multipath propagation is

4



Figure 1.2: Delay spread in a multipath channel.

(a) (b)

Figure 1.3: Frequency flat versus frequency selective channels.

inherent in realistic radio channels. Multipath not only decorrelates the signals at var-

ious receivers, but also induces delay spread which results in frequency-selective fading

(see Figure 1.2 and Figure 1.3). Delay spread determines the maximum distortion-free

data rates that can be transmitted via a wireless channel. Another critical parame-

ter that is inversely proportional to delay spread is called the coherence bandwidth

which quantifies the frequency variations of the channel [1]. Therefore, additional

parameters such as delay spread and coherence bandwidth are required to describe

the wireless channel.
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Figure 1.4: Near-ground sensor networks have many applications such as
environmental monitoring, planetary explorations, disaster relief operations,
and battlefield surveillance.

1.2 Channel modeling for near-ground wireless

sensor networks

Wireless sensor networks (WSNs) have found a wide variety of applications in envi-

ronmental, security, and infrastructure monitoring as well as location-based services

(see Figure 1.4) [30]. In most of these emerging applications, sensor nodes work at or

slightly above the ground level. However, there is a lack of accurate and computation-

ally efficient radio models tailored for near-ground communications. In most available

channel models antennas are assumed to be far above the ground [31]. Near-ground

models proposed in the literature are few and they are mainly based on measurement

6



Figure 1.5: Impact of wireless channel modeling on wireless radio design.

campaigns that offer limited simulation scalability and are only accurate for certain

environments [32-34].

As shown in Figure 1.5, channel parameters are vital for the design of wireless systems

in different near ground WSN and localization applications. In sensor network appli-

cations, the height of the antennas above ground is usually low and it may approach

zero. We call these situations, positive height or H+. In some scenarios, ground

laying antennas might be used where the antenna height is zero and it is represented

by H0. In some conditions, a wireless device and accordingly its antenna might be

(slightly) buried under the ground, water, ice or snow. Thus, the antenna height

might be slightly negative which we refer to as H−.

In this research, a new computationally tractable path loss model is proposed for

WSNs working above a dielectric rough terrain. Principles of the Fresnel zones are

exploited to split the proposed path loss model into three segments. The distances

7



that define the edges of each segment are derived theoretically. The effective reflection

coefficients used in the proposed model include the effect of higher order surface waves

and are applicable to grazing propagation when the surface roughness is less than a

wavelength. Path loss predictions offered by the proposed model are consistent with

the measurement results in rural and urban areas reported by independent researchers.

Moreover, it is verified that by adding an empirically modeled foliage loss to the

proposed model, it is possible to accurately evaluate the near-ground propagation in

a foliage environment. Next, the proposed model is used to examine the influence of

communication and link parameters on coverage range and network connectivity.

1.3 Channel modeling for fifth generation (5G)

cellular networks

Exponentially growing demand for higher wireless data throughput motivates explor-

ing new technologies and investigating higher frequency spectrum [35]. Modulation

techniques and channel coding are exploited to enhance spectral efficiency up to the

Shannon limit. However, by exploiting higher carrier frequencies, higher data rates

and service quality can be achieved [36]. Moreover, reducing access point coverage

areas shortens the average distance between the base station and the device and im-

proves the spatial frequency reuse. Hence, deployment of wide scale small cell access
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points is another prevailing trend to improve the area spectral efficiency as well as

energy efficiency [37]. Millimeter wave (mmW) frequencies between 30 GHz and 300

GHz have been proposed for outdoor small cells [38]. These frequencies provide much

greater spectrum allocations and enable the placement of a large number of antenna

elements in small form factors [37].

Massive MIMO, aka Multiuser MIMO (MU-MIMO), is a promising technology that

uses a large excess of base station (BS) antennas to serve several user terminals in

parallel in the same time-frequency resource. When MIMO channel matrix entries are

sufficiently independent, multiple spatial dimensions become accessible for signaling,

which offers capacity and multiplexing gain. However, to achieve such a decorre-

lation, large inter-element spacing and a rich scattering environment are required.

MU-MIMO pulls together the distributed antennas at the user terminals to enjoy

the advantages of MIMO in a much larger scale, even under difficult propagation

conditions. Hence, MU-MIMO is an ideal candidate 5G technology for highway and

rural macrocell deployments where there is limited infrastructure and unfavorable

propagation conditions. MU-MIMO can drastically increase the capacity by aggres-

sive spatial multiplexing. It can also increase the energy efficiency by several orders

of magnitude by concentrating power into small regions in space via beamforming.

Such high energy efficiency makes it possible to power the base stations using solar

or wind energy in areas where electricity grids are unavailable. The maximum num-

ber of orthogonal pilot sequences is proportional to coherence time and bandwidth.
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Fortunately, microwave MU-MIMO channels in open and rural environments exhibit

high temporal stability and large coherence bandwidth, which increases the number

of available orthogonal pilots and reduces the sounding process overhead.

This work develops SPM and KA-based ray models to investigate the impact of ge-

ometrical parameters such as the TRx range and height, soil physical and electrical

properties such as roughness, textural composition, and moisture content. More-

over, the impact of antenna parameters such as polarization and radiation pattern on

terrain-based MU-MIMO channel characteristic parameters such as received power,

power delay and angular profiles, RMS delay and angular spread, coherence band-

width, and coherence distance are examined. In this study, random terrain roughness

is assumed Gaussian with an exponential correlation function. The proposed ray

models enable us to study the impact of soil textural composition in terms of sand,

silt, and clay fractions and soil water content by adjusting the terrain dielectric con-

stant. Different types of soil are considered and it is realized that the soil particle

fractions and, more importantly, its volumetric moisture content can make a notable

difference on the electrical properties of the terrain and, hence, the scattered power.

Moreover, Integrating Kirchhoff approximation (KA) and a ray-tracing (RT) algo-

rithm, a new directional 3D channel model is developed for urban millimeter-wave

(mmW) small cells. Path-loss, spatial correlation, coverage distance, and coherence

10



length for line-of-sight (LOS), obstructed LOS (OLOS), and non-LOS (NLOS) sce-

narios are studied in urban areas. Exploiting physical optics (PO) and geometric

optics (GO) solutions, closed form expressions for spatial correlation are derived. Co-

herence length is calculated for horizontal and vertical linear arrays as well as planar

2D arrays. It is deduced that LOS availability, frequency, and surface roughness scale

highly impact spatial diversity. In addition, using antenna arrays of moderate gain at

both sides of the link, even under NLOS conditions, a typical urban cell size of 200m

is achievable.

1.4 Overview of dissertation

A versatile near-ground field prediction model is proposed in chapter 2 to facilitate

accurate WSN simulations. Path loss is split into three segments using the principles

of the Fresnel zones. The distances that define the edges of each segment are derived

theoretically. The model is validated against several experimental data sets obtained

in different environments. It is observed that the proposed model has higher accuracy

compared to existing near-ground analytical propagation models. This improvement

is due to careful assessment of the impact of first Fresnel zone obstruction, terrain

irregularities and dielectric properties on the direct, specularly reflected and higher

order waves. Effects of antenna height, frequency of operation, polarization and
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terrain electrical and geometrical properties on the range and connectivity of low-

altitude WSNs are studied through Monte Carlo simulations.

In chapter 3, small perturbation method (SPM) and Kirchhoff approximation (KA)

are incorporated into ray-tracing (RT) routines to model multiuser multi-input multi-

output (MU-MIMO) channels formed on a rough dielectric terrain. The effect of sur-

face roughness and correlation length, solid soil fractions, moisture content, link range,

antenna height, polarization, radiation pattern, and carrier frequency are examined

on received power, power delay and angular profiles, root mean square (RMS) delay

and angular spread, coherence bandwidth, and coherence distance. Quantitative and

qualitative analyses reveal that antenna directionality and terrain undulation and

textural composition have significant impacts on the received signal power and chan-

nel multipath parameters and, hence, the performance of MU-MIMO terrain-based

communication systems.

In chapter 4, integrating Kirchhoff approximation (KA) and a ray-tracing (RT) algo-

rithm, a new directional 3D channel model for urban millimeter-wave (mmW) small

cells is developed. Path-loss, spatial correlation, coverage distance, and coherence

length for line-of-sight (LOS), obstructed LOS (OLOS), and non-LOS (NLOS) sce-

narios are studied in urban areas. Exploiting physical optics (PO) and geometric

optics (GO) solutions, closed form expressions for spatial correlation are derived. It

is deduced that LOS availability, frequency, and surface roughness scale highly impact

12



spatial diversity. In addition, using antenna arrays of moderate gain at both sides of

the link, even under NLOS conditions, a typical urban cell size of 200m is achievable.

Chapter 5 concludes the dissertation and offers possible future work.
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Chapter 2

Near-Ground Channel Modeling

for Wireless Sensor Networks

2.1 Introduction

Wireless sensor networks (WSNs) have found a wide variety of applications in envi-

ronmental, security, and infrastructure monitoring as well as location-based services.

In most of these emerging applications, sensor nodes work at or slightly above the

ground level [39]. However, there is a lack of accurate and computationally efficient

radio models tailored for near-ground communications. In most available channel

models antennas are assumed to be far above the ground [40], [41]. There are few
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near-ground models proposed in the literature that are mainly based on measurement

campaigns. These models offer limited simulation scalability and are only accurate for

certain environments [31], [34], [41]-[48]. In this study, a versatile theoretical model

is developed to predict the feasible transceiver (TRx) range and node connectivity

for WSNs deployed for diverse applications. The applicability of the proposed model

is verified by comparing the results with the near-ground measurements carried out

by independent researchers in rural, forested and urban settings.

Promising applications of WSNs and mobile ad hoc networks (MANETs) have stim-

ulated growing interest to model and optimize their performance in various environ-

ments [31], [49]. Based on the measurement results reported by several researchers,

it is known that lowering the antennas altitude significantly decreases the signal

strength, hence, reducing the system range. This effect is addressed in [31] by propos-

ing a two-slope log-normal path loss model for a WSN at 868 MHz in an open area.

In [42], the impact of foliage on near-ground radiowave propagation is studied for bat-

tlefield sensor networks operating at 300 MHz and 1900 MHz. Measurement results

for ground-based UHF band communicators in urban terrain are reported in [43] for

both line-of-sight (LOS) and non-line-of-sight (NLOS) links. Numerical solvers are

prescribed in [44] and [45] to characterize near-ground long range propagation but

their computational complexity limits the number of nodes in the simulated network.

In [46], a simple mathematical path loss model for near-ground links is introduced.

Nonetheless, a flat perfectly conducting ground is assumed in the derivation of the
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model which overlooks the significant impact of terrain roughness and electrical prop-

erties on the channel transfer characteristics. In addition, the break point distance

after which, according to the two-ray propagation model, the path loss increases at

the rate of 40dB per decade is set too far which results in underestimation of the path

loss at larger distances.

According to the plane-earth model, at small range, strong oscillations take place

around the direct ray level. However, the median power falloff rate obtained through

regression fits is roughly the same as in free space and the total loss can be approx-

imated by the free space loss [50]. The distance where the last maximum in the

received wave pattern occurs is called the break distance, dB, that is a function of an-

tenna heights and operating frequency. At this distance, the first Fresnel zone touches

the ground and the direct and ground-reflected waves, collectively called the space

waves, only combine destructively beyond this range. Owing to destructive interfer-

ence between the space waves, the power falloff rate increases from 20 dB/decade

before dB to 40 dB/decade after it. At almost three times the break distance, we

will reach the critical distance, dC . This is the distance where almost 57% of the

first Fresnel zone is still clear of obstruction. If we move farther than the critical

distance, ground turns into a significant obstruction for the transmitted energy and

diffraction loss should also be included in the total loss. As explained in [51], using

the two-ray analysis, we can make out another distinct region. At distances smaller

than the transmitter height (d < ht), space waves only combine constructively and
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the received signal strength increases slowly. However, this region does not have any

practical importance for near-ground WSNs and will be neglected in this work.

Plane-earth propagation model offers a simple but useful path loss model which prop-

erly predicts the rise of the falloff rate at the break distance. However, in order to

arrive at a more accurate model suitable for sensor network design, we shall also

consider the geometrical and electrical properties of terrain. For propagation above

an irregular terrain, the physical statistical properties of the ground surface have a

considerable impact on the statistics of the received signal by decreasing the ground

reflectivity and generating local surface waves. For rough surfaces, an equivalent

reflection coefficient can be derived by multiplying the plane surface reflection coef-

ficient by a scattering loss factor to account for the reduction in the reflected signal

amplitude. Two commonly used approximations for the scattering loss factor are

derived by Ament and Boithias [52], [53].

In WSNs, due to low heights of the sensor nodes, propagation often approaches the

grazing condition. In this scenario, according to the Rayleigh criterion, the surface

appears electrically smooth and the space waves cancel each other, leaving only the

higher order surface waves. It is shown in [54] that as long as the TRx altitude is low

in terms of the wavelength, these surface waves are dominant regardless of frequency

of operation. Nevertheless, the traditional loss factors found by Ament and Boithias

disregard the effects of terrain self-shadowing and surface waves which render them
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Figure 4.9: 2D array correlation versus inter-element spacing. Reference
plot: Directional, LOS, TM, fc=60 GHz, d=50 m; (b) Isotropic antennas;
(c) NLOS scenario; (d) TE polarization; (e) frequency increased to 300 GHz;
(f) Range decreased to 10 m.

vertical. The elevation spatial correlation follows exactly the same trends; however,

the coherence length is much longer in the vertical plane. Hence, in planar 2D arrays,

the horizontal dimension is well-suited for spatial multiplexing to generate degrees of

freedom to transmit parallel data streams and improve the spectral efficiency. The

vertical dimension, on the other hand, is better exploited for beamforming gain to

amplify the signal power and alleviate the interference. To examine the 2D intra-user

spatial correlation, a 20 cm�20 cm planar 2D array is considered. Receive antenna 1

is placed at the center of the array while receive antenna 2 is moved in 1 mm steps on

a square grid laid on the array. The baseline parameters are similar to linear array
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simulations. Figure 4.9(a) serves as our reference result and in each of the subsequent

plots, only one of the reference parameters are altered to study the impact of that

particular parameter. Due to location of the lampposts and users, simulation geom-

etry is unsymmetrical; thus, the correlation values are also unsymmetrical. This is

more pronounced in shorter links. Some interesting observations are: a) beamforming

increases the correlation and the coherence length, which manifests itself better in

the azimuth dimension (comparing Figure 4.9(a) and Figure 4.9(b)); b) in relatively

short links, the direct wave dominates the correlation value, while in longer links the

waveguiding effects do; since multiple reflections amplitude are comparable with the

direct component amplitude at longer distances. That is why at relatively long sim-

ulation distance of d=50 m, eliminating the direct component only modestly alters

the correlation; c) horizontally polarized antennas (compared to vertically polarized

ones) increase the correlation in horizontal dimension and slightly decrease the cor-

relation in vertical dimension; d) when the carrier frequency increases, correlation

declines steeply; e) correlation increases with distance; this is because the angular

spread of the incoming energy decreases at longer ranges. Azimuth spread is wider

than elevation spread that leads to shorter coherence length in horizontal dimension.

It also reduces faster with distance compared to the elevation spread. To achieve

higher rank gain matrices in multi-antenna systems, antenna spacing should exceed

the coherence length. Typical coherence length values for range and frequencies of

interest in mmW small cells are presented in Table 4.1. Directivity is 25 dBi at the BS
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Table 4.1
Coherence length (mm) versus antennas directivity and range

side and 15 dBi at the UE side. Coherence length is directly related to the antenna

directionality and link range, and inversely related to the carrier frequency.

4.5 Conclusion

This chapter proposes an approach to investigate the path loss, spatial correlation,

coverage distance, and coherence length in multiuser wireless communication systems

for promising mmW frequency ranges. Closed form expressions for multiuser correla-

tion of co-located receive antennas are derived theoretically and numerically evaluated

for an urban environment under a range of variations in the propagation geometry.
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We concluded that scattering effects must be taken into account in any mmW chan-

nel model because, especially in NLOS conditions, the diffuse power is significant

at higher frequencies and lower transceiver distances, which are typical attributes of

mmW small cells. Overall, it is realized that the assumption of favorable propagation

for mmW massive MIMO is perfectly valid and both access points and user terminals

can enjoy the advantages of MIMO via beamforming and spatial multiplexing. We

observed that the target coverage range of 200 meters is easily achievable using direc-

tional antennas at the BS and user terminals. Even if only the BS is equipped with

directional antennas, the target range is achievable throughout the mmW frequency

range. Possible future work include studying the effect of multiscale roughness and

incorporating stochastic models to account for blockage effects.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

A computationally feasible near-ground field prediction model is presented in chap-

ter 2 to facilitate more accurate WSN simulations. The model is validated against

published measured data in open areas. Model precision is due to careful assessment

of the impact of first Fresnel zone obstruction, terrain irregularities, and dielectric

properties of the ground on the LOS, specular reflection and higher order waves. The

proposed model is also used to evaluate the effects of radio link and terrain param-

eters on network connectivity of WSNs. Some practical implications of this study

include: (a) the critical distance is very small in WSN applications and, therefore,
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the diffraction loss is integral to WSN channel characterization; (b) at grazing angles,

Fresnel reflection coefficient displays a very low sensitivity to terrain dielectric con-

stant; (c) provided the geometrical parameters are fixed, higher order waves intensify

as the wavelength increases; (d) antenna height is by far the most influential geo-

metrical parameter to network connectivity; (e) connectivity is fairly sensitive to the

reflection coefficient when antennas are placed near the ground; (f) terrain roughness

decreases the accessible neighbors; (g) lowering the frequency of operation, enhances

the network connectivity; (h) close to the ground level, vertically polarized antennas

outperform their horizontally polarized counterparts in terms of coverage range and

connectivity; (i) precipitation boosts/reduces the network connectivity when motes

are equipped with vertically/horizontally polarized antennas.

In chapter 3, small perturbation method (SPM) and Kirchhoff approximation (KA)

are incorporated into ray-tracing (RT) routines to model multiuser multi-input multi-

output (MU-MIMO) channels formed on a rough dielectric terrain. The effect of sur-

face roughness and correlation length, solid soil fractions, moisture content, link range,

antenna height, polarization, radiation pattern, and carrier frequency are examined

on received power, power delay and angular profiles, root mean square (RMS) delay

and angular spread, coherence bandwidth, and coherence distance. Quantitative and

qualitative analyses reveal that antenna directionality and terrain undulation and

textural composition have significant impacts on the received signal power and chan-

nel multipath parameters and, hence, the performance of MU-MIMO terrain-based
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communication systems. The main conclusions of this study follows: (a) Higher

surface roughness height leads to lower relative received power and lower spatial

correlation between the elements of the antenna array; (b) increasing the receiving

elements distance reduces the spatial correlation between them; (c) higher surface

RMS height increases the incoherent part of the scattered field and decreases the co-

herent component; (d) angular spread of the incoming waves increases as the surface

roughness height increases; (e) increasing the transmitter and receiver array distance

decreases the received power and the spatial correlation; (f) as the height of transmit-

ter and/or receiver increases, effect of the surface roughness on the received power and

spatial correlation decreases; (g) increasing the undulation heights has a noticeable

impact on increasing the RMS delay spread and correspondingly increasing the chan-

nel frequency selectivity; (h) increasing the correlation length, decreases the scattered

power; (i) channel bandwidth has a higher sensitivity to variation of surface roughness

height rather than variation of surface correlation distance; (j) LOS signal reduces

the frequency selectivity of the channel and leads to higher coherence bandwidth.

This study highlights the significance of diffuse scattering in MIMO communication

channels with applications in wireless sensor networks for environmental monitor-

ing and near ground communication between transceivers working above a dielectric

rough terrain, and body surface to external device channel modeling.
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Chapter 4 proposes an approach to investigate the spatial correlation and cover-

age distance in massive MIMO communication systems for mmW frequency ranges.

Closed form expressions for multiuser correlation of co-located receive antennas are

derived theoretically and numerically evaluated for an urban environment under a

range of variations in the propagation geometry. We found that scattering effects

must be taken into account in any mmW channel model because, especially in NLOS

conditions, the diffuse power is significant at higher frequencies and lower transceiver

distances which are typical attributes of mmW small cells. It is observed that for the

lamppost based implementation of the mmW small cell, a moderate antenna separa-

tion is sufficient to offer spatial diversity. We observed that the target coverage range

of 200 meters is easily achievable using directional antennas at the base station and

user terminal. Even if only the base station is equipped with directional antennas,

the target range is achievable throughout the mmW frequency range.
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5.2 Future work

5.2.1 Channel modeling for wireless sensor networks in lay-

ered media with rough boundaries

Layered structures with rough boundaries represent many naturally occurring struc-

tures. Electromagnetic (EM) scattering from layered structures with rough bound-

aries have key applications in environmental monitoring, geology and soil mechanics,

hydrology, oil and gas exploration, civil engineering, detection of improvised explo-

sive devices (IED), planetary explorations, and medical imaging [123], [140]. However,

very limited modeling and measurements have been carried out on links working in-

side or above multi-layered dielectric structures with rough boundaries such as layered

soil, rivers, lakes, and multi-year ice.

Another key set of problems falling into this group is the deployment and optimization

of Underground WSN. WUSN is a promising technology which enables a wide variety

of new applications that include monitoring of underground soil conditions such as

water and mineral content for intelligent irrigation and fertilization, underground

infrastructure monitoring such as electrical wiring, pipes and liquid storage tanks,

and border patrol and security monitoring using sensors to detect the presence of a
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person or an object [141], [143]. WUSN have many advantages over the conventional

wired sensor networks such as reliability, ease of deployment, and concealment[142].

Underground wireless channel are hostile mediums for wireless communications. Here,

EM waves suffer much higher loss compared to air, which complicates their charac-

terization. Indeed, a comprehensive channel model for such an environment does not

exist. WUSN deployed near the surface of the ground are able to communicate with

both under and above ground nodes so that a communication link exists partially in

the air and partially in the soil. Therefore, investigation of the impacts of ground

inhomogeneity on the communication channel operating in low altitude or subsurface

is crucial.

5.2.2 Channel modeling for WSN in inhomogeneous media

with volumetric stratification

Even though there are several models for path attenuation in forested environments

from HF to millimeter-waves range, the spatial, temporal, and spectral characteriza-

tion of these channels are an under-explored area. WSN deployed in foliage environ-

ment experience multipath fading due to scattering, diffraction, energy absorption

and shadowing caused by tree trunks and leaves. Moreover, WUSN deployed in such

environments suffer scattering resulting from vegetation roots, which have distinct
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dielectric properties from the soil. Sensor motes in these systems do not have any in-

formation about the power, delay and direction of arrival of each individual path and

instead require the aggregate descriptions of the propagation environment including

the received power, power delay spread and power angular spread. Due to the presence

of scatterers in the environment, multipath propagation is inherent in realistic radio

channels. The multipath not only decorrelates the signal outputs at various anten-

nas, but also induces delay spread, which results in frequency-selective fading. Delay

spread determines the maximum distortion-free data rates that can be transmitted

via a wireless channel. Another critical parameter that is inversely proportional to

delay spread is called the coherence bandwidth which quantifies the frequency varia-

tions of the channel [1]. Similarly, different angles of departure (AoD) and angles of

arrival (AoA) in a multipath environment lead to power angular spread, which de-

termines the coherence distance. In general, wider angular spread and larger spacing

between the array elements entail less spatial correlation and vice versa. Coherence

distance establishes the minimum antenna spacing required to achieve uncorrelated

channel responses. Therefore, effects of additional parameters such as delay spread

and angular spread are necessary to accurately describe the wireless channel.

Another important media that belongs to this category is human body. Body area

links can be grouped into several classes based on the location of the communicators

with respect to the body, namely, implant, on body, and external. Scenarios in which

one or both sides of the link are implants are not easily amenable to experimental
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measurements [144]. In these scenarios, full-wave simulation tools should be developed

to study the propagation environment. However, it is possible to make measurements

using communicating nodes to develop empirical models when the transceivers are

all on the surface or external to the body. Both theoretical and empirical models

will be developed to study path attenuation, shadowing statistics, power delay and

angular profiles, RMS delay and angular spread, coherence bandwidth, and coherence

distance which will facilitate the design of optimal body area communication systems

and the development of body-aware localization algorithms.
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