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Entanglement-assisted quantum low-density parity-check codes
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(Received 24 August 2010; published 29 October 2010)

This article develops a general method for constructing entanglement-assisted quantum low-density parity-
check (LDPC) codes, which is based on combinatorial design theory. Explicit constructions are given for
entanglement-assisted quantum error-correcting codes with many desirable properties. These properties include
the requirement of only one initial entanglement bit, high error-correction performance, high rates, and low
decoding complexity. The proposed method produces several infinite families of codes with a wide variety of
parameters and entanglement requirements. Our framework encompasses the previously known entanglement-
assisted quantum LDPC codes having the best error-correction performance and many other codes with better
block error rates in simulations over the depolarizing channel. We also determine important parameters of several
well-known classes of quantum and classical LDPC codes for previously unsettled cases.

DOI: 10.1103/PhysRevA.82.042338 PACS number(s): 03.67.Hk, 03.67.Mn, 03.67.Pp

I. INTRODUCTION

This article develops a general combinatorial method
for constructing quantum low-density parity-check (LDPC)
codes under the entanglement-assisted stabilizer formalism
established by Brun, Devetak, and Hsieh [1]. Our results
include many explicit constructions for entanglement-assisted
quantum error-correcting codes for a wide range of parameters.
We also prove a variety of results for classical error-correcting
codes, which directly apply to the quantum setting. Most
of the quantum codes designed in this article achieve high
error-correction performance and high rates while requiring
prescribed amounts of entanglement. These codes can be
efficiently decoded by message-passing algorithms such as
the sum-product algorithm (for details of iterative probabilistic
decoding, see [2]).

The existence of quantum error-correcting codes was one
of the most important discoveries in quantum information
science [3,4]. Unfortunately, most of the known quantum
error-correcting codes lack practical decoding algorithms.

In this article, we focus on the use of LDPC codes in a
quantum setting. Classical LDPC codes [5] can be efficiently
decoded while achieving information rates close to the
classical Shannon limit [6–8]. This extends to the quantum
setting: The pioneering works of Hagiwara and Imai [9] and
MacKay, Mitchison, and McFadden [10] presented quantum
LDPC codes which surpassed, in simulations, all previously
known quantum error-correcting codes. Their quantum codes
have nearly as low decoding complexity as their classical
counterparts.

However, most of the previous results concerning quantum
LDPC codes and related efficiently decodable codes have
relied on the stabilizer formalism, which severely restricts the
classical codes which can be used. The difficulty in developing
constructions for nonstabilizer codes was also a substantial
obstacle.

*yfujiwar@mtu.edu; also at Graduate School of System and
Information Engineering, University of Tsukuba, Ibaraki, Japan.

Our results use the recently developed theory of
entanglement-assisted quantum error-correcting codes
(EAQECCs) [1,11–13]. The entanglement-assisted stabilizer
formalism allows the use of arbitrary classical binary or
quaternary linear codes for quantum data transmission and
error correction by using shared entanglement [14,15].
Previous work related to entanglement-assisted quantum
LDPC codes is due to Hsieh, Brun, and Devetak [16] and
Hsieh, Yen, and Hsu [17].

The major difficulty in using classical LDPC codes in
the entanglement-assisted quantum setting is that very little
is known about methods for designing EAQECCs requiring
desirable amounts of entanglement. While entanglement-
assisted quantum LDPC codes can achieve both notable
error-correction performance and low decoding complexity,
the resulting quantum codes might require too much entan-
glement to be usable; in general, entanglement is a valuable
resource [15]. In some situations, one might wish to effectively
take advantage of high-performance codes requiring a larger
amount of entanglement [1,12]. To the best of the authors’
knowledge, no general methods have been developed which
allow the code designer flexibility in choice of parameters and
required amounts of entanglement.

Our primary focus in this article is to show that it is
possible to create infinite classes of EAQECCs which consume
prescribed amounts of entanglement and achieve good error-
correction performance while allowing efficient decoding. Our
methods are flexible and address various situations, including
the extreme case when an EAQECC requires only one pre-
existing entanglement bit.

The entanglement-assisted quantum LDPC codes which
we construct include quantum analogs of the well-known
finite geometry LDPC codes originally proposed by Kou,
Lin, and Fossorier [18] (see also [19,20]) and LDPC codes
from balanced incomplete block designs that achieve the
upper bound on the rate for a classical regular LDPC
code with girth 6 proposed independently by several au-
thors (see [21] and references therein). Some classes of
our codes outperform previously proposed quantum LDPC
codes having the best known error-correction performance
[9,10,16,17].
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Our primary tools come from combinatorial design theory,
which plays an important role in classical coding theory [22]
and also gave several classes of stabilizer codes in quantum
coding theory [23–27]. The use of combinatorial design theory
allows us to exactly determine or give tighter bounds on
the parameters of the finite geometry LDPC codes in both
quantum and classical settings. Comprehensive lists of the
parameters of these codes are given in Tables XIV and XV in
Appendix B.

In Sec. II, we outline our framework for designing
entanglement-assisted quantum LDPC codes by using combi-
natorial design theory. Section III gives explicit constructions
for entanglement-assisted quantum LDPC codes based on
finite geometries and related combinatorial structures. Ad-
ditional results concerning the well-known classical finite
geometry LDPC codes are also given in this section. Section IV
presents simulation results of our entanglement-assisted quan-
tum LDPC codes and discusses their performance over the
depolarizing channel. Section V contains concluding remarks
and discusses some related problems that can be treated with
the techniques developed in this article.

II. COMBINATORIAL ENTANGLEMENT-ASSISTED
QUANTUM LDPC CODES

In this section we give a general construction method
for entanglement-assisted quantum LDPC codes based on
combinatorial designs. We do not describe the theory of
classical LDPC codes in detail here; instead, we refer the
reader to [2,21] and references therein. Relations between
quantum error-correcting codes and LDPC codes are concisely
yet thoroughly explained in [10,16]. Basic notions related to
LDPC codes and their relations to combinatorial designs can
be found in [28]. For a detailed treatment of the entanglement-
assisted stabilizer formalism, we refer the reader to [1,12–14].

In Sec. II A we introduce necessary notions from coding
theory and combinatorial design theory. A general method
for designing entanglement-assisted quantum LDPC codes is
presented in Sec. II B.

A. Preliminaries

An [[n,k; c]] EAQECC encodes k logical qubits into n

physical qubits with the help of c copies of maximally
entangled states. As in classical coding theory, n is the length of
the EAQECC and k the dimension. We say that the EAQECC
requires c ebits. An [[n,k; c]] EAQECC with distance d is
referred to as an [[n,k,d; c]] code.

The rate of an [[n,k; c]] EAQECC is defined to be k
n

. The
ratio k−c

n
is called the net rate. The latter figure describes the

rate of an EAQECC when used as a catalytic quantum error-
correcting code to create c new bits of shared entanglement
[1,12].

Throughout this article, matrix operations are performed
over F2, the finite field of order two. The ranks of matrices are
also calculated over F2.

We employ the Calderbank-Shor-Steane (CSS) construc-
tion [1,4,14,29]. Usually, the CSS construction uses a minimal
set of independent generators to construct an EAQECC.
Hence, the construction is often described by using a classical

binary linear code with a parity-check matrix of full rank.
However, in actual decoding steps, sparse-graph codes may
take advantage of redundant parity-check equations to improve
error-correction performance. Because the extended syndrome
can be obtained in polynomial time without additional quan-
tum interactions, we use the following formulation of the CSS
construction for EAQECCs.

Theorem 1: Hsieh, Brun, and Devetak [16]. If there exists
a classical binary [n,k,d] code with parity-check matrix H ,
then there exists an [[n,2k − n + c,d; c]] EAQECC, where
c = rank HHT .

Note that H may contain redundant rows which are related
only to classical operations to infer the noise by a message-
passing algorithm.

We apply Theorem 1 to classical sparse-graph codes. An
LDPC code is typically defined as a binary linear code with
parity-check matrix H in which every row and column is
sparse. In this article we consider LDPC codes with parity-
check matrices whose rows and columns contain only small
numbers of ones so that simple message-passing algorithms
can efficiently give good performance in decoding.

Proposition 1. An LDPC code with parity-check matrix
H with n columns and minimum distance d defines a
classical binary [n,n − rank H,d] code, which yields an
[[n,n − 2 rank H + rank HHT ,d; rank HHT ]] EAQECC.

The Tanner graph of an m × n parity-check matrix H is
the bipartite graph consisting of n bit vertices and m parity-
check vertices, where an edge joins a bit vertex to a parity-
check vertex if that bit is included in the corresponding
parity-check equation. A cycle in a graph is a sequence of
connected vertices which starts and ends at the same vertex in
the graph and contains no other vertices more than once. The
girth of a parity-check matrix is the length of a shortest cycle
in the corresponding Tanner graph. Short cycles can severely
reduce the performance of an otherwise well-designed LDPC
code. In fact, one of the greatest obstacles to the development
of a general theory of LDPC codes in the quantum setting
is the difficulty of avoiding cycles of length four (See, for
example, [9,10,30,31]). In order to improve error-correction
performance, we generally only treat LDPC codes with girth
at least 6.

The weight of a row or column of a binary matrix is its
Hamming weight, that is, the number of ones in it. An LDPC
code is regular if its parity-check matrix H has constant row
and column weights and irregular otherwise. Regular LDPC
codes are known to be able to achieve high error-correction
performance. Irregular LDPC codes allow the code designer
to optimize characteristics of performance by a careful choice
of row weights and column weights [6–8].

We now define several combinatorial structures, which we
need in Sec. II B and the subsequent sections. For additional
facts and design theoretical results, the interested reader is
referred to [32].

An incidence structure is an ordered pair (V,B) such that
V is a finite set of points, and B is a family of subsets of
V , called blocks. A point-by-block incidence matrix of an
incidence structure (V,B) is a binary v × b matrix H = (hi,j )
in which rows are indexed by points, columns are indexed
by blocks, and hi,j = 1 if the ith point is contained in the
j th block, and hi,j = 0 otherwise. A block-by-point incidence
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matrix of (V,B) is the transposed point-by-block incidence
matrix HT .

Any LDPC code can be associated with an incidence
structure by interpreting its parity-check matrix as an incidence
matrix. The converse also holds as long as the considered
incidence matrix is sparse.

The current article focuses on incidence structures which
have been extensively studied in combinatorics. This allows us
to effectively exploit combinatorial design theory to develop
a framework for designing entanglement-assisted quantum
LDPC codes.

A 2-(v,µ,λ) design is an incidence structure (V,B), where
V is a set of cardinality v and B is a family of µ-subsets of V

such that each pair of points is contained in exactly λ blocks.
We refer to the parameters v, µ, and λ as the order, block size,
and index of a 2-design. Note that the block size of a 2-design
is usually written as k in the combinatorial literature. To avoid
any confusion with the dimension of a code, we use µ instead.

The number b = |B| of blocks in a 2-(v,µ,λ) design is
determined by the design parameters:

b = |B| = v(v − 1)

µ(µ − 1)
λ. (1)

A 2-design is called symmetric if b = v.
Every point of a 2-(v,µ,λ) design occurs in exactly r blocks,

where

r = v − 1

µ − 1
λ. (2)

The number r is called the replication number of the design.
A point-by-block incidence matrix H of a 2-(v,µ,λ) design
satisfies the equation

HHT = (r − λ)I + λJ, (3)

where I is the identity matrix and J is the v × v all-one matrix.
Since r and b are integers, it follows that the following two
conditions,

λ(v − 1) ≡ 0 (mod µ − 1),
(4)

λv(v − 1) ≡ 0 (mod µ(µ − 1)),

are necessary conditions for the existence of a 2-(v,µ,λ)
design.

If the block size µ and index λ are relatively small, an
incidence matrix of a 2-(v,µ,λ) design is sparse. Hence, a
point-by-block incidence matrix of a 2-(v,µ,λ) design can be
viewed as a parity-check matrix H of a regular LDPC code
with constant row weight r and constant column weight µ.
Similarly, a block-by-point incidence matrix defines a code
with constant row weight µ and constant column weight r .
In this article, incidence matrices are generally point-by-block
unless it is specifically noted otherwise. In the cases when
block-by-point matrices are desirable, the notation HT is used.

A substantial part of this article deals with one of the
most fundamental incidence structures in combinatorial design
theory. A Steiner 2-design, denoted by S(2,µ,v), is a 2-(v,µ,1)
design. A Steiner triple system of order v, denoted by STS(v),
is a Steiner 2-design with block size three. The S(2,µ,v)’s
are trivial Steiner 2-designs if v � µ. We generally do not

consider trivial designs to be Steiner 2-designs unless they
play an important role.

It is easy to see that both point-by-block and block-by-point
incidence matrices of an S(2,µ,v) give regular LDPC codes
with girth 6 (see, for example, [33]).

B. General combinatorial constructions

In this subsection we present a general framework for de-
signing entanglement-assisted quantum LDPC codes based on
combinatorial design theory. Specialized construction methods
for desirable EAQECCs in this framework are illustrated in
Sec. III.

The following propositions are derived from Theorem 1 by
using incidence matrices as parity-check matrices of binary
LDPC codes.

Proposition 2. Let H be a point-by-block incidence matrix
of an incidence structure (V,B). Then there exists a [[|B|,|B| −
2rank H + rank HHT ; rank HHT ]] EAQECC.

Proposition 3. Let HT be a block-by-point incidence
matrix of an incidence structure (V,B). Then there exists a
[[|V |,|V | − 2 rank H + rank HT H ; rank HT H ]] EAQECC.

We employ the following two theorems.
Theorem 2: Hillebrandt [34]. The rank of an incidence

matrix H of an S(2,µ,v) satisfies the following inequalities:⌈
1

2
+

√
1

4
+ (v − 1)(v − µ)

µ

⌉
� rank H � v.

Theorem 3: Hamada [35]. If H is an incidence matrix of
an S(2,µ,v) with even replication number r = v−1

µ−1 , then

rank H =
{

v − 1 when µ is even,
v or v − 1 when µ is odd.

We now give three simple constructions by applying
Propositions 2 and 3 to incidence matrices of Steiner 2-designs.
These constructions will be specialized and modified to give
desirable codes.

Theorem 4: High-rate 1-ebit code. Let H be a point-by-
block incidence matrix of an S(2,µ,v). Suppose r = v−1

µ−1 is
odd. Then H has row weight r , column weight µ, girth 6, and
the corresponding [[n,k; c]] EAQECC satisfies the following
conditions:

n = v(v − 1)

µ(µ − 1)
,

vr

µ
− 2v + 1 � k � vr

µ

−2

⌈
1

2
+

√
1

4
+ (v − 1)(v − µ)

µ

⌉
+ 1,

c = 1.

Proof. By Proposition 2 and Theorem 2, it suffices to prove
that rank HHT = 1. Because r is odd, Eq. (3) reduces to
HHT = J , which implies that the rank of HHT is equal to
one. �

Theorem 5: High-rate high-consumption code. Let H be
a point-by-block incidence matrix of an S(2,µ,v). Suppose
r = v−1

µ−1 is even. Then H has row weight r , column weight
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µ, girth 6, and the corresponding [[n,k; c]] EAQECC satisfies
the following conditions:

n = v(v − 1)

µ(µ − 1)
,

k =
{

vr
µ

− v + 1 when µ is even,
vr
µ

− v + 1 or vr
µ

− v − 1 when µ is odd,

c = v − 1.

Proof. By Proposition 2 and Theorem 3, it suffices to prove
that rank HHT = v − 1. Because r is even, Eq. (3) reduces to

HHT =

⎡
⎢⎢⎢⎢⎣

0 1 1

1 0 · · · 1
...

. . .
...

1 1 · · · 0

⎤
⎥⎥⎥⎥⎦ ,

that is, a matrix containing zeros on the diagonal and ones in
the other entries. Because r = v−1

µ−1 is even, v is odd. Hence,

we have rank HHT = v − 1 as desired. �
Theorem 6: Low-rate high-redundancy code. Let HT be a

block-by-point incidence matrix of an S(2,µ,v). Then H has
row weight µ, column weight r , girth 6, and the corresponding
[[n,k; c]] EAQECC satisfies the following conditions:

n = v,

k � v − 2

⌈
1

2
+

√
1

4
+ (v − 1)(v − µ)

µ

⌉
+ c,

c � 1.

Proof. Let HT be a block-by-point incidence matrix of an
S(2,µ,v). Since any nontrivial S(2,µ,v) contains a pair of
blocks that share exactly one point, we have rank HT H � 1.
Applying Proposition 3 to Theorem 2 completes the proof. �

It is worth mentioning that a weaker version of Theorem
4 was used in the context of integrated optics and photonic
crystal technology [25]. Also notable is that Theorems 4
and 5 can be easily extended to the case where pre-existing
entanglement is not available. For example, quantum LDPC
codes that do not require entanglement can be obtained by
applying the extra-column method used in Construction U
in [10] and the CSS construction to S(2,µ,v)’s in the same
manner as in Proposition 2. Aly’s construction for quantum
LDPC codes [23] is a special case of this extended method.
Djordjevic’s construction for quantum LDPC codes [24] can
be obtained by applying the CSS construction to 2-designs of
even index in the same way as in Proposition 2.

The existence of 2-designs is discussed in Appendix A,
which provides Steiner 2-designs necessary to obtain several
infinite families of new entanglement-assisted quantum LDPC
codes from Theorems 4, 5, and 6. Before applying our theo-
rems to specific S(2,µ,v)’s, we explore general characteristics
of our EAQECCs and further develop methods for designing
desirable codes.

Theorem 4 yields entanglement-assisted quantum LDPC
codes with very high net rates and various lengths while
requiring only one ebit. Theorem 5 gives codes which
have very high net rates and naturally take advantage of

larger numbers of ebits when there is an adequate supply
of entanglement. Since rank HHT � rank H holds for any
parity-check matrix H , the required amounts of entanglement
of high-rate codes in Theorem 5 are expected to be relatively
low when compared with randomly chosen codes of the same
lengths. Theorem 6 generates entanglement-assisted quantum
LDPC codes which can correct many quantum errors by taking
advantage of the higher redundancy. The high error-correction
performance of these codes is demonstrated in simulations in
Sec. IV.

When a parity-check matrix H of an S(2,µ,v) is of full
rank v, the corresponding classical LDPC code in Theorems 4
and 5 achieves an upper bound on the rate for an LDPC code
with girth 6.

Theorem 7: MacKay and Davey [36]. Let H be a v × n

parity-check matrix of a classical regular LDPC code of length
n, column weight µ, and girth 6. Let also rank H = v. Then
it holds that n � v(v−1)

µ(µ−1) , where equality holds if and only if H

is an incidence matrix of an S(2,µ,v).
It follows that EAQECCs based on Steiner 2-designs

achieve the highest possible net rates for quantum LDPC codes
with girth at least 6 constructed from full-rank parity-check
matrices with constant column weights through the CSS
construction.

The rank of an incidence matrix of an S(2,µ,v) may not
be full depending on the structure of the design. If one wishes
a parity-check matrix to be regular and full rank at the same
time, it is important to choose an S(2,µ,v) with a full-rank
incidence matrix. This can always be done for the case when
µ = 3, except for v = 7 [37]. For a more detailed treatment of
the ranks of S(2,µ,v)’s, we refer the reader to [35,38,39].

In general, the code minimum distance plays less of a role
in the performance of sum-product decoding than maximum-
likelihood decoding [10]. Therefore, we explore in detail the
distance d of [[n,k,d; c]] EAQECCs based on LDPC codes
only when it is of great theoretical interest. Because codes
derived from finite geometries are of great importance in
coding theory, the distances of EAQECCs obtained from finite
geometries are investigated in detail in Sec. III.

Here we briefly review the minimum distances of LDPC
codes based on Steiner 2-designs. A pair of S(2,µ,v)’s which
are not mutually isomorphic may give different minimum
distances. The tightest known upper and lower bounds on the
minimum distance of an LDPC code based on an STS(v) can
be found in the very large scale integration (VLSI) literature
as bounds on even freeness.

Theorem 8: Fujiwara and Colbourn [40]. The minimum
distance d of a classical binary linear code whose parity-check
matrix forms an incidence matrix of a nontrivial STS(v)
satisfies 4 � d � 8.

A carefully chosen triple system can have a good topo-
logical structure which gives good decoding performance.
If conditions require larger minimum distances, the code
designer may use either block-by-point incidence matrices
or S(2,µ,v)’s of larger block sizes. For known results on
minimum distances, girths, and related characteristics of
LDPC codes based on combinatorial designs, the reader is
referred to [40–42] and references therein.

In what follows, we describe general guidelines for de-
signing entanglement-assisted quantum LDPC codes with
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desired parameters and properties by exploiting codes we have
presented in this section.

We first consider an [[n,k; c]] EAQECC requiring only a
small amount of entanglement. The extreme case is when
c = 1. The following theorem gives infinitely many such
EAQECCs having extremely high rates and low decoding
complexity.

Theorem 9. Let v and µ be positive integers satisfying
v − 1 ≡ 0 (mod µ − 1) and v(v − 1) ≡ 0 (mod µ(µ − 1)).
Suppose also that v−1

µ−1 is odd. Then for all sufficiently large v

and some k satisfying the condition of Theorem 4, there exists
an [[ v(v−1)

µ(µ−1) ,k; 1]] EAQECC.
Proof. Use Theorem 42 from Appendix A, which guaran-

tees the existence of an S(2,µ,v) for all sufficiently large v,
and apply Theorem 4. �

Similarly, applying Theorem 4 to known S(2,µ,v)’s with
small v discussed in Appendix A gives [[n,k; 1]] EAQECCs
of shorter length n.

In general, the error floor of a well-designed LDPC code is
not dominated by low-weight code words. Nonetheless, it is
desirable to carefully choose an S(2,µ,v) when applying our
simple constructions so that the resulting code has a promising
topological structure. While incidence matrices of S(2,µ,v)’s
have long been investigated in various fields, it appears to be
difficult to achieve the known upper bounds on the minimum
distance of an LDPC code based on an incidence matrix of an
S(2,µ,v). In fact, it is conjectured that the known upper bounds
are generally not achievable even for the case µ = 3 [41].

An STS is 4-even-free (or anti-Pasch) if its incidence matrix
gives a classical LDPC code with minimum distance 5 or
greater. A 4-even-free STS(v) exists for all v �= 7,13 satisfying
the necessary conditions (4) [43]. It is conjectured that an
incidence matrix of a 4-even-free STS(v) gives the largest
possible minimum distance [41].

Theorem 10. There exists a [[ v(v−1)
6 ,k,d; 1]] EAQECC with

k � v(v−1)
6 − 2v + 1 and d � 5 for every v ≡ 3,7 (mod 12)

except for v = 7.
Proof. If v ≡ 3,7 (mod 12), then the replication number

of an STS(v) is odd. Applying Theorem 4 to a 4-even-free
STS(v) completes the proof. �

A block-by-point incidence matrix of a symmetric S(2,µ,v)
can also be viewed as a point-by-block incidence matrix
of a Steiner 2-design of the same parameters [44]. Hence,
Theorems 4 and 6 can overlap when symmetric designs are
employed. This special case gives the EAQECCs with c = 1
and good error-correction performance originally presented
in [17]. For completeness, we give a simple proof by using the
following two theorems.

Theorem 11. For every integer t � 1, there exists a
symmetric S(2,2t + 1,4t + 2t + 1) whose incidence matrix H

satisfies rank H = 3t + 1.
Proof. Take as S(2,2t + 1,4t + 2t + 1) the Desarguesian

projective plane of order 2t , whose incidence matrix has rank
3t + 1 [45]. �

Theorem 12: Calkin, Key, and de Resmini [46]. Let
HT be a block-by-point incidence matrix of a symmetric
S(2,2t + 1,4t + 2t + 1) being the Desarguesian projective
plane PG(2,2t ). Then HT defines a classical binary linear
[4t + 2t + 1,4t + 2t − 3t ,2t + 2] code.

Now as a corollary of Theorems 4 and 6 and the preceding
two theorems, we obtain the following result.

Theorem 13. For every integer t � 1, there exists a [[4t +
2t + 1,4t + 2t − 2 × 3t ,2t + 2; 1]] EAQECC.

EAQECCs of this kind can be seen as quantum analogs
of special type I PG-LDPC codes, which have notable
error-correction performance in the classical setting [18–20].
Because of the direct correspondence between entanglement-
assisted quantum codes and classical codes, these EAQECCs
inherit excellent error-correction performance while consum-
ing only one initial ebit. We further investigate entanglement-
assisted quantum LDPC codes based on S(2,µ,v)’s with large
minimum distances in Sec. III.

Next we present general combinatorial methods for de-
signing EAQECCs with relatively small c and better error-
correction performance. The main idea is that we discard
some columns from an incidence matrix of an S(2,µ,v) and
then apply Proposition 2 as we did in Theorem 4. Our methods
encompass the rate control technique for classical LDPC codes
proposed in [47] as a special case.

Let (V,B) be an S(2,µ,v). Take two subsets V ′ � V and
B′ � B. The pair (V ′,B′) is called a proper subdesign of block
size µ if it is an S(2,µ,|V ′|). Since we do not consider other
kinds of subdesigns, we simply call a proper subdesign (V ′,B′)
of block size µ a subdesign. A pair of subdesigns (V ′,B′) and
(V ′′,B′′) of an S(2,µ,v) are pointwise disjoint if V ′ ∩ V ′′ = ∅.

Theorem 14. Let (V,B) be an S(2,µ,v) with odd r = v−1
µ−1 .

Assume that (V,B) contains j pointwise mutually disjoint
subdesigns (Vi,Bi), 1 � i � j , such that

⋃j

i=1 Vi � V and
each (Vi,Bi) has odd replication number. Then there exists an
[[n,k; c]] EAQECC satisfying the following conditions:

n = v(v − 1)

µ(µ − 1)
−

∣∣∣⋃Bi

∣∣∣ ,
c = j + 1.

Proof. Take an arbitrary incidence matrix H of an S(2,µ,v)
with odd r . Delete j pointwise mutually disjoint subdesigns
(Vi,Bi), each of which has an odd replication number. It
is always possible to reorder the rows and columns of the
resulting incidence matrix H ′ such that H ′H ′T has the form

H ′H ′T =

⎡
⎢⎢⎢⎢⎣

J J J

J 01 · · · J

...
. . .

...

J J · · · 0j

⎤
⎥⎥⎥⎥⎦ ,

where 0i is a |Vi | × |Vi | zero matrix and each J is an all-one
matrix of appropriate size. It is easy to see that rank H ′H ′T =
j + 1. Applying Proposition 2 to H ′ completes the proof. �

Deleting subdesigns always shortens the length of the
corresponding code. Discarding columns will not decrease
the minimum distance or the girth. The rank of the parity-
check matrix is unlikely to change. In this sense, we expect
EAQECCs obtained through subdesign deletion to have better
error-correction performance than the original code. We
demonstrate this effect in simulations in Sec. IV.

In general, deleting a subdesign makes a parity-check
matrix slightly irregular. If this irregularity is not desirable
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because of particular circumstances or conditions, it can be
alleviated by discarding more pointwise disjoint subdesigns.
In fact, if we delete subdesigns of the same order such that
each point belongs to one deleted subdesign, we obtain a
regular parity-check matrix again. The following construction
demonstrates this.

Let (V,B) be an S(2,µ,v) and S a set of Steiner 2-designs
(Vi,Bi),1 � i � |S|, where V1, . . . ,V|S| partition V , that is,⋃

Vi = V and Vi ∩ Vj = ∅ for all i �= j . Then S is called
a Steiner spread in (V,B) if each (Vi,Bi) forms a subdesign
S(2,µ,|Vi |) of (V,B).

Theorem 15. Let (V,B) be an S(2,µ,v) with odd replication
number r = v−1

µ−1 . Assume that (V,B) contains a Steiner spread
S, where each subdesign (Vi,Bi) has an odd replication
number. Then there exists an [[n,k; c]] EAQECC satisfying
the following conditions:

n = v(v − 1)

µ(µ − 1)
−

∣∣∣⋃Bi

∣∣∣ ,
c =

{|S| − 1 when |S| is odd,
|S| when |S| is even.

Moreover, if |Vi | = |Vi ′ | = w for all i and i ′, then the parity-
check matrix of the corresponding LDPC code is regular and
has row weight r − w−1

µ−1 and column weight µ.
Proof. Let H be an incidence matrix of an S(2,µ,v) with odd

r which contains a Steiner spread S. Delete all members of the
Steiner spread from (V,B). By following the same argument
as in the proof of Theorem 14, it is straightforward to see
that rank HHT = |S| − 1 when |S| is odd and |S| otherwise.
If |Vi | = |Vi ′ | = w for all i and i ′, each subdesign has the
same replication number w−1

µ−1 . Hence, the resulting code
is regular. �

When there is an adequate supply of entanglement, it
may be acceptable to exploit a relatively large amount of
entanglement to improve error-correction performance while
keeping similar characteristics of high rate codes. Deleting
an S(2,µ,w) with even replication number w−1

k−1 increases the
required amount of entanglement to a slightly larger extent.

Theorem 16. Let (V,B) be an S(2,µ,v) with odd replication
number r = v−1

µ−1 . Assume that (V,B) contains j pointwise
mutually disjoint subdesigns (Vi,Bi), 1 � i � j , such that⋃j

i=1 Vi ⊆ V and each (Vi,Bi) has an even replication num-
ber. Then there exists an [[n,k; c]] EAQECC satisfying the
following conditions:

n = v(v − 1)

µ(µ − 1)
−

∣∣∣⋃Bi

∣∣∣ ,
c =

j∑
i=1

(|Vi | − 1) + 1.

Moreover, if the subdesigns (Vi,Bi) for 1 � i � j form a
Steiner spread with |Vi | = |Vi ′ | = w for all i and i ′, then the
parity-check matrix of the corresponding LDPC code is regular
and has row weight r − w−1

µ−1 and column weight µ.
Proof. Take an arbitrary incidence matrix H of an S(2,µ,v)

with odd r . Delete j point-wise mutually disjoint subdesigns
(Vi,Bi), each of which has an even replication number. If⋃j

i=1 Vi � V , it is always possible to reorder the columns of

the resulting incidence matrix H ′ such that H ′H ′T is of the
form

H ′H ′T =

⎡
⎢⎢⎢⎢⎣

J J J

J I1 · · · J

...
. . .

...

J J · · · Ij

⎤
⎥⎥⎥⎥⎦ ,

where Ii is the |Vi | × |Vi | identity matrix and each J is
an all-one matrix of appropriate size. Because each Ii has
Vi independent rows and each |Vi | is odd, rank H ′H ′T =∑j

i=1 (|Vi | − 1) + 1. Applying Proposition 2 to H ′ gives
c = ∑j

i=1 (|Vi | − 1) + 1. If
⋃j

i=1 Vi = V , we have identity
matrices across the diagonal of H ′H ′T . Hence, we have
c = ∑j

i=1 (|Vi | − 1) + 1 again. If each Vi is of the same
size, it is straightforward to see that the resulting code
is regular. �

When irregularity in a parity-check matrix is acceptable or
favorable, the code designer can combine the techniques of
Theorems 14, 15, and 16. The required amount of entangle-
ment is readily computed by the same argument as before.

In general, subdesign deletion changes the parameters of
a code in a gradual manner. Hence, these techniques are
also useful when one would like an EAQECC of specific
length or dimension. While we only employed Theorem 4
in the preceding arguments, Theorem 5 can also be used
in a straightforward manner to fine tune the parameters of
EAQECCs.

In order to exploit the subdesign deletion techniques,
one needs Steiner 2-designs having subdesigns or preferably
Steiner spreads of appropriate sizes. We conclude this section
with a brief review of known general results and useful
theorems for finding S(2,µ,v) with subdesigns and Steiner
spreads. For a more thorough treatment, the reader is referred
to [32,44] and references therein.

The well-known Doyen-Wilson theorem [48] states that
one can always find an STS(v) containing an STS(w) as
a subdesign as long as both v and w satisfy the necessary
conditions for the existence of an STS and v � 2w + 1. The
following is a general asymptotic theorem on Steiner 2-designs
having subdesigns.

Theorem 17: Fujiwara [49]. Let µ � 2 be a positive
integer and w ≡ 1 (mod µ(µ − 1)). Then there exist a constant
number w0 depending on µ and a constant number v0

depending on w and µ such that if w > w0 and v > v0 satisfies
the conditions v − 1 ≡ 0 (mod µ − 1) and v(v − 1) ≡ 0
(mod µ(µ − 1)), then there exists an S(2,µ,v) having an
S(2,µ,w) as a subdesign.

Theorem 17 states that one can always find an S(2,µ,v)
having an S(2,µ,w) as a subdesign as long as v is a sufficiently
large integer satisfying the necessary conditions (4) and w is
a sufficiently large integer satisfying w ≡ 1 (mod µ(µ − 1)).

Steiner spreads are closely related to a special kind of
combinatorial design. A group divisible design (GDD) with
index one is a triple (V,G,B), where

(i) V is a finite set of elements called points;
(ii) G is a family of subsets of V , called groups, which

partition V ;
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(iii) B is a collection of subsets of V , called blocks, such
that every pair of points from distinct groups occurs in exactly
one block;

(iv) |G ∩ B| � 1 for all G ∈ G and B ∈ B.
If all groups are of the same size g, all blocks are of the

same size µ, and |G| = t , one refers to the design as a µ-GDD
of type gt .

Theorem 18. The existence of an S(2,µ,g) and a µ-GDD
(V,G,B) of type gt with index one implies the existence of an
S(2,µ,gt) having a Steiner spread S, where each member of
S is an S(2,µ,g).

Proof. Let (V,G,B) be a µ-GDD of type gt with index one
and (V ′,B′) an S(2,µ,g). For each G ∈ G, we construct an
S(2,µ,g), (G,B′

G), by mapping each point of (V ′,B′) to an
element of G by an arbitrary bijection πG : V ′ → G. Define
C = ⋃

G∈G B′
G. It is straightforward to check that (V,B ∪ C) is

an S(2,µ,gt) having a Steiner spread whose members are all
S(2,µ,g)’s. �

The preceding theorem is useful to obtain regular LDPC
codes through Theorems 15 and 16 and similar subdesgin
deletion techniques based on Theorem 5. One can also
modify Theorem 18 for the case when a GDD has different
group sizes by a similar argument. The existence of GDDs
and their constructions have been extensively investigated
in combinatorial design theory. For a comprehensive list of
known existence results on GDDs, we refer the reader to [44].

III. FINITE GEOMETRY CODES

In this section, we demonstrate applications of our general
designing methods by using combinatorial designs arising
from finite geometries.

The classical LDPC codes obtained from finite geometries
are known to have remarkable error-correction abilities. By us-
ing these codes, we generate infinitely many high-performance
entanglement-assisted quantum LDPC codes having numerous
Steiner spreads of various sizes. The various Steiner spreads
in each code allow the code designer to flexibly fine tune the
parameters and error-correction performance.

This section is divided into three subsections. Section III A
studies entanglement-assisted quantum LDPC codes of girth 6
obtained from projective geometries. Codes based on affine
geometries are investigated in Sec. III B. In Sec. III C we
investigate slightly modified affine geometry codes, called
Euclidean geometry codes. Classical LDPC codes based on
these three kinds of finite geometries are called finite-geometry
LDPC codes or simply FG-LDPC codes.

Many of the results presented in this section can also
be seen as new results on classical finite-geometry LDPC
codes. In particular, properties of finite geometries have been
independently studied in the combinatorial literature, and
hence many of the “known” results are new results in the
field of LDPC codes. For the convenience of the reader, we
summarize our results on fundamental parameters of LDPC
codes from finite geometries in Tables XIV and XV in
Appendix B. Lengths, dimensions, and minimum distances
of the FG-LDPC codes with girth 6 from projective geometry
PG(m,q), affine geometry AG(m,q), and Euclidean geometry
EG(2,2t ) are all determined. Specifically for EAQECCs based
on FG-LDPC codes, we also determine the required amounts

of entanglement for most cases. For a few cases, we give upper
bounds on the required amount of entanglement.

A. Projective geometry codes

We begin with EAQECCs obtained from finite projective
geometries. The use of projective geometries for constructing
EAQECCs first appeared in the work of Hsieh, Yen, and Hsu
[17]. This subsection illustrates how our combinatorial frame-
work generalizes their method and determines fundamental
parameters of quantum and classical LDPC codes obtained
from PG(m,q).

Points of the m-dimensional projective geometry PG(m,q)
over Fq are the one-dimensional subspaces of Fm+1

q . The i-
dimensional projective subspaces of PG(m,q) are the (i + 1)-
dimensional vector subspaces of Fm+1

q . The points and lines of

PG(m,q) form an S(2,q + 1,
qm+1−1

q−1 ), denoted by PG1(m,q),

having (qm+1−1)(qm−1)
(q2−1)(q−1) blocks and replication number qm−1

q−1 =
qm−1 + qm−2 + · · · + q + 1.

One can obtain two types of EAQECCs from projective
geometry designs: type II (using a point-by-block incidence
matrix) and type I (using a block-by-point incidence matrix
of the design). Applying Proposition 2 to an incidence matrix
of PG1(m,q), we obtain a type II EAQECC. This type of
EAQECC belongs to the high rate entanglement-assisted
quantum LDPC codes given in Theorems 4 and 5. If we apply
Proposition 3 to a block-by-point incidence matrix, we obtain
a type I EAQECC. This kind of EAQECC belongs to the
high-redundancy entanglement-assisted quantum LDPC codes
given in Theorem 6.

The rank of an incidence matrix determines the dimension
of the corresponding FG-LDPC code; hence, it is one of the
key values in the quantum setting as well. Exact values for
many sporadic examples have been computed in the fields
of quantum and classical LDPC codes. The following two
theorems give the exact rank for all projective geometry
designs.

Theorem 19: Hamada [38]. The rank of PG1(m,2t ) is given
by

rank PG1(m,2t ) = ϕ(m,2t )

=
∑

(s0,s1,...,st )

t−1∏
j=0

L(sj+1,sj )∑
i=0

(−1)i
(

m + 1

i

)

×
(

m + 2sj+1 − sj − 2i

m

)
,

where the sum is taken over all ordered sets (s0,s1, . . . ,st ) with
s0 = st , sj ∈ Z such that 0 � sj � m − 1 and 0 � 2sj+1 −
sj � m + 1 for each j = 0, . . . ,t − 1, and

L(sj+1,sj ) =
[

2sj+1 − sj

2

]
.

We use the notation ϕ(m,2t ) for the rank of PG1(m,q) when
q is even, that is, q = 2t . When q is odd, the rank of PG1(m,q)
is given by a formula of Frumkin and Yakir [50].
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Theorem 20: Frumkin and Yakir [50]. Let q be odd and H

an incidence matrix of the design PG1(m,q) with v = qm+1−1
q−1

points. Then rank H = v − 1 = qm+1−q

q−1 .
Hence, the exact dimensions of the corresponding FG-

LDPC codes obtained from projective geometries can be
calculated for all cases.

The rank of PG1(m,2t ) was conjectured by Hamada [35]
to be the lowest rank among all Steiner 2-designs of the same
order and block size. This has been confirmed in a number of
cases, although in general the conjecture is still open. Thus,
we expect that the designs PG1(m,2t ) should provide codes
with the best possible dimensions among all nonisomorphic
S(2,2t + 1, 2t(m+1)−1

2t−1 )’s.
We now examine the codes obtained from PG1(m,q) in

detail. This subsection is divided into two portions based on
the orientation of the incidence matrix.

1. Point-by-block (type II) projective geometry codes

In this portion, we consider the EAQECCs corresponding
to a point-by-block incidence matrix of PG1(m,q).

We first consider the case q = 2t for some positive
integer t . The following theorem gives an infinite family of
entanglement-assisted quantum LDPC codes which consume
only one initial ebit and have extremely large net rate.

Theorem 21. For every pair of integers t � 1 and m � 2
there exists an entanglement-assisted quantum LDPC codes
with girth 6 whose parameters [[n,k,d; c]] are

n = (2t(m+1) − 1)(2tm − 1)

(22t − 1)(2t − 1)
,

k = (2t(m+1) − 1)(2tm − 1)

(22t − 1)(2t − 1)
− 2ϕ(m,2t ) + 1,

d = 2t + 2, and

c = 1.

To prove Theorem 21, we first prove a new result on the
distance of EAQECCs obtained from an incidence matrix of
PG1(m,2t ). We use a special set of lines. A dual hyperoval
H is a set of q + 2 lines of PG1(2,q), such that each point of
PG1(2,q) lies on either zero or two lines ofH. Dual hyperovals
exist if and only if q is even. An example is the set of projective
lines with equations:

{X0 + βX1 + β2X2 = 0 : β ∈ Fq} ∪ {X1 = 0} ∪ {X2 = 0}.
Theorem 22. Let H be an incidence matrix of PG1(m,2t ).

The minimum distance of the classical binary linear code with
parity-check matrix H is 2t + 2.

Proof. First, we note that coordinates of the code words
correspond to lines of the geometry, and a code word
corresponds to a set S of lines in PG1(m,2t ) such that every
point is contained in an even number of lines of S. Assume that
c is a nonzero code word, and let supp(c) denote the support
of c, that is, the set of indices of the nonzero coordinates of
c. Since c �= 0, the support of c contains at least one line �.
Through each point of PG(m,2t ) there pass an even number
of lines from supp(c). In particular, each of the 2t + 1 points
on � lies on at least one other line of supp(c), and all these
lines are different as they have different intersections with �.

Hence, there are at least 1 + (2t + 1) lines in supp(c); that is,
minimum distance d is at least 2t + 2. Let π be a plane in
PG(m,2t ) and S the set of the 2t + 2 lines of a dual hyperoval
in π . Then S corresponds to a code word of weight 2t + 2;
hence, d = 2t + 2. �

Proof of Theorem 21. Let H be an incidence matrix of
PG1(m,2t ). The rank of H is ϕ(m,2t ) given by Theorem 19.
The index of PG1(m,2t ) is one. The replication number is
odd. By Eq. (3) and Theorem 4, we have rank HHT = 1. By
Theorem 22, the minimum distance of the binary linear code
with parity-check matrix H is 2t + 2. �

Next, we examine EAQECCs obtained from an inci-
dence matrix of PG1(m,q) with q odd. This case also
gives very high rate entanglement-assisted quantum LDPC
codes.

Lemma 1. Let H be an incidence matrix of PG1(2,q), q odd.
Then the classical binary linear code defined by parity-check
matrix H consists of only the zero vector and the all-one
vector.

Proof. This follows directly from Theorem 20.
A hyperbolic quadric Q is a substructure (P,L) of PG1(3,q)

with (q + 1)2 points and 2(q + 1) lines, such that each point
of P lies on exactly two lines of L and every plane of PG(3,q)
contains zero or two lines of L. Hyperbolic quadrics exist for
every odd prime power q. �

Theorem 23. Let H be an incidence matrix of PG1(m,q),
m � 3, q odd. Then the minimum distance of the classical
binary linear code with a parity-check matrix H is 2(q + 1).

Proof. Let � be a three-dimensional subspace of PG(m,q)
and (P,L) a hyperbolic quadric in �. The set of lines L
determines a code word of weight 2q + 2, since each point
of PG(m,q) is contained in zero or two lines of L. Hence,
minimum distance d is at least 2q + 2.

We show that there are no code words of weight smaller
than 2q + 2. Assume that there exists a code word c of weight
smaller than 2q + 2; that is, supp(c) is a set of less than 2q + 2
lines of PG(m,q), such that each point lies on an even number
of lines of supp(c). We show that for any two-dimensional
subspace π one has either |supp(c) ∩ π | � 1 or |supp(c) ∩
π | � q + 2.

First, let S = supp(c) ∩ π = {�1, . . . ,�i}. For each j ∈
{1, . . . ,i}, each of the points on �j has to lie on at least one
other line of supp(c), and at most i − 1 of them can lie on a
line of S. Hence, at least q + 1 − (i − 1) of them are lines in
supp(c) \ S and since they all have different intersections with
π , this yields i(q − i + 2) lines in supp(c) \ S. Together with
the i lines of S, we have

i(q − i + 2) + i < 2q + 2

and solving this quadratic inequality for i gives us that either
i > q + 1 or i < 2. Since i is an integer, hence i � q + 2 or
i � 1.

Now, let � be any line of supp(c). Each point of � must lie
on at least one other line; hence, there certainly exist planes π

with i � 2, and we have i � q + 2. Let π be such a plane. We
now show that all lines of supp(c) are contained in π . Assume
the contrary, that there exists a line �′ ∈ supp(c) \ S. Through
each of the points on �′ \ π , we need at least one other line of
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TABLE I. Sample parameters of type II [[n,k,d; c]] EAQECCs
obtained from PG1(m,q), q even.

m q n k d c

3 2 35 14 4 1
4 2 155 104 4 1
5 2 651 538 4 1
6 2 2667 2428 4 1
3 4 357 236 6 1
4 4 5795 5204 6 1
2 8 73 18 10 1
3 8 4745 3944 10 1

supp(c) which is not contained in π . Since there are at least q

points on �′ \ π , one has

|supp(c)| = |S| + |supp(c) \ S|
� (q + 2) + (1 + q) > 2q + 2,

a contradiction. Hence, �′ does not exist and supp(c) is
contained within a single plane π . However, π is a PG1(2,q)
and by Lemma 1 we need q2 + q + 1 > 2q + 2 lines in this
case, a contradiction. Hence, there are no code words of weight
less than 2q + 2. �

We now give another infinite family of type II
entanglement-assisted quantum LDPC codes.

Theorem 24. Let q be an odd prime power. Then for every
integer m � 3 there exists an entanglement-assisted quantum
LDPC code with girth 6 whose parameters [[n,k,d; c]] are

n = (qm+1 − 1)(qm − 1)

(q2 − 1)(q − 1)
,

k = (qm+1 − 1)(qm − 1)

(q2 − 1)(q − 1)
− 2

qm+1 − q

q − 1
+ c,

d = 2q + 2, and

c =
{

1 when m is odd,
qm+1−q

q−1 when m is even.

Proof. This follows directly from Proposition 2 and
Theorems 4, 20, and 23. �

Therefore, in the case where m is odd, we have an-
other infinite class of EAQECCs which consume only one
ebit. If m is even, we obtain infinitely many high rate
codes which consume reasonable numbers of ebit. Tables I
and II give a sample of the parameters of the type II
codes obtained from PG1(m,q) with q even and q odd,
respectively.

In the remainder of this portion, we examine Steiner
spreads of projective geometry designs. These substructures

TABLE II. Sample parameters of type II [[n,k,d; c]] EAQECCs
obtained from PG1(m,q), q odd.

m q n k d c

3 3 130 53 8 1
3 5 806 497 12 1
3 7 2850 2053 16 1
4 3 1210 1090 8 120

TABLE III. Summary of type II codes obtained by deleting a
Steiner spread of subdesigns isomorphic to PG1(2,2) from PG1(5,2).

Subsa n rank H k d c Rate

0 651 57 538 4 1 0.8264
1 644 57 532 4 2 0.8370
2 637 57 526 4 3 0.8477
3 630 57 520 4 4 0.8587
4 623 57 514 4 5 0.8700
5 616 57 508 4 6 0.8815
6 609 57 502 4 7 0.8933
7 602 57 496 4 8 0.9053
8 595 57 490 4 9 0.9176
9 588 57 482 4 8 0.9269

aThis column denotes the number of subdesigns removed.

can be used in Theorems 14, 15, and 16 and their analogous
techniques based on Theorem 5 to fine tune the rates and
distances of the EAQECCs.

An s-spread of PG(m,q) is a set of s-dimensional projective
subspaces which partition the points of the geometry. In other
words, an s-spread consists of a set of (s + 1)-dimensional
vector subspaces of Fm+1

q which contain every nonzero vector
exactly once. It is known that PG(m,q) admits an s-spread if
and only if s + 1 divides m + 1 (see [51] and [52, p. 29]).

Take PG1(m,q) and suppose s � 2 is chosen so that s + 1
divides m + 1. Then an s-spread of PG(m,q) exists. Each
s-dimensional subspace in the spread contains an isomorphic
copy of PG1(s,q), and hence this forms a Steiner spread.
Note that the blocks of PG1(s,q) have size q + 1 and are
also blocks of PG1(m,q). Therefore, we have the following
result.

Theorem 25. Let s, m � 1 be positive integers such that
s + 1 divides m + 1. Then PG1(m,q) contains qm+1−1

qs+1−1 disjoint
copies of PG1(s,q) whose point sets partition the point of
PG1(m,q).

Thus, we can find a set of disjoint subdesigns which
partition the points of PG1(m,q) whenever m + 1 has a
nontrivial factor. Naturally, we may further subdivide each
subdesign of dimension s into smaller subdesigns, based on
the nontrivial factors of s + 1. Hence, the S(2,µ,v)’s from
PG1(m,q) are very flexible in that they have Steiner spreads of
various sizes.

In general, the length, dimension, required ebits, and
rate each change gradually as we delete subdesigns in a
Steiner spread. The minimum distance and rank either remain
the same or improve slightly. Table III lists the example
parameters of EAQECCs created by deleting subdesigns from
PG1(5,2). The first and last rows correspond to regular LDPC
codes.

2. Block-by-point (type I) projective geometry codes

Next we consider EAQECCs obtained via Theorem 6 by
using the block-by-point incidence matrix of PG1(m,q). The
codes obtained in this manner correspond to the classical type
I LDPC codes. As in the classical setting, type I entanglement-
assisted quantum regular LDPC codes can correct many
quantum errors. Because an incidence matrix of PG1(m,q)
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TABLE IV. Sample parameters of type I [[n,k,d; c]] EAQECCs
obtained from PG1(m,q), q even.

m q n k d c

2 4 21 2 6 1
2 8 73 18 10 1
2 16 273 110 18 1
2 32 1057 570 34 1

for q odd is almost full rank, the corresponding type I code is
not of much interest. Hence, in this portion we always assume
that q = 2t for some positive integer t .

Theorem 26. For every pair of integers t � 1 and m � 2
there exists an entanglement-assisted quantum LDPC code
with girth 6 whose parameters [[n,k,d; c]] are

n = 2t(m+1) − 1

2t − 1
,

k = 2t(m+1) − 1

2t − 1
− 2ϕ(m,2t ) + c,

d = (2t + 2)2t(m−2), and

c � ϕ(m,2t ).

Proof. Let HT be a block-by-point incidence matrix of
PG1(m,2t ). Then we have rank HT H � rank H = ϕ(m,2t ),
where ϕ(m,2t ) is given by Theorem 19. By a result of Calkin,
Key, and de Resmini [46], the minimum distance of the binary
linear code with parity-check matrix HT is (2t + 2)2t(m−2).
Applying Proposition 3 proves the assertion. �

Note that here the distance grows exponentially as the
dimension of the geometry increases. When m = 2, the
EAQECCs are based on projective planes. As shown in
Sec. II B, the EAQECC obtained from a Desarguesian projec-
tive plane of order 2t consumes only one initial ebit. Basing on
Hamada’s conjecture, we expect that in general the EAQECCs
given in Theorem 26 consume relatively small numbers of
ebits.

It is not clear from the formula for ϕ(m,2t ) whether the net
rate of a type I EAQECC based on PG1(m,2t ) is positive. In
order to produce useful catalytic quantum codes, it is important
to understand when the net rate is positive.

Proposition 4. Let H be an incidence matrix of PG1(2,2t ).
Then for all t � 2 the EAQECC obtained from HT has a
positive net rate.

Proof. By Hamada’s formula, we have rank H = 3t + 1.
The number of points in PG1(2,2t ) is 22t + 2t + 1. �

For m � 3, we note that as q increases, rank H grows at
a slower rate than the code length. Thus, we may expect that,
for q large when compared to m, the net rate will eventually
become positive. For example, one can check that the net rate
of the type I EAQECC obtained from PG1(3,2t ) is positive for
t � 7. Table IV gives sample parameters of the type I codes
obtained from PG1(m,2t ).

B. Affine geometry codes

In this subsection, we study the EAQECCs obtained from
affine geometry designs.

The affine geometry AG(m,q) of dimension m over Fq is
a finite geometry whose points are the vectors in Fm

q . The i-
dimensional affine subspaces (or i-flats) are the i-dimensional
vector subspaces of Fm

q and their cosets. Thus, AG(m,q) has a
natural parallelism.

The points and lines (that is, 1-flats) of an affine geometry
form an S(2,q,qm), denoted by AG1(m,q). The design has
qm−1 qm−1

q−1 blocks and replication number qm−1
q−1 = qm−1 +

qm−2 + · · · + q + 1.
We note that in many articles concerning LDPC codes, the

term “Euclidean geometry” and the notation EG(m,q) are used
for affine geometries. Most of the codes studied in relation to
Euclidean geometries do not use the zero vector, and hence
they do not generally correspond to S(2,µ,v)’s. Because the
term “affine geometry” is standard in the recent research on
finite geometry in mathematics, we use the notation AG1(m,q)
when we take all points and lines to form an incidence matrix.
The incidence structure obtained by discarding the zero vector
and the lines containing the zero vector from AG1(m,q) is
denoted by EG1(m,q), which we study in Sec. III C. Because
many of the classical FG-LDPC codes obtained from affine
geometries are based on EG1(m,q), they are generally not
the same as the affine geometry codes presented in this
section.

As with projective geometry designs, Propositions 2 and
3 give type II and type I affine geometry codes, respectively.
It is notable that the classical ingredients of these codes are
quasicyclic LDPC codes similar to other FG-LDPC codes
because the elementary abelian group acts transitively on
the points of AG1(m,q) (see [18,32]). The rank of an affine
geometry design AG1(m,2t ) is directly related to ϕ given in
Theorem 19.

Theorem 27: Hamada [35]. The rank of the affine geometry
design AG1(m,2t ) is given by

rank AG1(m,2t ) = ϕ(m,2t ) − ϕ(m − 1,2t ).

If q is odd, the rank of AG1(m,q) over F2 is full.
Theorem 28: Yakir [53]. Let H be an incidence matrix of

the design AG1(m,q) with q odd. Then rank H = qm.
Thus, the dimensions of the corresponding FG-LDPC codes

can be easily calculated.
As in the case of projective designs, Hamada conjectured

that the rank of AG1(m,2t ) is minimum among all Steiner
2-designs of the same order and block size. Thus, affine
geometry designs with q even may be expected to give codes
with the best possible dimensions among all nonisomorphic
S(2,2t ,2tm)’s.

We divide this subsection into two portions. In the first
portion we examine high-rate type II entanglement-assisted
quantum LDPC codes obtained from AG1(m,q). Then in the
next portion we present type I entanglement-assisted quantum
LDPC codes based on AG1(m,q), which effectively exploit the
redundancy to give excellent error-correction performance.

1. Point-by-block (type II) affine geometry codes

The geometric structure of affine geometry has often
been studied independently in various fields. The special
substructure we need to give distances has been investigated
in connection with the disk failure resilience ability of a class
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of redundant arrays of independent disks (RAID). Here we
present a known result on RAID related to our codes in coding
theoretic terminology.

Theorem 29: Müller and Jimbo [54]. Let H be an incidence
matrix of AG1(m,q). The minimum distance of the classical
binary linear code having H as a parity-check matrix is q + 1
if q is even, and 2q otherwise.

The following two theorems give infinite families of
EAQECCs which consume only one initial ebit and have very
large net rate.

Theorem 30. For every pair of integers t � 1 and m � 2
there exists an entanglement-assisted quantum LDPC code
with girth 6 whose parameters [[n,k,d; c]] are

n = 2t(m−1) 2tm − 1

2t − 1
,

k = 2t(m−1) 2tm − 1

2t − 1
− 2[ϕ(m,2t ) − ϕ(m − 1,2t )] + 1,

d = 2t + 1, and

c = 1.

Proof. Let H be an incidence matrix of AG1(m,2t ). By
Theorem 27, we have rank H = ϕ(m,2t ) − ϕ(m − 1,2t ). The
index of the design AG1(m,2t ) is one. Its replication number
is always odd. Thus, by Theorem 4, we have rank HHT =
1. Applying Proposition 2 and Theorem 29 completes the
proof. �

Theorem 31. Let q be an odd prime power. Then for every
integer m � 2 there exists an entanglement-assisted quantum
LDPC code with girth 6 whose parameters [[n,k,d; c]] are

n = qm−1 qm − 1

q − 1
,

k = qm−1 qm − 1

q − 1
− 2qm + c,

d = 2q, and

c =
{

1 when m is odd,
qm − 1 when m is even.

Proof. Let H be an incidence matrix of AG1(m,q) with
q odd. By Theorem 28, we have rank H = qm. The index
of the design AG1(m,q) is one. Its replication number r is a
sum of m terms, each being an odd number. Thus, r is odd
only when m is odd. By Theorem 4, we have rank HHT = 1
for m odd. If m is even, we have rank HHT = qm − 1 from
Theorem 5. Applying Proposition 2 and Theorem 29 proves
the assertion. �

Theorem 31 gives an infinite family of high-rate
entanglement-assisted quantum LDPC codes which exploit
reasonable amounts of entanglement as well. Tables V and VI
give a sample of the parameters of the type II codes obtained
from AG1(m,q) with q even and q odd, respectively.

Next we show that affine geometry designs have numerous
subdesigns and Steiner spreads, which make it possible to
fine-tune the parameters and error-correction performance of
the corresponding EAQECCs.

Theorem 32. If m � 3, the points of AG1(m,q) can be
partitioned into q disjoint subsets of size qm−1, being the point
sets of subdesigns isomorphic to AG1(m − 1,q).

TABLE V. Sample parameters of type II [[n,k,d; c]] EAQECCs
obtained from AG1(m,q), q even.

m q n k d c

3 2 28 15 3 1
4 2 120 91 3 1
5 2 496 435 3 1
6 2 2016 1891 3 1
2 4 20 3 5 1
3 4 336 235 5 1
4 4 5440 4971 5 1
2 8 72 19 9 1
3 8 4672 3927 9 1

Proof. Take a parallel class {H1, . . . ,Hq} of q hyper-
planes of AG(m,q). Let the point set of Hj be Vj . Clearly,
∪q

j=1Vj = V , and the set of all blocks of AG1(m,q) which
are contained entirely in Hj form a subdesign isomorphic to
AG1(m − 1,q). �

Theorem 32 can be applied recursively to create additional
disjoint subdesigns of smaller dimension, giving a variety of
EAQECCs via Theorems 14, 15, and 16. Similar subdesign
deletion techniques based on Theorem 5 further give infinitely
many high-rate EAQECCs. Table VII lists the parameters of
the EAQECCs created by spread deletion from AG1(3,4).

2. Block-by-point (type I) affine geometry codes

Next we consider the EAQECC obtained from a block-
by-point incidence matrix of AG1(m,q). Because incidence
matrices of AG1(m,q) with q odd are of full rank, here
we always assume q = 2t to obtain interesting codes. The
entanglement-assisted quantum LDPC codes presented in
this section effectively exploit redundancy. The excellent
error-correction performance is demonstrated in simulations
in Sec. IV.

Theorem 33: Calkin, Key, and de Resmini [46]. Let H

be a block-by-point incidence matrix of AG1(m,2t ). Then the
minimum distance of the classical binary linear code for which
H is a parity-check matrix is (2t + 2)2t(m−2).

Theorem 34. For every pair of integers t � 1 and m � 3
there exists an entanglement-assisted quantum LDPC code
with girth 6 whose parameters [[n,k,d; c]] are

n = 2tm,

k = 2tm − 2[ϕ(m,2t ) − ϕ(m − 1,2t )] + c,

d = (2t + 2)2t(m−2), and

c � ϕ(m,2t ) − ϕ(m − 1,2t ).

TABLE VI. Sample parameters of type II [[n,k,d; c]] EAQECCs
obtained from AG1(m,q), q odd.

m q n k d c

3 3 117 64 6 1
3 5 775 526 10 1
3 7 2793 2108 14 1
5 3 9801 9316 6 1
4 3 1080 998 6 80
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TABLE VII. Summary of type II codes obtained by deleting a
Steiner spread of subdesigns isomorphic to AG1(2,4) from AG1(3,4).

Subsa n rank H k d c Rate

0 336 51 235 5 1 0.6994
1 316 51 216 5 2 0.7468
2 296 51 197 5 3 0.8007
3 276 51 178 5 4 0.8623
4 256 51 158 6 4 0.9297

aThis column denotes the number of subdesigns removed.

Proof. Let HT be a block-by-point incidence matrix
of AG1(m,2t ). By Theorem 27, we have rank HT H �
rank H = ϕ(m,2t ) − ϕ(m − 1,2t ). By Theorem 33, the mini-
mum distance of the binary linear code with a parity-check
matrix H is (2t + 2)2t(m−2). The assertion follows from
Proposition 3. �

It is worth mentioning that here the distance grows
exponentially with linear increase of the geometry dimension
m. Because the rank of AG1(m,2t ) is conjectured to be
the smallest possible among all nonisomorphic S(2,2t ,2tm)’s,
we expect that the EAQECCs obtained from these affine
geometry designs consume the smallest possible numbers of
ebits attainable by this method with S(2,2t ,2tm)’s.

When m = 2, we can easily determine the required amount
of entanglement.

Theorem 35. For every positive integer t there exists an
entanglement-assisted quantum LDPC code with girth 6 whose
parameters [[n,k,d; c]] are

n = 4t ,

k = 4t + 2t − 2 × 3t ,

d = 2t + 2, and

c = 2t .

Proof. Let HT be a block-by-point incidence matrix of
AG1(2,2t ). We first prove that rank HT H = 2t . Two lines of
an affine plane are either parallel or intersect in exactly one
point. There are 2t + 1 parallel classes of lines, each containing
exactly 2t lines, and each line contains 2t points. Because 2t

is even, it is always possible to reorder the rows of HT such
that HT H is a block matrix of the following form:

HT H =

⎡
⎢⎢⎢⎢⎣

0 J J

J 0 · · · J

...
. . .

...

J J · · · 0

⎤
⎥⎥⎥⎥⎦ ,

where J is the 2t × 2t all-one matrix. Hence, we have
rank HT H = 2t . By Theorem 27, we have rank H = 3t .
Applying Proposition 3 and Theorem 33 completes the
proof. �

Table VIII gives sample parameters of the type I EAQECCs
obtained from AG1(m,2t ).

C. Euclidean geometry codes

In this final subsection concerning finite geometry
EAQECCs, we examine Euclidean geometry codes.

TABLE VIII. Sample parameters of type I [[n,k,d; c]] EAQECCs
obtained from AG1(m,q), q even.

m q n k d c

2 8 64 18 10 8
2 16 256 110 18 16
2 32 1024 570 34 32
2 64 4096 2702 66 64

Given a prime power q and integer m � 2, we define
an incidence structure EG1(m,q) having as points all points
of AG1(m,q) except the zero vector, and having as blocks
(or lines) all lines of AG(m,q) except those lines contain-
ing the zero vector. The lines which are excluded from
AG1(m,q) to form EG1(m,q) consist of all multiples of a
single nonzero vector. Thus, EG1(m,q) has qm − 1 points and(
qm−1 − 1

)
qm−1
q−1 lines. Each line contains q points, and each

point appears in qm−1
q−1 − 1 = qm−1 + qm−2 + · · · + q lines.

Thus, EG1(m,q) yields regular LDPC codes. Each pair of
points appears in at most one line. Hence, EG1(m,q) is a
partial Steiner 2-design. Its Tanner graph does not contain
4-cycles.

Applying Proposition 3 to a line-by-point incidence matrix
of EG1(m,q) gives a type I EAQECC. If q is even, the distance
is bounded from below by the BCH bound.

Theorem 36: Kou, Lin, and Fossorier [18]. Let H be a line-
by-point incidence matrix of EG1(m,2t ). Then the minimum
distance d of the classical binary linear code having H as
a parity-check matrix satisfies d � 2tm−1

2t−1 . Equality holds if
m = 2.

We use the following theorem to give the dimensions of FG-
LDPC codes obtained from EG1(m,2t ) and their entanglement-
assisted quantum counterparts.

Theorem 37: Hamada [35]. The rank of the incidence
structure EG1(m,2t ), t > 1, is given by

rank EG1(m,2t ) = ϕ(m,2t ) − ϕ(m − 1,2t ) − 1.

Theorem 38. For every pair of integers t � 1 and m � 2
there exists an entanglement-assisted quantum LDPC code
with girth 6 whose parameters [[n,k,d; c]] are

n = 2tm − 1,

k = 2tm − 2[ϕ(m,2t ) − ϕ(m − 1,2t )] + 1 + c,

d � 2tm − 1

2t − 1
, and

c � ϕ(m,2t ) − ϕ(m − 1,2t ) − 1.

Proof. Let HT be a line-by-point incidence matrix of
EG1(m,2t ). By Theorem 37, we have rank HT H � rank H =
ϕ(m,2t ) − ϕ(m − 1,2t ) − 1. Applying Proposition 3 and The-
orem 36 completes the proof. �

A simple observation gives exact values of all the parame-
ters of the type I codes based on EG1(2,2t ).

Theorem 39. For every positive integer t there exists an
entanglement-assisted quantum LDPC code with girth 6 whose
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TABLE IX. Sample parameters of type I [[n,k,d; c]] EAQECCs
obtained from EG1(2,q), q even.

m q n k d c

2 8 63 19 9 8
2 16 255 111 17 16
2 32 1023 571 33 32

parameters [[n,k,d; c]] are

n = 4t − 1,

k = 4t + 2t − 2 × 3t + 1,

d = 2t + 1, and

c = 2t .

Proof. Let HT be a line-by-point incidence matrix of
EG1(2,2t ). An incidence matrix of EG1(2,2t ) is obtained by
removing one row and one column from each block from that
of AG1(2,2t ). By following the argument in Theorem 35, it
is straightforward to see that rank HT H = 2t . By Theorem
37, we have rank H = ϕ(m,2t ) − ϕ(m − 1,2t ) − 1 = 3t − 1.
Theorem 36 and Proposition 3 prove the assertion. �

Table IX gives a sample of the parameters of the type I
codes obtained from EG1(2,2t ).

As with S(2,µ,v)’s, the incidence structure EG1(m,q)
can also generate a high-rate LDPC code with girth 6.
Applying Proposition 2 to incidence matrices, we obtain type
II EAQECCs. Here we investigate their parameters.

Theorem 40. The minimum distance of a type II EAQECC
based on EG1(m,q) is q + 1 if q is even, and 2q if q is odd
and m > 2.

Proof. Consider any set of linearly dependent columns
in an incidence matrix of EG1(m,q). The same columns
appear in the corresponding incidence matrix of AG1(m,q),
but with a single zero coordinate added. These columns are
still dependent in AG1(m,q). Hence, the minimum distance is
upper bounded by Theorem 29. Thus, we need only to show
lower bounds.

We begin with q even. If q = m = 2, we can check by hand
that the minimum distance is 3. Henceforth assume that q > 2
or m > 2. Because the minimum distance of the code obtained
from AG1(m,q) is q + 1, there exists a set S of q + 1 linearly
dependent columns of an incidence matrix of AG1(m,q),
corresponding to a set D of q + 1 blocks of AG1(m,q). Let
P be the multiset of points appearing in the blocks of D.
As each block of D has q points, |P | = q(q + 1). However,
because the columns of S are dependent over F2, each point in
P must appear with multiplicity 2 or more. Hence, the number
of distinct points in P is at most q(q+1)

2 < qm − 1 except for
q = m = 2. Therefore, there is a nonzero point p of AG(m,q)
which does not appear in P . Let D′ = {B − p : B ∈ D}, that
is, we shift each block of D by p. Each new block corresponds
to a coset of a linear space. Because p �∈ P , no element of
D′ contains the zero vector, and so the elements of D′ are
lines of EG1(m,q). Thus, D′ is a linearly dependent set in
EG1(m,q) of size q + 1. Therefore, in all cases, the minimum
distance of type II EAQECC based on EG1(m,q), q even, is

TABLE X. Sample parameters of type II [[n,k,d; c]] EAQECCs
obtained from EG1(m,q), q even.

m q n k d c

3 2 21 15 3 6
4 2 105 91 3 14
5 2 465 434 3 30
6 2 1953 1891 3 62
3 4 315 235 5 20
4 4 5355 4971 5 84
2 8 63 19 9 8
3 8 4599 3927 9 72

q + 1. A similar argument proves the case when q is odd and
m �= 2. �

Theorem 41. For every pair of integers t � 1 and m � 2
there exists an entanglement-assisted quantum LDPC code
with girth 6 whose parameters [[n,k,d; c]] are

n = (2t(m−1) − 1)
2tm − 1

2t − 1
,

k = (2t(m−1) − 1)
2tm − 1

2t − 1
− 2 rank

[
EG1(m,2t )

] + c,

d = 2t + 1, and

c = 2tm − 2t

2t − 1
,

where rank EG1(m,2t ) = ϕ(m,2t ) − ϕ(m − 1,2t ) − 1.

Proof. Let H be an incidence matrix of EG1(m,2t ). Because
H is obtained from an incidence matrix of AG1(m,2t ) by
deleting the row representing the zero vector and the columns
that represent the lines containing the zero vector, it is easy to
see that the rows and columns of HHT can be reordered such
that the matrix is of the form

HHT =

⎡
⎢⎢⎢⎢⎣

0 J J

J 0 · · · J

...
. . .

...

J J · · · 0

⎤
⎥⎥⎥⎥⎦ ,

where J is the (2t − 1) × (2t − 1) all-one matrix. Because
2tm − 1 is odd, rank HHT = 2tm−1

2t−1 − 1. Applying Proposition
2 and Theorems 40 and 37 completes the proof. �

Tables X gives sample parameters for the type II codes
obtained from EG1(m,2t ).

For the case q odd, Hamada [35] conjectured that an
incidence matrix of EG1(m,q) is of full rank. As shown in
Table XI, the conjecture is true for small m and q.

IV. PERFORMANCE

In this section, we present simulation results for EAQECC
codes constructed in the previous sections. As in the related
works [16,17], we performed simulations over the depolarizing
channel. In this model, each error (X, Y , and Z) occurs
independently in each qubit with equal probability fm. For
a given CSS type EAQECC, we performed each decoding
in two separate decoding steps, each using the sum-product
algorithm. The shared ebits, which do not pass through the
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TABLE XI. Sample parameters of type II [[n,k,d; c]] EAQECCs
obtained from EG1(m,q), q odd.

m q n k d c

3 3 104 64 6 12
4 3 1040 960 6 80
5 3 9680 9316 6 120
3 5 744 526 10 30
3 7 2736 2108 14 56

noisy channel, are assumed to be error free. Our simula-
tion results are reported in terms of the block error rate
(BLER).

We first examine codes obtained from a block-by-point
incidence matrix. Figure 1 shows the performance of sev-
eral such codes based on projective and affine geometry
designs. As shown in Sec. III, these codes have very large
distances for sparse-graph codes while avoiding short cycles.
As expected, these codes perform excellently at relatively
high fm.

To illustrate how well these codes perform, we com-
pare one of our type I LDPC codes with previously
known entanglement-assisted quantum LDPC codes with best
BLERs.

Theorem 35 gives an EAQECC with parameters
[[256,110,18; 16]] obtained from AG1(2,16). The
[[255,111,17; 16]] EAQECC in the work of Hsieh, Yen, and
Hsu [17] used EG1(2,16) and outperformed all previously
known quantum codes of similar rate in simulations over the
depolarizing channel. Their code based on PG1(2,16), which
also performed very well, has parameters [[273,110,18; 1]].
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FIG. 1. (Color online) Performance of type I EAQECCs.
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FIG. 2. (Color online) Performance of type II EAQECCs.

Exactly the same EAQECCs as these two can be constructed
using Theorems 39 and 13 in our framework without relying
on computers to calculate their parameters.

These three EAQECCs based on finite geometries have
similar geometrical structures, and they behave quite similarly
in simulations. Performance of the AG1(2,16) and PG1(2,16)
codes is directly compared in Fig. 1. The BLER of the
EG1(2,16) code, which is slightly worse than that of our
AG1(2,16) code, is plotted in Fig. 2 to compare the three
with EAQECCs having different parameters. As shown in
the figures, our new [[256,110,18; 16]] EAQECC obtained
from AG1(2,16) shows a better BLER than the other two.
The BLERs of AG1(2,16), EG1(2,16), and PG1(2,16) codes
at fm = 0.02 are 1.0 × 10−4, 1.6 × 10−4, and 3.8 × 10−4,
respectively.

Entanglement-assisted quantum quasicyclic LDPC codes
proposed by Hsieh, Brun, and Devetak in [16] have also
shown excellent BLERs. In simulations, their [[128,58,6; 18]]
EAQECCs, called EX1 and EX2, outperformed the previously
known best quantum LDPC codes at a similar rate about
0.316. The net rate of EX1 and EX2 is 58−16

128 ≈ 0.312. Our
[[256,110,18; 16]] EAQECC obtained from AG1(2,16) has net
rate 110−16

256 ≈ 0.367, which is higher than that of EX1 and EX2.
Their simulation results and our independent simulation results
for EX1 and EX2 showed that their BLERs at fm = 0.02
are higher than 1.1 × 10−2, while our AG1(2,16) code has
BLER about 1.0 × 10−4 at the same fm, which is better than
EX1 and EX2 by two orders of magnitude. Our EAQECC
also requires a smaller amount of entanglement than EX1
and EX2.

Our results here confirm the close linkage between
EAQECCs and classical error-correcting codes: good
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FIG. 3. (Color online) Performance of type II EAQECCs.

performance in the classical setting translates directly
into good performance from the corresponding quantum
codes.

We next examine codes obtained from a point-by-
block incidence matrix. These codes are capable of
achieving extremely high rates even at moderate block
lengths.

Figures 2 and 3 show the performance of several type
II codes based on finite geometries. The type II code from
PG1(3,3) is shown in both figures to serve as a point of
reference between the two figures. Figure 4 gives the BLERs
for several codes with high rates including [[301,216,6; 1]]
and [[1080,998,6; 80]] codes from cyclic 5-sparse STSs of
order 43 and 81, respectively. The incidence matrices of these
two Steiner triple systems are constructed from the list of
base blocks in [55]. Note that the cyclic automorphisms and
sparse configurations immediately give the dimensions and
distances of the EAQECCs obtained from the cyclic 5-sparse
STSs (see [37,56]). Table XII lists the rates of selected finite
geometry codes shown in figures.

As in the classical setting, our codes obtained from
point-by-block incidence matrices have waterfall regions at
low fm and transmit at extremely high rates. This direct
correlation in performance between the classical and quantum
settings can also be seen when codes require only one ebit.
It may be worth mentioning that changing geometries or
choosing a nongeometric S(2,µ,v) can give slightly different
BLER curves. It would be interesting to investigate theoretical
methods for finding S(2,µ,v)’s with desirable performance
curves in given situations.

Finally, we compare EAQECCs obtained by removing
subdesigns from the parent design. Here we test a subdesign
deletion technique where each deletion step increases the
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FIG. 4. (Color online) Performance of high-rate type II EAQECCs.

required amount of entanglement to a slightly larger degree
than the examples we gave in Sec. III. Each code in Fig. 5
is constructed from a type II code based on AG1(3,3).
Fundamental parameters of these codes are shown in
Table XIII.

The original code is also shown for reference. The code
labeled “one sub” has had a single subdesign isomorphic to
AG1(2,3) removed. The code labeled “3 subs” has had a Steiner
spread removed. This last code is a regular LDPC code. As can
be seen from their BLERs, removing subdesigns has improved

TABLE XII. Rates of EAQECCs obtained from finite geometries.

Type Geometry m q Rate

II PG 4 3 0.9008
II PG 3 7 0.7203
II PG 3 5 0.6166
II PG 3 3 0.4076
II AG 3 7 0.7547
II AG 3 5 0.6787
II AG 3 3 0.5470
II AG 2 8 0.2638
II EG 2 16 0.4352
II EG 2 8 0.3015
I PG 2 32 0.5392
I PG 2 16 0.4029
I PG 2 8 0.2465
I AG 2 32 0.5566
I AG 2 16 0.4296
I AG 2 8 0.2812
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FIG. 5. (Color online) Performance of EAQECCs obtained by
deleting subdesigns from AG1(3,3).

the error-correction performance while increasing the rate and
maintaining many of the essential properties.

Because removing subdesigns can increase the required
amount of entanglement in a flexible manner, one can
generate an EAQECC which effectively exploits pre-existing
entanglement. For example, a high net rate code consuming
only one ebit can turn into a heavily entanglement-assisted
code to achieve better error-correction performance at the same
fm. As illustrated in Table XIII, a [[117,64,6; 1]] code with
a regular parity-check matrix becomes a [[81,56,6; 25]] code
with a regular parity-check matrix through gradual steps.

One can also fine-tune parameters and improve error-
correction performance while almost keeping the extremely
low required amount of entanglement by applying Theorems
14 and 15. As shown in Sec. III, all FG-LDPC codes found
in [17] can be constructed using our method. The subdesign
deletion techniques further give infinitely many codes by
fine-tuning their parameters and error-correction performance.
In this sense, our method gives many kinds of excellent
EAQECCs in a single framework.

TABLE XIII. Summary of Type II EAQECCs obtained by
deleting subdesigns from AG1(3,3).

Subsa n rank H k d c Rate

0 117 27 64 6 1 0.5470
1 105 27 60 6 9 0.5714
2 93 26 58 6 17 0.6236
3 81 25 56 6 25 0.6913

aThis column denotes the number of subdesigns removed.

V. CONCLUSION

We have developed a general framework for constructing
entanglement-assisted quantum LDPC codes using combi-
natorial design theory. Our constructions generate infinitely
many codes with various desirable properties such as high
error-correction performance and high rates and requiring only
one initial entanglement bit. Our methods are flexible and
allow us to design EAQECCs with desirable properties while
requiring prescribed amounts of entanglement. All quantum
codes constructed in this article can be efficiently decoded
through the sum-product algorithm.

We have introduced many families of entanglement-
assisted quantum LDPC codes based on combinatorial de-
signs as well as determined all fundamental parameters of
the well-known families of LDPC codes based on finite
geometries for most cases. Because the entanglement-assisted
stabilizer formalism bridges classical and quantum codes in a
direct manner, these results on entanglement-assisted quantum
LDPC codes are useful both in quantum and classical coding
theories.

Our framework encompasses many previously proposed
excellent quantum LDPC codes as well. In fact, our method
can also be applied to quantum LDPC codes under the standard
stabilizer formalism by employing the ideas found in [23,24].

We have focused on the fundamental classes of combinato-
rial designs. However, other classes of incidence structures
may provide interesting results as well. For example, the
entanglement-assisted quantum LDPC codes presented in
[16] can be seen as incidence structures generated from
the so-called difference matrices and their generalizations
(see [44] for the definition and basic facts about difference
matrices). More general families of combinatorial designs can
have nested structures or similar strong orthogonal relations
between two incidence matrices. This kind of structure can
give asymmetric quantum codes (see [57,58]). Structures in
finite geometry we did not employ may also give interesting
quantum LDPC codes as well as classical LDPC codes (see, for
example, [59,60]). Because LDPC codes and sparse incidence
structures are equivalent, we expect that our methods may be
further generalized to encompass a wider range of both new
and known quantum LDPC codes in future work.
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APPENDIX A: EXISTENCE OF 2-DESIGNS

Here we discuss the existence of 2-designs to be applied
to our constructions given in Sec. II B. The following is the
well-known asymptotic existence theorem.
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TABLE XIV. Parameters of entanglement-assisted quantum LDPC codes from finite geometries.a

Geometry Typeb m q n k d c Girth

PG II Any 2t (qm+1−1)(qm−1)
(q2−1)(q−1)

(qm+1−1)(qm−1)
(q2−1)(q−1)

− 2ϕ(m,2t ) + 1 q + 2 1 6

PG II Odd Odd (qm+1−1)(qm−1)
(q2−1)(q−1)

(qm+1−1)(qm−1)
(q2−1)(q−1)

− 2 qm+1−q

q−1 + 1 2(q + 1) 1 6

PG II Even Odd (qm+1−1)(qm−1)
(q2−1)(q−1)

(qm+1−1)(qm−1)
(q2−1)(q−1)

− qm+1−q

q−1 2(q + 1) qm+1−q

q−1 6

PG I 2 2t q2 + q + 1 q2 + q − 2 × 3t q + 2 1 6

PG I Any 2t qm+1−1
q−1

qm+1−1
q−1 − 2ϕ(m,2t ) + c (q + 2)qm−2 � ϕ(m,2t ) 6

AG II Any 2t qm−1 qm−1
q−1 qm−1 qm−1

q−1 − 2�(m,2t ) + 1 q + 1 1 6

AG II Odd Odd qm−1 qm−1
q−1 qm−1 qm−1

q−1 − 2qm + 1 2q 1 6

AG II Even Odd qm−1 qm−1
q−1 qm−1 qm−1

q−1 − qm − 1 2q qm − 1 6

AG I 2 2t q2 q2 + q − 2 × 3t q + 2 q 6

AG I Any 2t qm−1 qm−1
q−1 qm−1 qm−1

q−1 − 2�(m,2t ) + c (q + 2)qm−2 � �(m,2t ) 6

EG I, IIc 2 2t q2 − 1 q2 + q − 2 × 3t + 1 q + 1 q 6

EG II Any 2t (qm−1−1)(qm−1)
q−1

(qm−1−1)(qm−1)
q−1 − 2�(m,2t ) + 2 + c q + 1 qm−q

q−1 6

aAll codes are [[n,k,d; c]] EAQECCs obtained from PG1(m,q), AG1(m,q), or EG1(m,q). We omit EAQECCs which are created by subdesign
deletion techniques or do not have dimension greater than one. ϕ(m,2t ) is given by Theorem 19 in Sec. III A. �(m,2t ) is defined as �(m,2t ) =
ϕ(m,2t ) − ϕ(m − 1,2t ).
bType refers to the traditional classification of FG-LDPC codes: Type I uses a line-by-point incidence matrix, while type II uses the transposed
(i.e., point-by-line) incidence matrix.
cThe codes obtained from either orientation of the incidence matrix are identical [18].

Theorem 42: Wilson [61–63]. The necessary conditions for
the existence of a 2-(v,µ,λ) design, λ(v − 1) ≡ 0 (mod µ −
1) and λv(v − 1) ≡ 0 (mod µ(µ − 1)), are also sufficient if
v > vµ,λ, where vµ,λ is a constant depending only on µ and λ.

For µ ∈ {3,4,5}, necessary and sufficient conditions for the
existence of an S(2,µ,v) are known.

Theorem 43: Kirkman [64]. There exists an STS(v) if and
only if v ≡ 1,3 (mod 6).

Theorem 44: Hanani [65]. There exists an S(2,4,v) if and
only if v ≡ 1,4 (mod 12).

Theorem 45: Hanani [66]. There exists an S(2,5,v) if and
only if v ≡ 1,5 (mod 20).

For µ � 6, the necessary and sufficient conditions on v

for the existence of an S(2,µ,v) are not known in general,
although for small values of µ substantial results are known.

For a comprehensive table of known Steiner 2-designs,
see [44].

Theorems 42, 43, 44, and 45 were proved by constructive
methods. Hence, these existence results allow us to construct
infinitely many explicit examples of entanglement-assisted
quantum LDPC codes. It is worth mentioning that many of the
known proofs of these theorems employ the same construction
technique we used in Theorem 18. In fact, most S(2,µ,v)’s in
the original proofs of these existence theorems have either
Steiner spreads or nontrivial subdesigns.

Numerous other constructions for 2-designs also give
explicit examples of S(2,µ,v)’s for a wide range of parameters.
A detailed treatment of STS(v)’s is available in [67]. Various
constructions for S(2,µ,v)’s for many values of µ are also
given in [68].

TABLE XV. Parameters of classical FG-LDPC codes.a

Geometry Type m q n k d Girth

PG II Any 2t (qm+1−1)(qm−1)
(q2−1)(q−1)

(qm+1−1)(qm−1)
(q2−1)(q−1)

− ϕ(m,2t ) q + 2 6

PG II Any Odd (qm+1−1)(qm−1)
(q2−1)(q−1)

(qm+1−1)(qm−1)
(q2−1)(q−1)

− qm+1−q

q−1 2(q + 1) 6

PG I Any 2t qm+1−1
q−1

qm+1−1
q−1 − ϕ(m,2t ) (q + 2)qm−2 6

AG II Any 2t qm−1 qm−1
q−1 qm−1 qm−1

q−1 − ϕ(m,2t ) + ϕ(m − 1,2t ) q + 1 6

AG II Any Odd qm−1 qm−1
q−1 qm−1 qm−1

q−1 − qm 2q 6

AG I Any 2t qm qm − ϕ(m,2t ) + ϕ(m − 1,2t ) (q + 2)qm−2 6
EG I, IIb 2 2t q2 − 1 q2 − 3t q + 1 6

EG II Any 2t (qm−1 − 1) qm−1
q−1 (qm−1 − 1) qm−1

q−1 − ϕ(m,2t ) + ϕ(m − 1,2t ) + 1 q + 1 6

EG II � 3 Odd (qm−1 − 1) qm−1
q−1 � (qm−1 − 1) qm−1

q−1 − qm + 1c 2q 6

aWe omit the cases when codes are created by subdesign deletion techniques or do not have enough dimension.
bThe codes obtained from either orientation of the incidence matrix are identical [18].
cIf Hamada’s conjecture on the rank of EG1(m,q) [35] is true, the equation holds.
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APPENDIX B: PARAMETERS OF QUANTUM AND
CLASSICAL FG-LDPC CODES WITH GIRTH 6

Here we give tables of parameters of LDPC codes with
girth 6 based on finite geometries. Table XIV gives parameters

of entanglement-assisted quantum LDPC codes obtained
from PG1(m,q), AG1(m,q), and EG1(m,q). Parameters of
the corresponding classical FG-LDPC codes are listed in
Table XV.
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