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Abstract: This paper presents a novel design for the top contact of thin film photovoltaic 
(PV) solar cells. The new top contact is formed by fabricating a 20nm thin honeycomb shaped 
silver mesh on top of an ultra-thin 13nm of indium tin oxide. The new top contact offers the 
potential to reduce the series resistance of the cell while increasing the light current via 
plasmonic resonance. Using the nano-bead lithography technique the honeycomb top contact 
was fabricated and electrically characterized. The experimental results verified the new 
contact reduces the sheet resistance by about 40%. Numerical simulations were then used to 
analyze the potential performance enhancement in the cell. The results suggest the proposed 
top contact integrated with a typical thin film hydrogenated amorphous silicon PV device 
would lead to more than an 8% improvement in the overall efficiency of the cell. 

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 

The ever-growing demand for energy along with the negative environmental impacts and 
increasing costs of fossil fuels, have motivated the scientific community to explore 
inexpensive, clean and renewable sources of energy [1]. Solar photovoltaic (PV) technology, 
which converts light directly to electricity, is one of the most appealing alternatives to 
sustainably supply the increasing global electrical energy demand [2]. PV costs have steadily 
declined [3,4] and now represent the fastest growing source of electricity, however, costs 
must continue to decline for the levelized cost of solar electricity [5] to eliminate the need for 
traditional electricity sources and their externalities in their entirety. Besides cost savings in 
material selections and fabrication process efficiencies, improvement in the conversion 
efficiency of solar cells cuts the total expense of solar PV deployment by reducing the 
number of modules required to deliver given amount of electric power and thus the 
concomitant labor and balance of systems (BOS) expenses such as land and racking materials. 
Thin film hydrogenated amorphous silicon (a-Si:H) solar cells are an important example of 
potentially useful means to economically fabricate PV. Cost effective plasma enhanced 
chemical vapor deposition (PECVD) and low material usage made the thin film a-Si:H solar 
cell appealing for the replacement of single crystal and polycrystalline solar cells. However, 
thin film a-Si:H cells are not as efficient as their crystalline and polycrystalline counterparts. 
The highest confirmed efficiency for thin film a-Si is about 11% (12% if a tandem 
microcrystalline layer is used), which is about half of the efficiency of crystalline Si solar 
cells [6]. 

Several researchers have used innovation in plasmonics to increase the efficiency of thin 
film a-Si:H solar cells. For example, Derkacs and associates increased the short circuit current 
density of thin film a-Si:H solar cells with forward scattering by surface plasmon polariton 
modes [7]. Spinelli and colleagues modified the back reflector with plasmonic silver nano-
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particles to enhance light absorption through light-trapping [8]. Aydin et al. proposed a thin 
plasmonic absorber consisting of a metal–insulator–metal stack with a nano-structured top 
silver film to increase the light absorption [9]. Massoit and associates used one dimensional 
array of silver strips to form a broadband light trapping mechanism in order to enhance the 
light absorption of the cell [10]. Zhang et al., found improved a-Si:H PV device performance 
with an enhanced front-surface hexagonal plasmonic arrays made from nano-scale 
lithography [11]. These approaches are promising and this study aims to further those efforts 
by analyzing a new top contact that is able to be manufactured economically at a large scale. 
Beside plasmonic, in this paper, we propose a new design for thin film a-Si:H with a unique 
top emitter layer. We report a series of experiments and measurements to demonstrate 
feasibility of implementation for the proposed emitter layer. In addition, we run numerical 
simulations to reveal the potential for the new top emitter layer to increase the efficiency of a-
Si:H-based PV cells by quantifying the enhancement of light absorption in the active region 
and the reduction in the series resistance. 

2. Plasmonic thin film a-Si:H solar cell 

A typical thin film a-Si:H solar cell consists of several semiconductor and conductive layers 
with different thicknesses as is shown in Fig. 1. The thickness and optical properties of these 
layers especially the top transparent conductive oxides (TCO) and intrinsic a-Si:H layer have 
a strong impact on the optical properties of the cell. The intrinsic a-Si:H is the active region of 
the cell and produces the photocurrent generated by the cell. However, absorption of light in 
the active a-Si:H layer drops drastically as the wavelength of light increases beyond 600nm. 
As a result, most of the light energy at large wavelength regions (λ > 600nm), is not harvested 
by the cell. For the short wavelength region (λ < 450nm), on the other hand, the incident light 
mostly dissipates in the p-type amorphous silicon layer and does not reach the active layer. 
Considering these two effects, the cell is more efficient within the 450nm < λ <600nm 
window. Therefore, it is essential to maximize the transmission of sunlight within the 450nm 
< λ <600nm window into the active layer. This explains the need for adding an anti-reflection 
coating (ARC) on top of the cell, which reduces the reflection and increases the transmission 
in the 450nm < λ <600nm window. The TCO layer, which is normally made out of indium tin 
oxide (ITO), serves as the ARC. TCOs were initially integrated with thin film solar cells to 
reduce the series resistance of the cells by lowering the sheet resistance of the emitter layer 
[12]. However, in modern cells TCO layer has multiple functionalities such as barrier to 
prevent the back reflector (BR) and top grid metal to diffuse inside the active layer [13], and 
the ARC as mentioned. 

 

Fig. 1. Cross section of a typical thin film a-Si:H solar cell. From right, white is the glass 
superstrate, gray is the top TCO layer made of thin film indium thin oxide (ITO), green is p-
type amorphous silicon, deep blue is intrinsic a-Si:H, light blue is n-type amorphous silicon, 
red is the bottom TCO layer made of aluminum zinc oxide (AZO), and pink is the bottom layer 
made out of silver. 

Although the ARC is beneficial for the 450nm < λ <600nm window, it rejects the incident 
light at higher wavelengths, λ > 650nm. The low absorption of the active layer along with the 
high reflection of incident light by the ARC result in poor efficiency for the large wavelength 
region. Plasmonic nano-structures were recently exploited to alleviate the low efficiency of 
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the light absorption of the cell. For the high-level model, which is applicable to a wide range 
of cells, being used in our study for instance, a 15% increase in the light current has positive 
effect on the MPP only if the increase in the series resistance is less than 43% (see point P1 in 
Fig. 2(b). Thus, it is crucial to keep the series resistance below some certain value while 
optimizing or redesigning a solar cell to increase the light absorption. 

Inspired by this outcome, we designed a new plasmonic thin film a-Si:H cell that reduces 
the series resistance of the cell along with enhancement in the light absorption. The design 
which we refer to as the honeycomb emitter is shown in Fig. 3. The top contact of the new 
cell consists of a thin ITO layer that is partially covered by a silver mesh resembling a 
honeycomb. The 13nm ultra-thin ITO is set to form a low resistance ohmic junction with the 
active layer at the bottom [25] and prevent diffusion of the top silver mesh. The silver mesh 
provides a low resistance path to deliver the photo-generated current to the external terminal 
of the cell. As we elaborate in the next section, a properly designed honeycomb mesh 
improves light absorption in λ > 650nm region without deteriorating the performance of the 
cell in 450nm < λ <600nm. The honeycomb thin film solar cell is a periodic structure in the X 
and Y directions (see Fig. 3). Figure 3 shows 6 of the unit cells in a 3 by 2 arrangement. A 
thin metallic film with an array of subwavelength holes has been proposed before to improve 
the efficiency of organic solar cells [26]. However, the honeycomb pattern benefits from 
scalable and relatively low cost self-assembled nano-beads lithography technique [11,27–31]. 
In [32], the authors used nano-beads lithography to make a perforated metallic film which in 
turn could be used to lower the resistance of the top contact. However, the plasmonic 
resonance was not being considered. In addition, the authors only consider the metallic mesh 
by itself, not as a part of a solar cell. 

 

Fig. 3. Schematic of 6 unit cells of honeycomb thin film solar cell. The silver mesh is shown in 
grey. The top TCO layer is in green, active layer in blue, and the bottom TCO layer in red. The 
drawing is not to scale. 

As the result of diffraction of the incident light by the silver mesh, the energy of incident 
light is distributed between the different diffracted orders. The amount of power in the non-

zero diffracted orders to the total incident power is called diffraction efficiency, Dη . Larger 

the Dη  , more of the energy of the incident light transfers to non-zero diffracted orders, 

which is desirable for increasing the light current at high wavelength region. Plasmonic 

resonance enables the silver mesh to enhance the Dη  at a given frequency dependent on the 

geometry of the mesh. The thickness, radius of the opening and periodicity of the mesh 
determine the frequency and strength of the plasmonic resonance [33]. At the resonance 
frequency, electric and magnetic fields are very strong at the silver-ITO interface and decay 
rapidly as the distance to the interface increases; this phenomenon is called local field 

enhancement. The Dη  increases as the result of the local field enhancement and Fourier 
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expansion explains the connection between these two. Power in every diffracted order is 
proportional to the squared magnitude of the corresponding harmonic in the 2D Fourier 
expansion of electric and magnetic field. The fast and intense change in the fields as the result 
of local field enhancement leads to large harmonic content in the 2D Fourier expansion of the 
field, which in turn, means higher power in the non-zero diffracted orders. 

3. Design, modeling, a of honeycomb top contact 

Since this particular application requires high diffraction efficiency for 600nm≥λ , the silver 
mesh was designed based on the guidelines provided in [33] to resonate at 600nm. The 
resonance frequency and diffraction efficiency were found form the numerical simulation. 
The COMSOL RF module, a commercially available full-wave electromagnetic simulation 
tool, was used to perform the numerical simulation. The result of the numerical modeling was 
used in an iterative fashion to tune the geometrical parameters of the silver mesh in order to 
achieve the desired resonance frequency. 

In order to find the diffraction efficiency on the mesh, the electric and the magnetic fields 
were found numerically on a test plane on the top boundary of the intrinsic a-Si. Having the 
electric fields everywhere on the test plane, we can apply the Fourier integral to decompose 
the field into plane waves that propagate in the different directions, or the diffracted orders. 
The amplitudes of the X and Y polarized electric fields, ,m n

xE  and ,m n
yE , for all the different 

diffracted orders are given by 

 
2 2

2 2

2 2

, 1 ( , )
m n

W L

W W

L L

j x j ym n
i iWL

x
y

E E x y e e dxdy
π π

− < <
− < <

=   (1) 

In Eq. (1), i represents the X and Y, and ( ),iE x y  is the i component of the electric field 

on the test plane found from simulation. W and L are the length of the unit cell in the X and Y 
directions, respectively (see Fig. 3). m and n denote the order of diffraction in the X and Y 
directions respectively. In other words, the X component of the wave vector is m2π/W and the 
Y component is n2π/L. 

Having the amplitude of every diffracted order, we can easily find the diffraction 
efficiency for the normally incident light. The sum of the powers in the all diffracted 
components is equal to the total power minus power in the undiffracted modes. Therefore, the 
diffraction efficiency could be written as 

 
( )2 20,0 0,01

.
output x y

D
incident

P E E
Z

P
η

− +
=  (2) 

In Eq. (2), Z denotes wave impedance of intrinsic a-Si:H layer, Pincident is the incident 
power density, and Poutput is the total power density passed the silver mesh. 

After a couple of iterations, we found a silver mesh with thickness of 20nm, the diameter 
of the openings of 0.92μm, the periodicity (center-to-center distance between two adjacent 
openings) of 1μm resonates at 600nm. The ITO layer beneath the mesh is 13nm, because the 
13nm ITO layer is not thick enough to work as an ARC for 450nm < λ <600nm, a 48nm thick 
layer of silicon nitride (Si3N4 or simply SiN) was added on top of the ITO layer. We selected 
SiN because it has refractive index value very close to the refractive index of ITO and is 
much less absorptive compared to ITO. In this design, the combination of 13nm ITO and 
48nm SiN together acts as the modified ARC. Diffraction of light inside the ARC increases 
the light absorption through two different mechanisms. First, an obliquely propagating wave 
has a longer path length in the active layer, therefore absorption in the active layer increases. 
Second, if the angle of propagation for the diffracted light is greater than the critical angle for 
the total internal reflection at the air-ITO interface, the wave cannot escape back to the air. 
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Clearly, one needs to first quantify the contribution of the different components of RS in order 
to study the effect of emitter layer sheet resistance in the performance of the cell. The 
junction resistivity and the emitter sheet resistance depend strongly on the materials, 
technology and fabrication conditions. As a result, the contribution of emitter layer in the RS 
varies from one solar cell to another one, and typically ranges from 10% to 30% [35,36]. This 
implies that if a modification on a cell doubles the emitter sheet resistance, the total series 
resistance would increase by 10-30%. 

Sheet resistance of a flat uniform layer is given by / tρ  where ρ  is the specific 

resistance and t is the thickness of the layer. For a 70nm thick ITO layer with specific 
resistance of 65 10  ITO mρ −= × Ω  the sheet resistance is 71Ω/sq. For a complex structure like 

the honeycomb emitter layer it is essential to first define sheet resistance. A voltage drop is 
built as the photo generated current passes through the honeycomb emitter to reach the 
external terminals of the solar cell. We define the effective sheet resistance of the honeycomb 
emitter such that if the honeycomb emitter is replaced by a virtual layer with sheet resistance 
equal to the effective sheet resistance, then the voltage drop across the layer does not change. 
To find the effective sheet resistance, the scenario illustrated in Fig. 7 (the structure is 
assumed to be very long in the Y direction compared to the size of the structure in the X and 
Z directions) was considered. A uniform current density J is applied to the lower boundary of 
the ITO layer and the current is collected from a terminal attached to the top edge of the silver 
net. The SiN layer was not included in this analysis, because its resistance is orders of 
magnitude larger than the silver mesh and ITO layer [37]. The terminal is located at 0=x , 
kept at zero potential and the terminal-silver mesh junction resistance is negligible. Voltage 
drop across a small distance between x  and + Δx x  is equal to 

( ) ( ) ( ) ( )Δ = + Δ − = − ΔeV x V x V V x J L x xσ , where Δx  is a small increment in the X 

direction, eσ  is the effective sheet resistance of the honeycomb emitter, and L is the length of 

the honeycomb emitter in the X direction. The potential at any arbitrary point on the 
honeycomb emitter is found to be: 

 
1

( ) (2 )
2

= −eV x Jx L xσ  (3) 

 

Fig. 7. The scenario to find the effective sheet resistance of honeycomb emitter layer (only a 
few unit cells of the honeycomb top contact are shown). 

The structure in Fig. 7 has been studied numerically using the COMSOL AC/DC module 
to find the potential at any point on the honeycomb emitter layer. The specific resistivity of 
silver is considered to be 87 10Ag mρ −= × Ω  [38] and the specific resistivity of the 13nm thick 

ITO layer is 51.15 10  ITO mρ −= × Ω  extrapolated form [39]. The silver mesh is 20nm thick and 

has openings with diameter 0.92μm and a separation of 1μm (center to center). The result of 
the numerical simulation is illustrated in Fig. 8. 
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