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Abstract 
Laser Speckle Contrast Imaging (LSCI) is a real-time, non-invasive method in used to 

investigate blood flow and perfusion in biological tissues with high temporal and spatial 

resolution. A reduction in speckle contrast due to particle motion is the primary contrast 

mechanism in LSCI. Motion results in speckle fluctuations in time and reduces the contrast 

over a given camera integration period. There are a variety of parameters that effect 

contrast besides motion. The optical properties of the scattering medium are one of the 

parameters effecting LSCI values. Changes in blood hematocrit levels manifest as changes 

in optical properties. In this work, we explore the effects of different hematocrit levels on 

LSCI contrast values using fluid phantoms with varying optical properties.  

Herein, the combined effects of scattering and absorption coefficients on LSCI values are 

investigated using fluid phantoms. These fluid phantoms were designed to mimic the 

scattering and absorbing properties of blood with varying levels of hematocrit. The flow 

phantoms in our experiments contained different concentrations of glass microspheres 

(brand name Luxsil) and India ink mixed with DI water. The different number of scatterers 

and absorbers in the phantoms mimic the scattering and absorption behaviors of blood with 

different number of red blood cells. An LSCI setup combined with a simple flow system 

was used in our experiments in order to investigate the effects of combined scattering and 

absorption coefficient of 121 samples with different concentrations of Luxsil and India ink 

microspheres. The fluid phantoms were run in 2mm glass tubing on top of a plastic block 

using a mini peristaltic pump. An LSCI setup imaged the flow using a CCD camera. A 

MATLAB GUI controlled the pump and camera to provide near real-time contrast images 

of the flow. An 11x11 matrix of phantoms was created. Scattering coefficient was varied 
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on the columns and absorption coefficient was varied on the rows such that the first element 

of the matrix is water and the last element contains the phantom with the maximum number 

of scatterers and absorbers. A hundred raw speckle images were recorded for each phantom 

experiment using the described optical setup. The experiments were conducted 3 times for 

each element of the matrix. The 11x11 results matrix displayed the average speckle image 

of all 300 raw speckle images. Additionally, the matrix was filled by the contrast images 

where contrast was defined as standard deviation of intensity over mean intensity. In order 

to compare the results numerically, we calculated the ratio of the contrast from the same 

size window of moving portion over the static portion of the phantoms. According to the 

results from LSCI experiments, an increase in scattering and absorption coefficients led to 

a reduction in contrast values of LSCI images. By increasing the number of scatterers and 

absorbers (equivalent to changing hematocrit level), the optical properties (scattering and 

absorption coefficient) increased, which led to a reduction in contrast value in the moving 

area. A negative slope linear curve describes the relationship between and scattering 

coefficient ( ) and between  and absorption coefficient ( ). 
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Chapter 1 

Literature review 
 

 

1.1 An introduction to Laser Speckle Contrast Imaging (LSCI) 
Laser Speckle Contrast Imaging (LSCI) is a non-invasive method for monitoring blood 

flow and perfusion. None-invasive techniques for monitoring blood flow have been in 

existence for approximately 30 years [1]. Laser speckle phenomenon is the basis of many 

of these methods. In the 1960s the laser speckle phenomenon was observed and researchers 

began exploiting it for a variety of metrology applications. In the 1970s, researchers began 

investigating time-varying speckle that resulted from coherent light being scattered from 

dynamic systems. Ferchers’ group at University of Essen in Germany first proposed LSCI 

in 1980 [2]. The main goal of their research was to develop a non-invasive method to 

monitor blood perfusion in retina. Early methods involved injecting a fluorescent dye to 

patient’s blood vessels until it was visible in the retina. [2,3]. It is obvious that this method 

was invasive and  a non-invasive method was preferred. LSCI is a method that exploits the 

relationship between speckle fluctuations and moving particles in the living tissues, 

noninvasively. Motion in the object space causes speckle fluctuations in time in the image 

space. When speckles fluctuate on a time scale shorter than the observing camera 

integration time, the result is a blurring of the speckle pattern in the image. This blurring 

results in a reduction in spatial contrast.  
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The early manifestation of LSCI to monitor blood flow in the retina employed single 

exposure speckle photography with a film camera [2].  A particular challenge in using the 

single exposure method with film was the post processing steps necessary after taking the 

speckle images in order to extract the information we need. With the advent of CCD 

cameras in the 1990’s, near real-time methods were developed to monitor blood flow with 

minimal further processing.   

 

1.2 Laser Speckle 

When we illuminate a diffuse surface or a scattering volume with laser light, the scattered 

light produces a random interference pattern called laser speckle. In the past, speckles were 

considered primarily as a nuisance, or source of noise, which lowered the quality of images. 

. More recently, however, it has been recognized by the biomedical optics community that 

dynamic speckle patterns carry with them information about dynamic biological tissues. 

Figure 1 shows a sample speckle pattern: 

 

 

Figure 1: a sample speckle pattern 

 



23 

When a rough surface is illuminated by laser light, where the surface variation is on the 

order of or longer than the wavelength of the light, the back-scattered beams follow 

different optical path lengths to reach the image plane. The coherent addition of the beams 

reaching a single point on the image plane yields the final intensity at that point. If the 

summation of all the amplitudes cancels each other out, the resultant intensity is zero. In 

the other hand, when all of wavelets are in phase, the maximum intensity will be achieved.  

Since laser speckle is a random process, it is appropriate to describe it statistically. Thus, 

when we want to talk about speckles and mathematic behind them, the probability 

distribution function is one the most important thing to mention.  

The contrast of a speckle pattern is defined as the ratio between standard deviation and 

mean intensity: 

Equation 1.1 

 

Which  is standard deviation of the intensity and  is mean of the intensity. When we 

illuminate a perfectly diffusing surface with a polarized, single frequency, highly coherent 

laser light, the standard deviation is equal to the mean intensity in the resultant speckle 

pattern. The contrast is equal to unity in this case, which indicates that there is no motion 

in the object plane during the time period of the camera integration. Typically, in biological 

tissues, there is always some motion in the scattering particles and standard deviation is 

smaller than mean intensity, reducing the contrast. Thus, by this definition, contrast is 

bound between zero and one. It should be noted, however, that the local contrast in a 
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speckle image has its own probability distribution (Duncan, Kirkpatrick, Wang “Statistics 

of local speckle contrast”, JBO…). 

 

1.2.1 Time-varying speckles 

When there is motion in the scattering particles, the back-scattered beams coming from the 

moving particles will result in a variation or fluctuation in the speckle intensity with time. 

This fluctuation blurs the normally sharp speckles and reduces the contrast of the speckle 

image. This actually is the main concept in LSCI. The speckles whose intensity fluctuates 

in time are called ‘time varying speckles’. When monitoring a living organ, this reduction 

in contrast due to motion can be used to investigate the flow or motion. This method is 

called laser speckle imaging, which is the main subject of this work.  

In this method, the temporal statistics of speckle fluctuations gives us information about 

the motion. It is common to use temporal statistics; but in some cases the spatial contrast 

of the time integrated speckle patterns is worth using instead. 

 

1.3 Comparison with Laser Doppler 

Another method for analyzing intensity fluctuations is Lase Doppler Flowmetry. Both 

LSCI and LDF analyze the fluctuations coming from the moving particles. In the Doppler 

method, when the particles are moving, the detected intensity is frequency shifted and this 

frequency-shift will be recorded. The frequency of resultant signal is the frequency 

difference between each point and a reference beam. The reference beam can actually be a 

non-shifted light, which comes from the stationary part of the object. But in the case of 
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time-varying speckles, there is no frequency shift. The frequency is the same for the 

moving particles and the speckles. But the optical path lengths are different. The intensity 

difference in the speckles pattern for LSCI is because the scattered beam passes different 

optical path length to reach the detector. When there is motion in the imaging area, the 

moving particles cause the beam passes different optical path length and this difference 

causes fluctuations in intensity in speckle pattern.  

In the end, the mathematics behind these two methods is similar and both aim to find the 

relationship between velocity in the object space and the frequency of the fluctuations in 

the observation space.  In some ways, the two approaches are actually two different ways 

of looking at the same phenomenon. 

In Doppler method, in order to work with the temporal statistics of speckles, we have to do 

the measurements on a point-by-point basis. Thus, to have a map of fluctuations, we need 

to do the measurements for all the points. A method of scanning is required in this process. 

There are some devices on the market for that emply scanning Doppler velocimetry to 

provide a map of velocity.  Howver, the scanning process takes time, usually several 

minutes and makes the imaging method slow. LSCI solvesthis problem by being a full-

field imaging technique. It provides a map of relative velocity in a single shot, which makes 

this method a near-real time imaging method.  

 

1.4 Literature review on LSCI and math behind it 

LSCI was used for diagnosing various problems of the eye initially [18]. Existing methods 

at the time were invasive [19] and a non-invasive method to monitor the blood vessels in 

the retina [20, 21, 22] was desired. Double exposure speckle photography was the first 
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method proposed [23]. An effect was observed many years earlier that the contrast of 

speckles is reduced if speckles fluctuate, and this could be utilized to find velocity. At that 

time, single exposure speckle photography was proposed by Fercher and Briers [23, 24].  

In laser speckle photography the basic idea is that if there is flow in the imaging area the 

speckle pattern in the image will be blurred. This blurring depends on the relative velocity 

and exposure time [23]. Furthermore, the speckle pattern has high contrast in the area 

where there is no flow. Mathematically, the contrast can be written as a function of the 

ratio of characteristic correlation time and camera integration time [25]. There are some 

assumptions in this regard. Assuming the exponential distribution for the velocity will give 

us the following equation for contrast: 

Equation 1.2 

 

 

Assuming a Lorentzian velocity distribution of blood flow in vessels, Fercher and Briers 

plotted the intensity versus the ratio of correlation time and exposure time (Figure.1): 
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Figure 2: Speckle contrast vs. correlation time and camera integration time’s ratio 

(Fercher and Briers results and the correction curve according to Duncan and Kirkpatrick’s work). 

 

In the case of single exposure, the camera integration time is constant. It can be seen from 

this curve that the contrast is near zero when the correlation time is low and it trends 

towards unity when the correlation time is high. For a different assumed velocity 

distribution (e.g. a Gaussian) the general shape of the curve is the same, however, there is 

a small horizontal shift in the values [25]. 

As can be seen from this curve, the contrast is near zero when there is significant relative 

motion, and in the case of no motion the contrast reaches a maximum. In practice, it is not 

easy, or even possible in some situations, for the human eye to identify the contrast 

variations. Thus, for making these variations visible to the eye, a high pass filter was 

necessary.. This filter converted contrast variations to intensity variations. Using this filter, 

a large amount of light is diffracted when the speckle contrast is high and the light passes 
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throughout the lens when the contrast is low. In comparison to the raw images, blood 

vessels are more obvious in the processed version of the images after using this filter.  

The single exposure speckle photography was abandoned in the 1980s partially because of 

this long process. At that time, a method without the photographic stage was being 

investigated [26, 27]. Thus, laser speckle contrast imaging was born.  A simple optical 

setup was considered in this method. The object was illuminated by laser light and a CCD 

camera imaged the illuminated area. There are several parameters in the system that was 

under operator control. In the initial LSCI, camera integration time, size of speckles and 

the number of pixels were the parameters, which could be fixed by the operator [28]. If 

there was movement in the area under investigation, the intensity of those speckles 

fluctuated in time. A time-integrated image during a short exposure time was obtained 

using this method. The short exposure time makes the LSCI a near-real time technique. 

Speckle size in comparison to the pixel size is an important factor to be determined. The 

best cooperation in this case is when the speckle size is at least 2 times of the pixel size 

[23].  

Although LSCI is a simple, fast and cheap method, it has some challenges [29]. For 

example, it is not obvious if LSCI is sensitive to flow or velocity. And also, the results are 

not robust and without some means of calibration, absolute values for flow or velocity are 

impossible to quantify. In or der to make LSCI a more quantitative too,  especially in 

comparison to the laser Doppler flowmetry (LDF), these isues, along with otheres need to 

be resolved [30]. LDF uses temporal statistics instead of spatial statistics and the power 

spectrum is analyzed in this method [23,20]. 
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The underlying concept of LSCI is the association of the camera integration time and the 

speckle contrast [25]. In order to calculate the local contrast, the intensity is calculated by 

an integration of the instantaneous intensity over a rectangular window.  

Equation 1.3 

 

        

 

In these equations T is camera integration time. Recall that contrast is defined as Equation 

1.1.  To create a contrast image, the contrast should be calculated for each pixel using 

Equation 1.1. Thus, the standard deviation and the mean intensity are the parameters to be 

calculated. According to the statistical equations, the mean intensity is equal to the 

expectation of the intensity , and we have the equation below for : 

Equation 1.4 

 

And in order to calculate standard deviation, we need variance: 

Equation 1.5 
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where denote the covariance of the instantaneous intensity and  is the expectation. 

The complex Gaussian moment theorem can be considered under the assumption that the 

instantaneous intensity is due to scatter from a very large number of particles.  The complex 

Gaussian moment theorem expresses the fourth order statistical moment in terms of 

products of second order moments: 

Equation 1.6 

 

This relationship is known as Siegert relation. Another assumption that should be 

considered here is to assume Brownian motion for the scattering particles velocity. 

According to this assumption: 

Equation 1.7 

 

where 𝜏𝜏𝑐𝑐 is the characteristic correlation time, which depends on the mass of particle and 

frictional forces. Thus, the covariance is: 

Equation 1.8 

 

And finally for the contrast we have: 

Equation 1.9 
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This approach has a fundamental issue, which the assumption of having the exponential 

correlation function related to Brownian motion for the ordered flow. Fercher and Briers 

pointed out that the contrast is in a Lorentzian shape under the assumption of an exponential 

correlation function.  

 

Figure 3: Contrast for the Lorentzian distribution function. 

 

If we considered the ordered flow as an inhomogeneous broadening phenomenon, the line 

shape for the ensemble of scatterers is Gaussian and in this case, the correlation function 

is Gaussian too. 

Assuming the Gaussian model for the covariance of instantaneous intensity leads to: 

Equation 1.10 

 

The measured contrast is shown by: 

Equation 1.11 
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And the contrast curve under the assumption of a Gaussian correlation function is shown 

in the figure below: 

 

 

Figure 4: Contrast for the Gaussian distribution function. 

 

The significant differences between the Lorentzian and Gaussian correlation function is 

shown in the image below. As we can see from the two curves, these too line shapes are 

slightly different but they have identical same dynamic ranges and overall similar shapes. 

The real correlation function for the ordered flow is likely a mixture of these too correlation 

functions and the true model may be the convolution of these two line shapes. 



33 

 

Figure 5: Comparison of the contrast for the Lorentzian and Gaussian distribution 

function (the red curve is Lorentzian and the blue one is Gaussian). 

 

The final goal in LSCI is to measure velocity. But there are some common errors in this 

method that prevent it from being a quantitative tool [25]. The first one is a persistent 

mathematical error, which is missing a triangular window in the variance equation. The 

actual variance according to what we discussed earlier should be defined as: 

Equation 1.12 

 

But the triangular window in the Fercher and Briers work was missing and the resultant 

contrast was: 

Equation 1.13 
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