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Abstract. To study the influence of regional biomass burn-
ing emissions and secondary processes, ambient samples
of fog and aerosol were collected in the Po Valley (Italy)
during the 2013 Supersito field campaign. After the extent
of “fresh” vs. “aged” biomass burning influence was esti-
mated from proton nuclear magnetic resonance (1H NMR)
and high-resolution time-of-flight aerosol mass spectrome-
try (HR-ToF-AMS), two samples of fog water and two sam-
ples of PM1 aerosol were selected for ultrahigh-resolution
Fourier transform ion cyclotron resonance mass spectrom-
etry (FT-ICR MS) analysis. Molecular compositions indi-
cated that the water-soluble organic matter was largely non-
polymeric without clearly repeating units. The selected sam-
ples had an atypically large frequency of molecular formu-
las containing nitrogen and sulfur (not evident in the NMR
composition) attributed to multifunctional organonitrates and
organosulfates. Higher numbers of organonitrates were ob-
served in aerosol, and higher numbers of organosulfates
were observed in fog water. Consistent with the observa-
tion of an enhanced aromatic proton signature in the 1H-
NMR analysis, the average molecular formula double-bond
equivalents and carbon numbers were higher in the fresh
biomass-burning-influenced samples. The average O : C and
H : C values from FT-ICR MS were higher in the samples
with an aged influence (O : C= 0.50–0.58, and H : C= 1.31–
1.37) compared to those with fresh influence (O : C= 0.43–
0.48, and H : C= 1.13–1.30). The aged fog had a large set
of unique highly oxygenated CHO fragments in the HR-
ToF-AMS, which reflects an enrichment of carboxylic acids

and other compounds carrying acyl groups, highlighted by
the NMR analysis. Fog compositions were more oxidized
and “SOA (secondary organic aerosol)-like” than aerosols
as indicated by their NMR measured acyl-to-alkoxyl ratios
and the observed molecular formula similarity between the
aged aerosol and fresh fog, implying that fog nuclei must
be somewhat aged. Overall, functionalization with nitrate
and sulfate moieties, in addition to aqueous oxidation, trig-
gers an increase in the molecular complexity in this envi-
ronment, which is apparent in the FT-ICR MS results. This
study demonstrates the significance of the aqueous phase in
transforming the molecular chemistry of atmospheric organic
matter and contributing to secondary organic aerosol.

1 Introduction

Atmospheric organic aerosol particles are comprised of
a complex mixture of numerous individual organic com-
pounds, produced by direct emissions and secondary pro-
cesses, of which a significant impact is from transforma-
tions in the aqueous phase. Surface-emitted primary organic
aerosol and volatile organic compounds are transformed in
the atmosphere by gas-to-particle-phase conversion, hetero-
geneous reactions, and aqueous-phase reactions in aerosol
water, fog, and cloud droplets (Ervens et al., 2011; Herrmann
et al., 2015). The products of these processes are collectively
referred to as secondary organic aerosol (SOA). These ag-
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13198 M. Brege et al.: Molecular insights on aging and aqueous phase

ing reactions happen quickly in the atmosphere, and the ob-
served mass fraction of SOA is larger than that of primary or-
ganic aerosol (Zhang et al., 2007, 2011; Ervens et al., 2011;
Paglione et al., 2014; Gilardoni et al., 2016). Biomass burn-
ing emissions – such as those from forest fires, agricultural
land clearing, residential heating, and cooking with biofuels
– are important sources of organic carbon to the atmosphere
globally (Andreae and Merlet, 2001; Bond et al., 2004; Gla-
sius et al., 2006; Laskin et al., 2015). Biomass burning prod-
ucts include simple organic acids, sugars and anhydrosug-
ars, substituted phenols, polycyclic aromatic hydrocarbons,
and other compounds, depending on the type of fuel and
burn conditions (Mazzoleni et al., 2007; Pietrogrande et al.,
2014a, b; Gilardoni et al., 2016). These water-soluble emis-
sions can serve as precursors for SOA once dissolved in the
aqueous phase (Chang and Thompson, 2010; Yu et al., 2014,
2016), and upwards of 50 % of organic matter in fog and
cloud droplets remains unidentified (Herckes et al., 2013).
Biomass burning emissions can even facilitate droplet nucle-
ation. In fact, laboratory studies indicate that, in addition to
hydrophilic species, even refractory “tar balls” emitted from
smoldering biomass burning begin to absorb water at high
relative humidity (Hand et al., 2005; Laskin et al., 2015).

Atmospheric chemistry models are currently unable to
replicate several key aspects of SOA, including SOA concen-
tration levels; chemical oxidation states; degree of function-
alization; and the occurrence of high-molecular-weight com-
pounds, such as atmospheric humic-like substances (Ervens
et al., 2011; Lee et al., 2013; Nguyen et al., 2013). Aqueous-
phase reactions in wet aerosol, cloud, and fog droplets have
been proposed to improve these SOA observation gaps (Er-
vens et al., 2011; Gilardoni et al., 2016; Herckes et al., 2013;
Laskin et al., 2015), but the current level of understanding
regarding aqueous-phase processes is insufficient to include
them in models. Laboratory studies focusing on simplified
systems of only one or two precursor components have suc-
cessfully recreated some of the complexity of ambient at-
mospheric samples (De Haan et al., 2011; Lee et al., 2013;
Nguyen et al., 2013; Hawkins et al., 2016; Yu et al., 2016). A
number of recent studies focusing on the molecular compo-
sition of cloud (Lee et al., 2012; Desyaterik et al., 2013; Pratt
et al., 2013; Zhao et al., 2013; Boone et al., 2015; Cook et al.,
2017) and fog (Mazzoleni et al., 2010; LeClair et al., 2012;
Xu et al., 2017) chemistry have been reported. Together
these studies indicate a clear importance of aqueous-phase
reactions for the production of aqueous SOA, including the
formation of organonitrates, organosulfates, and nitrooxy
organosulfates. Of these, organosulfate formation is thought
to happen nearly exclusively in the aqueous phase (Ervens et
al., 2011; Herrmann et al., 2015). Along with organonitrates,
organosulfates are susceptible to hydrolysis in the aqueous
phase, though high kinetic barriers under atmospheric condi-
tions often slow these reactions and allow for the observation
of these species in ambient samples (Darer et al., 2011; Hu
et al., 2011). Organosulfates are often described in the liter-

ature as the products of acid-catalyzed oxidation of biogenic
terpenoids (Surratt et al., 2008; Pratt et al., 2013; Schindelka
et al., 2013), but they have also been observed in biomass-
combustion-influenced cloud water (Zhao et al., 2013; Cook
et al., 2017). The formation of aqueous-phase products in
aerosol, fog, and cloud waters greatly increases the complex-
ity of organic aerosol. Although several analytical techniques
have been used to address the challenge of resolving the com-
plex mixture of atmospheric organic matter (Decesari et al.,
2007; Hertkorn et al., 2007; Nizkorodov et al., 2011; Desya-
terik et al., 2013; Dall’Osto et al., 2015; Noziere et al., 2015;
Laskin et al., 2016; Willoughby et al., 2016), no universal
analytical method exists.

The Po Valley (Italy) has ideal ambient conditions for
studying aqueous-phase influences on atmospheric organic
matter. The valley contains a mixture of densely popu-
lated areas and intensively cultivated agricultural regions.
Surrounded by mountains to the north, west, and south,
the valley frequently has stable meteorological conditions
with low ventilation and a low boundary layer, allowing
for the accumulation of high concentrations of regional pol-
lutants. Consequently, frequent fog events and high con-
centrations of anthropogenic biomass burning emissions
are observed in months with cold temperatures (Larsen et
al., 2012; Saarikoski et al., 2012; Giulianelli et al., 2014;
Paglione et al., 2014; Gilardoni et al., 2016). The Po Val-
ley has some of the highest reported carbon concentrations
for fog water in the world (Herckes et al., 2013). In re-
cent years, the analysis of fog water and aerosol from San
Pietro Capofiume (SPC, located 30 km northeast of the city
of Bologna) has included Aerodyne high-resolution time-of-
flight aerosol mass spectrometry (HR-ToF-AMS) and proton
nuclear magnetic resonance spectroscopy (1H NMR) to de-
termine the fog scavenging efficiency of aerosol (Gilardoni
et al., 2014) and source apportionment of aerosol (Decesari
et al., 2007). In Saarikoski et al. (2012), HR-ToF-AMS data
from SPC aerosol showed an extremely high concentration
of aerosol nitrate (39 %) and a somewhat typical concen-
tration of organic carbon (33 %), in agreement with Gilar-
doni et al. (2014). Positive matrix factorization (PMF) of
HR-ToF-AMS organic mass fragments was used to identify
several factors describing Po Valley organic aerosol, includ-
ing factors for fresh biomass burning organic aerosol, and
three types of oxygenated organic aerosol (Saarikoski et al.,
2012). A similar study by Paglione et al. (2014) used PMF
on 1H-NMR data of SPC aerosol to identify factors for fresh
biomass burning emissions, as well as SOA factors, includ-
ing products formed from aged biomass burning emissions.

Further investigation with a focus on molecular markers
and source apportionment was done as part of the 2013 Su-
persito field campaign in the Emilia-Romagna region, includ-
ing samples from SPC and the urban site of Bologna (Pietro-
grande et al., 2014a, b; Poluzzi et al., 2015). The campaign
has shown the significance of biomass burning emissions in
the region. Approximately 35 % of the organic carbon was
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from wood burning in winter months (Pietrogrande et al.,
2015), biomass burning emissions were shown to increase
with decreasing ambient temperature (Gilardoni et al., 2014),
and aqueous-phase SOA formation from biomass burning
emissions and associated brown carbon formation was di-
rectly observed (Gilardoni et al., 2016). HR-ToF-AMS obser-
vations have shown similarity between atmospheric organic
matter in fog water and aerosol formed following fog dissi-
pation, indicating that low-volatility organics that were orig-
inally present in the fog are left behind upon evaporation;
these particles are enriched in oxidized organic matter and
absorb solar radiation more efficiently than fresh emissions,
contributing to atmospheric brown carbon (Gilardoni et al.,
2016).

In this study, we analyzed fog from SPC and aerosol from
Bologna, collected during the 2013 Supersito field campaign.
Due to the intense time investment required for Fourier trans-
form ion cyclotron resonance mass spectrometry (FT-ICR
MS) data analysis, we chose to focus our detailed analy-
sis on a subset of samples, including two aerosol and two
fog samples. The subset was selected to represent the influ-
ence of fresh and aged biomass burning emissions on fog
and aerosol based on the HR-ToF-AMS and 1H-NMR ob-
servations (Sect. 3.1). We used a combination of 1H-NMR,
HR-ToF-AMS, and FT-ICR MS techniques to explore the
molecular-level details of the complex mixtures of atmo-
spheric organic matter in the Po Valley. Similar studies fo-
cusing on analysis of atmospheric samples with 1H NMR
and FT-ICR MS have been conducted in the past (Schmitt-
Kopplin et al., 2010; Willoughby et al., 2016), but this type
of study with a focus on biomass burning and aqueous-phase
processing has not yet been reported.

2 Methods

2.1 Sample collection and chemical analysis

Sub-micrometer (PM1) aerosol particles were collected in
Bologna on pre-washed and pre-baked quartz fiber filters
(PALL, 18 cm diameter) by a high-volume sampler (TEC-
ORA Echo Hi Vol) equipped with a digital PM1 sampling in-
let at a nominal flow rate of 500 L min−1. PM1 samples were
collected during winter 2013 (from 4 to 15 February 2013),
during the Supersito project. Fog water was collected at the
SPC field station, where monitoring of fog occurrence and
fog water collection has been performed every year system-
atically since 1989 (Giulianelli et al., 2014); during the 2013
winter fog samples were collected from 29 November 2012
to 12 March 2013. In the fog collector (Fuzzi et al., 1997), a
short wind tunnel is created by a rear fan, where an air stream
containing fog droplets are collected by impaction using a se-
ries of stainless-steel strings. The collected droplets drain off
the strings into a sampling bottle. The air flow through the
tunnel was 17 m3 min−1 with a 50 % collection efficiency for

individual strings (3 µm radius each). All parts of the fog col-
lector coming into contact with the fog droplets were made
of stainless steel to avoid sampling artifacts from adsorption
of organic compounds to the surfaces.

The aerosol filters were extracted with deionized ultra-
pure water (Milli-Q) in an ultrasonic bath for 1 h. The wa-
ter extract was filtered with a 0.45 µm PTFE membrane in
order to remove suspended particles. Fog water was filtered
through 47 mm quartz fiber filters within a few hours of col-
lection, and conductivity and pH measurements were taken
(Crison microCM 2201 conductometer and Crison micropH
2002 pH meter). Aliquots of both aerosol water extracts and
fog water prepared in this way were used to determine the
total organic carbon content (Multi N/C 2100 analyzer; An-
alytik Jena, Germany) and water soluble organic carbon
(WSOC) concentration, (Rinaldi et al., 2007) as well as for
1H-NMR analysis and HR-ToF-AMS analysis of fog sam-
ples described below (HR-ToF-AMS data for aerosol sam-
ples were collected in real time).

2.2 1H-NMR analysis

Aliquots of the aerosol extract and fog water were dried
under vacuum and re-dissolved in deuterium oxide (D2O)
for organic functional group characterization by 1H-NMR
spectroscopy, as described in Decesari et al. (2000). The
1H-NMR spectra were acquired at 600 MHz (Varian Unity
INOVA spectrometer) with a 5 mm probe. Sodium 3-
trimethylsilyl-(2,2,3,3-d4) propionate (TSP-d4) was used as
an internal standard by adding 50 µL of a 0.05 % TSP-d4 (by
weight) in D2O to the standard in the probe. The speciation
of hydrogen atoms bound to carbon atoms can be provided
by 1H-NMR spectroscopy in protic solvents; on the basis of
the range of frequency shifts, the signal can be attributed to
HC containing specific functionalities (Decesari et al., 2000,
2007). Detection limits for an average sampling volume of
500 m3 were on the order of 3 nmol m−3 for each functional
group. 1H-NMR spectra were collected during the winter
2013 campaign using the method described above to identify
and quantify major components of WSOC in both fog and
aerosol. In the present study, the results of these 1H-NMR
analyses were used to characterize and to select the samples
for subsequent FT-ICR MS analysis as described in Sect. 3.1.

2.3 HR-ToF-AMS analysis

During the Supersito winter 2013 campaign (4 to 15 Febru-
ary 2013) the chemical composition of PM1 aerosol particles
at Bologna was characterized with a 5 min time resolution
using an HR-ToF-AMS (Aerodyne Research; DeCarlo et al.,
2006). Data were collected in the V-ion mode, at a resolu-
tion of 2200. The influx of aerosol particles was dried below
30 % relative humidity with a Nafion drier before analysis.
Details on analysis of HR-ToF-AMS data for the Supersito
winter 2013 campaign were previously reported (Gilardoni
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et al., 2016); here we report HR-ToF-AMS characterization
averaged over the sampling periods of the selected aerosol
samples.

Fog water samples were also analyzed by HR-ToF-AMS
after being re-aerosolized (TSI constant output atomizer,
Model #3076) in an inert argon gas flow to characterize
dissolved water-soluble organics. To make sure that the re-
aerosolized fog water represented the original sample, we
verified that the nitrate-to-organic-carbon and the sulfate-to-
organic-carbon ratios from the HR-ToF-AMS analysis were
within 20 % (measurement uncertainty level) of the ratios
measured offline by ion chromatography and thermo-optical
analysis.

2.4 Ultrahigh-resolution FT-ICR MS analysis

Four samples were selected for FT-ICR MS analysis based
on the characterization by HR-ToF-AMS data and 1H-NMR
spectra for the entire Supersito winter 2013 sample set
(Sect. 3.1). High-molecular-weight WSOC compounds were
prepared for FT-ICR MS analysis using a reversed-phase
polymeric solid-phase extraction (SPE) cartridge (Strata-
X, Phenomenex) to remove salts and low-molecular-weight
compounds which interfere with electrospray ionization
(ESI). The cartridges were loaded with HCl-acidified aque-
ous samples (pH < 2), rinsed with 1 mL of water, and then
eluted using 2 mL of ACN : H2O (90 : 10 by volume). Fog
samples were later re-filtered using a 25 mm quartz filter be-
fore SPE. A portion of the aerosol filter samples were ex-
tracted with ultrapure water using sonication, and the ex-
tracts were then filtered using a 25 mm quartz filter to re-
move insoluble materials; the aerosol extracts were then pre-
pared for FT-ICR MS analysis using SPE as described above.
The WSOC described in this paper is operationally defined
as the WSOC that is both retained and recovered from the
SPE cartridges (SPE-recovered); thus it is not equivalent to
the total WSOC. The ACN : H2O extracts were analyzed at
the Woods Hole Oceanographic Institute in Woods Hole,
MA, USA, using full-scan ESI ultrahigh-resolution FT-ICR
MS (7 T LTQ FT-ICR MS, Thermo Scientific) at a resolving
power of 400 000 as described in our previous work (Zhao et
al., 2013; Dzepina et al., 2015). We used direct infusion anal-
ysis to collect mass spectrometry data over the mass range of
m/z 100–1000 in the negative ionization mode, for approxi-
mately 200 scans. Molecular formulas were assigned as pre-
viously described in our work (Dzepina et al., 2015; Maz-
zoleni et al., 2010; Putman et al., 2012; Zhao et al., 2013)
using Sierra Analytics Composer software (version 1.0.5)
within the limits of C2−200H4−1000O1−20N0−3S0−1. The for-
mulas were reviewed manually for their credibility; for fur-
ther details, see the Supplement. Approximately 74 % of the
measured masses in each of the samples were assigned a
molecular formula. Oxygen-to-carbon (O : C) and hydrogen-
to-carbon (H : C) ratios were calculated from the respective
number of C, H, or O atoms in the assigned molecular formu-

las. We calculated Kendrick mass (KM) and Kendrick mass
defect (KMD) as described in Eqs. (1) and (2), respectively
(Stenson et al., 2003).

KM = experimental mass ·
(

14.00000
14.01565

)
(1)

KMD = nominal mass−KM (2)

The number of double-bond equivalents (DBEs) was
calculated by Eq. (3) for the molecular formula format:
CcHhOoNnSs .

DBE = c−

(
h

2

)
+

(n

2

)
+ 1 (3)

Note that S and O are divalent in Eq. (3); additional un-
saturated bonds associated with pentavalent nitrogen, and
tetravalent or hexavalent sulfur, are not included in this DBE
calculation. The average oxidation state of carbon (OSC) in
the molecular formulas was estimated using Eq. (4), based
on the approximation described in Kroll et al. (2011); note
that the inclusion of nitrogen and sulfur affects the oxida-
tion state of carbon, and Eq. (4) assumes both are fully
oxidized. The modified aromaticity index (AImod) (Koch
and Dittmar, 2006, 2016) was calculated using Eqs. (5)–(7).
Equations (4)–(7) use the same molecular formula format as
DBE in Eq. (3).

OSC ≈ 2
o

c
−

h

c
− 5

n

c
− 6

s

c
(4)

DBEAI = 1+ c−
(o

2

)
− s−

(
n+h

2

)
(5)

CAI = c−
(o

2

)
− n− s (6)

AImod =
DBEAI

CAI
(7)

In Eq. (7), the AImod = 0 if DBEAI ≤ 0 or CAI≤ 0, as defined
in Koch and Dittmar (2006, 2016).

The resulting data set represents the SPE-recovered
higher-molecular-weight water-soluble organic aerosol and
is expected to predominantly contain acidic compounds
due to the negative-ion ESI analytical biases. The observed
molecular compositions represent the oxidized fraction of
the atmospheric samples; thus, useful insights can be made
with these limitations in mind. Furthermore, it is important to
note that the individual molecular formulas likely represent a
mixture of structural isomers co-existing in atmospheric or-
ganic matter, as recently observed for deep-sea organic mat-
ter (Zark et al., 2017).

3 Results and discussion

3.1 Selection of aerosol and fog water samples

Among the 15 fog and 18 aerosol samples collected dur-
ing the winter of 2013 at SPC and Bologna, we selected
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Figure 1. Preliminary characterization of fog and PM1 aerosol sam-
ples collected in SPC and Bologna, respectively, during the 2013
Supersito field campaign. Characterization was performed via HR-
ToF-AMS analysis as described by Cubison et al. (2011), utiliz-
ing the relative intensity of peak m/z 60 (f60) and peak m/z 44
(f44) as markers of fresh biomass burning influence and oxygenated
and processed dissolved organic molecules, respectively (a). Fur-
ther characterization was performed via 1H-NMR analysis, as de-
scribed by Decesari et al. (2007), where samples were mapped by
1H-NMR functional group fractions (b). In (b), dashed lines indi-
cate the boundaries of the source fingerprints according to Dece-
sari et al. (2007; “BB”: biomass burning aerosol), and the x and y

axes report the contributions of alkoxyl (HCO) and acyl (HCC=O)
groups to the total aliphatic fraction of WSOC, respectively. The
sample names fresh fog, aged fog, fresh aerosol, and aged aerosol
correspond to SPC0106F, SPC0201F, BO0204N, and BO0213D, re-
spectively.

two fog and two aerosol samples for subsequent analysis
by FT-ICR MS according to the following rationale. Aerosol
samples were selected based on PMF source apportionment
of “fresh” and “aged” wood burning emissions using HR-
ToF-AMS and 1H-NMR data, as described in Gilardoni et
al. (2016). On 13 February 2013, a high concentration of
SOA was observed, where the ratio of SOA to POA was∼ 4,
and the aqueous SOA from biomass burning accounted for
about 55 % of total SOA. Thus, BO0213D was defined as
strongly influenced by aged wood burning emissions. During
the night of 4 February 2013, the fresh biomass burning con-
centration was ∼ 6 µg m−3, accounting for 54 % of total or-

ganic aerosol. Thus, BO0204N was defined as strongly influ-
enced by fresh wood burning emissions. Similarly, HR-ToF-
AMS observations were used to select fog samples strongly
impacted by fresh and aged wood burning emissions. Specif-
ically, we used the relative intensity of m/z 60 (f60) as
a marker of fresh biomass burning influence and m/z 44
(f44) as a marker of oxygenated and processed dissolved or-
ganic molecules (Aiken et al., 2008; Gilardoni et al., 2016).
The f44 vs. f60 space was previously proposed to represent
biomass burning vs. atmospheric aerosol aging (Cubison et
al., 2011) and was extended here to fog samples. We are
aware that this representation is an oversimplification of the
complexity of organic molecules in fog water; thus this ap-
proach is employed here exclusively to spot marked differ-
ences in terms of different sources and atmospheric history of
sample organic content. In Fig. 1a, it can be seen that the fog
sample SPC0106F had low f44 and high f60 values, while
SPC0201F had high f44 and low f60 values. Thus, from
here on, SPC0106F (fog) and BO0204N (aerosol) will be
referred to as the “fresh” biomass-burning-influenced sam-
ples, and SPC0201F (fog) and BO0213D (aerosol) will be
referred to as the “aged” biomass-burning-influenced sam-
ples. A summary of the sample collection details and HR-
ToF-AMS characterization is given in Table 1.

3.2 1H-NMR composition

Functional group distributions for the selected PM1 and fog
samples were provided by 1H-NMR analysis. A synthetic
representation of the 1H-NMR organic functional group dis-
tribution of all the collected samples is reported in Fig. 1b,
following the approach described by Decesari et al. (2007)
for source attribution. Briefly, Decesari et al. (2007) pre-
sented a survey of 1H-NMR functional group distributions of
WSOC samples from diverse environments, proposing fin-
gerprints for broad categories of oxygenated organic com-
pounds in aerosol. These categories are SOA (enriched
in acyl groups, HCC=O), biomass burning aerosol (en-
riched in alkoxyls, HCO, and aromatics), and marine or-
ganic aerosol (enriched in aliphatic groups other than acyls
and alkoxyls, mainly amines and sulfoxy groups). In this
study, most samples were categorized either as SOA or as
biomass burning, even if a significant fraction of the aerosol
samples exhibited 1H-NMR compositions with a very high
alkoxyl contribution exceeding the boundaries proposed by
Decesari et al. (2007). For example, sample BO0204N (rep-
resentative of fresh biomass burning aerosol) showed by
far the largest contribution of alkoxyl groups and the least
amount of acyl groups. In contrast, BO0213D (representa-
tive of aged aerosols) showed relatively high acyl content and
small alkoxyl fractions. Similarly, the two selected fog sam-
ples (SPC0106F: fresh; SPC0201F: aged) were clearly differ-
entiated based on their 1H-NMR functional group distribu-
tions (Fig. 1b). Therefore, the selected aerosol and fog sam-
ples represent extremes in the structural space of this WSOC

www.atmos-chem-phys.net/18/13197/2018/ Atmos. Chem. Phys., 18, 13197–13214, 2018
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Table 1. Sample collection, identification and HR-ToF-AMS data. Relative humidity (RH), liquid water content (LWC), and aerosol liquid
water content (ALWC) are averaged over the sample collection time. Fog samples were collected at San Pietro Capofiume (SPC). Fog water
samples were re-aerosolized for HR-ToF-AMS data analysis, while aerosol sample data are from online measurements. For aerosol samples,
the standard deviation of online measurements corresponding to the sample collection period is shown.

Sample name SPC01016F SPC0201F BO0204N BO0213D

Collection site SPC SPC Bologna Bologna
Sample type Fog water Fog water PM1 aerosol PM1 aerosol
Fresh vs. aged Fresh Aged Fresh Aged
influence
Start collection 6 Jan 2013, 3:10 1 Feb 2013, 19:40 4 Feb 2013, 18:18 13 Feb 2013, 9:24
date and timea

Collection time (h) 1.33 15.37 14.62 8.60
Temperature (◦C)b 1.0 3.0 5.9 3.0
pH 5.81 3.34 NA NA
[NOX] (ppb)b 73 15 146 101
RH (%)b, c 100 100 58 80
LWC (mL m−3)b 0.190 0.258 NA NA
ALWC (µg m−3)b, d NA NA 69 515
f e

44 0.16 0.21 0.042± 0.006 0.097± 0.004
f e

60 0.007 0.004 0.016± 0.003 0.010± 0.001
OM:OCb, f 1.9 2.2 1.5± 0.1 1.9± 0.1
O : Cb, f 0.58 0.8 0.24± 0.04 0.56± 0.03
H : Cb, f 1.37 1.29 1.65± 0.03 1.60± 0.01
OSb, f

C −0.21 0.32 −1.17± 0.08 −0.48± 0.06

a Start collection times given in local time. b Average values corresponding to the collection times of individual samples. c Average RH
was assumed to be 100 % for fog samples, as supersaturation levels could not be measured. d ALWC is an average of E-AIM and
ISORROPIA modeled data for the sampling period. e Fractional abundance of a mass fragment (fX) was calculated as the ratio between
that fragment signal and the total organic concentration. f Elemental ratios were calculated according to Aiken et al. (2008).

sample set based on the distribution of 1H-NMR functionali-
ties and in agreement with the categorization provided by the
HR-ToF-AMS measurements.

The differences between the two aerosol samples likely re-
flect the ambient conditions during sampling: BO0204N was
characterized by nighttime accumulation of ground-level lo-
cal emissions from residential heating and an absence of pho-
tochemical processes; instead, BO0213D was characterized
by daytime photochemically processed aerosol and by an
enhanced mixing with regional-scale air masses. Similarly,
the diversity in the fog samples reflects the collection dura-
tion and the associated liquid water content (LWC) of the
two fog events considered: SPC0106F was collected over a
shorter duration with a lower LWC compared to SPC0201F
(Table 1).

It should be noted that, although a pair of fresh and aged
samples were selected from each of the sample sets, Fig. 1
shows a clear shift in the average composition between the
fog and the aerosol samples, where the fog samples were
characterized by a greater amount of acyl groups and a
smaller fraction of alkoxyls. So, according to the simple
source-attribution scheme based on the major 1H-NMR func-
tionalities presented here, the fog compositions were more
oxidized and “SOA-like” than aerosols. As a consequence,
the fresh fog composition overlapped with the aged aerosol

composition (Fig. 1b). This implies that the fresh fog sample
SPC0106F was processed to a degree similar to that of the
most aged aerosol sample, BO0213D. This was confirmed
by the corresponding HR-ToF-AMS elemental ratios (very
similar O : C for SPC0106F and BO0213D; see Table 1) and
by the detailed comparison between the 1H-NMR spectra of
these two samples (one fog and one aerosol). This difference
in the average functional group composition between fog and
aerosol samples in the Po Valley can be explained by (a) the
preferential scavenging of more oxidized constituents of or-
ganic particles into fog (Gilardoni et al., 2014), (b) the ef-
fect of oxidative chemical reactions in fog water leading to
the production of carboxylic acids and carbonyls (and hence
acyls), and (c) a stronger aging effect from fog processing at
the rural site (SPC) with respect to urban areas (Bologna) at
the margins of the Po Basin.

The 1H-NMR spectra of the selected samples are reported
in Fig. 2. The spectra of the aerosol samples (Fig. 2c and
d) exhibited a clear biomass burning fingerprint, with evi-
dent proton resonances from levoglucosan and intense bands
from alkoxyl (HCO) and aromatic (ArH) groups. However,
the band of phenols and methoxyphenols, which are primary
biomass burning tracers, were clearly found only in the spec-
trum of BO0204N, representative of fresh primary organic
aerosols in our study. Moreover, the fraction of levoglucosan
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Figure 2. The 1H-NMR spectra of selected fog water (a, b) and aerosol (c, d) samples, and their corresponding functional group distribution.
A set of specific resonances was attributed to individual compounds: (1) formate, (2) phthalic acid, (3) ammonium, (4) maleic acid, (5) lev-
oglucosan, (6) hydroxy-methanesulfonic acid, (7) trimethylamine, (8) methanesulfonic acid, (9) dimethylamine, (10) monomethylamine,
(11) succinic acid, (12) pyruvic acid, and (13) lactic acid. The sample names fresh fog, aged fog, fresh aerosol, and aged aerosol correspond
to SPC0106F, SPC0201F, BO0204N, and BO0213D, respectively.

and alkoxyl groups was much greater in BO0204N than
in BO0213D. The aged aerosol BO0213D contained higher
amounts of two methylamines (mono- and trimethylamines)
relative to BO0204N, and especially much larger fractions
of methanesulfonate and succinic acid, which are tracers of
SOA. The spectral region between the chemical shift of 2.1
and 2.4 ppm showed clear bands representing aliphatic di-
carboxylic acids and ketoacids (Suzuki et al., 2001) in the
aged aerosol but were barely visible in the fresh aerosol.
The aged aerosol was also characterized by the occurrence
of hydroxy-methanesulfonic acid (HMSA), a known tracer
of aqueous SOA. Similarly for fog, SPC0106F (Fig. 2a)
exhibited a clear biomass burning fingerprint with contri-
butions from levoglucosan, alkoxyl (HCO), and aromatic
groups (ArH), whereas SPC0201F (Fig. 2b) showed tracers
of aqueous-phase SOA (HMSA) and high concentrations of
acyl groups (CHC=O), which demonstrated the effects of
the aging process. Additionally, SPC0201F exhibited several
low-molecular-weight organic acids (phthalic, maleic, suc-
cinic, pyruvic, and lactic acids) in much greater amounts
than SPC0106F, where only traces of phthalic and succinic
acids were found. This indicated that the aged fog was en-
riched in products of the oxidative degradation of particu-
late and gaseous organic compounds. It should be noted that
the fresh fog (SPC0106F) did not show the prominent band
from phenols or methoxyphenols observed in the spectrum of
the fresh aerosol (BO0204N). This suggests that the WSOC

of the fresh fog had undergone a certain degree of chemical
modification respective to primary biomass burning OA.

3.3 Ultrahigh-resolution FT-ICR MS composition

3.3.1 Overview of the compositions of Po Valley
ambient fog and aerosol

Approximately 1600–2800 individual monoisotopic molecu-
lar formulas were assigned to the ultrahigh-resolution mass
spectra of the SPE-recovered WSOC from each Po Valley
sample. Based on the inclusion of C, H, N, O, and S elements,
the molecular formulas were sorted into the following ele-
mental groups: “CHO,” “CHNO,” “CHOS”, and “CHNOS”.
The percent composition of these elemental groups for each
sample is shown in Fig. 3. Most of the molecular formulas
were present in the subclasses O4−10, NO3−13, O5−10S, and
NO7−11S (Fig. S1 in the Supplement). A summary of the ob-
served numbers of formulas per elemental group as well as
the average O : C, H : C, OSC, and DBE values is provided
in Table 2. Although they are not expected to match, the val-
ues for the SPE-recovered WSOC do trend with those from
the HR-ToF-AMS data shown in Table 1; we note that not
only are the elemental ratios from different fractions of the
aerosol, but they are also determined differently.

A great diversity of CHNO, CHOS, and CHNOS formu-
las were observed in the Po Valley samples, likely represent-
ing organonitrates, organosulfates, and nitrooxy organosul-
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Table 2. Summary of FT-ICR MS formula assignment data. Mass, O : C, H : C, OSC, DBE, AI, Cn, and On values represent mathematical
averages based on formula assignment, with standard deviation provided. These values were obtained using Eqs. (1)–(7).

All CHO CHNO CHOS CHNOS

SPC0106F Number 2824 1158 (41 %) 744 (26 %) 619 (22 %) 303 (11 %)
Molecular weight (Da) 368.44± 94.21 359.05± 101.35 342.88± 90.69 404.68± 83.64 393.12± 61.72
O : C 0.479± 0.16 0.415± 0.13 0.503± 0.14 0.488± 0.14 0.642± 0.18
H : C 1.30± 0.36 1.21± 0.32 1.14± 0.27 1.56± 0.34 1.53± 0.34
OSC −0.623± 0.48 −0.379± 0.42 −0.563± 0.33 −0.950± 0.49 −1.039± 0.37
DBE 7.24± 3.65 8.29± 3.67 8.35± 3.01 4.93± 3.08 5.20± 2.93
AImod 0.24± 0.22 0.31± 0.20 0.32± 0.21 0.08± 0.12 0.06± 0.11
Cn 17.2± 5.2 18.3± 5.5 15.7± 4.9 17.8± 4.8 15± 3.7
On 7.8± 2.3 7.4± 2.5 7.6± 2.2 8.3± 2.0 9.1± 1.3

SPC0201F Number 1671 890 (53 %) 427 (26 %) 212 (13 %) 142 (8 %)
Molecular weight (Da) 360.12± 97.52 358.18± 108.61 364.33± 90.94 360.12± 78.27 359.66± 63.56
O : C 0.577± 0.18 0.509± 0.13 0.617± 0.14 0.592± 0.15 0.858± 0.24
H : C 1.31± 0.35 1.18± 0.29 1.23± 0.26 1.74± 0.23 1.77± 0.20
OSC −0.399± 0.51 −0.161± 0.41 −0.369± 0.28 −1.006± 0.42 −1.075± 0.35
DBE 6.83± 3.53 8.05± 3.38 7.49± 2.69 3.01± 1.81 2.93± 1.13
AImod 0.22± 0.21 0.30± 0.19 0.22± 0.20 0.00± 0.03 0.00± 0.00
Cn 15.8± 5.0 16.9± 5.2 15.4± 4.4 14.4± 4.0 11.8± 3.4
On 8.7± 2.7 8.5± 3.0 9.2± 2.4 8.2± 2.0 9.5± 1.6

BO0204N Number 1634 808 (49 %) 732 (45 %) 42 (3 %) 52 (3 %)
Molecular weight (Da) 364.99± 100.13 358.24± 105.13 373.63± 98.27 332.45± 54.27 374.39± 50.93
O : C 0.433± 0.14 0.377± 0.11 0.480± 0.14 0.405± 0.11 0.652± 0.17
H : C 1.13± 0.32 1.12± 0.30 1.04± 0.22 1.96± 0.10 1.77± 0.14
OSC −0.471± 0.41 −0.368± 0.38 −0.461± 0.28 −1.578± 0.22 −1.303± 0.21
DBE 9.26± 3.94 9.42± 4.03 9.99± 3.11 1.31± 0.64 3.08± 0.9
AImod 0.36± 0.20 0.38± 0.19 0.39± 0.18 0.00± 0.00 0.00± 0.00
Cn 18.0± 5.6 18.9± 5.7 17.6± 5.5 15.0± 3.5 13.9± 3.4
On 7.5± 2.4 7.0± 2.5 8.1± 2.3 5.8± 0.9 8.6± 0.7

BO0213D Number 2753 1097 (40 %) 1123 (41 %) 249 (9 %) 284 (10 %)
Molecular weight (Da) 361.82± 96.19 351.26± 102.62 360.99± 94.43 354.82± 75.64 412.02± 76.3
O : C 0.498± 0.19 0.424± 0.15 0.555± 0.18 0.435± 0.16 0.617± 0.21
H : C 1.37± 0.37 1.25± 0.34 1.26± 0.27 1.9± 0.22 1.8± 0.18
OSC −0.683± 0.53 −0.399± 0.46 −0.631± 0.34 −1.445± 0.37 −1.322± 0.30
DBE 6.64± 3.65 7.81± 3.88 7.44± 2.6 1.8± 1.43 3.19± 1.47
AImod 0.21± 0.21 0.29± 0.21 0.22± 0.20 0.01± 0.06 0.00± 0.00
Cn 16.7± 5.3 17.9± 5.7 15.8± 4.9 16± 4.9 16± 4.7
On 7.8± 2.5 7.2± 2.4 8.3± 2.5 6.3± 1.4 9.1± 1.6

fates. These compound classes can be inferred from the an-
alytical bias of the negative mode ESI, as well as the O : N
and O : S of the assigned molecular formulas. Nearly all N-
containing formulas had O : N > 3, suggesting that the ma-
jority of the nitrogen species contained at least one nitro or
nitrate group. Multiple nitrogen species, such as those of
classes N2O3−5 and N3O5−7, have an O : N low enough to
indicate amine, imine, or imidazole structures, as these types
of products have been reported in cloud water mimic reac-
tions (De Haan et al., 2011); however only a modest number
of formulas with multiple nitrogen atoms were observed. All
of the S-containing formulas had O : S > 4 ratios, suggesting
sulfite, sulfate, and sulfonic acid functionalities. These infer-

ences are consistent with the ionization polarity, where oxi-
dized and acidic components are more efficiently ionized in
negative-ion ESI. A study by LeClair et al. (2012) – who
performed FT-ICR MS/MS using negative mode ESI on a
variety of CHNO, CHOS, and CHNOS components – con-
firmed that the studied compounds in Fresno fog were in-
deed multifunctional organonitrates, organosulfates, and ni-
trooxy organosulfates. Furthermore, nitrate and sulfate salts
are common secondary components present in the Po Valley
(Giulianelli et al., 2014), and reactions between these inor-
ganic salts and organics are expected as secondary reactions
in the aqueous phase (Noziere et al., 2010; McNeill et al.,
2012; Herrmann et al., 2015; McNeill, 2015). Amines have
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Figure 3. Percentage of assigned molecular formulas to each of
the elemental groups in the Po Valley samples, where (a) includes
all identified molecular formulas and (b) includes only the unique
molecular formulas. The sample names fresh fog, aged fog, fresh
aerosol, and aged aerosol correspond to SPC0106F, SPC0201F,
BO0204N, and BO0213D, respectively.

been observed in the Po Valley, emitted by livestock farm-
ing and waste treatment activity, and it is possible that some
species with amine groups were emitted from smoldering
biomass combustion (Andreae and Merlet, 2001; Paglione
et al., 2014). However, given the analytical bias for acidic
functional groups in the ESI negative-ion mode, it is unlikely
that reduced nitrogen species were detected. Nitrated phenols
are known contributors to light-absorbing atmospheric brown
carbon and are associated with biomass burning (Desyaterik
et al., 2013; Laskin et al., 2015). In this work, a large num-
ber of CHNO formulas were observed with low H : C and
low O : C, especially in the fresh aerosol and fresh fog sam-
ples (Fig. S2); several of the CHNO formulas were also es-
timated to be aromatic using the AImod calculation (Fig. 4).
Specifically, the molecular formulas for nitrophenol, methyl-
nitrophenol, dinitrophenol, nitroguaiacol, and nitrosalicylic
acid (Kitanovski et al., 2012; Desyaterik et al., 2013) were
observed in all four Po Valley samples (Table S1 in the Sup-
plement).

All of the molecular formulas were plotted in van Krevelen
space (H : C vs. O : C) partitioned by sample (columns) and
elemental group (rows) (Figs. 5, S2). In this space, molecu-

Figure 4. The modified aromaticity index (AImod) for the assigned
molecular formulas (Eqs. 5–7) and the percentage of each AImod
type, as defined by Koch and Dittmar (2016): aliphatic (AImod = 0),
olefinic (0 < AImod ≤ 0.5), aromatic (AImod > 0.5), and condensed
aromatic (AImod ≥ 0.67). Here aromatic and condensed aromatic
formulas were combined, because a small fraction of condensed
aromatics was observed. The results are partitioned by elemental
group, where it can be seen that the majority of olefinic and aro-
matic compounds belong to the CHO and CHNO groups. The sam-
ple names fresh fog, aged fog, fresh aerosol, and aged aerosol corre-
spond to SPC0106F, SPC0201F, BO0204N, and BO0213D, respec-
tively.

lar formulas with O : C≥ 0.6 and OSC ≥ 0 are considered to
be highly oxidized, and formulas with H : C≥ 1.2 are consid-
ered to be highly saturated (Tu et al., 2016). The distribution
of the CHO and CHNO formulas is quite similar to WSOC
extracted from ambient fog collected in Fresno, CA, USA
(Mazzoleni et al., 2010). Additionally, the distribution of
CHO formulas from phenolic aqueous SOA reported in Yu et
al. (2016) partially covers the same area of the van Krevelen
space. The CHOS and CHNOS formulas with high H : C ra-
tios were also distributed similarly to Mazzoleni et al. (2010).
The high H : C ratios indicate that the majority of the CHOS
and CHNOS formulas represent aliphatic organosulfate com-
pounds, consistent with the aliphatic AImod values (Fig. 4).
In contrast, the majority of the formulas with aromatic AImod
values were in the CHO and CHNO groups, and tended to
cluster at low H : C and low O : C in the van Krevelen space,
in agreement with previous studies (Mazzoleni et al., 2010;
LeClair et al., 2012). Consistent with the 1H-NMR results
in Fig. 1b, the van Krevelen diagrams for SPC0106F and
BO0213D were similar (see also Fig. S2), barring the addi-
tional low-H : C CHOS and CHNOS formulas of SPC0106F
and the additional CHNO formulas of BO0213D.

Underscoring the influence of biomass burning on these
samples, we found several molecular formulas matching pre-
viously observed species in biomass-burning-influenced am-
bient cloud water from Mt. Tai, China (Desyaterik et al.,
2013). There were also several matches with the products of
laboratory phenolic aqueous SOA reactions (Yu et al., 2014,
2016) (Table S1). Other notable molecular formulas included
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Figure 5. Van Krevelen diagrams for the SPE-recovered WSOC by elemental group (rows) and sample (columns) as indicated in the figure.
Dashed lines represent H : C= 1.2 (horizontal), O : C= 0.6 (vertical), and OSC = 0 (diagonal) as described in Tu et al. (2016). Formulas
unique to each sample are color-scaled to the number of oxygen atoms in the assigned formula; grey points represent common molecular
formula assignments. The sample names fresh fog, aged fog, fresh aerosol, and aged aerosol correspond to SPC0106F, SPC0201F, BO0204N,
and BO0213D, respectively. A similar plot with all of the molecular formulas scaled to indicate the number of oxygen atoms is provided as
Fig. S2.

those for the following compounds: acetosyringone, aceto-
vanillone, azelaic acid, benzoic acid, coumaric acid, hydrox-
ybenzoic acid, ketolimononaldehyde, nitrocatechol, o-toluic
acid, phthalic acid, syringaldehyde, syringic acid, tyrosine,
vanillic acid, and vanillin (Table S1) (Mazzoleni et al., 2007;
Desyaterik et al., 2013; Nguyen et al., 2013; Pietrogrande et
al., 2014a, b, 2015; Yu et al., 2014, 2016; Dzepina et al.,
2015). The molecular formulas for common methoxyphe-
nols (syringol (C8H10O3), methylsyringol (C9H12O3), and
eugenol (C10H12O2)) were present in all samples except
BO0204N; as they are both semi-volatile and water-soluble,
they are not expected to be present in aerosol with low liquid
water content. Several formulas were also found that could
be more oxidized versions of phenolic species produced from
biomass burning. These formulas included additional oxygen
atoms added to the base formulas for phenol (C6H6O3−5),
guaiacol (C7H8O3−6), and syringol (C8H10O4−7). Five of
these formulas – C6H6O3, C6H6O5, C8H10O5, C8H10O6,
and C8H10O7 – were previously observed in biomass burn-
ing aerosol (Pietrogrande et al., 2015) and in the products of

laboratory phenolic aqueous-phase SOA reactions (Yu et al.,
2014, 2016).

3.3.2 Molecular trends for the compositions of ambient
fog and aerosol

Molecular formula trend histograms are a useful way to or-
ganize and visualize the thousands of molecular formulas
observed here. The trends based on carbon number, oxy-
gen number, and DBE of the assigned molecular formulas
are shown in Fig. 6. Although relative abundance does not
directly correspond to analyte concentrations, it provides a
basis for relative comparisons. For example, the influence of
terpene SOA products is indicated from the elevated total rel-
ative abundance of molecular formulas near C10 (observed
in all samples) and an additional increased abundance be-
tween C15 and C18 (observed in most samples). This was es-
pecially pronounced in BO0213D (Fig. 6a). These formulas
are likely derived from monoterpenes (C10) and sesquiter-
penes (C15), where terpene emissions have been observed in
biomass burning (Andreae and Merlet, 2001). Terpene ox-
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Figure 6. Molecular formula trends for carbon (a), oxygen (b), and the number of double-bond equivalents (c). All detected molecular
formula abundances were normalized to the total assigned ion abundance for each sample and then summed across the integer values for
carbon number, oxygen number, or double-bond equivalent values. The sample names fresh fog, aged fog, fresh aerosol, and aged aerosol
correspond to SPC0106F, SPC0201F, BO0204N, and BO0213D, respectively.

idation products, including organosulfates, have previously
been observed in biomass-burning-influenced cloud water
(Cook et al., 2017; Zhao et al., 2013), and many of the same
molecular formulas were observed in this study (Table S1).
Specifically, we observed molecular formulas for pinic acid,
ketopinic acid, pinonic acid, hydroxy-dimethylglutaric acid,
and methyl-butanetricarboxylic acid (Table S1) (He et al.,
2014). Overall, the trends indicate an enhanced abundance of
CHO formulas in SPC0201F, CHNO formulas in BO0204N
and BO0213D, and CHOS formulas in SPC0106F (Fig. 6a).
Consistent with the 1H-NMR results in Fig. 1b, there is a
strong similarity between samples SPC0106F and BO0213D,
especially for the oxygen and DBE trends shown in Fig. 6b
and c.

Difference mass spectra were constructed from the as-
signed monoisotopic molecular formulas for the fog and
aerosol samples (Fig. S3) and provide a direct comparison
of their compositions. Each of the individual relative abun-
dances was normalized by the total abundance of the as-

signed masses for each sample. In Fig. S3, the individual
masses with higher abundances in either the positive or neg-
ative direction were substantially greater in the fresh or aged
samples, respectively; the masses with similar relative abun-
dances tended to cancel each other. Overall, we observed
molecular formulas with higher oxygen content at lower
molecular weights in the two aged samples compared to the
two fresh samples. To investigate this further, we adapted the
approach used for the molecular formula trends described
above with the difference relative abundances. The result-
ing difference trend plots are shown in Fig. 7 for carbon,
and Figs. S4 and S5 for oxygen and DBE, respectively. In
Fig. 7b, it is clear there was an enhanced abundance of CHOS
and CHNOS formulas with higher carbon numbers in the
fresh fog, while the aged fog showed an enhanced abundance
of low-carbon-number CHO formulas. In Fig. 7a, it is clear
that the fresh aerosol had an enhanced abundance of higher-
carbon-number formulas, though, unlike the fog samples,
they were mainly CHO and CHNO compounds. The aged
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Figure 7. Carbon difference trend plots for aerosol (a) and fog (b) sample types. Difference trends were calculated as in Fig. 6, and then
the respective aged sample was subtracted from the fresh sample for each integer carbon number value. Positive values indicate an enhanced
abundance of the formulas in the fresh sample compared to the aged sample. Similarly, negative values indicate an enhanced abundance of
formulas in the aged sample compared to the fresh sample. The sample names fresh fog, aged fog, fresh aerosol, and aged aerosol correspond
to SPC0106F, SPC0201F, BO0204N, and BO0213D, respectively.

aerosol had an enhanced abundance of low-carbon-number
formulas from the CHOS and CHNOS groups. In both fog
and aerosol, there is an enhanced abundance of higher car-
bon numbers in the fresh samples relative to the aged sam-
ples. Overall, the carbon numbers are shifted to lower values
in the fog compared to aerosol (Fig. 7), and the oxygen num-
bers are shifted to higher values in fog compared to aerosol
(Fig. S4).

The subsequent sections discuss the molecular diversity
of the different samples, especially considering the sample
type, atmospheric processes during sample collection, and
the unique molecular formulas observed in each sample.
The distributions of unique molecular formulas are shown
in Figs. 3b and S1.

3.3.3 Comparison of the fresh and aged
biomass-burning-influenced fog compositions

The molecular formulas of the aged biomass-burning-
influenced fog (SPC0201F) were more oxidized than the
fresh biomass-burning-influenced fog (SPC0106F). This en-
hancement in oxidation is shown in Fig. S4a, with a greater
abundance of higher-oxygen-number formulas observed in
the aged fog. The opposite is true for DBE and carbon num-

bers, where both trended to higher numbers in the fresh fog
compared to the aged fog (see Figs. 7b and S5b). Most of the
CHOS and CHNOS formulas in SPC0106F and SPC0201F
were classified as aliphatic by AImod, and approximately
30 % of these formulas in SPC0106F were classified as
olefinic, which was higher than any other sample (Fig. 4).
This suggests that the fresh fog molecular formulas repre-
sented molecules with large unsaturated carbon backbones,
which is consistent with pollutants without significant at-
mospheric aging. In contrast, the molecular formulas with
smaller carbon backbones that were more oxidized were
more prevalent in the aged fog.

The unique molecular formulas found in the fresh fog
(SPC0106F) were mostly of the O5–13S and NO7–12S
subclasses. Organosulfates are known products of aqueous
secondary processes (Darer et al., 2011; Ervens et al., 2011;
McNeill, 2015; Schindelka et al., 2013), and nucleation
scavenging from the preceding fog nuclei composition likely
plays a significant role as well (Darer et al., 2011; Gilardoni
et al., 2014; Herckes et al., 2007; Hu et al., 2011). The aro-
matic organosulfates and nitooxy organosulfates observed in
fresh biomass burning aerosol (Staudt et al., 2014) were not
observed here. Organosulfates are the products of aqueous-
phase SOA reactions and are expected to be enhanced
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at acidic pH (Ervens et al., 2011; McNeill et al., 2012;
Noziere et al., 2010). Because the pH of SPC0106F was
only slightly acidic at 5.81, we propose that the formation of
these organosulfates may have been promoted by low LWC,
and thus relatively high solute concentrations, during the
activation of the fog droplets or possibly in the fully formed
fog droplets. Organosulfates may also efficiently nucleate
droplets, leading to their eventual presence in the fog sam-
ples. A noticeable number of CHOS and CHNOS formulas
unique to SPC0106F had higher DBE values than formulas
from other samples. There was an overall preference for
CHOS and CHNOS formulas with DBE values < 6, except
for some of the formulas in SPC0106F which were higher
(Fig. 6c). The 10 most abundant unique molecular formulas
in the fresh biomass-burning-influenced fog of SPC0106F
were all CHOS and CHNOS formulas: C11H15NO8S,
C13H14O8S, C14H16O8S, C15H16O9S, C15H24O7S,
C15H24O8S, C16H18O9S, C17H20O9S, C18H30O8S, and
C19H24O9S. These formulas may be tracer species for
partially fog-processed biomass burning emissions.

While all samples contained some unique molecular for-
mulas among the CHO subclasses, a high number of for-
mulas in the O9−14 subclasses were unique to the aged fog
(SPC0201F). This trend could indicate enhanced oxidation
and aging as a result of aqueous-phase reactions in fog. The
high average O : C ratio (0.577± 0.18) and low pH (3.34) of
SPC0201F are consistent with the trend observed by Cook
et al. (2017) for cloud water, where the average O : C in-
creased with decreasing pH. Overall, we observed a sig-
nificant number of CHNO, CHOS, and CHNOS molecu-
lar formulas in SPC0201F, which are expected products of
secondary aqueous-phase reactions in fog. However, there
was a lower percentage of CHNO, CHOS, and CHNOS for-
mulas, and an increased percentage of CHO formulas in
SPC0201F compared to SPC0106F, suggesting that aqueous
SOA products with N or S may have been transformed by
acid hydrolysis into more stable CHO species (Darer et al.,
2011). This is reasonable given the longer duration of the fog
episode as well as the higher LWC of SPC0201F compared to
SPC0106F. The increased oxidation is supported by the 1H-
NMR analysis, which showed an enrichment of carboxylic
acids and other compounds carrying acyl groups. SPC0201F
had additional unique formulas which were highly oxy-
genated in the NO13, O11S, and NO13S subclasses, which
appeared on the low mass end of the homologous series
in the CHOS and CHNOS groups (Fig. S6). The 10 most
abundant unique molecular formulas in the aged biomass-
burning-influenced fog (SPC0201F) were CHO, CHOS,
and CHNOS species with smaller carbon skeletons than
the fresh biomass-burning-influenced fog (SPC0106F), in-
cluding C4H9NO7S, C5H9NO7S, C8H12O7S, C8H13NO11S,
C8H14O7S, C9H16O8S, C10H10O7, C10H18O5S, C11H8O7,
and C12H14O9. These formulas may be tracer species for
heavily fog-processed biomass burning emissions.

3.3.4 Comparison of the fresh and aged
biomass-burning-influenced aerosol compositions

Similar to the fog samples, the fresh aerosol formulas trended
towards higher carbon and DBE numbers relative to the aged
aerosol formulas. These carbon number and DBE trends are
clearly visible through the difference trends shown in Figs. 7a
and S6a, respectively. Both aerosol samples had a high per-
centage of formulas that contained nitrogen, with a notice-
able number of CHNO formulas unique to these samples
(Fig. 3b). This larger percentage of CHNO formulas may
be attributed to enhanced NOX concentrations associated
with urban traffic emissions (Glasius et al., 2006) (Table 1).
However, residential wood-combustion-influenced cloud wa-
ter collected near Steamboat Springs, CO, USA, was found
to be composed of∼ 52 % CHNO molecular formulas (Zhao
et al., 2013), and elevated numbers of CHNO formulas were
also reported in aerosol with a strong regional biomass burn-
ing influence (Schmitt-Kopplin et al., 2010) and wildfire-
influenced cloud water (Cook et al., 2017).

The majority of the unique formulas in the fresh aerosol
(BO0204N) were in the NO6−12 and N2O7−11 subclasses,
which were expected to be products of NOX reactions
and nighttime nitrate radical reactions. The formulas of
BO0204N were less saturated and less oxygenated com-
pared to the formulas in the aged aerosol (BO0213D),
which would be expected with little to no influence from
aqueous-phase secondary processes in the dry conditions
of BO0204N (Ervens et al., 2011; McNeill, 2015). This
could also help to explain the low percentage of CHOS and
CHNOS formulas observed in BO0204N. Overall, no unique
CHOS formulas were detected in BO0204N, and only one
unique CHNOS formula (C8H11NO8S) was detected. The
small number of observed CHOS and CHNOS formulas in
BO0204N may have originated from the increase in LWC
(up to ∼ 300 µg m−3) observed in the last 4 h of sample col-
lection and thus may have been formed by processes similar
to those in BO0213D. DBE values in BO0204N trended to-
wards values up to 10, which was much higher than in other
samples, where the trend stopped near DBE of 5 (Fig. 6c).
The 10 most abundant unique molecular formulas in the
aerosol with a fresh biomass burning influence (BO0204N)
were mostly N1 and N2 CHNO formulas: C8H4N2O6,
C12H10N2O8, C13H12N2O8, C15H14N2O10, C16H15NO6,
C17H20O5, C20H18O8, C24H21NO10, C24H23NO10, and
C26H23NO10. These formulas may be tracer species for
biomass burning emissions when nighttime gas-phase reac-
tions are dominant.

Several unique molecular formulas for the aged aerosol
(BO0213D) were found in the N2O4−13 and N3O5−13 sub-
classes, as well as the O4−7S, NO5−7S, and NO10−12S sub-
classes. A large fraction of the N2 formulas, and all of
the N3 formulas, were unique to BO0213D. Compared to
the other samples, BO0213D was collected during relatively
high NOX conditions, as well as high humidity and aerosol
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liquid water content compared to the other aerosol sample.
The increased frequency of CHOS and CHNOS formulas
in BO0213D compared to BO0204N was likely from reac-
tions in the aqueous phase, enhanced by the increased con-
centration of species in aerosol liquid water (Darer et al.,
2011; Hu et al., 2011; McNeill et al., 2012). Accretion reac-
tions such as aldol condensation, acetal, and hemiacetal re-
actions are also expected to take place at a significant rate
in these enhanced concentrations (Herrmann et al., 2015).
While there was not a significant trend towards higher masses
in BO0213D compared to other samples, the unique molec-
ular formulas of this sample tended to fall on the high-
mass end of the homologous series, especially for CHNOS
formulas (Fig. S6). The 10 most abundant unique molecu-
lar formulas for BO0213D were mostly highly oxygenated
CHNO formulas: C7H9NO3, C9H15NO10, C12H25NO8S,
C15H24O12, C16H18N2O11, C16H20N2O11, C17H22N2O11,
C17H22N2O13, C18H21N3O11, and C18H24N2O11. These for-
mulas may be tracer species for biomass burning emissions
heavily aged by reactions in aerosol liquid water with pho-
tolysis.

4 Summary and implications

Hygroscopic species are expected to enhance droplet forma-
tion, indicating that organics acting as fog nuclei must be
somewhat aged. In fog or wet aerosol, the water-soluble or-
ganics are subjected to further transformation in the aque-
ous phase, as we have observed here. These transformation
processes in fog and aerosol water were shown to produce
oxygenated and oxidized molecular formulas, as well as N-
containing and S-containing formulas with what were likely
nitrate and sulfate functional groups. On the basis of the anal-
ysis of the selected aerosol and fog samples, representing ex-
treme cases in the HR-ToF-AMS and 1H-NMR projections
of the organic aerosol structural space, we can summarize
the following observations.

An overall molecular trend was observed for both fog
and aerosol samples, of concurrent shifts from lower H : C
and O : C in samples with fresh biomass burning influence,
and toward higher H : C and O : C values in samples with
aged biomass burning influence. This was consistent with
the 1H-NMR functional group distributions, which showed
a decrease of aromatic moieties from the fresh to the aged
aerosol, largely due to the disappearance of phenolic struc-
tures. The lower number of carbon atoms observed in aged
samples suggests that the secondary formation of oligomers
was somewhat counterbalanced by fragmentation reactions
and/or by the uptake of low-molecular-weight compounds
from the gas phase.

Overall, the fog composition was generally more oxidized
and SOA-like than the aerosol, where the fresh fog composi-
tion was similar to the aged aerosol composition in both the
1H-NMR analysis and the molecular formula trends.

CHOS and CHNOS formulas were detected with high fre-
quencies in samples with high water content during collec-
tion (all samples except BO0204N). This supports an en-
hanced production of S-containing SOA species via reactions
in the aqueous phase.

When the unique formulas of the two aged samples
(SPC0201F and BO0213D) were compared, aging reactions
in aerosol liquid water appeared to produce less highly oxy-
genated CHO formulas than in fog and a greater number of
formulas in the CHNO, CHOS, and CHNOS groups. This
difference could be explained by the increased chance of re-
actions with inorganic nitrate and sulfate ions in the relatively
higher solute concentrations of aerosol liquid water com-
pared to the increased likelihood of hydration reactions in fog
(Darer et al., 2011; Hu et al., 2011). This conclusion agrees
with the quantitative analysis of functional group composi-
tion of aqueous SOA isolated by PMF analysis reported pre-
viously (Gilardoni et al., 2016).

The variability of 1H-NMR fingerprints between samples
reflects the change in oxidation state of the CHO family de-
tected by FT-ICR MS (reaching a maximum for SPC0201F)
but seems rather insensitive to the changes in content of
heteroatom-containing groups (CHNO, CHOS, CHNOS). In
fact, the formation of CHOS compounds detected in the FT-
ICR MS analysis in deliquesced aerosols (BO0213D) or in
low-LWC fog water (SPC0106F) could not be traced to par-
allel changes in 1H-NMR spectral characteristics. It is possi-
ble, however, that a fraction of the 1H-NMR-detected alkoxyl
groups (HCO) were bound to sulfate esters and misclassified
as alcohols.

Compared to fresh fog (SPC0106F), the aged fog
(SPC0201F) had an enhancement in the highly oxidized
CHO formulas and an overall lower percentage of CHNO
and CHOS formulas. This is likely due to hydrolysis re-
actions in the low-pH environment (Darer et al., 2011; Hu
et al., 2011). The 1H-NMR analysis also highlighted that
SPC0201F included highly oxidized low-molecular-weight
organic acids (phthalic, maleic, succinic, pyruvic acids)
which originated from the degradation of particulate WSOC,
the oxidation of condensable water-soluble volatile organic
compounds, and the uptake of condensable products of gas-
phase oxidative reactions.

In this work, we used the detailed molecular composition
to describe the differences in aging and aqueous-phase pro-
cesses for a select set of samples from the Supersito winter
2013 campaign. The majority of the molecular formulas ob-
served in this study have not been previously reported but
correlate with anticipated molecular trends. This emphasizes
the importance of detailed molecular analysis of atmospheric
samples, for the study of biomass burning emissions pro-
cessed in the aqueous phase of aerosol and fog, as well as
the potential of aqueous-phase processing to act as a source
of SOA in the atmosphere.
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