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Abstract 

This project was conducted to analyze (model and simulate) and optimize an electric motor 

based drive system to propel a typical passenger vehicle in an urban driving environment.  

Although there are many HEV and EV type systems on the market today, this paper chose 

the Toyota Prius HEV system as a baseline using a brushless AC motor.   

Although a vehicle can be driven many ways, a more standardized Urban Dynamometer 

Driving Schedule, UDDS, was chosen to simulate real driving conditions.  This schedule 

is determined by the US Environmental Protection Agency, EPA, and is intended to 

represent the city driving conditions for a typical passenger vehicle in a city environment.   

A high level modeling and simulation approach for vehicle and motor drive was taken to 

focus on motor operation and gear ratios from the electric to the mechanical drive system.   

Vehicle battery being the limiting factor in the range of the HEV vehicle, the energy usage 

of the battery was optimized to ensure lowest energy dissipation, thus gaining the most 

mileage out of the vehicle.   

How to maximize the drive mileage for a given battery size?  There are multiple dynamic 

factors that affect the battery usage and efficiency.  Factors such as road conditions, vehicle 

speed, weather, weight, and aerodynamics are amongst the many that govern battery 

mileage.  Gear ratios and selection also play a crucial role in the loading and efficiency of 

the motor, thus affecting the battery mileage.   

In this project, the gear ratios between the electric motor and the vehicle drive shaft were 

the focus for this optimization.  As part of the overall system model, gears and gear ratios 

were modeled and simulated to determine their optimum ratios for finding the minimum 

energy usage point for the battery.
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1 Introduction 

The concept of battery operated Hybrid Electric Vehicles (HEV) and full Electric Vehicles 

(EV) are as old as the automobile itself from over hundred years ago.  Unfortunately, the 

low cost of fossil fuels subdued any traction these vehicles may have had.  The last decade, 

though, has been a boom to the EV market, as they have become a growing market segment 

in the transportation space.  The main reasons have been to reduce the impact of burning 

fossil fuels on the environment, lower transportation operating costs, and general consumer 

interest in technology [1].   

There is now sufficient momentum from the auto makers, that even the reduced fuel costs 

for the internal combustion engine (ICE) cars, will not be able to stop the progress and 

proliferation on HEVs and EVs.  In fact, electrification of vehicles has now become the 

basis from which to launch new technologies in automobiles such as semi-autonomous and 

even autonomous driving. 

Although computer models have been used for decades in the design industry, the onset of 

next generation EVs has really accelerated the use of computer modeling and simulation 

of the whole system to optimize all aspects of vehicles, including energy consumption.  

This has become extremely important since the battery charging stations cannot be found 

as readily as gas stations.  A battery also takes much longer to charge than filling a gas tank 

in an internal combustion engine, ICE, vehicle.   

The work in this paper has been inspired by the work done by Oak Ridge National 

Laboratory at the U.S. Department of Energy (DOE) in which a 2010 Toyota Prius hybrid 

automobile was studied and analyzed.  The results of this study are published in the paper 

titled “Evaluation of 2010 Toyota Prius Hybrid Synergy Drive System” prepared by Mitch 

Olszewski, program manager [2].   

This was a thorough evaluation of the vehicle by means of a complete tear down of the 

motor drive system, where all aspects of the sub-systems were tested for performance  

Goals of this evaluation were to characterize the performance of the electical and 

mechanical system, including the inverter/motor sub-system [2].   



2 

 

Although, a review of the  DOE evaluation of the Prius hybrid is beyond the scope of this 

paper, it, however, does serve as a foundatation for this project to further the learning, and 

thus optimizing the design for energy consumption.    

In the last three decades, there has been research on the fuel consumption of vehicles 

through technical changes. The impact of behavioral characteristics has not been 

researched that much in the areas of fuel consumption of the vehicles. Real driving cycles 

are different from the predefined cycles which is shown from the empirical studies. 

A more recent study showed how a realistic drive cycle can be used to optimize gear ratios 

where dynamics of the driving is taken into account [3].  Research was done using Indian 

city roads with Indian Driving Cycle (IDC).  This study showed that optimal coordination 

of both gear ratio and speed of vehicle has an important role in improving the fuel 

efficiency of vehicle. 

Understanding the limits of the actual components now allow us to correctly model the 

critical sub-systems at high level and to simulate the real world driving environment.  The 

computer models and simulations can be run for multiple variations of the key parameters 

that may effect the system performance, and then allowed to determine the optimum 

operating points  without building multiple prototypes, and running actual field tests, which 

can be time consuming and costly.   

Two important factors must be considered before attemping to simulate computer models 

of the desired subsystems.  First is to obtain the mathematical equations that define the 

physical behavior of electric drive sub-systems.  Second is to determine the level of 

complexity that the models need to be to provide relevant information.  Since all models 

are an approximations of behaviors, it is important to understand what is expected from the 

simulations and modeling only what is required to provide relevant results. 
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2 Background 

HEV is defined as the technology in which there are more than one energy source used in 

which at least one source will be electricity. There are three main type of HEVs.    All HEV 

systems are equipped with an electric motor, an ICE and a generator. They may be 

considered either series, parallel, or series-parallel depending on how the system is 

configured.  Series hybrid is very similar to an EV, in that the electric motor moves the 

vehicle. The gasoline engine is there only to provide added power to the motor via the 

inverter, and acts as a range extender.   

A parallel hybrid is where the power to the drivetrain is shared by ICE and the motor.  The 

concept of using the parallel hybrid system is successfully implemented in the new Honda 

Insight improved model and in Honda Civic Hybrid. The advantages of using Parallel hybrid 

source is that if any of the source of power fails , the other source will be automatically 

available for moving the vehicle. The direct connect of the ICE shaft to wheels enables less 

power transformation and thus achieves higher efficiency. The differential, torque converter 

and combination of transmission is more efficient than the series HEV’s ICE-to-wheel path.  

Thus, the size of parallel hybrid’s electric traction motor is less than what is required in 

series hybrid. There can be various other combinations and configurations of the two sub-

systems as well.  However, discussion of these are beyond the scope of this work.    

Finally, a series-parallel hybrid is where the vehicle can be powered by gasoline engine 

alone, the electric motor by itself, or by both.  Toyota Prius is configured for a series-

parallel drive, as shown in Figure 1. The HEV system is equipped with an electric motor, 

an ICE and a generator. A power splitting planetary gear is used to integrate these systems 

which provides the functionality of power flow structure for different modes of operation 

[4].  There are two kind of motors in this system; the primary electric motor (MG2) is used 

for providing the mechanical drive power for moving the car through ICE and this (MG2) 

is also used for recharging the battery during the process if regenerative braking.  The 

secondary electric motor (MG1) is responsible to act as generator which transfer the power 

from the ICE to recharge battery and also acts as a power source to supply MG2 which 

assists in propulsion of vehicle [5]. 
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                              Figure 1     Series-Parallel HEV Drive Block Diagram 

 

HEV’s series-parallel combination of electric drive is powered by a battery and a 

mechanical drive using the legacy ICE engine powered by fuel. The wheels can be driven 

by ICE engine and electric traction motor. Both systems are connected to the drive shaft of 

the vehicle, as shown graphically in Figure 2. Both electrical machine and the engine are 

responsible for producing separate powers that are Ptm and Pice, respectively [6].  The 

required power produced by the ICE is through the combustion of fuel as the source of 

power.  For the traction motor, the source of power is the battery. 

The main idea here is to use electrical drive as long as possible, before the ICE must be used 

for longer journey, as required, to minimize use of fuel as much as possible.  This concept 

requires the vehicle to use as big a battery as possible.  However, due to size and weight 

limitations, battery is limited in the amount of energy that it can store in the space provided.  

In order to keep the currents low to minimize I2R losses in wires, battery is typically 

designed to be high voltage in the range of 200V to 500V.   
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Figure 2  Series-Parallel Hybrid Drive System 

 

 Many of the existing HEVs in the market today use either induction motor (IM) or a 

permanent magnet synchronous motor (PMSM).  Size, weight, cost, and efficiency are some 

of the criteria that are taken into consideration, when doing this evaluation.  IM tends to 

have lower peak power density (50kW/48kg) compared to that of PMSM (50kW/30kg) [7].  

However, typically, the PMSM will cost more due to the magnets used in the motor.  In the 

case of Toyota Prius, a PMSM is used as part of the electric drive.  Table I, below, shows 

the main components and ratings of the Toyota Prius electric drive system. 
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Table I  Electric Drive Subsystem Features 

Subsystem   Type Specification 

Battery Nickel-Metal-Hydride 288 V 
6.5 Ah 

Converter Boost (IGBT) 600 V 
36.5 kW 

Inverter Full H-Bridge w/IGBTs  

Motor PMSM 300 N (peak) 

 

Although most motors are designed and used to operate at a constant speed and provide 

constant output, many of the modern systems require variable speeds where electric motors 

are used.  Considerable studies have been done in the areas of variable speed drive (VSD) 

in order to achieve improvements in efficiency and energy savings.  Total electric energy 

produced in USA is nearly 65% consumed by electric motors. A large percentage of the 

electric motors in the US are driving fans, pumps, compressors and conveyors where 

constant speed is desired.  Only a small percentage of electric motors are traction devices 

in automobiles where variable speed is a must. By increasing the efficiency of the 

mechanical transmission and decreasing the energy input, substantial savings can be 

achieved to reduce energy consumption. The use of variable-speed drive instead of 

constant-speed operation can increase the system efficiency from 15 to 27%. The variable-

speed drive operation benefits the environment in terms of saving the energy, reduces the 

atmospheric pollution by lowering the energy consumption and production [8]. 

With the advent of micro-electronics including processing power, sensors, power 

MOSFETs, and digital electronics, VSD have taken off.  Operating and controlling the 

motor, inverter, and processing the various sensor signals requires a sophisticated 

microprocessor based control system.  This is typically done using an electronic control 

unit (ECU), that has CPU and other peripherals built in.  A block diagram of a typical CPU 

based ECU is shown below in Figure 3.  All of the proportional integral differential (PID) 

control as well as signal conditioning and processing is done by the ECU. 
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Figure 3 Typical CPU based Electronic Control Unit 
     

The topic of finding fuel efficiency via optimized gear ratios was investigated and 

published by Minjae Kim et al [9].  The paper described the establishment of the gear ratio 

while designing the hybrid electric vehicle considering the fuel and battery efficiency. The 

hybrid algorithm which used Univariate and RSM search method to decide the best gear 

ratio for hybrid vehicle using less power from the battery. This algorithm successfully 

achieved reduction of energy up to 0.84%. This proposed algorithm can be used in any 

vehicle having dual motor tractions [9]. 
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2.1 Electric Drive System 

2.1.1 Battery 

The high voltage battery is the main power source for the electric motor drive.  The battery 

is sized in its capacity to provide enough energy to last a typical drive period in a day.  

However, depending on the road conditions and the gradients encountered, the charge may 

not last that long.  Hence, a need to re-charging the battery during the day may arise.  It is 

critical for the control system to operate the vehicle and the motor drive system in the most 

efficient way possible to ensure highest mileage per battery charge.   

In city driving, where the vehicle is constantly required to slow down and stop, it is possible 

to recover some of the kinetic energy of the vehicle back into electrical energy.  This 

phenomenon is known as regenerative braking, where during deceleration mode, the motor 

turns into a generator, thus putting charge back into the battery [10].   

Rechargeable battery technology involves chemistry and physics.  Lithium Ion type battery 

has emerged as the leading type in most portable devices.  However, for larger systems like 

the automobile, Li-ion is also desirable due to its relatively high energy density.  An energy 

density graph for various battery types is shown in Figure 4 for comparison purposes [11]. 

 

Figure 4 Energy Density of Battery Types 
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A typical Li-ion cell voltage vs. state of charge (SOC) is shown below in Figure 5.   Voltage 

holds relatively constant (3.2V to 3.6V) across the charge range until it gets close to 0% 

SOC.  Since each cell is only about 3.3V, and rated for about 3000mAh, a battery pack that 

can power a large system like a vehicle is typically constructed by using cells in series and 

parallel combinations to provide the proper voltage and total energy.   Thus, it would 

require about 60 cells in series to produce 200V, and about 80 cell in parallel to produce a 

nominal 50kWh pack.   
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Figure 5  Typical Li-ion Cell Voltage vs SOC 
 

Battery technology is an interesting topic where much of the research is being conducted 

to improve its performance.  For the purpose of this evaluation, an ideal battery source is 

assumed.  This is modeled by using a simple voltage source with zero source impedance.  

This model can be modified to more closely match the actual battery characteristics.  

However, modeling of an actual battery pack is beyond the scope of this study.  
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2.1.2 Motor Drive 

2.1.2.1 Inverter 

The main function of inverter is to convert the dc voltage to an ac voltage, where the 

frequency of the drive in synchronous to the motor rotor speed. A power inverter is used 

to produce a pulse width modulated voltage drive to the motor phases.  This in turn allows 

for controlled currents to flow in the motor windings.  Thus the inverter is a major part of 

the motor drive circuit allowing for controlling the currents in the motor, and motor to 

produce smooth torque output.  A typical inverter drive circuit is shown in Figure 6.  In this 

paper, inverter is modeled as an ideal 3 phase current source from the controller.    

 

+

Vdc

ia 

Ra

Rc

Rb

La

Lc

Lb

qa qb qc 

Cdc

isource 

3-Phase Inverter

PMSM

6 IGBTs

Ve_b

Rs

 

 

Figure 6     Motor drive model with inverter and reduced order PMSM model 
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2.1.2.2 Electric Machine 

Main function of an electric drive is the ability to convert electrical energy into mechanical 

energy.  This is accomplished by the use of an electric machine or a motor.  In this study, 

a PMSM was used as part of the system modeling.  A cross section view of a typical 3 

phase, 4 pole PMSM is shown in Figure 7.  Surface mounted (permanent) magnets establish 

the flux in the rotor.  The stator windings are in the slots such that a sinusoidal flux density 

is produced in the air gap.    

Stator

Stator Winding 
Slots Surface Magnets 

on Rotor

Rotor Shaft
Air Gap

 

Figure 7     PMSM Motor Cross Section 

 

A typical motor torque and power curve as a function of motor rotational speed is shown in 

Figure 8.  Motor torque as a function of speed is given by  ߬ = ߬ௌ − ܭ ଵఠಿಽ ߱,     (2.1)  

where ߬ௌ is the stall torque, ߱ே௅ is the no load rotational speed (RPM), and K is a constant. 
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Figure 8  PMSM Torque and Power vs Speed 

 

Motor power as a function of rotational speed, shown in Figure 8, is given by 

    ܲ = ߬߱.       (2.2) 

A PMSM used in the electric drive can be modeled using the steady state equations.  This 

level of detail is needed for proper analysis and will be used in simulation of the system.  

Stator voltage equations are defined as  ݒ௔ = ݅௔ݎ௔ + ௗఒೌୢ୲        (2.3) 

௕ݒ = ݅௕ݎ௕ + ௗఒ್ୢ୲          (2.4) 

௖ݒ = ݅௖ݎ௖ + ௗఒ೎ୢ୲  .      (2.5) 

Flux linkage equations can be written as  ߣ௔ = ௔௔݅௔ܮ + ௔௕݅௕ܮ + ௔௖݅௖ܮ + ௕ߣ ௠௔      (2.6)ߣ = ௔௕݅௔ܮ + ௕௕݅௕ܮ + ௕௖݅௖ܮ + ௖ߣ ௠௕   (2.7)ߣ = ௔௖݅௔ܮ + ௕௖݅௕ܮ + ௖௖݅௖ܮ +  ௠௖     (2.8)ߣ

where Laa, Lbb, and Lcc are self-inductances of the stator phases a, b, and c, and Lab, Lbc, 

and Lac are the mutual inductances between the respective phases.  
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Flux linkages due to the permanent magnets are ߣ௠௔ = ௠௕ߣ (2.9)       (ߠ)ݏ݋ܿ ௠ߣ = ߠ)ݏ݋ܿ ௠ߣ − ௠௖ߣ (2.10)     (3/ߨ2 = ߠ)ݏ݋ܿ ௠ߣ +  (2.11)       (3/ߨ2

where ߣ௠ is the peak flux linkage due to the permanent magnet, and ߠ is the rotor position.  

PMSM motor phases configured as a wye connection is shown in Figure 9.   
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Figure 9 3-Phase PMSM Equivalent Circuit 

 

State equations for the motor phase current are  

                        ௗ௜ೌୢ୲ = ଵ୐ ௔ݒ) − ݅௔ܴܽ − ௘_௔ݒ −  ௡)     (2.12)ݒ



14 

 

                              
ௗ௜್ୢ୲ = ଵ୐ ௕ݒ) − ݅௕ܴܾ − ௘_௕ݒ −  ௡)     (2.13)ݒ

 ௗ௜೎ୢ୲ = ଵ୐ ௖ݒ) − ݅௖ܴܿ − ௘_௖ݒ −  ௡)     (2.14)ݒ

where, ݒ௔, ,ܴܽ ,௖ are phase drive voltagesݒ ௕, andݒ ܴܾ, and ܴܿ are motor phase resistances, ݒ௘_௔,  ௡ is the neutral point (star point)ݒ ௘_௖ are the phase back-emf voltages andݒ ௘_௕, andݒ

voltage.  Back-emf term increases as a function of motor speed, and varies as a function of 

rotor position.  Back-emf is the artifact of the PMSM due to its generative properties.  As 

the motor spins, the magnets rotating across the stator windings produce a sinusoidal 

voltage on the windings.  This voltage is called the back-emf.  The magnitude of the voltage 

is a function of the rotational frequency.   

Due to the fact that torque varies as a function of current and angle, the control system needs 

to measure the 3 motor phase currents as well as the motor electrical angle.  Current needs 

to be controlled in such a way as to produce the maximum torque achievable at any given 

angle.  This requires a sinusoidal drive signal as a function of the measured angle. 

A commonly used technique to achieve this phase alignment and produce the maximum 

achievable torque is to change the frame of reference from stationary A,B,C frame to what 

is known as rotational D,Q frame of reference.  In fact, this frame transformation, also 

known as Park’s Transformation, converts an (ac) alternating signal into a dc signal for ease 

of analysis and controls.   Another version of this matrix is the power-invariant matrix 

shown in (2.15).  As a result of this (T-matrix) transformation, the signals are separated out 

automatically into maximum torque producing axis (q-axis) component and 0 (zero) torque 

producing axis (d-axis) component.  The transformed d-axis and q-axis current are  

     ൬݅ௗ݅௤൰ = ଶଷ ቌ (Ө)ݏ݋ܿ Ө)ݏ݋ܿ − ଶ஠ଷ ) Ө)ݏ݋ܿ + ଶ஠ଷ (Ө)݊݅ݏ−( Ө)݊݅ݏ− − ଶ஠ଷ ) Ө)݊݅ݏ− + ଶ஠ଷ )ቍ ቌ݅஺(Ө)݅஻(Ө)݅஼(Ө)ቍ  .  (2.15) 

Since d-axis produces no torque, ideally, the measured and controlled d-axis current should 

be 0.  Also, since q-axis is the maximum torque producing axis, the q-axis current should 

be the actual commanded current.     

A complete system block diagram of the model is shown in Figure 10. 
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Figure 10 Block Diagram: Closed Loop Current Control 

This topology employs a closed loop current control method utilizing a PI controller.  An 

independent d-axis and q-axis command is applied and controlled in order to minimize the 

q-axis current, and to control the q-axis current to the desired value to produce torque.  Also 

evident from this block diagram is that an inverse transformation is necessary to convert the 

DQ voltage commands back to the ABC reference from in order to drive the 3 motor phase 

voltages.  The phase voltage in the ABC reference, using the inverse transformation, are 

given as 

ቌݒ஺(Ө)ݒ஻(Ө)ݒ஼(Ө)ቍ = ൮ Ө)ݏ݋ܿ Ө)ݏ݋ܿ(Ө)݊݅ݏ− − ଶ஠ଷ ) Ө)݊݅ݏ− − ଶ஠ଷ Ө)ݏ݋ܿ( + ଶ஠ଷ ) Ө)݊݅ݏ− + ଶ஠ଷ )൲ ቀݒ஽ݒொቁ .  (2.16) 

 

This inverse transformation back to the ABC reference frame allows the loop to be closed 

so that the 3 phase drive voltages can reach the desired levels to produce phase currents.  

For the purpose of this analysis, motor saturation and other non-linear effects are ignored.  

From conversion of the phase currents to the d-q rotating from stationary frame, the 

dynamic state equations can be written as  ௗ௜೏ୢ୲ = ଵ௅೏ ௗݒ) − ݅ௗܴ௦ + ߱௠ܮ௤݅௤),     (2.17) 

ௗ௜೜ୢ୲ = ଵ௅೜ ௤ݒ) − ݅௤ܴ௦ − ߱௠ܮௗ݅ௗ − ߱௠ߣ௠),    (2.18) 
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and the motor torque can be calculated as 

௘ܶ = (ଷଶ)(௉ଶ)(ߣ௠݅௤ + ௗܮ) −  ௤)݅௤݅ௗ)                         (2.19)ܮ

where P is the number of poles in the machine.  In this case, a 2 pole (P=2) motor is used 

in the modeling.   

The equivalent circuits for the above equations are shown in Figure 11 below [12].   

Lq

vq

Rs

߱mλm+-߱mLdId

+-
 

Ld

vd

Rs

߱mLqIq

+-
 

 

Figure 11 Equivalent Circuit for PMSM in d-q frame 

 

2.2 Vehicle Load Model 

Vehicle load can be a function of multiple variables, including aerodynamics.  Here, we 

take into account the parameters that provide the largest effects on the vehicle in terms of 
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load.  Vehicle load model equations are below.  Accelerating mass of vehicle will be the 

force on the wheels.  Wheel force is then calculated as  

௪݂௛௘௘௟ = ܶܯ ௗ௩ୢ୲                                                  (2.20) 

where v is the velocity of the vehicle, and ܶܯ is the total mass calculated as ܶܯ ℎ݁ݒܯ= +  The torque on wheels can be determined as   .݁ݎ݅ݐܯ

௪ܶ௛௘௘௟ = ݎ ௪݂௛௘௘௟ = ܶܯ ݎ ௗ௩ୢ୲ = ܶܯ ݎ ௗ(௥ఠೢ೓೐೐೗)ୢ୲                

ௗ(ఠೢ೓೐೐೗)ୢ୲  2ݎ  =  ,     (2.21) 

where ݎ is the radius of the wheels, and ߱௪௛௘௘௟ is the rotational speed of the wheel. 

Rolling resistance of tire is given by 

           ௥݂௥ = μܯ ݎݎg,                                         (2.22) 

where μݎݎ = rolling resistance coefficient and g = 9.81 
௠௦ଶ .  Viscous drag is given by  

        ௗ݂ = ଵଶ  (2.23)                                    2ݒ ݀ܥ ܣ ߩ

where air density 1.2 = ߩ ௞௚௠ଷ , A is the cross sectional area, and Cd is the viscous drag 

coefficient.  Force due to slope effect is determined as ௦݂௟௢௣௘ =  is ߠ where ,(ߠ)݊݅ݏ ݃ ܯ

the angle of the slope. For small slopes, the force can be approximated as ௦݂௟௢௣௘  where gravitational acceleration   g = 9.81 ௠௦ଶ.  Force due to bearing friction is ,݁݌݋݈ݏ݃ܯ=

given by ௕݂௘௔௥ = ௞௕௥  ߱.  Thus, total force can be calculated as 

ୀ ௪݂௛௘௘௟  ்ܨ    + ௥݂௥ + ௗ݂ + ௦݂௟௢௣௘ + ௕݂௘௔௥.                    (2.24) 

Load torque can be then determined by ௅ܶ ୀ ݎ ܶܨ, where r is the radius of the tire. 

Finally the vehicle tire rotational equation is given as 

                     ௗఠௗ௧ = ೐்ି்ైోఽీ௃                                                               (2.25) 

where J, in Kg·m2, is the moment of inertia, Te, in Nm, is the torque driven from the 

motor, and ߱ is the tire rotational speed of the tires in rad/s. 
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2.3 Power Balance and Energy Conservation 

The three components to the power calculation are input power from the battery, motor 

output power, and vehicle load power.  Input power from the battery source can be 

calculated as  

௜ܲ  ୀ ݒ௔݅௔ + ௕݅௕ݒ  +  ௖݅௖.                   (2.26)ݒ

In the d-q frame of reference using Park’s transformation, this equation becomes 

௜ܲ  ୀ(ଷଶ)( ݒௗ݅ௗ +  ௤݅௤).                       (2.27)ݒ 

Motor output power is simply calculated as a function of torque and motor speed as 

௠ܲ௢  ୀ߬௠߱௠.                                        (2.28) 

Vehicle output power can be calculated using velocity and total force as 

௩ܲ  ୀ ௦ܸ(2.29)                                              .்ܨ 

For a system that does not store energy, the electrical power from the battery source must 

be the sum of the mechanical power output and the system losses.  If a lossless motor 

model is assumed as a first order, then the motor power will be equal to the vehicle 

output power.   This is used in the simulation to ensure that the model is designed 

properly and that the obtained results are correct.    

For the battery, however, it is the energy usage that is of importance.  The energy used 

from battery can be calculated from power as ܧ௕ = ׬ ௧଴ݐ݀ܲ .   The main intent of this study 

is to minimize the usage of energy from the battery by using the most optimum gear ratios 

for motor drive.  Simulation results will show that gear ratio selection has a significant 

effect on the amount of energy used during a city drive cycle.   

 



19 

 

2.4 Gear Box 

Since the motor is designed to operate most efficiently at higher speeds, a gear ratio is 

typically required to drive the wheels of the vehicle, which run a much lower speeds than 

the motor.  The problem which arises in the case of hybrid powertrain configuration is to 

find the best gear ratios and arrangement which can cover more mileage with the lowest 

use of electricity from the battery.  The problem of minimizing the fuel consumption 

depends upon several factors which are gear ratio, torque of the engine over the entire 

cycle. If appropriate gear ratios are selected, energy minima can be found thus leading to 

highest possible mileage [13].  An example of the gear box for power transmission is shown 

in Figure 12.   

EM Gear 
Box

τm   ߱m

τw   ߱ w

 

Figure 12 Motor to Wheel drive with Gear Box 

The gear reduction allows the axle to spin at a lower rate, and increase the torque, yet 

receive full power from the motor drive.  Since the motor can spin at a high rate, the gear 

ratio allows the motor to be at the low torque.  This can be shown mathematically as 

 ܲ = ߬௠߱௠ =  ߬௪߱௪ = ߬௪(ఠ೘ீ)                       (2.30) 

where ߱௪ is the wheel speed, ߬௪ is the torque at the wheel and G is the gear ratio.  Most 

EVs currently use 1 to 2 gears to maximize the motor efficiency, however, many hybrids 

use no gear at all.  This model does work, but does not allow for smaller more efficient 

motor to be used.   

A design study of independently controlled transmission was done with objective to find 

the planetary gear configurations with respect to different speed ratios within a given range. 
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Speed ratio can be defined as ratio between input engine speed and the output speed of the 

vehicle. By changing the connections among the planetary gear, many possibilities can 

arise in terms of achieving the efficiency of the vehicle [14]. 

Another practical study of stochastic method was used in which the driving cycle was 

approximated using the Markov chain instead of prior knowledge. This method was applied 

to a parallel hybrid power train and the results shows a significant amount of reduction in 

the usage of electricity from the battery [15]. The inputs which were varied were the gear 

ratios and the power distribution. Different gear ratios were used which showed that 

selecting the best combination of the gear ratio can reduce the usage of electricity from the 

battery and can produce improved mileage. 

The above literature review shows that the selection of proper gear ratio can be useful in 

efficiently utilizing the power of the drive, and minimizing the energy consumption from 

the power source [16]. Through simulations of the traction drive using city drive cycle, 

the optimum gear ratios can be determined.  The goal of the next phase is to show that 

gear ratios can be used to alow for smaller high speed motor.  Also, optimizing the gear 

ratios can be beneficial to saving power during jouney, thus getting more mileage from 

the single battery charge.   
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3 MATLAB/Simulink Modeling 

3.1 System Modeling 

A system based model was developed based on the theoretical calculations shown earlier.    

The five main parts to the overall model are motor model, vehicle model, gear box 

model, control block model, and power balance and energy calculations.  Complete high 

level model of the system is shown below in Figure 13.  Four main blocks that were 

developed as part of the overall model are control, motor model, gear box and vehicle 

load model.  Details of these blocks are discussed in the subsequent sections.  Power-

energy block is simply used to calculate and store the input and output power and energy 

values during the drive cycle. 

 

Figure 13 System Model Block Diagram 
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3.2 Motor Modeling 

A PMSM motor model was developed based on the state equations in d-q reference 

frame.   This allows for easier control of the currents.  The model uses the Park’s 

transformed variables in d-q reference frame.  Motor model is shown below in  

Figure 14.  Model developed here in Simulink is based on the state (2.17), (2.18) and 

(2.19).  These equations can be modeled using the blocks such as integrator, summing 

junction, multipliers, and dividers, to represent the full state equation.   As an example, ids 

is the state output, Ld, Lq, and Rs are motor parameters which are constants, and vds and 

iqs are inputs.   



23 

 

 

Figure 14 PMSM Motor Model 

 

3.3 Control Modeling 

Proportional integral differentiator (PID) type controllers are quite common in the industry.  

This model uses a simple PI based control loop for vehicle speed control.  Also, the q-axis 

current can be controlled in the same loop.  The d-axis current is controlled to zero “0” 

amps, since only the q axis current produces torque.  The gains, Kp and Ki, were chosen to 

provide a critically damped response to a step input, as well as a reasonable steady state 
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error of less than 2%.  This model consists of amplifiers, inverters and all other important 

functions which are used in the control systems to check the stability and characteristic of 

the model. 

                        

Figure 15 PI Controller for Speed and Current 

 

3.4 Gear Modeling 

The main objective of the simulation is to find the combination of gear ratios that produce 

the most energy efficient drive cycle, and provide the highest possible mileage.  For the 

baseline model, nominal gear ratios were chosen such that sufficient torque can be 

produced by the drive train to propel the vehicle, and the sufficient power can be generated 

and delivered to the wheels.  In order to find the optimized gear ratio for lowest energy 

consumption, a range for each gear was used.  The range of the gears was chosen to ensure 

that vehicle can produce reasonable torque and power to propel the vehicle during the drive 

cycle load conditions.  Simulation was setup to use random integers within the range for 

each gear, and determine the energy used during the drive cycle. 
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Table II Gear Ratios 

Gear   Nominal Ratio Ratio Simulation 
Range 

G1 16 9 - 20 

G2 8 4 - 15 

G3 5 2 - 7 

G4 3 1 - 4 

 

A state machine model for this gear transitions used in the simulation is shown in Figure 

16.  Here we use the model to ensure that the motor speed does not go well above its rated 

speed of 5000RPM.  The model allows for both up-shifting during acceleration conditions 

and down-shifting during deceleration. 

Gear 1Start Gear 2

If 
Motor RPM >5000

and
accel >0 Gear 3

If 
Motor RPM >5000

and
accel >0 Gear 4

If 
Motor RPM >5000

and
accel >0

accel <0accel <0accel <0

 

                                          Figure 16 Gear transition state machine 

 

3.5 Load Modeling 

A vehicle load model was developed based on key vehicle parameters and environmental 

conditions.   Vehicle weight of 1500 Kg was used based on passenger car fleet averages 

published by the National Highway Traffic Safety Administration (NHTSA). Some of the 

other key parameters are listed in Table III.  Although viscous drag coefficient is a function 

of the aerodynamics of the vehicle, an average value of 0.5 was used.  Many of the older 
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model cars would have higher value between 0.6 and 0.9, and the newer cars due to better 

frontal shapes would have values in the range of 0.25 to 0.4.  Complete vehicle load model 

developed in Simulink and shown in Figure 17, is based on the equations developed in 

section 2.2. 

Table III Load Model Parameters 

Parameter Value Unit 

Vehicle weight 1500 Kg 

Tires and Rotating Parts 50 Kg 

AFront 3.7 m2 

Cd 0.5  

rtire 0.3 m 

Tire loss coefficient 0.01  

 



27 

 

 

                                          Figure 17 Vehicle Load Model 
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3.6 Road drive cycle models as inputs 

Two types of speed inputs as reference were used for simulation.  First, the step input for 

the vehicle speed is used to ensure that the model is behaving as expected, and that its’ 

response is accurate and stable.  Second, Urban Dynamometer Driving Schedule 

(UDDS), is used as the basis to assess the overall system performance for energy 

efficiency [17].  UDDS is typically used by the EPA as a reference driving profile for 

testing of fuel economy for light vehicles.   

To understand the behavior of the system model and controls, a step input was used.  This 

allows for debugging of the model as well as fine tuning of the parameters to ensure that 

the output behaves as expected.  A step of 70 MPH was used as a speed input for this test 

case to show the system response.  

For the performance evaluation of the vehicles the automotive industry and governmental 

agencies perform standard tests which are called standard drive cycles on the basis of which 

certification of vehicle fuel economy is given. The functionality of standard drive cycles 

are such that they have both the road grade and speed components. 

One of the commonly used standard test is UDDS in which the drive cycle covers a distance 

of 7.5 mile in 1369 second with average speed of 19.6 mile per hour. In this 7.5 miles 

covered, the vehicle has frequent stops and starts. This parameter was also taken as input 

for the simulation. The Figure 18 shows the time-dependent velocity profile. Every vehicle 

must function according to the following graph.  These are the transient drive cycles in 

which there is a lot of change in the speed due to on-road driving conditions.  
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                                          Figure 18 Velocity-time UDDS Graph 

 

The graph shows the vehicle speed with respect to time. These are the standard drive cycles 

which each vehicle must be tested with. The model presented in this thesis was simulated 

with this UDDS drive cycle. 
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4 Simulation Results 

4.1 Speed and Torque Results for Step Input 

One of the best ways to test a control system is to input a step function.  Understanding the 

system response to a step input is important in order to determine how well the system is 

designed and tuned.  It provides response in two ways – the transient response and the steady 

state response.   

In this simulation, vehicle speed was used as a step input not only to determine the system 

parameters in setting PID loop, but also to initially optimize the gear ratios.  Step response 

of the system is shown in Figure 19.  Step response shows the settling time and the steady 

state error of the system control loop. Settling time shows how much time it takes for the 

vehicle to achieve desired speed.  In below figure, settling time is shown to be 20 second, 

achieving steady state commanded input in this duration.  Initially the torque produced by 

the motor is high due to low speed.  Acceleration increases initially since the vehicle starts 

from zero speed.  As the speed reaches steady state, the acceleration decreases to zero.  This 

simulation also shows that the resulting vehicle speed reached the desired reference speed, 

with low error, and no observable overshoot. As discussed earlier, this is important in 

confirming that the PI gains have been selected correctly.  
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Figure 19 Step Response of System 
 a) Vehicle speed, b) Motor Current, c) Torque 

 

The Figure 20 shows the power and energy profile when step input is used as input. Initially 

the input power drawn from the battery is high that is due to initial high load requirement, 

mainly due to the acceleration required.  Motor has to provide power to overcome this force 

and equally proportional power is drawn from the battery. As the vehicle speed reaches 

steady state, acceleration becomes zero and input, output power become theoretically 

equal. Similar response is observed in case of Energy input and output.  Maximum power 

output delivered is about 40 kW for this case.   
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During the time when the set input speed is zero, and the system goes into what is known 

as regenerative braking mode.  Here, the mechanical system is putting power back into the 

battery during this time as the vehicle [17] decelerates, and the speed goes down to zero. 

This can be clearly seen in the plot as the negative input power. 

 

Figure 20 Step Response of system 
a) Power In, Power out, b) Power out zoomed in, c) Energy In, Energy out 

 
 

The results obtained when step unit function is used as input are according to the control 

system. The system is performing well when step input is given. 

A more in depth analysis of the effect of gear ratios on the wheel torque and wheel power 

is then conducted.  Results of this analysis are shown in Figure 21.  This graph clearly 

shows that vehicle can provide a high traction effort in 1st gear.  The vehicle also maintains 

a reasonable top speed in 4th gear.  This matches well with the time simulation shown 
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earlier, with the 70 MPH commanded speed.  The vehicle reached and stayed in 3rd gear in 

steady state.  Although, only 40 kW power was required during steady state at 70 MPH, 

this traction drive is capable of up to 90 kW power.   
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Figure 21  Vehicle Traction with 4-Speed Transmission 

 

4.2 Simulation Results using UDDS 

In this part of the simulation, UDDS is applied as an input and the results are captured. The 

characteristics of these standard cycles have been explained in section 3.52.  Every vehicle 

must function per the characteristics of the UDDS standard graph in passing EPA 

standards.  These are the transient drive cycles in which there is a lot of change in the speed 

due to on-road driving conditions. The following are the results achieved after the 

simulation. The speed of the vehicle was controlled according to the UDDS reference speed 

which can be seen in Figure 22.  The model performed as expected as can be seen in the 

graph. Output speed closely follows the set input speed with very low steady state error 

and good response time. 

The torque is also shown in the Figure 22. The graph shows that at the points where the 

hybrid electric vehicle is decelerating the Torque in the graph goes negative. This graph 
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shows that the control system is working correctly and the requested torque is properly 

achieved in the proposed model. 

 

Figure 22  System Response with UDDS 
a) Vehicle speed, b) Currents, c) Motor torque and Load torque 

 

The Figure 23 shows the power and energy profile of the HEV. The output power is the 

power which is given to the wheel and the input power is the power which is drawn from 

the battery. The figure also shows that there is variation in input power as it is some times 

in the negative acting as a generator and some times in the positive supplying the power to 

the vehicle which is the case according to the control systems. The points in the graph 

where the speed is approaching zero shows again the behavior during regenerative braking 
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and re-capturing of some of the energy during this time period. The energy which is 

supplied to the vehicle is fully utilized in terms of power balance.  The power system works 

as defined per the UDDS cycle. 

 

Figure 23  System Response with UDDS 
a) Power In, Power out, b) Power out zoomed in, c) Energy In, Energy out 

  

4.3 Optimization of Gear Ratios 

As discussed in section 3.4, simulation was setup to run random ratios for each gear within 

the specified range.  A total of 200 (50 for each gear) test cases were run.  The final energy 

usage values were stored for each case of gear ratios.  This 200 case simulation allows us 

to determine the best gear ratios to minimize the use of energy.  Results were captured for 

each run and plotted to show the ENERGYIN and ENERGYOUT as a function of gear 

ratios.  The minima of the input energy from the battery can be determined by the use of 

the combination of different gear ratio. The simulation results are shown for both the Step 
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Input, and the UDDS cycle, in the following figures. The results shows effectiveness of the 

proposed method which stated that different combination of gears can play an important 

role in determining the energy usage efficiency from the battery. 

Figure 24 and Figure 25 shows the graph for results of Step Input.  Figure 24 shows 

ENERGYIN, which is the energy from the source (battery) as a function of cases for gear 

ratio combinations.  Figure 25 shows the different combinations of Gears for G1, G2, and 

G3 and G4. The data is also sorted in the order of smallest value of ENERGYIN to the 

largest value.   

 

Figure 24 Sorted Test Cases with Step Input  
for Energy In (ENERGYIN), Energy Out (ENERGY OUT) 

 

 

 

Figure 25 Gear Ratio combination vs. Test Cases with Step Input 
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This step input case was run as a quick check to determine the effects of the gear ratios on 

the energy consumed.  Only one gear was changed randomly, while, other were held 

constant at nominal values.  The minimum energy in the graph drawn from the battery is 

about 1 MJoules.  However, the speed, for this case, did not reach the desired reference 

point.  This shows that not all possible combinations will work to produce the proper torque 

for the vehicle to operate under harsh demands.  The main hypothesis, however, is proved, 

in that the energy consumption varies significantly as a function of gear ratios.   If the 

combination of gear ratio is not properly used the input energy can increase and the drive 

system will not operate at its most efficient point.  

A similar separate simulation was run with the input of UDDS drive cycle.  This simulation 

was intended to find the actual energy used during the UDDS drive cycle while all gear 

ratio combinations were randomly selected within their ranges.  Results of the UDDS based 

simulation are shown in Figure 26.  Energy is plotted as a function of gear set combination.  

The results are sorted and shown with the ENERGYIN increasing from low to high. The 

selection of appropriate gear ratio has very important effect on the input energy.  This shows 

that the best gear ratio combination can be chosen in order to minimize the energy usage 

from the battery.   

Results of this simulation show that the gear ratio selection is a very powerful mechanism 

as part of EV drive system to maximize the performance.  Based on the UDDS multi-case 

simulation, it is observed that the energy consumption from the source can vary from a low 

of 4.95 MJoules to a high of 5.55 MJoules, an increase of 12%.  This is a significant energy 

savings for the vehicle during a UDDS type journey, as more commuters are now choosing 

to use EVs and HEVs for city driving. 
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Figure 26 Sorted Test Cases with UDDS  
for Energy In (ENERGYIN), Energy Out (ENERGY OUT) 

 

 

Figure 27 Gear Ratios vs. Test Cases with UDDS 
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5 Conclusion 

This project paper describes the development of a traction drive and vehicle load model for 

an HEV including a gear set model that allows for determining the optimal gear set 

combination to achieve the lower energy consumption from a HV battery.  A detailed model 

of PMSM and vehicle load was developed in MATLAB/Simulink.  Each stage of the model 

was separately simulated to ensure that the dynamic and steady state behavior was as 

expected.  Motor and drive parameters were chosen to be close to the 2010 Toyota Prius 

system, which is documented in a report published by US Department of Energy.  A 4-speed 

gear switching mechanism was modeled using a Simulink state machine transition table to 

ensure proper operation in both up-shifting (during acceleration) and down-shifting (during 

deceleration). 

Results were very satisfactory in terms showing how various gear ratios can be tested and 

then evaluated for optimum points to minimize energy loss which is the achievement in the 

proposed model.  Maximizing the mileage from a battery is just one application where this 

technique can be used very effectively.  System performance can be fine-tuned, as well as 

optimized for longer journey and conserving the battery charge.   However, this method 

does require a broader range of gear ratio to be used for this optimization.  Automatic 

transmission can be used to program the shift points to the exact values required.        
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6 Areas of Further Research 

To further improve this model, there are several areas that can be considered.  One major 

area that would greatly enhance this model is the do further optimization to capture the 

regenerative braking energy.  Switching points of down-shifting can be optimized to yield 

the highest recapture of the energy during braking. 

The system model was based on ideal motor and power electronics.  However, these 

subsystems can also be modeled to more accurately reflect the physical components.  

Magnetic saturation and other non-linear effects can be taken into account to make the 

model more realistic.  

Other areas that can be further developed to be more realistic would be the battery, the dc-

dc converter as voltage booster, and the inverter.  These components also add multiple 

non-linear effects and were beyond the scope of this project.  However, in order to get 

more accurate results for the energy optimization, these models can be taken into account.  

Actual components used to realize these sub-systems (inductors, power MOSFETs. 

IGBTs, etc.) can add complexities to modeling and simulation, but may provide other 

insights into the behavior of the overall simulation. 
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