Michigan
Technological Michigan Technological University
1a8s] University Digital Commons @ Michigan Tech

Michigan Tech Publications, Part 2

6-2023

More (Semal|Meta)phors: Additional Perspectives on Analogy Use
from Concurrent Programming Students

Briana Christina Bettin
Michigan Technological University, bcbettin@mtu.edu

Linda Ott
Michigan Technological University, linda@mtu.edu

Julia Hiebel
Michigan Technological University, jshiebel@mtu.edu

Follow this and additional works at: https://digitalcommons.mtu.edu/michigantech-p2

0 Part of the Computer Sciences Commons

Recommended Citation

Bettin, B. C., Ott, L., & Hiebel, J. (2023). More (Sema|Meta)phors: Additional Perspectives on Analogy Use
from Concurrent Programming Students. Annual Conference on Innovation and Technology in Computer
Science Education, ITiCSE, 1,166-172. http://doi.org/10.1145/3587102.3588831

Retrieved from: https://digitalcommons.mtu.edu/michigantech-p2/43

Follow this and additional works at: https://digitalcommons.mtu.edu/michigantech-p2

b Part of the Computer Sciences Commons

http://www.mtu.edu/
http://www.mtu.edu/
https://digitalcommons.mtu.edu/
https://digitalcommons.mtu.edu/michigantech-p2
https://digitalcommons.mtu.edu/michigantech-p2?utm_source=digitalcommons.mtu.edu%2Fmichigantech-p2%2F43&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.mtu.edu%2Fmichigantech-p2%2F43&utm_medium=PDF&utm_campaign=PDFCoverPages
http://doi.org/10.1145/3587102.3588831
https://digitalcommons.mtu.edu/michigantech-p2?utm_source=digitalcommons.mtu.edu%2Fmichigantech-p2%2F43&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.mtu.edu%2Fmichigantech-p2%2F43&utm_medium=PDF&utm_campaign=PDFCoverPages

Check for
Updates

More (Sema|Meta)phors: Additional Perspectives on Analogy Use
from Concurrent Programming Students

Briana Bettin
Michigan Technological University
Houghton, ML, USA
bebettin@mtu.edu

ABSTRACT

A concurrent computing course is filled with challenges for upper-
level programming students. Understanding concurrency provides
deeper insight into many modern computing and programming
language behaviors, but the subject matter can be difficult even
for relatively proficient students. It can be a challenge to help stu-
dents navigate and understand these unfamiliar topics. While there
is a difference in general programming familiarity, teaching this
novel material is not unlike some challenges faced when engaging
introductory students with first programming concepts.

In this work, we explore the use of analogy by students while
learning a novel programming methodology. We investigate per-
ceptions of the utility of analogy and creation of analogies in the
concurrent course. We also examine perceptions of analogy value
across students’ computing education and factors which impacted
their use or disuse of provided or student-generated analogies.

This exploration suggests that pedagogical analogy design can be
memorable and significant for student understanding. It further sug-
gests that analogies inherent in concept naming and foundational
examples may have even greater salience. While not all students
create analogies, those that do share both unique examples and
additions to existing examples that helped them understand core
concepts. Students had mixed responses on whether analogy as a
tool was used in their lower-level courses. Despite this, most found
analogies to be useful, with a majority finding them even more
useful in upper-level programming courses.

CCS CONCEPTS

« Social and professional topics — Computing education; «
Computing methodologies — Concurrent computing methodolo-
gies.

KEYWORDS

computing education, mental models, understanding, analogical
reasoning, analogy, metaphor, concurrent computing, concurrent
algorithms, qualitative

ACM Reference Format:

Briana Bettin, Linda Ott, and Julia Hiebel. 2023. More (Sema|Meta)phors:
Additional Perspectives on Analogy Use from Concurrent Programming
Students. In Proceedings of the 2023 Conference on Innovation and Technology

(0. ®

ITiCSE 2023, July 8-12, 2023, Turku, Finland

© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0138-2/23/07.
https://doi.org/10.1145/3587102.3588831

This work is licensed under a Creative Commons
Attribution International 4.0 License.

Linda Ott
Michigan Technological University
Houghton, ML, USA
linda@mtu.edu

166

Julia Hiebel
Michigan Technological University
Houghton, ML, USA
jshiebel@mtu.edu

in Computer Science Education V. 1 (ITiCSE 2023), July 8-12, 2023, Turku,
Finland. ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3587102.
3588831

1 INTRODUCTION

Concurrent programming is a powerful concept, one that many
students struggle to incorporate into their existing understanding
of computing. This difficulty can be magnified by the sense of
competence or even expertise that upper-level students have often
developed prior to encountering this starkly novel approach.
Given that analogy can be effective in bridging between known
experiences and stories to unknown ideas, this seemed a useful
tool to explore more deeply in concurrent curricula. As concur-
rent students are upper-level students, we were also curious about
their perspectives on the use of analogy throughout their prior
computing education. We center these research questions:

e What analogies do students remember and engage with
across their time in a concurrent computing course? Across
computing curricula?

e How do students characterize engagement with analogies
when learning computing course material?

o How might student perspectives on analogies shift over their
time in computing courses?

We identify patterns in concurrent computing students’ perspec-
tives on analogies through this exploration. These observations
provide both insights and new paths for future research.

2 LITERATURE REVIEW

Analogy, as a pedagogical tool, has been employed in the teaching
of concurrent and parallel computation. Anderson and Dahlin [1],
a textbook often leveraged for such curricula, explores core top-
ics such as race conditions, synchronization, and deadlock with
analogical structures and examples. A parallel computing course
described by Giacaman [15] uses an overarching analogy represent-
ing the system as a company, with desks representing processor
cores and employees representing threads, and adds additional ana-
logical elements as new concepts are presented. Many concurrent
pedagogical environments also leverage visualization to explain
and analogize program behavior to facilitate reasoning about the
concurrent concepts [13, 20, 22]. Given the use of analogy within
concurrent curricula, there is prospective value in exploring student
perceptions and relationships with these pedagogical activities.
Shene and Carr [22] enumerate challenges in overcoming the
sudden, significant paradigm shift students face when transition-
ing from a sequential to concurrent mindset. Common dynamic
behavior bugs, such as race conditions and deadlock, can occur
intermittently. This requires students to reason over their program

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3587102.3588831
https://doi.org/10.1145/3587102.3588831
https://doi.org/10.1145/3587102.3588831
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3587102.3588831&domain=pdf&date_stamp=2023-06-30

ITiCSE 2023, July 8-12, 2023, Turku, Finland

for correctness, as opposed to testing reliance. Further, they note:
“most students indicate that they need additional and real examples
in addition to the classical ones” [22]. “Classic” textbook examples
are often limited to presenting a correct solution or examining an
incorrect one in isolation. To maximize the value of “real eamples”
(which depend on learner experiences and understanding), it be-
comes imperative to understand student interactions with analogy.

Recent developments in the state-of-the-art of teaching concur-
rent and parallel topics is given by Durraes et al [8]. They suggest
that traditional pedagogical approaches still dominate the teaching
of concurrency and advocate for additional research into the inclu-
sion of modern pedagogical approaches to increase engagement and
learning. Pedagogical engagement can be increased with analogy
usage [2, 17, 19], further indication that analogy and concurrency
are important topics for exploration.

In computing education research (CER), most work is focused on
introductory programming courses and data structures [5, 7, 9, 12,
18, 21]. Usage in upper-level classes has been less explored in anal-
ogy work [4, 12, 15] across CER. There has been historical discourse
opposing the use of analogy [11], which may have contributed to
its under-exploration in the field. Recently, shifting conversations
within CER have enumerated benefits of analogy [3, 16]. This shift
in understanding is consistent with cognitive sciences and STEM
education literature on analogy as a learning tool [3, 14].

3 OUR CONTEXT

Located in a rural area of the United States, our university student
body is majority white males. Our concurrency course has a similar
makeup, paralleling nationwide demographic trends for computer
science enrollment. The course is required for computer science,
software engineering, and computer engineering majors, and is
typically taken by undergraduates in their third or fourth year. The
required nature of the course means course demographics closely
mirror university and department trends as well. Our Spring 2020
course had 81 students enrolled, with 67 completing the course.
Our concurrent computing course covers multi-process and
multi-threaded programming concepts, with a focus on synchro-
nization constructs, including mutual exclusion (mutex) locks, sema-
phores, monitors, and channels. Proper synchronization is required
to prevent race conditions—incorrect results due to concurrent ma-
nipulation of shared resources, such as bugs which occur when a
shared resource is manipulated between time-of-check and time-
of-use (TOCTOU). The development of techniques for preventing
race conditions extends beyond multi-process and multi-threaded
programs, as sequential programs interact with shared operating
system resources (most commonly the file system). Students are
further introduced to the computer security vulnerability conse-
quences of race conditions and improper synchronization. In order
to support student understanding of the design and use of concur-
rency tools, relevant systems-level topics are discussed briefly.

4 METHODOLOGY

In the Spring 2020 Concurrent Course, a survey with the following
six open-response questions was administered:

(1) In Project 4, you designed a Synchronization Protocol for
a Landlord and Students sharing a room. What analogies

167

Briana Bettin, Linda Ott, & Julia Hiebel

did you construct surrounding mutexes and semaphores to
understand the problem?

In Project 5, you designed a Synchronization Protocol for
Elves and Reindeer competing for the limited resource of
Santa’s attention. What analogies did you construct sur-
rounding monitors and condition variables to understand
the problem?

In this course, several analogies have been used to explore
the material and topics. Which of these have been most
helpful for you in learning the material? Why?

Have you or any study groups you are in developed any
analogies throughout this course in an effort to learn the
material? If so, what topic did the analogy entail, and what
was it compared to?

Have analogies been a tool you used in lower-level courses?
What analogies helped you understand computing concepts
in courses prior to this one?

Has your perception or use of analogy changed as an upper-
level student? Do you feel you use them more/less, or that
they are more/less effective? What do you feel may have
impacted any changes (or lack thereof) in your perception?

This survey was deemed “exempt” by the institutional ethics
board. Extra credit was given to students for completing the survey
with the requirement to receive credit being “thoughtful response
of about 3-5 sentences per question”. This ensured that effort was
put into the responses, but that content of the responses did not
impact credit given. Students were asked for their consent to use
their responses in this research. Effort was the only requirement
to receive the extra credit as indicated on the consent statement. A
total of 55 students completed the survey and gave consent. These
55 responses were the basis for this research.

5 ANALYSIS

To analyze the qualitative data, survey responses were coded using
key words and concepts, which were used to develop emergent
themes. This aligns with a constructivist grounded theory [6] ap-
proach. While our approach fits well with this description, we do not
wish to create method slur [23] by suggesting a complete construc-
tivist grounded theory implementation. Specifically, we present
observations of student experiences rather than propose a theory,
which diverges from the intention of grounded theory. However, we
align our approach with several key practices of grounded theory
implementation, such as evolving research questions, coding de-
veloping categories, social construction of participant experiences,
and sufficient original data for claims (82% of students completing
the course gave permission for us to use their survey).

6 RESULTS

In this paper, we focus on Survey Questions 3 through 6, which are
aimed at understanding students’ general perceptions and use of
analogy. Questions 1 and 2 were previously explored [4]. Through
these four questions, our analysis focuses on their perception of
pedagogical analogy use across their time both as a concurrent
student and as a computing major. We identify here common themes
which align with the research questions as well as potential interest
to the broader research community.

Perspectives on Analogy Use by Concurrent Programming Students

6.1 Question 3 Response Themes

6.1.1 Dining Philosophers. The most commonly cited course anal-
ogy which students found helpful was the “Dining Philosophers”
example, used to explain deadlock behavior through the imagery of
several philosophers (threads) each wishing to eat (access shared re-
sources), but requiring two chopsticks (mutex locks) when only one
is set out for each of them. If each picks up a chopstick and waits, a
circular dependency occurs as no one releases their chopstick, but
no one has enough chopsticks to move forward (eat).

Students referenced this analogy as being quite memorable in
content and presentation. They also indicated that they reused the
analogy by revisiting it in other problem contexts. For students,
Dining Philosophers had memorable imagery and strong material
concepts embedded in that imagery that were considered valuable
in their problem solving and understanding processes.

“[...] the "dining philosophers" analogy helped explain the concept
of deadlock and mutual exclusion by explaining them in terms of
dining utensils, which are a much more familiar concept.” - P7

“The dining philosophers were the most helpful to me. I found
myself remembering that analogy and referring back to it a
lot. This analogy stick in my head because it made the most sense.
[...] It was clear and easy to follow. [...] ”- P10

“[...] I liked the dining philosophers analogy just because it was
kinda funny and quirky, making it easy to remember.” - P25

6.1.2 Locking. While not typically considered a classroom analogy,
students recognized inherent analogies in syntactic commands
when responding to this prompt. Several identified that the concept
of “locking” was easy to remember and understand because of its
analogous nature to real-world locks. Students referenced lock as
an analogy for semaphores. In their programming environment, as
well as many other concurrent libraries and environments, “lock” is
a literal command or function used to initiate semaphore behavior.
“[...] Thinking of mutexes and semaphores as locks or entrance
lines was the most broadly applicable analogy for me. [...]” - P23
“For semaphores, the lock and key analogy was super helpful.
It helps to think about "left over keys" that others can grab. ” - P28
“The most useful analogies to me are that a semaphore is like a
bathroom door lock - only the one who locked it can unlock it
and it prevents others from getting into the critical section” - P49

6.1.3 Baton Passing. Another analogy used was that of “baton
passing” to represent the concept of processes signalling each other
similarly to relay race runners handing off a baton to their next
teammate so that teammate can begin their segment of the race.
Students indicated the problem was easy to visualize and helpful
in explaining an abstract computational process flow. Of note, two
responses specifically referenced this analogy as being easier to
understand than the visual diagrams of the behavior presented in
class, which had arrows pointing through the signal relay process.

“T found the baton passing for the semaphores to be helpful in
learning to trace where the control flow goes because it requires
considering multiple semaphores and states at once. [...]” - P14

“[...] But when they pass the baton it means that they picked up the
baton and handed off / signaled another thread. This was a better
explanation to me than trying to read the slide examples with
all the arrows pointing to different parts of the code.” - P50

168

ITiCSE 2023, July 8-12, 2023, Turku, Finland

Baton Passing also elicited this interesting response. One student
indicated analogy “falls flat”—but that “naming things effectively”
is helpful. Baton passing as a naming convention would still be an
analogy to the act of baton passing. The student is still referencing
the analogy as useful, while describing it as not an analogy:

“Analogies have often fallen flat for me to the point that I don’t
really remember any good ones from this course. This is really just a
personal thing about me. Sometimes naming things effectively is
what really makes me understand their purpose, like Baton
Passing, referring to passing control over a program or critical section
to different threads.” - P34

6.1.4 Real World Familiarity. With all of the above themes, stu-
dents significantly agreed that a large reason for the memorability,
and often success, of the analogy was due to a clear, real-world con-
nection. Students indicated that especially with concurrent course
material, computing processes can feel quite abstract, and connec-
tions to things they could “visualize” aided their understanding.

‘T found the analogies for running around a track passing a baton
useful for understanding semaphores, because it’s easy to relate
to watching people act something out rather than thinking
about how a computer works in technical” -P3

“The analogies which describe concepts in a more physical sense
have been more helpful. [...]” - P7

‘[...] Concurrent [...] really has a lot of parallels to real life
in the way that threads communicate with each other.” - P18

6.2 Question 4 Response Themes

6.2.1 No Created Analogies. A majority of students indicated that
they did not create any new analogies while working to learn the
material. While they may have referred to or leveraged the analogies
provided in the course materials or problems, the surveys indicated
that most did not develop their own analogies.

“Idon’t think I have developed any of my own analogies for this
class. I would refer back to the examples on the slides. Then I would
see how I could compare them to the current problem I was working
on. I have a hard time coming up with my own analogies.” - P9

‘T did not develop any of my own analogies. The class already
had a lot of analogies to study from, which is what I did. I think
though that coming up with your own analogy would help
with understanding the material further.” - P24

6.2.2 Course Analogies Useful. While a majority of responses in-
dicated that students did not create their own analogies, several
of these responses also suggested this was due in part to feeling
the course analogies were sufficient. Students made references to
leveraging these analogies and at times even modifying them to
suit their specific problem representation needs.

“We did not come up with any new analogies. The current analo-
gies that were given were enough to help out in understanding the
course material.” - P13

“[...] I was helping a classmate understand the dining philosophers
issue since he was having a hard time with it at first. We mainly
stuck to the analogies provided since they were good examples to
being with. [...]” - P29

“T haven’t developed many analogies myself [...] provided in this
course were sufficient for understanding concepts.” - P38

ITiCSE 2023, July 8-12, 2023, Turku, Finland

6.2.3 Competition as Analogy Theme. Among students who did
indicate developing their own analogies, there was a variety of
unique themes. Among those themes, several responses centered a
competitive environment or competition as a significant aspect in
the source domain. From sports to conquest tactics, a competition
that can be “won” was found across many of the provided analogies.

“Our analogy for a Monitor was that it was like a baseball
game. There are processes waiting on the bench to bat, and only one
process can be at bat at a time. This process can either wait on the
next batter by getting a hit and waiting for the next batter/batters to
signal him by hitting him home.[...]” - P27

“[...] compared the problem at hand to humans competing or
taking turns grabbing things with their hands (the shared resource,
or "critical section"). We often thought of the Wait()s and Singal()s
as the humans tapping each other on the shoulder and saying "wait,
I need to do something" or "I'm done now, go ahead" to each other.
This was helpful because when we were acting out these sequences,
we would often say these phrases to each other so that we essentially
took the role of one of the human threads in the system.” - P46

“[...] For race conditions we thought of it like black friday where
everyone is rushing to grab items. And sometimes multiple people
grab the same item and fight over it which means its a gamble on who
gets the item. Eventually one person grabs the item and runs away to
buy it so the outcome depends on who gets the item after fighting or
who grabs it first. [...] 7 - P50

6.3 Question 5 Response Themes

6.3.1 Used in Lower-Level Courses. A significant portion of re-
sponses indicated that analogies were leveraged in students’ lower-
level computing courses. While other courses across the curricu-
lum (and across topic areas, including theoretical computing) were
mentioned, responses primarily discussed the introductory pro-
gramming courses and data structures. Responses concerning these
courses will be discussed in the following subsections.

A couple of points are worth noting about the use of analogy
in non-introductory courses. Several students mention the use of
analogy in lower-level courses when working with others. In ad-
dition some students suggest that analogy in lower-level courses
helped make novel “abstract” topics more approachable.

“[...] In formal models, I used the analogy of physics "matter can
be neither created nor destroyed" to help me understand getting
rid of lambda rules and chain rules (the chain rule can be replaced
with its components so "matter” is simply moved around). ” - P14

“When I first started learning about computer science I found it
extremely difficult to understand because a lot of the concepts were so
abstract. I think it is extremely important to provide analogies
when starting to learn material which is typically thought
about from a very abstract point-of-view. Most of daily life is
talked about using analogies, so it’s important that analogies are used
when learning new material.” - P47

“Tuse analogies significantly more in group projects when explain-
ing concepts to others. This was very helpful with Team software
project and Software Processes and Management [...]” - P53

6.3.2 Object-oriented Topics. Among introductory programming
analogies, students referred to object-oriented topics, such as object
design, inheritance, and polymorphism, with the greatest frequency.

169

Briana Bettin, Linda Ott, & Julia Hiebel

“[...] 1 used the blueprint analogy to understand classes and
objects, and used an analogy of exercise (everyone has their favorite
activity) to help me understand polymorphism. [...]” - P14

“T believe I used them a lot in the introductory CS classes. However,
Ido not remember what they were as it has been a few years. It makes
sense that they would have been used most in object oriented
programming as analogies are the easiest way to envision classes,
interfaces, and inheritance. - P51

Two responses specifically indicate an “Animal” analogy with a
petting zoo program for inheritance as particularly helpful:

“[...] I think the one that was the most helpful was understand-
ing inheritance using animals. We would have an animal class
which other animals would inherit. This analogy helped me to really
quickly understand the concept and the power of inheritance. ” - P8

“There is one particular analogy that I think of from [Intro 2] that
really helped me understand object oriented programming. It was a
petting zoo program I believe. I remember before that program I was
really confused about inheritance, but with the animal analogy it
made total sense.” - P24

These last two responses were particularly gratifying to one of
the authors, having developed and presented that assignment.

6.3.3 Data Structures. Another very common theme referred to
learning data structures. Students discussed a variety of data struc-
tures and analogies that helped them both represent the concepts
with something visually concrete, as well as to explain their be-
haviors. One student even noted how useful analogies are in data
structures by citing the analogous names many data structures are
given.

“[...] In data structures and discrete, I relied a lot on the anal-
ogy of a network of roadways to help me understand graphs
(the roadways are the edges, there can be multiple edges between
nodes/cities, each road has a different cost). [...]” - P14

“[...] We were told to think of a multidimensional array
as a shoe holder. There are rows of arrays stacked on top of each
other and the empty shoe holder is an array that is initialized but
with no data stored in it. The shoes in the holders are the data in the
multi-dimensional array.” - P29

“Analogies become particularly useful when talking about data
structures. Even the names of the data structures themselves
imply easy to understand analogies such as a tree, queue, stack, etc.
There have been various other analogies [...]” - P35

“[...] Imagine your grandmother’s fine china. If you "stacked" them
up, you would not want to pull from the bottom and risk break-
ing all of the china. You would grab one off the top, the last one
added. This helped me visualize how stacks actually work without
code involved.” - P48

6.3.4 Less Used in Lower-Level Courses. Some responses indicated
they felt analogy was used comparatively less in lower-level courses
than in concurrent computing. These students tended to suggest
that this may be due to concepts being easier, or already understood
when presented in their prior courses.

“Analogies haven’t been as useful in lower level courses just because
the content was simpler and easier to understand without
them. Learning lower level things like data structures didn’t really
need analogies to help them be understood. I can’t remember any
analogies that helped me understand computing concepts in prior

Perspectives on Analogy Use by Concurrent Programming Students

courses. They were really useful in this one because of the complex
ideas that needed simplification. ” - P21

“There have been analogies in lower level courses, but not as many
as in [Concurrency Course], and none of them really stick out in my
mind. A lot of the basic concepts (arrays, conditionals, loops,
etc) I already understood, so that might be part of why I don’t
remember any analogies about them. [...]” - P37

6.4 Question 6 Response Themes

6.4.1 More Use of Analogy in Upper-Level, More Useful. A majority
of responses indicated analogy is more useful in upper-level courses,
and also that they are using analogies more in these courses.

“I think they are more useful as an upper-level student. Lower level
classes have simpler ideas, and often times issues are in the
technical detail, not the big ideas. They are much more effective
in [third or fourth year] level classes in my view. ” - P5

“Oh I definitely use them more. A whole lot more. I have to. I mean,
Idon’t see another way of doing things. I really don’t. For me,
analogies are all but mandatory for understanding code. If
run across a piece of code that I cannot break down into some kind
of analogy then I'm probably not going to be able to understand it. I
need to be able to physically see something happening in front of me
(in my head) in order to properly code it myself]...]” - P9

6.4.2 Less Use or Same Amount in Upper-Level. Some responses
indicated an appreciation for the value of analogy across course
levels. Some even suggest that while they no longer use outside
domain sources for analogs, they may use computing concepts as
source domains to make sense of material.

“T feel like analogies are effective for both upper and lower level
students. They’re useful for lower level students because they’re just
learning the basics and don’t have much of a background in computing.
Analogies help tie the concepts they’re learning to ideas they can better
understand. Analogies can be useful for upper-level students,
but I don’t think it’s as helpful as it is for lower-level students.
Upper-level students have an understanding of computing, so it’s
easier for them to understand new concepts without analogies.” - P31

“[...] however as I have grown as a CS student I have found that
computing concepts in themselves are very comfortable to me and in
fact now when trying to learn other skills I use CS analogies to
help me. the early years were harder because I was less familiar with
how computers worked so I needed more tools to help me” - P19

6.4.3 Useful in Explaining, but Take Care in Usage. Students also
reflected on the value of analogy as an explanatory tool, both in the
positive, and in the cautionary. They indicated a sense of analogy
being a useful tool in explaining concepts, but indicated that caution
should be taken to make sure that appropriate analogies are being
developed and leveraged when explaining.

‘T feel like I understand the importance of using analogies when
trying to explain something to someone. I would say I use them
much more now when explaining things to people than I did
in the past. [...]” - P47

‘[...] analogies are very helpful if they are relevant and well
thought out otherwise they can be tedious and confusing.” - P51

170

ITiCSE 2023, July 8-12, 2023, Turku, Finland

6.4.4 Difficult to Create as a Student. Several students also indi-
cated difficulty in creating their own analogies, but suggested that
being able to might showcase or improve their understanding.

“[...] If I was better able to come up with my own analogies,
I think it would help to better understand the material for
a class. If you can make an analogy for a problem, then you must
understand the material enough to do so [...]” - P10

‘T feel that when I manage to make them, they are very helpful. It
is somewhat difficult to make a good analogy for something
because you have to be able to cover all of the complexity of the
problem you are talking about while also still being able to relate it
to what you are working on. [...]” - P51

7 DISCUSSION

Across these four questions and their responses, students explored
several topics worth consideration across the computing curricula.

Analogies Get Used Across Computing Curricular Topics.
Students readily recognized analogies from courses they had taken
years prior when answering Question 5, and in Question 6 reflected
on the effectiveness of analogies they had seen across their time
learning computing topics. Upper-level students, who are able to
“look back” at their time in our programs, are in a wonderful posi-
tion to tell us what is happening within their courses. While we
recognized some analogies which may appear in prior courses, we
were surprised to find the number of distinct courses, contexts, and
analogies students recalled. Students also recognized that many
types of pedagogical activities are analogies, such as representation
through a modelled/visual simulation, programming assignment,
or hands-on physical activity.

Students Recognize Analogies Embedded in Our Terminol-
ogy and Examples. We were intrigued to see how many students
specifically indicated core terminology and seminal examples as
analogies they recognized. A “tree” data structure or “lock” function
are deeply ingrained analogies within the discipline, yet students
are still able to recognize these are analogous, rather than strictly
novel, naming conventions. This is in clear contrast to arguments
in the same vein as Dijkstra [11] which argue the “radical novelty”
of our field is antithetical to analogy. Within modern computing,
our very terminology often rests upon it. Further, seminal examples
within our field, such as “Dining Philosophers” (ironically, devel-
oped by the very same Dijkstra [10]) or “Travelling Salesman”, are
deeply analogous by design and leveraged across institutions.

Students See Creating Analogy as a Challenging Activity
Indicating Mastery. Across questions, particularly 4 and 6, stu-
dents indicated a sense that analogy creation was a difficult act.
These students often suggested their personal sense of struggle
to develop analogy. Responses indicating this difficulty also often
acknowledged in parallel the belief that ability to create analogy
corresponded to understanding material. This suggests that students
find creating analogies to be an “expert” task. However, taken from
an instructional perspective, we might suggest that this belief begs
the question: If student analogy development or exploration was part
of a pedagogical activity, would they feel more confident in their
understanding or increase that understanding through the process?

ITiCSE 2023, July 8-12, 2023, Turku, Finland

Analogies are Useful for Explanations, but How Often are
Students Explaining? Students also showcased seeing analogy
as a useful communication and explanation tool. Even if they strug-
gled to create analogies, many indicated using known analogies to
explain concepts to friends. However, students did not appear to
often place themselves in situations where they were likely to need
to communicate with others. Several responses indicated work-
ing solo, often working to understand material by oneself, or not
being a part of any study groups (this theme was omitted from
the results section in the interest of space, but worth noting for
discussion here). This was somewhat surprising to us, as our con-
currency course is considered one of the most difficult courses in
the major—we expected to some degree that students might more
readily collaborate for mutual success. Taken together with the
above theme, we are also left wondering if some of the difficulty
in analogy creation might come from not being in spaces where
analogies are likely to be generated. Given the belief that analogy
creation can be indicative of subject understanding, we wonder: If
students were overall more involved in collaborative environments,
would they be more likely to develop new analogies alongside existing
ones? This question arises from responses by students who indi-
cated they were in study groups. Many of them shared ways they
developed new analogies, or how they scaffolded new ideas onto
existing analogies in order to help explain and understand aspects
that were confusing to some group members.

Analogies can be Really Impactful and Memorable to Stu-
dents. The novelty of analogies and sometimes “quirky” source
domain choices can be looked down upon by some as flash-in-the-
pan shock value, fading away with little substance. However, many
students recalled in vivid detail how specific analogies catalyzed
deeper understanding of the a topic. While not every student may
have this experience, we see that for many, an analogy can serve as
the “Eureka” moment in unlocking understanding. This is not to say
that these students rely on the analogy exclusively—rather, the anal-
ogy created a pathway, or scaffold, to build deeper understanding of
the concept. This suggests evidence of analogy aiding in long-term
transfer, which has not appeared to be previously identified [5]. In
this same way, we might wonder: What other analogies were not
remembered, but were a significant part of the scaffolding process,
eventually fading away to conceptual understanding?

Analogy Isn’t Everyone’s “Favorite” Approach, and That’s
Okay. We would be remiss if we were to suggest that all students
feel fondly about analogies. While we were surprised to find many
stories of impact and value, students are not all the same, and not
every student felt analogies were useful for them. There was often
disagreement: while many students found “baton passing” to be
very useful, at least one student indicated it was a terrible analogy
in a space that desperately needed a good one. Not every analogy
works for every student, and not every student finds analogy to be
the most impactful approach. We were somewhat surprised to find
that some students who found analogy less impactful directly indi-
cated analogies as impactful in other ways, such as the indication
that analogies were not useful but that baton passing was a “fitting
naming convention” and thus useful. This might suggest that some
students have preconceived notions of what an analogy is, or the
utility of them. Regardless, there will always be some students who

171

Briana Bettin, Linda Ott, & Julia Hiebel

do not find analogy to be as valuable of a pedagogical practice for
them, and we saw evidence of this. Several of these students also
indicated that while analogy might not be “for them”, they could see
value for others. Our students sum it up best in this way: leveraging
multiple pedagogical practices can help ensure many pathways of
understanding for different types of students. Analogies don’t have
to be everyone’s favorite to be valuable, and analogy’s value does
not have to be an exclusive-or in relation to other approaches. The
more ways our students have to explore novel material, the better
chance each student will find a path to understanding.

8 CONSIDERATIONS AND LIMITATIONS

Our survey was deployed at one university during a single semester
of the concurrent computing course. Demographic data was not
collected. Collection of demographic data may have allowed us to
further analyze response trends, since demographics may impact
how a student responds. The course was also conducted online for
the second half of the semester due to the COVID-19 pandemic,
and this may also impact responses. We also recognize that our
materials and project descriptions do make use of analogy, and that
different pedagogical approaches may provide distinctly different
responses.

9 FUTURE WORK

We would like to gather further data from new cohorts of the
concurrent computing course. Such data could be independently
thematically analyzed, as well as compared to prior analysis (such
as this work). Future forms of the survey may benefit from demo-
graphic questions, which would also allow new analysis and new
research questions. We hope to further explore questions that this
work has revealed, such as those posed in our Discussion section,
through future studies.

10 CONCLUSION

This paper examined perspectives of students in an upper-level
concurrent computing course on analogy usage within the course
and in their previous computing courses. Thematic analysis was
conducted on four qualitative survey questions centering ideas
of analogy use across the course and in prior courses. Student
responses showcased recognition of analogy use across the com-
puting curricula, including the often “taken for granted” analogies
embedded in our field in terminology such as “tree’ and “lock”. Stu-
dents indicated a sense that analogy is a powerful explanatory tool,
but one that they see as challenging to develop themselves. They
were able to recall specific examples in detail that aided their under-
standing of computing concepts from across their years, showing
potential evidence of long-term transfer and value in understand-
ing computing concepts. While analogies may not be the perfect
method for every student, they are certainly a method which many
students identify as helpful. This exploration suggests that contin-
ued work in exploring analogy across computing curricula would
be beneficial, and that further research specifically involving upper-
level students and analogy—a quite under-explored area within
CER—be conducted.

Perspectives on Analogy Use by Concurrent Programming Students

REFERENCES

(1]

[2

—

[3

[10

(1]

[12]

Thomas Anderson and Michael Dahlin. 2014. Operating Systems: Principles and
Practice (2nd ed.). Vol. Volume II: Concurrency. Recursive books.

Briana Bettin. 2020. The Stained Glass of Knowledge: On Understanding Novice
Mental Models of Computing. , 307 pages. https://digitalcommons.mtu.edu/etdr/
1086/ Open Access Dissertation.

Briana Bettin and Linda Ott. 2021. Frozen in the Past: When It Comes to Analogy
Fears, It’s Time For Us to "Let It Go". In Proceedings of the 26th ACM Conference
on Innovation and Technology in Computer Science Education V. 1 (ITiCSE °21).
Association for Computing Machinery, New York, NY, USA, 359-365. https:
//doi.org/10.1145/3430665.3456381

Briana Bettin, Linda Ott, and Julia Hiebel. 2022. Semaphore or Metaphor? Ex-
ploring Concurrent Students’ Conceptions of and with Analogy. In Proceedings
of the 27th ACM Conference on on Innovation and Technology in Computer Science
Education Vol. 1 (ITiCSE °22). Association for Computing Machinery, New York,
NY, USA, 200-206. https://doi.org/10.1145/3502718.3524796

Yingjun Cao, Leo Porter, and Daniel Zingaro. 2016. Examining the Value of
Analogies in Introductory Computing. In Proceedings of the 2016 ACM Confer-
ence on International Computing Education Research (ICER ’16). Association for
Computing Machinery, New York, NY, USA, 231-239. https://doi.org/10.1145/
2960310.2960313

Kathy Charmaz. 2014. Constructing Grounded Theory. SAGE Publications.

Yam San Chee. 1993. Applying Gentner’s Theory of Analogy to the Teaching of
Computer Programming. Int. J. Man-Mach. Stud. 38, 3 (March 1993), 347-368.
https://doi.org/10.1006/imms.1993.1016

Thiago de Jesus Oliveira Duraes, Paulo Sergio Lopes de Souza, Guilherme Martins,
Davi Jose Conte, Naylor Garcia Bachiega, and Sarita Mazzini Bruschi. 2020.
Research on Parallel Computing Teaching: state of the art and future directions.
In 2020 IEEE Frontiers in Education Conference (FIE) (FIE "21). 1-9. https://doi.org/
10.1109/FIE44824.2020.9273914

Barbara Di Eugenio, Nick Green, Omar AlZoubi, Mehrdad Alizadeh, Rachel Hars-
ley, and Davide Fossati. 2015. Worked-out Examples in a Computer Science
Intelligent Tutoring System. In Proceedings of the 16th Annual Conference on Infor-
mation Technology Education (SIGITE ’15). Association for Computing Machinery,
New York, NY, USA, 121. https://doi.org/10.1145/2808006.2808011

Edsger W. Dijkstra. 1971. Hierarchical ordering of sequential processes. Acta
Informatica 1. https://doi.org/10.1007/BF00289519

Edsger W. Dijkstra. 1988. On the cruelty of really teaching computing science.
(Dec. 1988). http://www.cs.utexas.edu/users/EWD/ewd10xx/EWD1036.PDF Cir-
culated privately.

Michal Forisek and Monika Steinova. 2012. Metaphors and Analogies for Teaching
Algorithms. In Proceedings of the 43rd ACM Technical Symposium on Computer
Science Education (SIGCSE ’12). ACM, New York, NY, USA, 15-20. https://doi.

172

[13

[14

[15

[16

[17

(18

[20

[21

[22

]

]

]

ITiCSE 2023, July 8-12, 2023, Turku, Finland

org/10.1145/2157136.2157147

Klaus-Tycho Forster, Michael K6nig, and Roger Wattenhofer. 2016. A Concept
for an Introduction to Parallelization in Java: Multithreading with Programmable
Robots in Minecraft. In Proceedings of the 17th Annual Conference on Information
Technology Education (SIGITE ’16). 169. https://doi.org/10.1145/2978192.2978243
Dedre Gentner. 1983. Structure-mapping: A theoretical framework for analogy.
Cognitive Science 7, 2 (1983), 155 — 170. https://doi.org/10.1016/S0364-0213(83)
80009-3

Nasser Giacaman. 2012. Teaching by Example: Using Analogies and Live Cod-
ing Demonstrations to Teach Parallel Computing Concepts to Undergraduate
Students. In Proceedings of the 2012 IEEE 26th International Parallel and Dis-
tributed Processing Symposium Workshops & PhD Forum (IPDPSW ’12). 1295-1298.
https://doi.org/10.1109/IPDPSW.2012.158

Mark Guzdial. 2020. Dijkstra Was Wrong About 'Radical Novelty’: Metaphors
in CS Education. https://cacm.acm.org/blogs/blog-cacm/248985-dijkstra-was-
wrong-about-radical-novelty-metaphors-in- cs-education/fulltext

Jesper Haglund. 2013. Collaborative and self-generated analogies in science
education. Studies in Science Education 49 (03 2013), 1-34. https://doi.org/10.1080/
03057267.2013.801119

Rachel Harsley, Nick Green, Mehrdad Alizadeh, Sabita Acharya, Davide Fossati,
Barbara Di Eugenio, and Omar AlZoubi. 2016. Incorporating Analogies and
Worked Out Examples As Pedagogical Strategies in a Computer Science Tutoring
System. In Proceedings of the 47th ACM Technical Symposium on Computing
Science Education (SIGCSE ’16). ACM, New York, NY, USA, 675-680. https://doi.
org/10.1145/2839509.2844637

David James. 2020. The Use of DJing Tasks as a Pedagogical Bridge to Learning
Data Structures. In Proceedings of the 2020 ACM Conference on Innovation and Tech-
nology in Computer Science Education (ITiCSE "20). Association for Computing Ma-
chinery, New York, NY, USA, 193-197. https://doi.org/10.1145/3341525.3387427
Elizabeth R. Koning, Joel C. Adams, and Christiaan D. Hazlett. 2019. Visualizing
Classic Synchronization Problems. Proceedings of the 50th ACM Technical Sym-
posium on Computer Science Education (2019). https://doi.org/10.1145/3287324.
3293708

Joseph P. Sanford, Aaron Tietz, Saad Farooq, Samuel Guyer, and R. Benjamin
Shapiro. 2014. Metaphors We Teach by. In Proceedings of the 45th ACM Technical
Symposium on Computer Science Education (SIGCSE '14). ACM, New York, NY,
USA, 585-590. https://doi.org/10.1145/2538862.2538945

Ching-Kuang Shene and Steve Carr. 1998. The Design of a Multithreaded Pro-
gramming Course and its Accompanying Software Tools. Journal of Computing
in Small Colleges 14, 1 (1998), 12-24.

Klaas-Jan Stol, Paul Ralph, and Brian Fitzgerald. 2016. Grounded Theory in
Software Engineering Research: A Critical Review and Guidelines. https://doi.
org/10.1145/2884781.2884833

https://digitalcommons.mtu.edu/etdr/1086/
https://digitalcommons.mtu.edu/etdr/1086/
https://doi.org/10.1145/3430665.3456381
https://doi.org/10.1145/3430665.3456381
https://doi.org/10.1145/3502718.3524796
https://doi.org/10.1145/2960310.2960313
https://doi.org/10.1145/2960310.2960313
https://doi.org/10.1006/imms.1993.1016
https://doi.org/10.1109/FIE44824.2020.9273914
https://doi.org/10.1109/FIE44824.2020.9273914
https://doi.org/10.1145/2808006.2808011
https://doi.org/10.1007/BF00289519
http://www.cs.utexas.edu/users/EWD/ewd10xx/EWD1036.PDF
https://doi.org/10.1145/2157136.2157147
https://doi.org/10.1145/2157136.2157147
https://doi.org/10.1145/2978192.2978243
https://doi.org/10.1016/S0364-0213(83)80009-3
https://doi.org/10.1016/S0364-0213(83)80009-3
https://doi.org/10.1109/IPDPSW.2012.158
https://cacm.acm.org/blogs/blog-cacm/248985-dijkstra-was-wrong-about-radical-novelty-metaphors-in-cs-education/fulltext
https://cacm.acm.org/blogs/blog-cacm/248985-dijkstra-was-wrong-about-radical-novelty-metaphors-in-cs-education/fulltext
https://doi.org/10.1080/03057267.2013.801119
https://doi.org/10.1080/03057267.2013.801119
https://doi.org/10.1145/2839509.2844637
https://doi.org/10.1145/2839509.2844637
https://doi.org/10.1145/3341525.3387427
https://doi.org/10.1145/3287324.3293708
https://doi.org/10.1145/3287324.3293708
https://doi.org/10.1145/2538862.2538945
https://doi.org/10.1145/2884781.2884833
https://doi.org/10.1145/2884781.2884833

	More (Sema|Meta)phors: Additional Perspectives on Analogy Use from Concurrent Programming Students
	Recommended Citation

	Abstract
	1 Introduction
	2 Literature Review
	3 Our Context
	4 Methodology
	5 Analysis
	6 Results
	6.1 Question 3 Response Themes
	6.2 Question 4 Response Themes
	6.3 Question 5 Response Themes
	6.4 Question 6 Response Themes

	7 Discussion
	8 Considerations and Limitations
	9 Future Work
	10 Conclusion
	References

