

Michigan Technological University Digital Commons @ Michigan Tech

Michigan Tech Research Institute Publications

Michigan Tech Research Institute

1-28-2012

The Lake Superior water monitoring and information system

Robert A. Shuchman Michigan Technological University

Chris Roussi Michigan Technological University

W. Charles Kerfoot Michigan Technological University

Sarah A. Green Michigan Technological University

Guy Meadows University of Michigan

See next page for additional authors

Follow this and additional works at: https://digitalcommons.mtu.edu/mtri_p

Part of the Physical Sciences and Mathematics Commons

Recommended Citation

Shuchman, R. A., Roussi, C., Kerfoot, W. C., Green, S. A., Meadows, G., Erickson, T. A., Brooks, C. N., Endsley, K. A., Wienert, M., Sayers, M. J., Jessee, N., Anderson, J., & Abbott, M. (2012). The Lake Superior water monitoring and information system. *Limnotech Webinar 2012*. Retrieved from: https://digitalcommons.mtu.edu/mtri_p/210

Follow this and additional works at: https://digitalcommons.mtu.edu/mtri_p Part of the <u>Physical Sciences and Mathematics Commons</u>

Authors

Robert A. Shuchman, Chris Roussi, W. Charles Kerfoot, Sarah A. Green, Guy Meadows, Tyler A. Erickson, Colin Neil Brooks, K. Arthur Endsley, Michelle Wienert, Michael J. Sayers, Nathaniel Jessee, Jamey Anderson, and Michael Abbott

The Lake Superior Water Monitoring and Information System

Long Term Water Quality, Meteorological and Wave Parameter Measurements in Lake Superior

Limnotech Webinar: 28 January 2012

Dr. Robert Shuchman¹, Chris Roussi¹, Dr. Charlie Kerfoot², Dr. Sarah Green², Dr. Guy Meadows³, Dr. Tyler Erickson¹, Colin Brooks¹, K. Arthur Endsley¹, Michelle Wienert¹, Mike Sayers¹, Nate Jessee¹, Jamey Anderson¹, Michael Abbot²

- ¹ = Michigan Tech Research Institute (MTRI), Ann Arbor, MI
- ² = Michigan Technological University, Houghton, MI
- ³ = University of Michigan, AOSS, Ann Arbor, MI

Objectives and Purpose

- Support the four priority issues outlined by the Great Lakes Observing System (GLOS):
 - Climate Change Impacts
 - Ecosystem and Food Web Dynamics
 - Protection of Public Health
 - Navigation Safety and Efficiency
- Support Great Lakes Restoration Initiatives
- In situ measurements support GLERL GLCFS model and provide data for satellite derived product validation
- Assist Michigan to lead in research and development of Great Lakes resources
- Connect research to public awareness of issues facing these resources

Michigan Tech Buoy and Ferry Box Program

- University of Michigan (UofM) and S2 Buoy development allowed for immediate participation by Michigan Tech in the GLOS near-shore monitoring program
 - Mooring expertise
 - Deployment expertise
 - High quality / cost effective instrumentation
- Michigan Tech is leveraging acquired technology from UofM and S2 and adding its own Intellectual Property (IP)
 - Power improvements
 - Wave sensor (3rd Generation)
 - Temperature sensor (thermistor) chain (2nd Generation)
 - Iridium communication

Michigan Tech Buoy and Ferry Box Program

- Funding
 - GLOS
 - MTU V.P. Infrastructure Enhancement Award
 - MTRI IR&D
 - Cooperative arrangements with National Park Service (NPS)
 - In process of setting up an endowment, related to Michigan Tech's Great Lakes Research Center (GLRC)

Instrumentation

Moored Buoys

- Buoy at north and south entrances of Keweenaw Waterway measure:
 - Weather conditions
 - Wave dynamics
 - Water quality
 - Currents
 - Temperature Profiles

Temperature Sensor Chains

 Seasonal campaigns; measures thermal gradient in the Portage Canal

Ferry Boxes

 Ranger III passenger vessel to Isle Royale outfitted with water quality sensors

Keweenaw Waterway Buoys

- South entrance buoy (45025) deployed 27 May 2011 operated continuously until 21 October 2011 when removed for winter
- New buoy (45023) at north entrance was deployed on 11 June 2011, recovered 20 July 2011, redeployed 28 August 2011 and recovered for the season on 25 September 2011.
- Each buoy was visited three times for QA/QC

- Ranger box was installed on 25 April 2011 and recovered for the season on 6 October 2011.
- iButtons deployed at North and South entrances on 30 April 2011.
 They were both recovered for the season on 28 October 2011.

Keweenaw Waterway Buoys Compliment Remote Sensing

July 6, 2011 Lake Surface Temperature

July 10, 2011 Lake Surface Temperature

www.GLOSAOCMapping.org

- Upgrade solar cells
- Redesign mooring (bottom weight and tether)
- Install buoy adrift sensor
- Deploy new single wire thermistor chain (1-meter depth intervals/0.5°c)
- Deploy 6 DOF wave sensor
- Utilize Iridium as data communication device for thermistor and wave sensor

MTU Keweenaw South Buoy LST

Example Ranger III Instrumentation Data

Data Sharing of Michigan Tech Buoy, Ferry Box. And iButton Data

- Main delivery mechanism is Michigan Tech's website www.michigantechlakesuperior.org
- Buoy data (45023 and 45025) are available at the National Data Buoy Center (NDBC) <u>www.ndbcnoaa.gov</u>
- Ocean Engineering Lab website <u>www.uglos.engin.umich.edu</u>
- All data is also referenced on the GLOS website <u>www.glos.us</u>
- In the future, data will also be available via the GLOS DMAC

Data Services and Visualizations

- Dynamic tables and grids — Quickly view the last 24 hours of buoy, Ranger III data
- Interactive charts plotted on demand —
 Explore spatial, temporal relationships of *in-situ* data

Activities Supported

- Investigation of the relationship between surface winds and coastal upwelling
- Verification of a thermocline (see figure at right) off the coast of the Keweenaw

Real-time observations of great importance to recreational boaters, commercial fishers, and search and rescue operations

Client-Server Model

- The data collected are presently used to support commercial fishing, provide inputs to models, and to provide validation for remote sensing-derived products
- Combining single location time series data with remote sensing observations and GLCFS model was useful in describing upwelling events
 - Buoy platforms are useful platforms for evaluation of new instrument and measuring approaches

Lake Superior Water Monitoring and Information System www.MichiganTechLakeSuperior.org