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Iron (Oxyhydr)Oxides Serve as Phosphate Traps in Tundra
and Boreal Peat Soils
Elizabeth M. Herndon1 , Lauren Kinsman‐Costello2, Kiersten A. Duroe1, Jonathan Mills1,
Evan S. Kane3, Stephen D. Sebestyen4, Aaron A. Thompson5 , and Stan D. Wullschleger6

1Department of Geology, Kent State University, Kent, OH, USA, 2Department of Biological Sciences, Kent State
University, Kent, OH, USA, 3School of Forest Resources and Environmental Science, Michigan Technical University,
Houghton, MI, USA, 4USDAForest Service, Northern Research Station, Grand Rapids, MN, USA, 5Crop and Soil Sciences,
University of Georgia, Athens, GA, USA, 6Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge,
TN, USA

Abstract Arctic and boreal ecosystems are experiencing pronounced warming that is accelerating
decomposition of soil organic matter and releasing greenhouse gases to the atmosphere. Future carbon
storage in these ecosystems depends on the balance between microbial decomposition and primary
production, both of which can be regulated by nutrients such as phosphorus. Phosphorus cycling in tundra
and boreal regions is often assumed to occur through biological pathways with little interaction with soil
minerals; that is, phosphate released from organic molecules is rapidly assimilated by plants or
microorganisms. In contrast to this prevailing conceptual model, we use sequential extractions and
spectroscopic techniques to demonstrate that iron (oxyhydr)oxides sequester approximately half of soil
phosphate in organic soils from four arctic and boreal sites. Iron (III) (oxyhydr)oxides accumulated in
shallow soils of low‐lying, saturated areas where circumneutral pH and the presence of a redox interface
promoted iron oxidation and hydrolysis. Soils enriched in short‐range ordered iron oxyhydroxides, which
are susceptible to dissolution under anoxic conditions, had high phosphate sorption capacities and
maintained low concentrations of soluble phosphate relative to soils containing mostly organic‐bound iron
or crystalline iron oxides. Thus, substantial quantities of phosphorus in these organic soils were associated
with minerals that could reduce bioavailability but potentially also serve as phosphorus sources under
anoxic conditions. The implication of this finding is that mineral surfaces effectively compete with biological
processes for phosphate and must be considered as a nutrient regulator in these sensitive ecosystems.

Plain Language Summary The ability of plants to derive nutrients from the soil influences their
capacity to photosynthesize and draw carbon out of the atmosphere. Plants compete for nutrients such as
phosphate with soil microorganisms and with soil minerals. Iron oxides, in particular, effectively bind
phosphate and keep it sequestered from plants. We demonstrate that iron oxides bind high quantities of
phosphate in arctic and boreal systems where minerals are often assumed to have negligible influence on
biological processes. Although plant biomass is likely to increase in a climate that is warmer and enriched in
carbon dioxide, iron oxides may increasingly limit phosphate availability to plants and constrain
ecosystem productivity.

1. Introduction

Temperatures at northern high latitudes are increasing at twice the global average rate and driving pro-
nounced environmental change (Bekryaev et al., 2010; Hinzman et al., 2013; Stocker et al., 2013). Organic
matter that has been stored in soils for centuries to millennia is decomposing more rapidly and releasing
excess greenhouse gases to the atmosphere (Oechel et al., 1993; Schuur et al., 2009), and carbon release from
thawing permafrost alone could increase global temperatures 8% by 2100 (Schaefer et al., 2014). Increases in
plant biomass could partially offset soil C losses (Koven et al., 2011; McGuire et al., 2018; Schuur et al., 2009),
but growth may be constrained by nutrient availability (Mekonnen et al., 2018; Wieder et al., 2015). Controls
on nutrient limitation, and in particular phosphorus (P) limitation, are not well represented in climate mod-
els and remain a major knowledge gap for tundra and boreal ecosystems. In order to predict terrestrial
carbon storage in a warmer climate, it is necessary to evaluate the processes that enhance or restrict nutrient
bioavailability in these regions.
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In particular, changing hydrologic regimes will drive redox shifts that affect nutrient availability.
Widespread soil drying is predicted for tundra and boreal ecosystems due to both increases in evapotran-
spiration and drainage resulting from permafrost thaw (Avis et al., 2011; Bring et al., 2016; Yoshikawa &
Hinzman, 2003). Pockets of increased soil saturation are predicted in areas that collapse and fill with water
or are recharged by groundwater (Swindles et al., 2016). Transitions between saturated and drained soils
affect P bioavailability through its interactions with iron (Fe). In poorly drained, organic‐rich soils, such
as those that are prevalent in northern peatlands, Fe2+ that is leached from soil minerals can migrate to oxic
zones (Fiedler et al., 2004; Herndon et al., 2015) and accumulate as a mixture of organic‐bound FeII, organic‐
bound FeIII, and FeIII (oxyhydr)oxides (Bhattacharyya et al., 2018; Riedel et al., 2013; Sundman et al., 2014).
Iron (oxyhydr)oxides, referring here to a suite of iron (III) oxide and oxyhydroxide minerals, are well known
to bind phosphate and limit its bioavailability in temperate and tropical systems (Vitousek et al., 2010;
Walker & Syers, 1976). Short‐range ordered (SRO) iron oxyhydroxides, commonly described as poorly crys-
talline, can adsorb particularly large quantities of phosphate but are susceptible to reductive dissolution that
releases phosphate into solution under anoxic conditions (Chen et al., 2018; Henderson et al., 2012;
Kinsman‐Costello et al., 2014; Zak et al., 2004). Organically complexed FeIII is also thought to bind phos-
phate by forming organic‐Fe‐PO4 ternary complexes (Kizewski et al., 2010). Although Fe is increasingly
reported to accumulate at redox interfaces (Emerson et al., 2015; Giesler et al., 2005; Herndon et al., 2015;
Vincent et al., 2014) and influence C cycling in these regions (Lipson et al., 2010; Page et al., 2013; Roy
Chowdhury et al., 2015; Trusiak et al., 2018), the abundance and speciation of various iron species in these
soils and their abilities to trap phosphate remain unknown.

The importance of P availability in controlling ecosystem carbon balance in certain areas of northern high
latitudes, either directly or bymodulating N effects, has been repeatedly demonstrated in fertilization studies
(Mack et al., 2004; Shaver et al., 1998; Street et al., 2017). Although plant growth will increase rapidly in
response to a warming climate and generate a high P demand, weathering of phosphate minerals will
remain slow (Chapin et al., 1978), and P availability will be constrained by OM degradation and P
sorption/desorption processes in the soil before climate‐enhanced mineral weathering could supply addi-
tional P to the ecosystem. Phosphorus bioavailability at northern high latitudes is currently thought to be
controlled by gradual enzymatic release from soil organic matter (Chapin et al., 1978; Walbridge &
Navaratnam, 2006; Weintraub, 2011). Low soluble phosphate concentrations and rapid uptake of added
phosphate are typically attributed to high biotic need driving rapid microbial and plant uptake rather than
abiotic sorption (Giblin et al., 1991; Harms & Ludwig, 2016; Hill et al., 2014). Oxide‐bound P—typically mea-
sured after air‐drying soils, whichmay change Fe‐P associations—has been assumed to be permanently fixed
and isolated from ecosystem processes (Chapin et al., 1978; Giblin et al., 1991). In this study, we demonstrate
that iron minerals must also be considered as important regulators of nutrient availability in these systems.

2. Materials and Methods
2.1. Site Description and Soil Sampling

Soils were collected from four long‐term observatories that span arctic and boreal ecotones in North America
(Figure 1). Within each site, surface soils (<20 cm) were obtained from plots of contrasting saturation.
Details regarding each site and sample collection are described below.

The Barrow Environmental Observatory (BEO) is located in the arctic tundra on the coastal plain outside of
Utqiagvik, Alaska. Annual precipitation averages 12 cm, and average annual air temperature is −12 °C. The
region is underlain by continuous permafrost that restricts drainage and creates a landscape dominated by
lakes and interlake polygonal ground (Hubbard et al., 2013). Ice wedge polygons generate microtopographic
features that regulate hydrologic flow paths and redox gradients (Lipson et al., 2012; Newman et al., 2015;
Zona et al., 2011). Low‐centered polygons (LCPs) consist of a sunken center basin bordered by elevated
ridges and low‐lying troughs, and high‐centered polygons (HCPs) consist of an elevated center mound sur-
rounded by low‐lying troughs. Three intact soil cores from each feature of a LCP and HCP were collected on
15 October 2015 using a slide hammer equipped with a split soil core sampler (AMS, Inc.). Core depths (12.0
to 29.5 cm) were reported from the surface of the soil to the maximum sampling depth. Each core was
wrapped in Al foil, sealed in a plastic bag, and temporarily stored in a −30 °C walk‐in freezer at the
Barrow Arctic Research Center.
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Toolik Field Station (TFS) is a part of the Arctic Long‐Term Ecological Research (LTER) site located around
Toolik Lake on the Alaskan North Slope at the foothills of the Brooks Range, Alaska, USA. The Toolik region
experiences a mean annual air temperature of about−8.5 °C with ~30 cm of precipitation, 40% of which falls
during the winter months (Cherry et al., 2014). The landscape is underlain by continuous permafrost with
depth of ~200 m, and < 50 cm of the soil surface thaws annually. Surface organic horizon soils were collected
to <15‐cm depth on 21 July 2015 from near Toolik Field Station on land surfaces developed since the Itkillik
I glaciation (>55,000 years ago). Land surfaces glaciated by Itkillik I host soils that are generally acidic
(pH < 5.5) and depleted in base cations such as calcium (Whittinghill & Hobbie, 2011). Triplicate soils were
collected from topographic positions near but not in LTER fertilization plots that included mesic tussock
tundra in the uplands, a relatively dry hilltop heath, and low‐lying wet sedge tundra. The tussock tundra
is characterized by ~17–25‐cm‐thick organic horizons with a maximum thaw depth of 30–50 cm (Shaver
et al., 2014). The well‐drained, deeply thawed (>1‐mdepth) heath zone contains a thin organic horizon over-
lying mineral soil. Wet sedge tundra contains ~50‐cm‐thick organic soils that do not thaw to the mineral

Figure 1. Locations of each site marked on a circumpolar map showing the distribution of arctic tundra and boreal forest (basemap obtained from lter.uaf.edu).
Sites include the Barrow Environmental Observatory (blue square), Toolik Field Station/Arctic LTER (purple triangle), Alaska Peatland Experiment (green
circle), andMarcell Experimental Forest (orange diamond). Diagrams on the right show different topographic features for each plot within each site, as described in
the methods. Length scales are approximate to the nearest order of magnitude. Blue overlays indicate the approximate position of the water table. For the MEF
fen, water inputs are dominated by regional groundwater (big arrow) with lesser contributions from upland regions (little arrow). For the MEF bogs, water
inputs are predominately sourced from atmospheric inputs, and the bog water is hydrologically isolated from the regional groundwater table. Water table height at
APEX represents the average conditions for dry years since water table manipulation began. Water table height at MEF represents conditions observed at the
time of sampling. Diagrams were adapted from data or figures reported by previous publications (Giblin et al., 1991; Hubbard et al., 2013; Olefeldt et al., 2017; Verry
et al., 2011).
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layer (Shaver et al., 2014). The toposequence shown in Figure 1 represents the typical distribution of these
features across landscape position in the Toolik region but does not specifically reflect the sampled locations
(Giblin et al., 1991; Shaver et al., 2014).

The Alaska Peatland Experiment (APEX) is positioned in a boreal forest ecosystem located about 35 km
southeast of Fairbanks, AK, in interior Alaska. Mean annual temperature is −2.9 °C, and mean annual pre-
cipitation is 26.9 cm, 30% of which falls as snow (Hinzman et al., 2006; Viereck et al., 1993). The APEX site is
a moderate rich fen located within the Tanana River floodplain where greenhouse gas emissions are mon-
itored as a function of hydrology and soil warming (Turetsky et al., 2008). The site lacks microtopography,
and maximum peat depth is approximately 1 m. Water table levels are manipulated in two large experimen-
tal plots (20 × 20 m) within the fen by either pumping water into the plot to raise the water table or draining
water out of the plot to lower the water table. Following initial construction in 2005, ~10‐cm average
increases and decreases in water table height were observed for raised and lowered plots, respectively, rela-
tive to the control, but only during dry years (water table >20 cm below the peat surface; Kane et al., 2010;
Olefeldt et al., 2017). Flooding conditions in wet years, including during the time of sampling for this study,
have periodically resulted in uniformly high water tables above the soil surface for all plots (Olefeldt et al.,
2017). Three replicate soil cores were collected from each treatment plot in late July 2016. Soil cores were
extracted using a 1″ diameter drill‐powered auger and collected from the base of the living vegetation down
to the point of refusal, which ranged between 55.5 and 64 cm. Refusal occurred when the peat soil became
compacted. The auger was removed from the peat, and the core was extracted onto aluminum foil where it
was then gently stretched by hand to offset compaction that occurred during coring. Soil water content was
likely lower than field conditions due to loss of pore water from the saturated soils during extraction. The
core was wrapped in aluminum foil, placed into plastic storage bags with excess air removed, and stored fro-
zen until processing.

The Marcell Experimental Forest (MEF) is an 1,140‐ha research area that sits at the southern margin of a
boreal peatland forest biome in Northern Minnesota, about 40 km north of the Grand Rapids, MN.
Annual precipitation averages 78 cm with one third falling as snow. The mean annual temperature since
1961 was 3.4 °C with monthly average temperatures between 16 °C and 19 °C in June, July, and August
and between−11 °C and−15 °C in December, January, and February (Sebestyen et al., 2011). TheMEF con-
tains six experimental watersheds (five bogs and one fen), each consisting of an upland portion and low‐
lying peatland with at least one outlet stream that drains a watershed (Sebestyen et al., 2011). Upland runoff
from hillslopes with mineral soils drains into fringe areas (laggs) that surround the central bogs (Sebestyen
et al., 2011; Verry et al., 2011). Bogs have raised‐dome profiles with hollows that rise up to 10–15 cm in ele-
vation above that of laggs (Richardson et al., 2010). These subtle elevation and hydraulic gradients result in
bogs that are hydrologically isolated from upland runoff and groundwater inputs from regional‐scale aqui-
fers, leaving precipitation and atmospheric deposition as sole sources of water and exogenous solutes. In
contrast, fens are areas with throughflow or discharge of aquifer water. The aquifer‐water subsidies to fens
result in less intra‐annual variation in water table fluctuations and greater inputs of minerotrophic waters to
fens than bogs.

Eighteen surface soils were collected from the peatlands of watersheds S1 (bog), S2 (bog), and S3 (fen) on 15
October 2015. The S1 bog is a black spruce (Picea mariana)—tamarak (Larix laricina)—Sphagnum raised‐
dome bog where the Spruce and Peatland Responses Under Climatic and Environmental Change
Experiment site is occurring (Hanson et al., 2017). Samples were collected near the outlet stream outside
of the Spruce and Peatland Responses Under Climatic and Environmental Change Experiment plots. Over
a five‐decade‐long record, water levels were more variable at the S1 bog than the other peatlands, fluctuating
from several centimeters above the peat surface in hollows to a maximum depth of 1.4 m during the most
severe drought (Sebestyen et al., 2011). Like other MEF bogs, water tables fluctuate <0.3 m during most
years, with deeper drawdown only during prolonged periods with no rainfall. At the time of sampling, the
water table was within 15 cm of the hollow surface at bog S1. The S2 bog is a black spruce‐Sphagnum bog
(raised‐dome) that includes a minor component of tamarack, especially where cores were collected. The
water table in S2 was more than 20 cm below the hollow surface at the time of sampling. The water table
at the S3 fen is rarely >15 cm beneath hollow surfaces, and the water table was at the hollow surface at
the time of sampling. Triplicate samples were collected from hummock and hollow microtopographic fea-
tures within each wetland. Hummocks are typically elevated and dry relative to depressed and saturated
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hollows. Soils were collected within about a 1 × 1‐m area using a 7.5‐cm stainless steel drill corer to cut soil
from the base of living vegetation to ~20‐cm depth. A knife was used to cut around the corer when drilling
began to create a cleaner coring at the surface.

2.2. Soil Processing and Characterization

All soils were immediately sealed in plastic bags and frozen upon collection, shipped to Kent State University
in coolers with blue ice or dry ice, and stored at −20 °C until processing. Frozen soil cores and bulk surface
soils were thawed and processed in a vinyl anaerobic chamber with N2 atmosphere containing at least 1.0%
H2 and less than 1‐ppm O2. Large roots and other green vegetation were removed from the soils before pro-
cessing. MEF and TFS surface soils were thawed in the anaerobic chamber, homogenized, and divided into
subsamples for physical and chemical characterization (described below). BEO cores were split into an
upper organic horizon and a lower mineral horizon using a multipurpose oscillating power tool. The
APEX cores (n = 9) were split into two sections: <20‐ and >20‐cm depth. This depth corresponds to the
approximate depth of peat that experiences seasonal water table variation, although the extent and variabil-
ity of water table fluctuations varied amongst plots (Kane et al., 2010). A small portion of each horizon was
air dried in the anaerobic chamber, lightly ground with a mortar and pestle, and then stored in plastic sam-
ple bags in the anaerobic chamber. The remaining wet soil was partitioned into subsamples for physical and
chemical characterization.

Soil properties are reported as the mean ± standard error of the mean for values measured on three replicate
soils from each plot. Soil pH was measured on a 1:5 ratio of soil mixed with 1‐M potassium chloride (KCl)
solution in the anaerobic chamber. The 1‐M KCl solution was boiled under N2 gas to remove dissolved O2

gas prior to use. Soil gravimetric water content was determined as mass loss of the triplicate subsamples fol-
lowing oven drying at 105 °C for 24 hr (Gardner, 1986). Volumetric water content (g H2O cm−3) was calcu-
lated as the product of gravimetric water content (g H2O g‐soil−1) and soil bulk density (g‐soil cm−3). Soil
bulk density was estimated using the relationship between soil organic C and bulk density reported by
Bockheim et al. (2003) for soils in the Barrow region. Loss‐on‐ignition (LOI, %) was determined by ashing
dried soils in muffle furnace at 550 °C for 4 hr (Nelson & Sommers, 1996). Organic carbon concentrations
were measured on a Costech 4010 Elemental Analyzer.

2.3. Iron Sequential Extraction

The iron sequential extraction procedure was modified from previous studies (Amacher et al., 1990; Poulton
& Canfield, 2005) to include removal of organic matter (Siregar et al., 2005). The extraction sequentially
removed Fe loosely bound to particle surfaces (exchangeable; Amacher et al., 1990), Fe complexed by
organic molecules (organic‐bound; Siregar et al., 2005), short‐range ordered Fe oxyhydroxides, crystalline
Fe (oxyhydr)oxides, and magnetite Fe fractions (Poulton & Canfield, 2005). This extraction scheme was
selected because hypochlorite minimally alters oxides (Siregar et al., 2005), hydroxylamine selective extracts
short‐range ordered phases (ferrihydrite and lepidocrocite), dithionite extracts the crystalline oxides remain-
ing after SRO phases are extracted (hematite, goethite), and oxalate extracts the remaining magnetite. Note
that when not used sequentially, citrate‐buffered dithionite extracts ferrihydrite and lepidocrocite in addi-
tion to goethite and hematite, while oxalate extracts ferrihydrite and lepidocrocite in addition to magnetite
(Poulton & Canfield, 2005).

Iron extractions were performed on ~1 g of wet soil. Exchangeable Fe was extracted with 10 ml of N2‐

degassed barium chloride and ammonium chloride (0.1 M BaCl2‐NH4Cl) in an anaerobic chamber for
20 min. The slurry was then centrifuged at 4,000 rcf for 30 min, and the supernatant was filtered
(<0.45‐μm nylon syringe filter) into 50‐ml metal‐free Falcon tubes. Organic‐bound Fe was extracted twice
for 6 hr each time with 10 ml of sodium hypochlorite (NaClO, 6% active Cl) acidified to pH 8 with hydrochlo-
ric acid. SRO Fe oxyhydroxides (ferrihydrite/lepidocrocite) were extracted with 10ml of 1‐Mhydroxylamine‐
HCl in 25% v/v acetic acid for 48 hr. This extraction targets ferrihydrite and lepidocrocite but may also extract
SRO goethite phases. Crystalline iron (oxyhydr)oxides (e.g., hematite and crystalline goethite) were
extracted with freshly prepared citrate‐buffered sodium dithionite solution (50‐g/L sodium dithionite in
0.35‐M acetic acid and 0.2‐M sodium citrate buffer solution at pH 4.8) after mixing on the end‐over‐end sha-
ker for 2 hr. The magnetite (Fe3O4) fraction was extracted with a 0.2‐M ammonium oxalate and 0.17‐M oxa-
lic acid solution at pH 3.2 after 6 hr on the mechanical rotator. Between each step, soils were rinsed and
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vortexed with 10‐ml 0.01 M KCl solution, then centrifuged at 4,000 rcf for 30 min. Rinse solutions were fil-
tered with a <0.45‐μm syringe filter and combined with the filtered extract. Method blanks were collected
and analyzed for each fraction. All extracts and matrix standards were stored at 4 °C until analyses.

2.4. Phosphorus Sequential Extraction

Phosphorus speciation was examined using a sequential extraction protocol developed for anoxic sediments
that is complementary to the iron extraction protocol (Kinsman‐Costello et al., 2014; Paludan & Jensen,
1995). Within each operationally defined fraction, phosphorus was differentiated as molybdate reactive P,
which is approximately equivalent to inorganic phosphate (Pi), and nonreactive P, which is approximately
equivalent to P contained in organic molecules (Po). Reactive P was partitioned into water‐soluble,
dithionite‐soluble (bound to reducible minerals such as Fe oxides and oxyhydroxides), and base‐soluble
(bound to nonreducible minerals such as Al oxides but containing some nonreactive inorganic P molecules
such as pyrophosphates and polyphosphates; Reitzel et al., 2006) fractions. Average concentrations of
dithionite‐soluble Fe (= 14.6 ± 5.5 g/kg) far exceeded base‐soluble Fe (= 0.76 ± 0.96 mg/kg), whereas
base‐soluble Al (= 1.2 ± 0.3 g/kg) was much higher than dithionite‐soluble Al (= 0.19 ± 0.04 g/kg), support-
ing our interpretation of these mineral associations. Organic P was defined as the sum of water‐soluble Po,
base‐soluble Po, and humic acids. Acid‐soluble P represented P associated with Ca‐bearing minerals, for
example, apatite and calcium carbonates. Due to sample limitation, only water‐soluble P was measured
on APEX soils.

Phosphorus extractions were performed on ~1 g of wet soil. Water‐soluble phosphorus was extracted with
25‐ml deoxygenated ultrapure water (18 MΩ) in an anaerobic chamber for 1 hr. Soil‐water slurries were cen-
trifuged for 30 min at 4,000 rcf, and the supernatant was filtered through 0.45‐μm syringe filters into clean
centrifuge tubes. Iron‐oxide‐bound P was extracted with 25 ml of deoxygenated 0.11‐Mbicarbonate‐buffered
dithionite solution for 1 hr at 250 rpm. Filtered extracts were aerated for at least one hour, and then acidified
with 1 M H2SO4. Base‐soluble P was extracted with 25 ml of 0.1‐M NaOH for 16 hr, and base extracts were
acidified with 3 ml of 1 M H2SO4 to precipitate acid‐insoluble organics, typically classified as humic acids.
Acidified samples were filtered through glass fiber filters to remove the humic material, which was dried
at 105 °C to determinemass, then ashed at 520 °C. Ashedmaterial was digested with concentrated nitric acid
in a hot block to solubilize P. Finally, acid‐soluble P bound to apatite and other calcareous minerals was
extracted with 25 ml of 0.5‐M hydrochloric acid for 1 hr. Pellets were rinsed with 25 ml of deoxygenated
ultrapure water between steps, and filtered rinses were combined with extracts and acidified with 1‐M
H2SO4. Reactive P was measured by the molybdenum blue method on a Lachat. Nonreactive P was deter-
mined as the difference between total P, measured by inductively coupled plasma optimal emission spectro-
scopy, and reactive P.

2.5. Phosphate Sorption Index

Phosphate sorption assays are used to quantify a soil's ability to sorb phosphate as a function of the concen-
tration of dissolved phosphate in solution (Froelich, 1988). The phosphate sorption index (PSI) is a single‐
point adsorption value that provides a comparative measure of phosphate adsorption capacity across soils
(Bache &Williams, 1971). Here ~4 g of wet soil from each soil horizon was mixed with 20 ml of N2‐degassed
75mg/L P solution (as KH2PO4) and placed on amechanical rotator in an anaerobic chamber for 24 hr. Each
soil‐solution suspension was filtered through a 0.45‐μm polyethersulfone filter fitted with a 0.7‐μm glass
fiber prefilter. Dissolved phosphate was measured using the molybdate blue method by reacting a 100‐factor
diluted aliquot of the filtered solution with PhosVer 3 reagent (Hach) and measuring absorbance at 880 nm
on a UV‐Visible spectrophotometer (Shimadzu UV‐1800). The residual soil was dried at 105 °C for 24 hr to
determine dry soil mass (g). The amount of PO4

3− sorbed to the soil (Psorbed; mg/g) was calculated as the dif-
ference between the initial and final dissolved PO4

3− mass in solution normalized to the dry soil mass. The
PSI was calculated as 100 times the ratio of sorbed P (mg/g) to final log concentration of dissolved P in solu-
tion (μmol/L; (Bache & Williams, 1971).

2.6. X‐Ray Absorption Spectroscopy

Iron K‐edge X‐ray absorption spectra were collected at 12‐BM at the Advanced Photon Source (Argonne
National Laboratory, Chicago, IL) in March 2018. Soils dried under N2 atmosphere were transported to
APS in sealed AnaeroPaks and transferred to an anaerobic chamber with Ar atmosphere. Soils were
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packed into sample holders and sealed with Kapton tape. In addition to soils, we analyzed a series of refer-
ence compounds that were either purchased (iron (II) oxalate, iron (III) oxalate, iron (III) citrate), or synthe-
sized following published protocols (ferrihydrite, goethite, and hematite; Schwertmann & Cornell, 2008).
Powders were spread thinly onto Kapton tape.

The incident beam (~500 μm) was generated with a Si(111) monochromator to yield a reported flux of
4 × 1011 s−1 at 12 keV. Transmission and fluorescence spectra were collected concurrently using a N2‐filled
FMB Oxford Ionization Chamber and a Canberra 13‐element Ge detector, respectively. Spectra were col-
lected from −150 to +547 eV around the Fe K‐edge. All spectra were referenced to an Fe foil that was mea-
sured simultaneously in transmission mode.

Five individual spectra were collected from each soil sample on spots located 0.5 mm apart. Individual spec-
tra were deglitched and merged to yield a single spectrum for each horizon. Three replicate scans were col-
lected at a single position on all reference compounds. An energy shift of−0.9 eVwas applied to all spectra to
align the reference Fe foil (E0 = 7,111.65 eV) with the Fe standards database (E0 = 7,110.75 eV; Kraft et al.,
1996). The E0 for each spectrum was set as the maximum of the first‐derivative of μ(E). Linear combination
fits were performed using Athena software following energy calibration, merging of replicate scans, back-
ground subtraction, and normalization (Ravel & Newville, 2005). Linear combination fits to normalized
μ(E) spectra were performed from −20 to 30 eV around the Fe K‐edge using single‐valence standards to
determine average Fe oxidation state. Linear combination fits to χ(k) spectra were performed from 3 to
12 A−1 with Rbkg = 1 to identify major Fe species. Standard spectra included the reference compounds listed
above, plus iron (II) sulfide reported by the Advanced Light Source database.

2.7. Mössbauer Spectroscopy

Transmission 57Fe Mössbauer spectroscopy was performed with a variable temperature He‐cooled system
with a 1,024‐channel detector. A 57Co source (~50 mCi or less) embedded in a Rh matrix was used at room
temperature. Field‐moist samples received at the University of Georgia frozen were defrosted inside a 5%/
95% H2/N2 glove box. Once defrosted, samples were mounted (inside the glove box) between two pieces of
0.127‐mm thickness Kapton tape and transferred immediately to the spectrometer cryostat for analysis at
5 K. Velocity (i.e., gamma ray energy) was calibrated using α‐Fe foil at 295 K, and all center shifts (CSs)
and peak positions are reported with respect to this standard. The transducer was operated in constant accel-
eration mode, and folding was performed to achieve a flat background.

Mössbauer spectral fitting of all spectra was performed using the Voigt‐based fitting method (Rancourt &
Ping, 1991) for quadrupole splitting distributions and combined hyperfine field distributions, as implemen-
ted in the Recoil™ software, ISA Inc. All Voigt‐based fitting Mössbauer parameter definitions and a descrip-
tion of the relevant notation are given by Rancourt and Ping (1991). Mössbauer fitting parameter errors are
two‐standard deviation (2σ), as calculated by Recoil™. In reporting quantitative phase abundances or site
populations it is assumed that the Mössbauer recoilless fractions of all detected phases or Fe‐bearing compo-
nents are equal, such that subspectral areas (expressed as fractions of total spectral area) are equal to the
amounts of Fe (expressed as fractions of total Fe) in the corresponding phases or components. This assump-
tion is expected to be valid at cryogenic temperatures (Lalonde et al., 1998; Rancourt, 1998). More detailed
information regarding spectral assignments is provided in the supporting information.

2.8. Data Analysis and Statistics

Extract solutions were analyzed by inductively coupled plasma optical emission spectrophotometry
(PerkinElmer 8000, ICP‐OES). Calibration standards were prepared separately for each fraction in solutions
matching the matrix of the extract solutions. Method blanks were analyzed to ensure negligible contamina-
tion from extraction chemicals and the extraction process. Values equal to half the lowest calibration
standard were used to represent concentrations that were below the detection limit in calculations.
Element concentrations in extract solutions were converted to soil concentrations (on a dry weight basis).
Because extraction procedures were performed using wet samples, gravimetric water content (g H2O g‐dry
soil−1) was used to convert wet soil mass to dry soil mass.

All statistical analyses were performed in R. Variables were transformed as necessary to better meet the
assumptions for linear models. Iron concentrations were log‐transformed, while proportions of Fe and P
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were logit‐transformed. Pearson product‐moment correlation tests were used to determine significant corre-
lations between measured variables. To assess which soils characteristics best predicted PSI, we conducted a
model selection procedure using candidate models that included both the values and relative proportions of
Fe species, Al species, and soil pH, VWC, and %C as predictors. We developed candidate models using the
leaps (v3.0) package in R statistical software, which identifies the best models out of an exhaustive search
of all possible combinations of predictors. We specified leaps to return the four best models with one term,
two terms, three terms, and four terms, out of the entire list of predictor variables. After testing each model
for multicollinearity and omitting terms with variance inflation factors greater than 2, we used Akaike's
Information Criterion (AIC) to generate weights to identify the best supported models out of the candidate
list (more details in supporting information).

3. Results
3.1. Soil Characteristics

To explore hydrologic controls on Fe‐P interactions, we examined the geochemical composition of surface
organic soils collected from plots with contrasting soil saturation within four long‐term experimental sites
that span tundra and boreal ecosystems (Figure 1). Soils across all plots were organic rich (39 ± 9 wt.%
organic C) and ranged from highly acidic (pH ~ 3) to circumneutral (~6.4; Table 1). In general, soils
occupying topographic high points were acidic and dry relative to soils occupying topographic lows, and
hillslope‐scale topography (e.g., MEF bog versus fen and TFS tussock/heath versus wet sedge) drove larger
pH gradients than microtopography (e.g., BEO polygon features and MEF hummock versus hollow). At the
APEX site, where saturation gradients were induced by water table manipulation rather than topography,
soil characteristics were similar across all plots. Soil pH values measured for TFS sites (ranged 5.0 for heath
and tussock tundra to 6.2 for wet sedge) were slightly higher than previously reported values (3.7–5 for heath
and tussock tundra to 5.8 for wet sedge) but still lower than soil pH reported for comparable but younger
nonacidic sites (pH 6–6.5 for tussock tundra; Shaver et al., 2014; Whittinghill & Hobbie, 2011). For all data
reported in this manuscript, uncertainties represent standard error of the mean for each plot or standard
deviation for values averaged across multiple plots.

3.2. Iron Speciation in Tundra and Boreal Peat Soils

Our first objective was to quantify soil Fe reservoirs and evaluate controls on Fe speciation using sequential
extractions and spectroscopy. On average, iron (oxyhydr)oxides, consisting of both SRO (hydroxylamine‐
extractable; 27 ± 21%) and crystalline (dithionite‐extractable; 23 ± 29%) (oxyhydr)oxides, comprised one half
of extractable Fe (Figure 2 and Table S1). Organic‐bound Fe (hypochlorite‐extractable) accounted for most of
the remainder (42 ± 29%), while another 7 ± 12% consisted of exchangeable Fe. Oxalate‐extractable Fe was a
minor component (1.5 ± 2.2%).

Total extractable Fe increased with increasing pH across all sites (r = 0.62, p < 0.0001). The high pH wet
sedge (mean 6.2 ± 0.1) had at least an order of magnitude higher Fe concentrations (166 ± 14 g Fe kg‐soil−1)
than all other plots, including both the more acidic heath (14.2 ± 7.4 g Fe kg‐soil−1) and tussock tundra
(2.56 ± 5.28 g Fe kg‐soil−1) plots within TFS. Similarly, circumneutral fens were Fe‐rich (mean
pH 6.3 ± 0.2; 13.6 ± 4.1 g Fe kg‐soil−1) relative to acidic bogs (mean pH 3.0 ± 0.1; 1.08 ± 0.17 g Fe kg‐soil−1)
at MEF. Extractable Fe was less variable at APEX and BEO, which exhibited small to negligible pH gradients
amongst plots.

Soil pH also largely explained how Fe was partitioned between different fractions. Iron (oxyhydr)oxides
increased with increasing pH (r = 0.61, p < 0.0001). This trend was driven by increases in both the absolute
value and proportion of SRO Fe oxyhydroxides at higher pH (r = 0.64 and r = 0.52, respectively, p < 0.0001),
while the proportion of crystalline Fe (oxyhydr)oxides was not pH‐dependent. Iron (oxyhydr)oxides com-
prised the majority of extracted Fe in the bog hummocks and fen (MEF) and in the heath and wet sedge soils
(TFS). Of these, SRO Fe was relatively high in the circumneutral, Fe‐rich fen (43 ± 10%) and wet sedge
(68 ± 1%) while crystalline Fe dominated the more acidic, Fe‐poor bog hummock (91 ± 2%) and heath soils
(69 ± 6%). Iron (oxyhydr)oxides consisted primarily of SRO phases (<5% crystalline Fe) at BEO and APEX,
but these were as or less abundant than organic‐bound Fe. Although the APEX fen receives groundwater dis-
charge (Racine & Walters, 1994), its acidic soils favored organic complexes over oxyhydroxides.
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Correspondingly, the proportion of organic‐bound Fe generally decreased with increasing pH. These results
are consistent with previous observations that organic soils contain increasing amounts of Fe (oxyhydr)oxi-
des relative to Fe (III)‐organic complexes with increasing pH (Karlsson et al., 2008; Karlsson & Persson,
2010; Sundman et al., 2014). As such, organic‐bound Fe was the most abundant fraction in the acidic
MEF bog hollows (68 ± 4%), APEX peat (79 ± 3%), TFS tussock tundra (48 ± 3), BEO low‐centered polygon
ridge (67 ± 10%), and high‐centered polygon center (75 ± 17%) plots. Iron‐poor bog hummocks, which were
highly acidic but dominated by crystalline Fe (91 ± 2%) rather than organic‐bound Fe, were the only excep-
tion to this trend. When bog hummock soils were omitted from the analysis, the proportion of organic‐
bound Fe was significantly negatively correlated to pH (r = −0.58, p < 0.0001).

X‐ray absorption and Mössbauer spectroscopies were used to identify Fe species and support interpretation
of operationally defined extractions. All soils contained mostly Fe (III) (83 ± 12%), as determined by LCF fits
to the XANES region (Table S2). First‐derivative maxima (~7,123–7,126 eV) were consistent with organic‐
bound Fe3+ and Fe (III) oxyhydroxides, with secondary peaks at ~7,119 eV indicative of lesser Fe (II) con-
tributions (Figure 3; O'Day et al., 2004). EXAFS spectra were best fit by a combination of ferrihydrite,
goethite, and Fe3+‐citrate standards (Table S3). The relative proportion of organic‐bound Fe to Fe (oxy-
hydr)oxides was determined by the ratio of the Fe‐O to Fe‐Fe scattering peaks (Figure 3). Higher ratios,
reflecting smaller Fe‐Fe scattering peaks, indicated higher proportions of organic‐bound Fe (Figure S1
and Table S3). Soils dominated by extractable Fe (oxyhydr)oxides had more intense Fe‐Fe scattering peaks
and lower Fe‐O to Fe‐Fe ratios than soils dominated by organic‐bound and/or exchangeable Fe. These
results provide additional evidence that soils contained a mix of organic‐bound Fe (III) and Fe (III) (oxy-
hydr)oxides that varied across landscape positions.

MBS spectra obtained for the MEF soils supported these interpretations. Fen soils exhibited sextets indica-
tive of high proportions of oxyhydroxides (ferrihydrite with lesser nanogoethite), while acidic bog hollows
were dominated by prominent doublets likely representing organic‐bound FeII and FeIII (Figure 4 and
Tables S4–S7). For example, the S2 bog hollow soil contained ~65% ferrous Fe and this component had
MBS parameters (CS ~ 1.4 and QS ~ 3.3 at 5 K) that strongly suggest a high degree of organic complexation,
although we cannot exclude potential contributions from Fe‐substituted in clay minerals (Chen &
Thompson, 2018). The fens contained lesser amounts of organically complexed (or clay mineral) FeII and
FeIII (<11%) but high proportions of SRO oxyhydroxides and a highly disordered phase ((b)OxHy) that

Table 1
Properties (± s.e.m.) of Surface Soils Collected From Different Landscape Features at Four Arctic and Boreal Sites

Soil pH
VWC

(g H2O cm−3)
Loss on

ignition (wt.%) Carbon (wt.%)
Phosphate

sorption index

Site Plot Average ± Average ± Average ± Average ± Average ±

Barrow Environmental
Observatory (BEO)

Low‐center polygon, Center 4.36 0.12 0.36 0.13 48.3 19.3 26.0 9.4 51 5
Low‐center polygon, Ridge 4.06 0.01 0.12 0.01 89.6 2.3 42.5 0.5 80 9
Low‐center polygon, Trough 4.9 0.1 0.57 0.17 56.7 17.2 29.7 7.7 86 18
High‐center polygon, Center 3.93 0.07 0.12 0.02 75.5 6.5 28.4 11.3 34 4
High‐center polygon,
Trough

4.98 0.08 0.42 0.02 64.9 6.5 32.7 2.7 63 7

Toolik Field Station (TFS) Tussock Tundra 5.4 0.05 0.07 0.01 89.0 0.7 45.0 1.1 11 1
Hilltop heath 4.99 0.24 0.15 0.05 44.4 11.5 22.4 5.6 14 2
Wet Sedge 6.16 0.07 0.81 0.06 57.9 0.8 28.4 0.8 158 11

Alaska Peatland Experiment (APEX) Lowered water table 4.58 0.06 0.24 0.01 84.2 0.9 40.1 0.6 50 1
Raised water table 4.82 0.05 0.20 0.04 87.9 1.5 43.1 0.9 54 4
Control site 4.44 0.02 0.22 0.02 82.0 0.8 41.1 0.5 40 <1

Marcell Experimental Forest (MEF) Site 1: Bog hummock 2.96 0 0.15 n.a. 97.6 0.0 46.9 n.a. 0.2 1.5
Site 1: Bog hollow 3.05 0.01 0.31 0.02 91.7 2.5 45.5 0.2 16 2
Site 2: Bog hummock 3.01 0.12 0.12 0.02 96.6 0.2 47.8 0.4 3.8 1.0
Site 2: Bog hollow 2.9 0.01 0.12 0.02 92.4 0.4 47.1 0.8 15 2
Site 3: Fen hummock 6.4 0.11 0.30 0.06 81.0 2.7 41.7 0.8 59 15
Site 3: Fen hollow 6.19 0.02 0.23 0.01 86.4 1.4 43.4 0.9 40 8

Note. Volumetric water content was calculated as gravimetric water content × bulk density, where bulk density was determined following the equation from
Bockheim et al. (2003) as follows: SOC (%) = −9.7872*ln (bulk density, g/cm3) + 8.2432.
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Figure 2. (left panels) Concentrations (mean ± s.e.m.) and (right panels) proportions of Fe extracted in exchangeable,
organic‐bound, short‐range ordered oxyhydroxide, and crystalline (oxyhydr)oxide fractions from surface soils of charac-
teristic topographic features at each site. Oxalate‐extractable (magnetite + potential silicate dissolution) Fe represented
<5% of extracted Fe and is not shown. The legend shown in panel (d) applies to all panels. Each bar represents the average
of soils collected in triplicate from indicated landscape features. The y axes of the four left panels differ in scales to illustrate
patterns within geographic sites.

10.1029/2018JG004776Journal of Geophysical Research: Biogeosciences

HERNDON ET AL. 10



may correspond to amorphous iron (hydr)oxides coprecipitated with organic matter. An oxide component
consistent with hematite dominated the weak Fe signal in the S2 bog hummock and may indicate inputs
of mineral dust from local uplands. Detailed information regarding assignment of spectral components is
provided in the supporting information.

In the fen hollow, high proportions of Fe oxyhydroxides measured by sequential extractions and MBS
coupled with high proportions of organic‐bound Fe measured by XAS may indicate an abundance of orga-
nically complexed, nanoparticulate Fe (oxyhydr)oxides. TheMEF fen hollow had the lowest Fe‐Fe scattering
peak in EXAFS (Figure 3) despite high proportions of oxide‐extracted Fe (Figure 2) and a prominent oxy-
hydroxide (ferrihydrite and goethite) sextet in Mössbauer (Figure 4). This result may be explained by the dif-
ferent scales probed by each technique. XAS records the average coordination environment surrounding all
Fe atoms (Newville, 2014). For nanoparticles with a high surface area to volume ratio, a substantial

Figure 3. Iron K‐edge X‐ray absorption spectra plotted as (left panel) the XANES derivative and (right panel) the Fourier‐
transformed EXAFS. Spectra are color coded by site: blue (BEO), purple (TFS), green (APEX), and orange (MEF).
Vertical gray bars indicate positions of (left panel) FeII and FeIII derivative maxima or the (right panel) Fe‐O (~1.5 Å) and
Fe‐Fe (~2.7 Å) scattering peaks. Sample spectra are arranged from top to bottom by the ratio of the Fe‐O peak intensity
to the Fe‐Fe peak intensity, such that the standard goethite spectrum is at the top (high Fe‐Fe scattering peak and low
ratio) and organic‐Fe (III) is at the bottom (high ratio). Spectra obtained for replicate soils of the S2 bog hummock and S1
bog hollow are shown as gray overlay.
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proportion of Fe atoms will be in close proximity to C atoms at the mineral surface and appear to be organic
bound. In comparison, Mössbauer records the crystalline order of each mineral regardless of bonding
environment and is sensitive to the crystallinity of nanoparticles. Together, these results indicate that that
organically complexed, nanoparticulate Fe (oxyhydr)oxides may be especially prevalent in these fen soils.
The contribution of nanoparticulate Fe to organic‐associated Fe in the other sites remains unknown and
warrants further investigation.

3.3. Phosphate Sorption Capacity

Phosphate sorption capacity, as compared across soils using a PSI, was strongly related to SRO Fe oxyhydr-
oxides. PSI values were best explained by statistical models that included positive correlations with SRO Fe
oxyhydroxides (or total extractable Fe) and exchangeable Fe but a negative correlation with aluminum (Al)
in SRO phases (Table S8). Specifically, PSI increased linearly with log‐scale increases in SRO Fe (R2 = 0.59;
p< 0.0001; Figure 5a). Wet sedge soils from TFS possessed both exceptionally high concentrations of SRO Fe
oxyhydroxides (112 ± 8 g Fe kg‐soil−1) and the highest sorption capacity of any site (PSI = 158 ± 11 stdev). In
contrast, MEF bog soils and TFS upland soils (tussock tundra and heath) had low concentrations of SRO Fe
oxyhydroxides (average = 0.62 ± 0.26 g Fe kg‐soil−1) and exhibited the lowest sorption capacities (PSI ≤ 20).
The negative relationship between PSI and the proportion of Al in SRO phases conflicts with numerous
instances in the literature demonstrating positive relationships between indicators of SRO Al oxides (usually
oxalate‐extractable Al) and PSI (e.g., Darke and Walbridge (2000)) and underscores the importance of Fe
(oxyhydr)oxides relative to Al (hydr)oxides to phosphate sorption in these organic‐rich systems.

PSI generally decreased as iron oxide crystallinity increased, indicating that (oxyhydr)oxide crystallinity was
an important factor controlling phosphate sorption capacity (Strauss et al., 1997). Specifically, there was a

Figure 4. Mössbauer spectra obtained from individual replicates of MEF soils. Symbols represent data collection, and
lines represent best fits of different components indicated in the legend. Population abundances (Table S4 with addi-
tional details reported in Tables S5–S7) are reported with higher certainty for the hollows and S3 fen hummock than for
the S1 and S2 hummocks.
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significant positive correlation between PSI and the percent of Fe in SRO Fe oxyhydroxides (r = 0.60,
p < 0.0001), and a trend toward a negative correlation with the percent of Fe in crystalline Fe oxides
(r = −0.23, p = 0.07). As one example, MEF bog hollows had more SRO Fe (both g/kg and %) and higher
PSI than bog hummocks. Bog hummocks had relatively high concentrations of crystalline Fe but lower PSI.

Soil pH was also positively correlated with PSI (p < 0.001, r = 0.48; Figure S2) but explained only 23% of the
variation. It is likely that pH influenced PSI by controlling Fe oxyhydroxide precipitation and may also cov-
ary with factors determining Fe abundance, for example, as an indicator of groundwater inputs.
Subsequently, phosphate sorption capacity was directly shaped by the quantity and form(s) of Fe present.
Although phosphate sorption was generally expected to increase with decreasing pH (Strauss et al., 1997),
this effect was secondary to higher concentrations of SRO Fe oxyhydroxides at circumneutral pH in
these soils.

Organic‐bound Fe (hypochlorite‐extractable) was not included in either of the best models predicting PSI
across sites but was the second best predictor of PSI in the BEO soils (AIC weight = 0.33) after total extrac-
table Fe (AIC weight = 0.37). Despite the fact that BEO organic soils contained relevant fractions of SRO Fe
(ranged from 14% to 62% of extracted Fe), a linear model predicting PSI from SRO Fe was not statistically
significant when these plots were examined in isolation (p > 0.05). Although considerable unexplained var-
iance remained in these models (R2 = 0.28, p = 0.04), model predictions improve for total extractable Fe
(R2 = 0.41) and organic Fe (R2 = 0.50) when a single outlier (one LCP trough replicate with very high
PSI) was omitted.

3.4. Phosphorus Speciation in Organic Surface Soils

On average across all organic soils, 28% ± 13% of extractable P and 46%± 2% of extracted inorganic P (Pi) was
bound to iron (oxyhydr)oxides (dithionite‐extractable; Figure 6 and Table S9). This Pi represents a substan-
tial pool of phosphate that has the potential to be released during reductive dissolution of iron oxyhydroxides
in anoxic conditions. Another 16% ± 14% of Pi was water soluble (8% ± 8% of total P), while 30% ± 22% was
bound to nonreducible aluminum (hydr)oxides (base soluble; 19% ± 17% of total P). Phosphate bound to
nonreducible aluminum (hydr)oxides could represent stable mineral‐bound P that is not sensitive to redox
fluctuations. Phosphorus contained in organic molecules comprised 37% ± 18% of extracted P, with P asso-
ciated with Ca‐bearing minerals (acid soluble) constituting the remaining 7% ± 15%. Acid‐soluble P was
highly variable across BEO soils (18% ± 25% of extracted P) and highest in the mineral‐rich HCP center soil
but uniformly low in TFS and MEF soils (1.4% ± 1.4% of extracted P).

Water‐soluble Pi, the most bioavailable of the P fractions, decreased with increasing soil PSI (r = −0.51,
p < 0.001, Figure 5b). That is, soils with a high capacity to bind phosphate had both low concentrations of
water‐soluble Pi and a low percentage of Pi in the water‐soluble fraction. This trend is particularly evident

Figure 5. (left) Phosphate sorption index, a parameter comparing the sorptive capacity of different soils for phosphate,
increased with increasing log concentrations of Fe contained in short‐range ordered iron oxyhydroxides (r = 0.78;
p < 0.0001) extracted with hydroxylamine hydrochloride. (right) Water‐soluble phosphate, the most bioavailable form of
phosphorus, decreased with increasing PSI (r = −0.51; p < 0.001).
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across the TFS hillslope, where upland tussock tundra had low PSI and high water‐soluble Pi (155 ± 3 mg P
kg‐soil−1, 25% ± 2%), while low‐lying wet sedge soils had high PSI and negligible water‐soluble Pi. Similarly,
the low‐PSI bog soils had higher water‐soluble Pi (97 ± 5 mg P kg‐soil−1, 16% ± 1% of extracted P) than the
high‐PSI fen soils (69 ± 28 mg P kg‐soil−1, 7% ± 2%) at MEF. Water‐soluble Pi was uniformly low across BEO
soils (<12 mg P kg‐soil−1; <5% of extracted P), with the exception of the low‐centered polygon ridge

Figure 6. (left panel) Concentrations and (right panel) proportions of extracted soil phosphorus. Extracted P was domi-
nated by organic P (Po) and oxide‐bound phosphate (Fe‐oxide‐bound Pi and base‐soluble Pi) with smaller amounts of
water‐soluble and acid‐soluble Pi. Organic P includes nonreactive phosphorus from water‐soluble, base‐soluble, and
humic acid fractions. Each bar represents the average (± standard error of the mean) concentration measured in soils
collected in triplicate from each landscape feature.
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(= 38 ± 26 mg P kg‐soil−1; 12% of extracted P). These trends are evident despite the expectation that water‐
soluble Pi varies over the growing season.

BEO soils had higher average concentrations (147 ± 30 mg P kg‐soil−1) and proportions (25% ± 4%) of base‐
soluble Pi than the other sites, suggesting that more of the P was sequestered in tightly bound, nonredox sen-
sitive mineral forms (e.g., Al oxides) that may be unavailable to organisms over long‐time scales. The high
proportions of base‐soluble Pi in the Barrow soils were likely due to their high mineral content, given that
even the organic horizons contain primary minerals or are in close contact with mineral soil (Herndon
et al., 2017). Similar proximity to mineral soil may explain base‐soluble P trends at other sites. For example,
base‐soluble Pi increased from the tussock tundra (6% ± 1%) to the heath and wet sedge plots (18% ± 2%) at
TFS. At MEF, base‐soluble Pi was uniformly low across the bogs (<6%) but variable (4%–53%) in the fen.

A high mineral content can also explain the relatively large quantities of acid‐soluble P (Ca‐associated) in
BEO soils (Figure 6). Acid‐soluble P represents phosphate in calcareous minerals that is released into solu-
tion during mineral weathering. In contrast to base‐soluble Pi, acid‐soluble P is generally considered to be
more accessible to organisms (Vitousek et al., 2010; Walker & Syers, 1976) and may serve as a P source in
BEO soils.

4. Discussion

In this study, we evaluated environmental controls on Fe speciation in organic soils, and in turn, how Fe spe-
ciation regulated both actual and potential phosphate sorption. Across all sites, topography drove broad pat-
terns of Fe leaching and accumulation in soils by modulating redox and pH gradients. Iron (oxyhydr)oxides
were most abundant in circumneutral saturated depressions (Figure 2), likely due to accumulation at near‐
surface redox interfaces. We infer that dissolved Fe2+ flowed into topographic lows from upland leaching
and/or groundwater inputs and migrated through anoxic zones toward the soil surface where it oxidized
to Fe3+ and either precipitated as FeIII oxyhydroxides or was complexed by organic matter (Figure 7).
Low‐lying soils had more circumneutral pH due to inputs of alkalinity from groundwater or mineral weath-
ering, facilitating accumulation of iron oxyhydroxides relative to organic‐bound Fe. Upland soils were more
acidic and better drained, facilitating Fe leaching and/or complexation by organic matter.

This conceptual model for landscape‐scale Fe accumulation and speciation may be influenced by factors
other than topography that modify soil pH and hydrology across more varied tundra and boreal ecosystems.
For example, in the Toolik region, soil pH tracks with land surface age, which is determined by time since
glaciation. Tussock tundra soils are circumneutral (~6.5) and calcium‐rich in recently glaciated areas but
acidic (<5.5) and base‐cation depleted on older land surfaces that have experienced more weathering
(Whittinghill & Hobbie, 2011). Older soils are also relatively enriched in Fe and Al minerals that adsorb
organic molecules and can store up to 55% of soil C (Hobara et al., 2016). Topographic controls on soil
pH, and consequently Fe leaching and accumulation patterns, may therefore differ in different regions
due to contrasts in underlying lithology and weathering extent. Although more research is needed to evalu-
ate these differences, it is expected that younger, nonacidic soils would exhibit less Fe transformation and
hillslope transport.

The formation and dissolution of Fe oxyhydroxides may be a particularly important control on P cycling in
these systems. These minerals provide abundant surface area to which phosphate can bind and become
at least temporarily unavailable to plants and microorganisms. Indeed, soluble phosphate was low in
Fe‐oxyhydroxide‐rich soils that had high capacities to bind phosphate (Figure 5). This result is consistent
with previous studies from the Toolik Field Station demonstrating that P‐limitation is more common in
wet sedge tundra than in other tundra systems (Nadelhoffer et al., 1991; Shaver & Chapin, 1995). Thus,
we contend that geochemical sorption can effectively compete with biological uptake for available phos-
phate, even in organic soils. Low‐lying soils that accumulate iron oxyhydroxides may form nutrient traps
and serve as barriers to phosphate transport into adjacent streams and lakes (Zak et al., 2004). Although
previous studies have suggested that organically complexed Fe3+ can effectively bind phosphate
(Kizewski et al., 2010), organic‐bound Fe was significantly correlated with PSI only in BEO soils. It is
possible that the specific nature of organic‐bound Fe in the BEO soils enhances phosphate sorption capa-
city in a manner not present at the other sites, but the mechanism cannot be determined by this study.
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Relatively acidic soils that were dominated by organic‐bound or crystalline Fe phases had high concentra-
tions of soluble phosphate and low phosphate sorption capacities. Although phosphate solubility can vary
seasonally (Weintraub & Schimel, 2005), this trend provides evidence that upland and/or acidic soils may
contain more bioavailable P because they lack sufficient iron minerals to compete with biological uptake.
Indeed, heath and tussock tundra are generally reported to be N or N + P limited rather than P limited
(Nadelhoffer et al., 1991; Shaver & Chapin, 1995). We hypothesize that plant and microbial uptake rather
than geochemical processes regulate P solubility in these soils. However, although crystalline Fe oxides have
lower sorption capacity than SRO Fe oxyhydroxides, they are more resistant to reductive dissolution (Chen
et al., 2018) and may sequester bound phosphate for longer timescales. The propensity for crystalline Fe oxi-
des to resist dissolution has been implicated in its potential to stabilize SOM for longer time periods than the
relatively transient stabilization provided by SRO Fe oxides (Hall et al., 2018).

Although half of soil phosphate was associated with iron (oxyhydr)oxides (Figure 6), the amount of Fe‐
bound Pi was not related to the amount of iron (oxyhydr)oxides in a given soil. There are a few possible
explanations for these results. First, dithionite extracts both SRO and crystalline Fe (oxyhydr)oxides
(Poulton & Canfield, 2005); therefore, P derived from crystalline oxides, which have lower sorption capacity
(Wang et al., 2013), may obscure correlations between PSI and P bound to SRO Fe oxyhydroxides. There may
also be factors other than mineral abundance that control phosphate sorption. For example, although soils
may be enriched in SRO Fe phases that confer a high capacity to bind phosphate, there may only be a small

Figure 7. Conceptual diagram of coupled interactions between iron and phosphorus across topographic and saturation gradients in peatlands. Iron, present largely
as organic‐complexes in acidic soils, is leached from topographic highs and transported as dissolved Fe to more circumneutral topographic lows where Fe
oxyhydroxides precipitate at redox interfaces. These Fe oxyhydroxides compete with plants and microorganisms for phosphate that is enzymatically cleaved from
soil organic matter (mineralization). Solid and dashed arrows indicate transport and transformation processes for Fe and P, respectively. Generalized redox and
pH gradients are indicated. Dissolved phosphate species ([PO4

3−]T) include all pH dependent variations. Permafrost, which inhibits drainage in many of these
ecosystems, is not shown.
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amount of phosphate able to bind at any given time. The capacity for soil to bind phosphate likely exceeds
the amount of phosphate present in these low‐nutrient soils. Third, Fe (oxyhydr)oxides that experience fluc-
tuating redox conditions may provide only a temporary sink for phosphate. Reductive dissolution of iron
oxyhydroxides during periods of anoxia may release phosphate into solution and prevent long‐term accumu-
lation. Short‐range ordered Fe phases that preferentially accumulate in poorly drained soils are prone to
rapid dissolution, consequently mobilizing aqueous phosphate and Fe‐cemented P‐bearing colloids
(Bridgham et al., 1998; Chen et al., 2018; Henderson et al., 2012).

We infer that the capacity for Fe‐rich soils to bind phosphate currently exceeds the amount of phosphate that
is available to bind in these nutrient‐limited ecosystems. That is, Fe oxyhydroxides effectively bind soluble
phosphate, but other ecosystem processes restrict phosphate release into solution. However, soils enriched
in Fe oxyhydroxides have a marked potential to serve as future sinks for phosphate as decomposition of
organic matter accelerates and releases increasing amounts of P (Chapin et al., 1995). Widespread soil
drainage and oxidation may facilitate iron oxyhydroxide precipitation and further increase phosphate
sorption capacity. Given that Fe‐rich soils often occupy low‐lying positions on the landscape, Fe minerals
may serve as nutrient traps that limit local bioavailability and transport to downstream water bodies.

The turnover time of Fe‐bound phosphate, which is largely unavailable for biological cycling, remains
unclear. Phosphate can readily sorb to SRO Fe oxyhydroxides that precipitate during wetland drainage or
be released into solution as iron (oxyhydr)oxides dissolve during transient anoxic conditions (Henderson
et al., 2012; Kinsman‐Costello et al., 2014; Zak et al., 2004). In this capacity, these minerals can serve as both
sinks and sources of bioavailable phosphate as water tables fluctuate. For example, rapid immobilization of
phosphate solubilized during anoxic incubation of tropical soils was attributed to microbial uptake (Lin
et al., 2018). Additional laboratory and field experiments should explore biological acquisition of oxide‐
bound phosphate and transfer between biotic and abiotic pools. It is possible that instead of limiting bioa-
vailability, Fe minerals may provide important phosphate reservoirs in these P‐limited systems.
Interactions between Fe and P are important to study given that nutrient availability may dictate whether
terrestrial ecosystems act as sinks or sources of C (Wieder et al., 2015). Increased decomposition rates under
warming climate may contribute to formation of Fe‐P associations by releasing organic‐complexed Fe that
can precipitate to form oxyhydroxide minerals and by accelerating release of phosphate into solution that
can bind to Fe oxyhydroxides before biological assimilation. These processes may be exacerbated as
increased rates of evapotranspiration and lowering water tables produce drier and more oxidized surface
soils that favor decomposition and Fe oxidation.
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