2016

TECHNICAL SOLAR PHOTOVOLTAIC POTENTIAL OF LARGE SCALE PARKING LOT CANOPIES

Ram Krishnan
Michigan Technological University, rkrishna@mtu.edu

Copyright 2016 Ram Krishnan

Recommended Citation
Krishnan, Ram, "TECHNICAL SOLAR PHOTOVOLTAIC POTENTIAL OF LARGE SCALE PARKING LOT CANOPIES", Open Access Master's Report, Michigan Technological University, 2016.
https://digitalcommons.mtu.edu/etdr/92

Follow this and additional works at: https://digitalcommons.mtu.edu/etdr
TECHNICAL SOLAR PHOTOVOLTAIC POTENTIAL OF LARGE SCALE PARKING LOT CANOPIES

By
Ram Krishnan

A REPORT
Submitted in partial fulfillment of the requirements for the degree of
MASTER OF SCIENCE
In Electrical Engineering

MICHIGAN TECHNOLOGICAL UNIVERSITY
2016

© 2016 Ram Krishnan
This report has been approved in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE in Electrical Engineering.

Department of Electrical and Computer Engineering

Report Advisor: Joshua M. Pearce

Committee Member: Sumit Paudyal

Committee Member: Lucia Gauchia Babe

Department Chair: Daniel R. Fuhrmann
Table of Contents

Abstract .. 1

1. Introduction ... 2
 1.1 Solar Photovoltaics: A basic overview .. 2
 1.2 Potential for Solar Parking Lot Canopies .. 2

2. Materials and Methods ... 4
 2.1 Parking Lot Solar Farm Conversion Economic Decision Algorithm 4
 2.2 Case Study: Walmart Supercenters Stores Inc. USA 8

3. Results ... 8
 3.1 Walmart Supercenter USA Land Area .. 8
 3.2 Walmart’s USA Solar Photovoltaic Parking Lot Canopy Value Over 25 Years of Land Use 9

4. Discussion .. 18

5. Conclusion .. 19

6. References ... 19

Appendix A ... 26
 SAM Simulation file system parameters .. 26
Abstract

Solar photovoltaic (PV) technology can provide sustainable power for the growing global population, but it demands considerable land area. This is a challenge for densely populated cities. However, the stranded assets of non-productive parking lots areas can be converted to solar farms with PV canopies, enabling sustainable electricity generation while preserving their function to park automobiles.

This report provides a method for determining the technical and economic potential for converting a national scale retail company's parking lot area to a solar farm. First, the parking lot area for the company is determined and divided into zones based upon solar flux using virtual maps. Then the potential PV yield in each zone is calculated. A sensitivity analysis is performed on the price per unit power installed, solar energy production as a proxy for conversion efficiency, electricity rates and revenue earned per unit area. To demonstrate this method, analysis of Walmart Supercenters, USA is presented as a case study. The results show solar canopies for parking lot areas are a profitable as well a responsible step in most locations and there is significant potential for sustainable energy deployment in cities by other similar retailers using solar PV canopies.
1. Introduction

1.1 Solar Photovoltaics: A basic overview

Solar Photovoltaics is the principle of converting sunlight into electricity. This principle, first described in 1839 by a French physicist Edmond Becquerel, demonstrates the properties of certain materials to generate electricity when exposed to sunlight. These materials, primarily semiconductor devices, generate free electrons when exposed to the photons composed in the sunlight (NREL, 1995).

PV systems make use of the direct and diffuse radiations from the sun, also termed as global irradiance. These PV systems, having the capability of working as grid-tied as well as stand-alone systems, can satisfy capacities ranging from 1W to gigawatts (IEA, 2014). The PV modules, having a guaranteed lifetime of 25 years, have efficiencies as high as 22% (SolarCity, 2015). With high efficiencies and decreasing investment costs, taking into consideration solar energy which is the most abundant energy resource on earth, Solar Photovoltaic technology shows to be a very promising source of renewable clean energy.

1.2 Potential for Solar Parking Lot Canopies

The global demographic has shifted from rural to urban, as the majority of humanity now choose to live in cities (Tacoli, et al., 2015; USDA, 2015). For example, the number of non-metro counties in United States, recording a population shift to metro areas reached a historic high of 1,310 between the periods of 2010-2014 (USDA, 2015). As the global environment and particularly the climate comes under increasing pressure from anthropogenic sources (IPCC, 2013; Nyström, Folke, Moberg, 2000; Solomon et al. 2007; Kimani, 2014; Azevedo et al. 2015), there is a critical need to transition cities towards sustainability (IEA, 2009; NREL, 2015). One aspect of cities that needs more attention is that of land use (Nickerson, et al., 2011; Foley, et al., 2005) as areas within cities have expanded, creating sprawl with many negative consequences (Davis, et al., 2010; Squires, 2002).

In the case of the United States, large portions of cities are consumed by expansive parking lot areas; with almost one third of the surface area of some major cities is made up of parking lots (Manville & Shoup, 2005; Ben-Joseph, 2012). Several previous studies have shown that large parking lot areas exceed actual population requirements (Hall, 2007; Ben-Joseph, 2012) resulting in substantial financial losses. In addition, the environmental damage caused by parking lots is well
documented (Davis, et al., 2010; Wilson, 1995; Manville & Shoup, 2005) and thus, excess parking lot areas can be viewed as irresponsible utilization of land resources.

At the same time, these cities are increasing their energy use, with the total global energy consumption projected to reach 34,454 TWh by 2035 (WNA, 2015). Greenhouse gas (GHG) emissions must be reduced to prevent dangerous global climate change (Moss, et al. 2010; IEA 2012; IPCC, 2013) and its negative externalities on cities such as: i) higher temperatures and heat waves that result in thousands of deaths from hyperthermia (Fouillet, et al., 2006; Dhainaut, et al., 2003; Poumadere, et al., 2003) in environments already experiencing heat island effects (Lo et al., 1997); ii) power outages (Vine, 2012) and the concomitant economic disruption; iii) rising sea levels which causes the low-lying coastal urban environments to submerge gradually (Frihy 2003; Moorhead and Brinson, 1995) while beaches and other amenities of the shorelines are erased with erosion (Frihy 2003; Moorhead and Brinson, 1995); IV) increased risk of flooding (Nicholls, et al., 1999) and saltwater intrusion, which can damage water supplies for cities (Bobba, 2002; Frihey, 2003); v) strong storms, which cause more damage to coastal environments and increase the risk of floods (Desantis, 2007; Allen et al., 2010; Dale, et al., 2001; Carnicer, et al., 2011); and vi) increased risks from fire (Amiro, et al., 2001; Dale, et al., 2001; Flannigan et al., 2009). In addition, although cities are not primarily agricultural, climate changes threaten drastic changes in soil composition (Kirschbaum, 1995) and crop failures (D'Amato and Cecchi, 2008; ICES/CIESM, 2010; Adams, et al., 1990; Parry, et al., 2004) that aggravate global hunger including residents of cities (Parry et al., 2004; Schmidhuber and Tubeillo, 2007; Parry et al., 2005). These negative externalities have been shown to be due to human activities with the confidence level of 95% (primarily combustion of fossil fuels, which are the dominant cause of global warming from 1951 onward) (IPCC, 2013). To mitigate these negative consequences while maintaining an energy-intensive standard of living, this power will need to be supplied by renewable energy sources (El-Fadel, et al., 2003; Granovskii, et al., 2007; Sims, 2004; Tsoutsos, 2008).

The most promising technology for a sustainable future is solar photovoltaic (PV) conversion of sunlight to electricity (Pearce, 2002). Rapid growth in solar PV global production capacity (Masson, et al., 2015), improvements in the solar energy conversion efficiency (NREL, 2015), and improved financing mechanisms (Alafita & Pearce, 2014) have all resulted in a radical decline in the price of solar electricity (Branker et al., 2011). Thus PV represents an economical method of providing for a growing fraction of society's electrical needs. However, to produce thousands of TWhs with solar electricity will involve the use of considerable land area (Ong, et al., 2013), which in part can be met with aggressive building integrated PV and rooftop PV (Wiginton, et al., 2010; Nguyen and
Pearce, 2013; Nguyen, et al., 2012; Duke, et al., 2005; Hoffmann, 2006) it will not be enough, particularly in densely populated cities (NREL, 2013). To meet all demands, while avoiding the costs and negative externalities associated with conventional grid expansion (Fouillet, et al., 2006; Vine, 2012; Klinenberg, 2008), stranded assets of non-productive parking lot areas could be converted to solar farms with PV canopies, enabling sustainable energy production while preserving their function to park automobiles.

This study provides a method for determining the technical and economic potential for converting a nationally scaled retail company's parking lot area to a solar energy farm comprised of PV canopies. First, the parking lot area for the company is determined and divided into zones based upon solar flux using virtual maps and geographic information systems (GIS). Then the potential PV yield in each zone is calculated. A sensitivity analysis is performed on the i) price per unit power installed including a differential cost of solar canopies to account for snow loading in relevant regions ($/ W), ii) solar energy production as a proxy for conversion efficiency (kWh/acre), iii) electricity rates ($/kWh) and IV) revenue earned per unit area ($/acre). To demonstrate this method, a case study is used to investigate the economic effect of installing solar canopies in Walmart Supercenters, USA. The results are presented and discussed to determine the potential for this method of sustainable energy deployment in cities by other similar retailers.

2. Materials and Methods

2.1 Parking Lot Solar Farm Conversion Economic Decision Algorithm

The flow chart of the parking lot solar farm conversion economic decision algorithm is shown in Figure 1.
First, the parking lot area for the company is determined and divided into zones based on solar flux using Google Earth Pro (v 7.1.5.1557). In order to obtain a rough first approximation on potential PV yield, the U.S. is divided into three zones (South, East and North) according to the solar flux shown in Figure 2.
The United States map along with the solar flux zone-wise is obtained from National Renewable Energy Laboratory U.S Solar Radiation Resource maps (NREL, 2016). It should be noted here, that this is division is rough and meant to be a first approximation for decision makers if a more detailed GIS analysis is needed. This analysis could take the form of using an adaptation of roof quantification methods with Arc GIS and Feature Analyst (Wiginton, et al., 2010) or the open source GRASS and r.sun (Nguyen and Pearce, 2010) or a store-by-store PV site assessment is warranted).

Next, sensitivity analysis is performed on the price per unit power installed including a differential cost of solar canopies to account for snow loading in relevant regions ($/ W). These values should range from $3.25/W to $1.00/W as a source for $3.25/W as the highest cost currently
(Adelson, 2015) and the sensitivity reduced to follow historic learning curve trends in PV (Feldman, et al., 2014; International Renewable Energy Agency, 2015). Then the packing factor is determined using two example arrays representing aggressive and modest parking: 1) Belectric Solar Parking Canopy-EDEKA Krawczyk supermarket parking lot in Schwabach, Germany – 170 W/m2 (Solar Frontier, 2011; Olson, 2011) and Rutgers University, USA Solar Parking Lot – 65 W/m2 (Solaire, 2011). These packing factors are used to model a solar PV system for an area of the average parking lot for the store. For the case study, the average parking lot area for Walmart Supercenters was calculated using geospatial information from 23 Walmart locations throughout the United States and Canada. The average parking lot area was measured and a standard error was calculated from:

\[
\text{Standard Error} = \frac{\text{Standard Deviation (sample)}}{\sqrt{\text{Sample Size}}} \tag{1}
\]

Two standard error were reported for the sample mean to approximate a 95% confidence interval of the mean. Then using representative solar flux values for the three regions using the locations of Arizona, Michigan, and New Jersey, Walmart Supercenters representing the three zones in the U.S., Solar Advisor Model (SAMv2015.1.30, 64 bit) is used to determine the energy output (MWh/year) for the two packing factors. Finally, electricity rates ($/kWh) and the profits earned per unit area (PPV) [$/acre/year] is calculated using equation 2, where \(E \) is the energy output [kWh/year], \(r_e \) is the rate of electricity [$/kWh], and LCOE is the levelized cost of electricity (Branker et al., 2011).

\[
P_{PV} = E \times (r_e - \text{LCOE}) \tag{2}
\]

A sensitivity analysis is performed on the rates of 5, 10, 15 and 20 cents/kWh, which envelope the ranges in the standard rates of electricity, using three historical electrical rate escalations of 1) 0.3% (From 2010), 2% (2016 projected) and 5.7% (from 2008) (U.S. Energy Information Administration, 2015), representing the low, average, and high cases, respectively.

The levelized cost of electricity (LCOE) produced by the PV followed the calculation from Branker et al:

\[
\text{LCOE} = \sum_{t=0}^{T} \frac{I_t + O_t + M_t + F_t}{(1+r)^t} \sum_{t=0}^{T} \frac{E_t + O_t + M_t + F_t}{(1+r)^t} = \sum_{t=0}^{T} \frac{S_t(1-d)^t}{(1+r)^t} \tag{3}
\]

Where:
- \(T \) = Life of the project (years)
- \(t \) = year \(t \)

Et=Energy produced for t[$]
It=Initial investment/cost of the system including construction, installation, etc. [$]
Mt=Maintenance costs for t [$]
Ot=Operation costs for t [$]
Ft=Interest expenditures for t [$]
St= Rated energy o/p per year. [kWh/year]
1-d= Degradation factor
r = discount rate.

The values for the PV LCOE parameters are lifetime of 25 years, operation and maintenance costs were set at 1.5% of initial investment cost and degradation rate was 0.5%/year (Branker et al., 2011). The indirect costs such as sales tax, land costs, engineering costs, and grid connection costs were folded into the initial investment cost and were not considered independently in SAM. The tax and insurance rates, incentives, and salvage values were also not considered.

2.2 Case Study: Walmart Supercenters Stores Inc. USA

Walmart Stores, Inc., a popular American multinational retail corporation, had revenue of US$485.7 billion by the end of the fiscal year January 31, 2015 (Walmart, 2015). Walmart has over 5,200 retail stores in the U.S., with over 3,400 of them being Supercenters (Walmart, 2015). These Supercenters, designed to offer a one-stop shopping experience, occupy close to 182,000 square feet [16,908 m2] (Walmart Corporate, 2016) excluding their parking lots. Walmart has already made a commitment to improve sustainability (WSJ, 2013; Walmart Global Responsibility Report, 2013) and has installed close to 105MW of rooftop solar (Weissmann, 2014; Walmart Sustainability Report, 2014). Rooftop PV, however, is inadequate to meet even an individual Walmart's electricity needs, let alone make a positive contribution to a city's sustainability by exporting renewable energy. For this level of solar electric conversion, more surface area is needed. This case study uses the algorithm detailed above to determine the potential of the U.S. Walmart solar farm on their Super Center parking lot area.

3. Results

3.1 Walmart Supercenter USA Land Area

The average size of Walmart Supercenter in three solar flux zones in the U.S. are displayed in Table 1. Walmart Supercenters were used as they have consistency in their parking lot area size, while normal Walmart retail stores showed a greater variation in parking lot size.
<table>
<thead>
<tr>
<th>Zone</th>
<th>State</th>
<th>Area [m²]</th>
</tr>
</thead>
<tbody>
<tr>
<td>South</td>
<td>Arkansas</td>
<td>44,118</td>
</tr>
<tr>
<td></td>
<td>California</td>
<td>10,197</td>
</tr>
<tr>
<td></td>
<td>Arizona</td>
<td>21,734</td>
</tr>
<tr>
<td>East</td>
<td>New Jersey</td>
<td>21,000</td>
</tr>
<tr>
<td></td>
<td>North Carolina</td>
<td>29,981</td>
</tr>
<tr>
<td>North</td>
<td>Michigan</td>
<td>35,577</td>
</tr>
<tr>
<td></td>
<td>Wisconsin</td>
<td>25,829</td>
</tr>
</tbody>
</table>

Following equation (1) and the data from Table 1, the average parking lot area of North American Walmart stores was calculated to be 20,777 ± 5,047 m².

3.2 Walmart's USA Solar Photovoltaic Parking Lot Canopy Value Over 25 Years of Land Use

For this case study, locations of Arizona, Michigan and New Jersey are taken to encompass the high and low regions of solar flux. Table 2 summarizes the values used in SAM and the resulting energy and shading loss outputs, which are then used as inputs into the economic model described below.

Table 2: Shading loss and annual electrical output for the two packing factor cases for an area of 21,000m²

For simulation purposes, the Azimuth was taken to be 0° and the tilt to be 20°.

<table>
<thead>
<tr>
<th>Location</th>
<th>Packing Factor (W/m²)</th>
<th>Shading Loss</th>
<th>Output (kWh/year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arizona</td>
<td>170</td>
<td>13.67%</td>
<td>3,727,000</td>
</tr>
<tr>
<td></td>
<td>65</td>
<td>0.677%</td>
<td>1,664,000</td>
</tr>
</tbody>
</table>
Table 3 summarizes the LCOE values obtained from SAM for the ranges of cost per unit power.

Table 3: LCOE values for case study location

<table>
<thead>
<tr>
<th>Location</th>
<th>Packing Factor case</th>
<th>Cost per unit power ($/W)</th>
<th>LCOE ($/kWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phoenix</td>
<td>170 W/m²</td>
<td>1.25</td>
<td>0.0846</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.25</td>
<td>0.1367</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.25</td>
<td>0.1888</td>
</tr>
<tr>
<td></td>
<td>65 W/m²</td>
<td>1.25</td>
<td>0.0734</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.25</td>
<td>0.119</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.25</td>
<td>0.1637</td>
</tr>
<tr>
<td>New Jersey</td>
<td>170 W/m²</td>
<td>1.25</td>
<td>0.1319</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.25</td>
<td>0.2132</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.25</td>
<td>0.2944</td>
</tr>
<tr>
<td></td>
<td>65 W/m²</td>
<td>1.25</td>
<td>0.0999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.25</td>
<td>0.1615</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.25</td>
<td>0.223</td>
</tr>
<tr>
<td>Location</td>
<td>Power Density</td>
<td>Packing Factor</td>
<td>Profit</td>
</tr>
<tr>
<td>----------</td>
<td>---------------</td>
<td>----------------</td>
<td>---------</td>
</tr>
<tr>
<td>Michigan</td>
<td>170 W/m²</td>
<td>1.25</td>
<td>0.1313</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.25</td>
<td>0.2121</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.25</td>
<td>0.293</td>
</tr>
<tr>
<td></td>
<td>65 W/m²</td>
<td>1.25</td>
<td>0.1006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.25</td>
<td>0.1626</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.25</td>
<td>0.2245</td>
</tr>
</tbody>
</table>

For each location, two packing factor cases are considered to envelop the aggressive and modest PV system. Figures 3 and 4 show PV profits for Arizona enveloping the two packing factor cases. Similarly, Figures 5 and 6 cover New Jersey packing factor cases and Figures 7 and 8 cover Michigan cases.
Figure 3: Profits earned from PV canopies for the case 1 packing factor of 170W/acre in Phoenix, Arizona USA using equation 1 for $1.25-3.25/Wp cost per unit power
Figure 4: Profits earned from PV canopies for the case 2 packing factor of 65W/acre in Phoenix, Arizona USA using equation 1 for $1.25-3.25/Wp cost per unit power
Figure 5: Profits earned from PV canopies for the case 1 packing factor of 170W/acre in Rutgers, New Jersey USA using equation 1 for $1.25-3.25/Wp cost per unit power
Figure 6: Profits earned from PV canopies for the case 2 packing factor of 65W/acre in Rutgers, New Jersey USA using equation 1 for $1.25-3.25/Wp cost per unit power
Figure 7: Profits earned from PV canopies for the case 1 packing factor of 170W/acre in Traverse City, Michigan USA using equation 1 for $1.25-3.25/Wp cost per unit power
Figure 8: Profits earned from PV canopies for the case 2 packing factor of 65W/acre in Traverse City, Michigan USA using equation 1 for $1.25-3.25/Wp cost per unit power

As shown in Figure 3 for Arizona (170W/m2), even at a low selling electricity rate of 5 cents/kWh (Increasing 5.7% annually), there is the potential for PV profits from the year 2023 at $1.25/W installation rate. On the other hand for the same installation rate, a high electricity rate of 20 cents/kWh escalating at 5.7% per year there is a potential of making 3 million dollars of PV profits over the span of 25 years. Arizona, with a packing factor case of 65W/m2 (Figure 4), shows the same potential for PV profits as the previous case, but overall profits are restricted to a maximum of 11 million dollars when sold at 20 cents/kWh increasing 5.7% annually.

New Jersey is a geographical area representing low solar flux and snow effects. Compared with Arizona, New Jersey would be expected to show less PV profits. Even with a packing factor case of 170W/m2, Walmart sees profits only from the year 2033 when sold at 5cents/kWh at 5.7% for $1.25/W and 2028 for 10cents/kWh at 2% for $ 1.25/W (Figure 5). The total profits earned for a best case scenario of 20cents/kWh at 5.7% for $ 1.25/W is close to $14 million over 25 years.
Michigan, which represents the areas of USA with the least solar flux and maximum snow effect, shows even less PV profit potential (Figure 7). For 170W/m², similar to New Jersey, profits can be seen only from 2033 for a low of 5 cents/kWh at 5.7% at $1.25/W. It presents the same profits of $14 million for the best-case scenario of 20 cents/kWh at 5.7% increase over a span of 25 years. It should be noted that the current retail rate of electricity in many norther Michigan areas is already well over 20 cents/kWh. When a low packing factor of 65 W/m² is considered, the overall profits for the same best case scenario is just about eight hundred thousand dollars over 25 years, the lowest of all case studies (Figure 8).

4. Discussion

As clearly seen from Figures 3-8 above, solar canopies for Walmart Supercenters parking lot areas prove to be economical as well a responsible step in reducing global footprint. In areas like Phoenix, which represent Zone 1 of the United States with maximum solar flux, profits can be earned at installation rates of $1.25/W sold at low rates of $0.05/kWh increasing 5.7% annually. With utility scaled systems already installed today for less than $1.00/W (Solar Energy Industries Association, 2014) PV can be profitably installed. Areas such as New Jersey and Michigan, which get comparatively less solar flux as well as more snow, profits can be earned from as low as $0.10/kWh increasing 2% annually at installation rates of $1.25/W. With average costs of industrial rates of electricity in New Jersey and Michigan to be at 11 and 7 cents/kWh respectively, and projected to increase at 4% annually (U.S EIA, 2015), the potential to make PV profits is high. Houghton, Michigan, which has been used in case study and represents the area with least solar flux, with the electricity rates already averaging at $0.18/kWh with an average of 4% increase per year (U.S EIA, 2015), shows a profit potential of $14 million and $800,000 over the span of 25 years assuming an area of 21,000 m² (Figures 7 & 8). Compared to this, areas such as Arizona (and others such as California, Florida, and Texas), which receive more solar flux, have a tremendous potential to make PV profits from these the substantial surface area devoted to parking lots.

The rapid decreasing installation costs of PV (Feldman et al. 2014; 54. IRENA 2012; Solar Energy Industries Association, 2014) as well as the government incentives offered for installing PV systems in most regions of the United States (Goodrich, James & Woodhouse, 2012; Davidson, James, Margolis, Fu, and Feldman, 2014) has built a very strong case for solar parking lot canopies with substantial acreages. With some regions in the United States already averaging electricity prices of 18-23 cents/kWh (e.g. Connecticut; Alaska) (U.S. EIA, 2015) PV canopies may already make financial sense if power-purchasing agreements can be arranged.
Walmart was selected as a case study retailer because it has already institutionalized profitable store-located PV systems (MacDonald, 2007; 2007b; Roselund, 2015). However, Walmart is far from alone for being well positioned to take advantage of the profitable opportunity that PV deployment on retail locations provides as many other big-box retailers such as Kohl’s, Costco, Staples, Target, and IKEA are already covering their rooftops with PV (IKEA, 2014; Feldman and Margolis, 2014; SEIA, 2014). Walmart is ahead of the pack in that they have already started considering expansion of this technology to parking lots.

The inherent limitations of this study include variations in parking lot areas using the approximations available data. Future work could include generating more accurate results using open source GIS systems or acquiring store by store area information via personal communication with the respective companies. Finally, future work could build upon this study to analyze state/government incentives while calculating LCOE, use of different types of PV systems (e.g. low concentration (Andrews, et al., 2015) and tracking systems (de Simón-Martín, et al., 2014).

5. Conclusion

With a substantial acreage of parking lot areas in cities both underutilized and in the case of large retailers such as Walmart, providing no direct income, the results of this study indicate it may be beneficial to cover these parking areas with solar photovoltaic canopies. The resultant renewable energy can be sold to grid operators or to microgrids and nearby residential areas at a fixed rate. This would not only prove to be financially viable for large retailers, but could also reduce their global ecological footprint by efficiently utilizing large land resources. This study reveals that even at modest rates of electricity and installation rates, PV profits from solar canopies are high, particularly in locations with high solar irradiation. With the ever-increasing need of cities for clean renewable power, solar canopies for parking lot areas for these companies would be financially and socially responsible.

6. References

Acknowledgements
The author would like to thank B. Adelson and Solaire Generation for helpful discussions.

Bill Adelson 2015. Personal communication with Bill Adelson, Director Western Operations, Solaire by SUNPOWER; November 2015.

International Energy Agency “World Energy Outlook 2012 Executive Summary”

Parry M, Rosenzweig C, Livermore M. Climate change, global food supply and risk of hunger. Philosophical Transactions of the Royal Society B: Biological Sciences. 2005;360(1463), 2125-2138.

Parry, Rosenzweig, Iglesias, M Livermore, G Fischer, Effects of climate change on global food production under SRES emissions and socio-economic scenarios, Global Environmental Change, Volume 14, Issue 1, April 2004, Pages 53-67, ISSN 0959-3780

Roselund, C. Walmart to install up to 400 more solar PV systems over the next four years. PV Magazine.http://www.pv-magazine.com/news/details/beitrag/walmart-to-install-up-to-400-moresolar-pv-systems-over-the-next-four-years

Schmidhuber J, Tubiello FN. Global food security under climate change. Proceedings of the NationalAcademy of Sciences. 2007; 104(50), 19703-19708.

Solaire by SUNPOWER “Solar Canopies portfolio”
http://solairegeneration.com/project/rutgersuniversity/;November 2015

Solar Energy Industries Association “Solar Industry Data” 2014

Syanne Olson “Solar Frontier, Belectric complete 340kW installation at German supermarket parking lot”, PVTECH magazine, Novemeber 2015; http://www.pvtech.org/news/solar_frontier_belectric_complete_340kw_installation_at_german_supermarket

Tacoli, McGranahan Gordon and Satterthwaite “Urbanisation, rural-urban migration and urban poverty”, March 2015.

Appendix A

SAM Simulation file system parameters

Case 1 packing factor: 170W/m²

<table>
<thead>
<tr>
<th>Modules</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SunPower SPR-210-BLK-U</td>
<td>Mono-c-Si</td>
</tr>
<tr>
<td>Cell material</td>
<td>1.2 m²</td>
</tr>
<tr>
<td>Module area</td>
<td>215.2 DC Watts</td>
</tr>
<tr>
<td>Quantity</td>
<td>16,584</td>
</tr>
<tr>
<td>Total capacity</td>
<td>3.6 DC MW</td>
</tr>
<tr>
<td>Total area</td>
<td>20,630 m²</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inverters</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SMA America: SB4000US 240V</td>
<td>4 AC kW</td>
</tr>
<tr>
<td>Unit capacity</td>
<td>250 - 480 VDC DC V</td>
</tr>
<tr>
<td>Quantity</td>
<td>811</td>
</tr>
<tr>
<td>Total capacity</td>
<td>3.2 AC MW</td>
</tr>
<tr>
<td>DC to AC Capacity Ratio</td>
<td>1.10</td>
</tr>
<tr>
<td>AC losses (%)</td>
<td>1.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Array</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Strings</td>
<td>2,073</td>
</tr>
<tr>
<td>Modules per string</td>
<td>8</td>
</tr>
<tr>
<td>String voltage (DC V)</td>
<td>328.0</td>
</tr>
<tr>
<td>Tilt (deg from horizontal)</td>
<td>20</td>
</tr>
<tr>
<td>Azimuth (deg E of N)</td>
<td>0</td>
</tr>
<tr>
<td>Tracking</td>
<td>fixed</td>
</tr>
<tr>
<td>Backtracking</td>
<td>-</td>
</tr>
<tr>
<td>Rotation limit (deg)</td>
<td>-</td>
</tr>
<tr>
<td>Shading</td>
<td>no</td>
</tr>
<tr>
<td>Soiling</td>
<td>yes</td>
</tr>
<tr>
<td>DC losses (%)</td>
<td>4.4</td>
</tr>
</tbody>
</table>
Case 2 packing factor: 65W/m²

Modules
- **SunPower SPR-210-BLK-U**
 - Cell material: Mono-c-Si
 - Module area: 1.2 m²
 - Module capacity: 215.2 DC Watts
 - Quantity: 6,336
 - Total capacity: 1.4 DC MW
 - Total area: 7,881 m²

Inverters
- **SMA America: SB4000US 240V**
 - Unit capacity: 4 AC kW
 - Input voltage: 250 - 480 VDC DC V
 - Quantity: 310
 - Total capacity: 1.2 AC MW
 - DC to AC Capacity Ratio: 1.10
 - AC losses (%): 1.0

Array
- Strings: 792
- Modules per string: 8
- String voltage (DC V): 328.0
- Tilt (deg from horizontal): 20
- Azimuth (deg E of N): 180
- Tracking: fixed
- Backtracking: -
- Rotation limit (deg): -
- Shading: no
- Soiling: yes
- DC losses (%): 4.4