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Abstract

Time series, a special case in dependent data sequence, is widely used in many

fields. In time series, linear process models are quite popularly used. General form

of linear process indicates the time dependence property of time series, AR(p),

MA(q) and ARMA(p, q) models are all linear process models. In this report,

simulations are based on the simplest models of these linear process models, such as

AR(1), MA(1) and ARMA(1,1) models. AR(1)-SEASON, which is developed based

on AR(1) model by changing the weight of residuals, is also considered in this report.

To deal with dependent data sequence, common methods which aim to deal with

independent data are no longer accurate to do inference. For dependent data, a

conventional method involves consistent estimation of the long run variance, for ex-

ample, Andrews [2]. However, in Andrews method, it might be hard to determine the

bandwidth. As an alternative, bootstrap methods can be used to approximate the

limiting distribution. Block based bootstrap methods, such as moving block boot-

strap, non-overlapping block bootstrap and circular block bootstrap, can be used for

dependent data. Stationary bootstrap, which is with flexible block length following

xiii



a geometric distribution with parameter pS, has also been proved to be consistent.

AR-Sieve bootstrap aims to construct a fitted model of AR(p̂) and resampling the

data with the fitted model. In our simulations, we compare finite sample confidence

interval coverage rates. We also consider these bootstrap methods with Andrews es-

timation of variance [2] and simulations results show that with the help of Andrews

estimation, the estimations are more accurate.

A further discussion of determining an optimal block length for AR(1) model is also

mentioned in our report.
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Chapter 1

Introduction

The development of statistics is pretty quick along with social and technological

development. At the beginning of statistical research, many of theorems are

introduced based on i.i.d. data series. However, with the wide use of statistical

methods in many other fields, e.g. economics, finance and other fields, i.i.d. data

series can no longer satisfy researchers requirements. Then, more theorems came

up to deal with dependent data series. A special kind of dependent data series is

time series, in which data are dependent with respect to time. One of the popular

methods of time series is linear process, some of these linear proces are listed

in Chapter 2, which are AR(p), MA(q) abd ARMA(p, q). In the simulations in
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Chapter 5, we consider several simplest linear process models with different methods.

Unlike the methods we use to estimate parameters of i.i.d. data series, the variance

of dependent data cannot be estimated in a simple form. Andrews (1991) [2] intro-

duced a method to estimate the variance of limiting distribution in regression with

time-dependent variables. However, in finite samples, the greater time-dependence

in each model, the less accurate of Andrews variance estimation is. For example,

Andrews method has to determine the bandwidth during estimating, however, even

though Andrews had listed some useful guide for the choice of bandwidth, they are

suitable ony for a few kinds of data generating processes. Researchers might want to

find other methods to do more accurate inference of dependent data infinite samples.

Bootstrap methods aimed to deal with i.i.d. random variables when they were first

introduced. Efron (1979) [11] showed that bootstrap was developed from jackknife

method to make up the shortage of jackknife method. In most bootstrap methods,

two levels of estimations are calculated. Take the estimation of population mean µ

as an example. The lower level is to use the sample mean Xn to estimate µ; the

upper level is to use the bootstrap version of sample mean X
∗
n, which is the sample

2



mean of new data constructed by original data, to estimate the sample mean Xn

of the original data. Such kind of bootstrap methods for time series were firstly

introduced by Carlstein (1986) [9] for univariate time series based on bootstrap

methods with i.i.d. data series, also known as non-overlapping block bootstrap

method. In non-overlapping block bootstrap, original data are divided into several

blocks, and correlation of data is maintained within blocks, and independence is

assumed between blocks. The introduction of non-overlapping block bootstrap

methods helped a lot for dependent series, especially time series. However, with

different determination of block length in non-overlapping block bootstrap method,

the last few observations may not be used into calculation, and this shortage would

influence the result somehow. In 1989 [16], moving block bootstrap was introduced

to make up the shortage of non-overlapping block bootstrap method. With moving

block bootstrap, the starting observation in each block is the second observation

in the previous block. And generating of blocks will stop once the last observation

is contained into the last block. Therefore, all of the observations are considered

into calculation. At the same time, some parts of original data will be calculated

more than once, and several beginning and ending observations will be only counted

once. In 1994, Politis and Romano came up with circular bootstrap method [20], in

which the series was wrapped into a circle. All observations will be counted more

3



than once, and if the total number of original data is n, there will be n blocks.

These three block bootstrap methods are based on a fixed block length to divide the

original data into blocks. Another kind of block bootstrap, also known as stationary

bootstrap, divides the original data into blocks with block length following a

geometric distribution with parameter p. With non-fixed block length, results shown

in Chapter 4 indicates the accuracy of stationary bootstrap, even though with large

correlation, stationary bootstrap may not be as accurate as expected. With the

development of bootstrap based on dependent data series, another kind of bootstrap

was introduced. AR-Sieve bootstrap method is based on the reconstruction of fitted

model based on original data. Instead of dividing the original data into blocks and

then calculating estimations by using block bootstrap methods, AR-Sieve bootstrap

constructs new a series based on the fitted model of original data, and with the new

series, AR-Sieve bootstrap calculates the estimations. In practice, we usually cannot

get the model and then do calculations. In this paper, simulations of bootstraps are

based on the given models, and data series can be generated as the original data

from the given model. We use aforementioned bootstrap methods and the Andrews

method to construct confidence intervals of µ, and compare average converage

rrates. If average converage rate is closer to the nominal level 95%, it means that

this method delivers more accurate cofidence interval in finite samples. We also

4



consider the average length of confidence interval. The smaller the confidence

interval, the more precise the estimation is.

As we mentioned above, original data series is divided into blocks in block bootstrap

methods. We consider a simpler but not necessarily the optimal way to calculate

the block length and to construct blocks. However, more optional block length is

given in Chapter 5 with circular block bootstrap and stationary bootstrap methods,

as introduced by Politis and White (2004) [14]. Further, we calculate the theoretical

optimal block length of circular block bootstrap and theoretical optimal expected

block length of stationary bootstrap for our simulation models in Chapter 4. Even

though Politis and White (2004) [14] gave the estimation of block length for these

two bootstrap methods, since we only consider most basic models in this paper,

then the estimation of block length did not significantly improve the results. With

new block length in circular block bootstrap and new parameter p in stationary

bootstrap, we choose to do simulations for AR(1) and ARMA(1,1). Results and

detailed comparisons are also shown in Chapter 5.

Simulations and models contained in this paper are quite basic. The goal is to

5



compare the bootstrap methods with different basic models of time series. Further

work can be done with more compicated models, or with other bootstrap methods.

Bootstrap methods based on time series are still developing. More methods can be

dedicated into dealing with dependent data, and we will continue to work on this.
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Chapter 2

Time Series

In the development of Statistics, many statistical methods related to independent or

uncorrelated data, were introduced by scientists to deal with analyzing the natural

facts from collecting data. However, in many practical situations, collected data are

correlated. In some cases, data are related among themselves; and in other cases,

data are collected over time. We name the data collected sequentially in time as

time series. Time series are widely used in economics, quantitative finance, meteo-

rology and so on. Researchers might find out the trend of some observations with

respect to time. Often, these observations are not independent in most cases, there-

fore, it is natural to think about methods that are appropriate for time series analysis.
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Denote the real valued observations in times as · · · , X−2, X−1, X0, X1, X2, · · · , the

time series is denoted as {Xt}. The random variables are indexed by all integers Z.

The most simple problem in time series is to estimate the population mean µ. Due

to the time dependence, we generally need to use different methods. In the rest of

this chapter, we introduce some basic concepts of time series, including stationarity,

models based on stationarity and Andrews(1991) [2] methods to estimate the

longrun variance of dependent data.

2.1 Stationary Processes

To deal with the time dependence, we often make assumptions on the form of the

time dependence to make the analysis easier. The typical assumption in time series

analysis is stationarity. For example, the mean or variance, does not change over

time for stationary time series. Two definitions of stationarity are usually applied,

strict stationarity and second order stationarity/weak stationarity.[25]

Definition 2.1.1 For any integer finite sequence t1, t2, · · · , tl and any integer p, if

8



(Xt1 , Xt2 , · · · , Xtl) and (Xt1+p, Xt2+p, · · · , Xtl+p) have the same distribution, then the

time series Xt is lth- order stationary and it is said to be strictly stationary.

Most of the time, the strict stationarity is too strong to be satisfied. Thus, an

alternative definition comes up and it might be easier to work under this as-

sumption. In the weak stationarity, the first moment and autocovariance do not

change over time in stead of having the same distribution for (Xt1 , Xt2 , · · · , Xtl) and

(Xt1+p, Xt2+p, · · · , Xtl+p).

Definition 2.1.2 If, for all integer t and l, the mean of the time series {Xt} is

constant, and if the covariance of Xt and Xt+l only depends on the magnitude of

l, the time series {Xt} is said to be second order stationary, or weak stationary.In

other words, the time series {Xt} is second order stationary, or weak stationary if

E(Xt) = µ and cov(Xt, Xt+l) = γl where µ is a constant and γl is independent of t.

{γl} with integers l is called the autocovariance function at lag l. And we also define

autocorrelation function of Xt at lag l as

ρl =
γl
γ0

= corr(Xt, Xt+l).

Remark 2.1.1 [25]

9



1. Autocoraviance has properties:

γ0 = V ar(Xt), γl = γ−l, |γl| ≤ γ0.

2. The strict stationarity does not necessarily mean weak stationarity. However,

if we further assume finite second moment, i.e., E|X2
t | < ∞, then all strictly

stationary series are also second order stationary.

3. If the strict stationarity is satisfied while the second moment is infinite, then

the second order stationarity can not be implied.

4. The only case where the weak stationarity implies the strict stationary is a

weakly stationary Gaussian time series.

Stationarity is widely used in time series models to deal with practical cases.

10



2.2 Models Based on Stationarity

2.2.1 Linear Processes

One of the most popular methods to model the time dependence is to express the

variable as a linear combination of an i.i.d. sequence. Let {εt} be a sequence of iden-

tically distributed independent random variables with mean zero. A linear process

{Xt}, t ∈ Z is defined as

Xt =
∞∑

i=−∞

ψiεt−i. (2.1)

If
∑∞

i=1 ψ
2
i is infinite, then the variance of Xt will be infinite. Therefore, it is rea-

sonable to assume that
∑∞

i=1 ψ
2
i <∞. Models mentioned below are special cases of

linear processes that are commonly used in practice.

11



2.2.1.1 Moving Average Processes

Based on the linear processes expression in 2.1, if only a finite number of ψi are

nonzero, then we can get a moving average process,

Xt =

q∑
i=0

θiεt−i, (2.2)

where θi are fixed constants, θ0 = 1, constant q indicates the finite number of nonzero

θi, and white noise {εt} is a sequence of independent random variables with mean

zero and variance σ2. (2.2) is called the moving average process of order q, denoted

as MA(q). MA(1) and MA(q) are stationary for every finite θ or every finite sequence

{θi}, i = 1, 2, · · · , q. Since according to 2.2,

E(Xt) = 0,

V ar(Xt) = σ2

q∑
i=0

θ2i ,

γt−i = E(XtXt−i)

= E(

q∑
i=0

θiεt−iXt−i)

=


σ2
(∑q

i=0 θiθi+|l|
)
, for |l| ≤ q

0, otherwise.

.

12



Then the sum is finite when every θ is finite. And γt−i does not depend on t, i.e.,

MA(1) and MA(q) are stationary.

In a similar way, we can show that MA(∞) is stationary if the coefficients are abso-

lutely summable, i.e.,
∑∞

i=0 |θi| <∞.

2.2.1.2 Autoregressive Processes

The autoregressive process of order p, AR(p), can be defined by

Xt − εt =

p∑
i=1

φiXt−i, (2.3)

where εt is a independent random variables sequence with mean zero and variance

σ2, and φi are fixed constants. AR(1) process can be defined as

Xt − εt = φ1Xt−1.

13



In fact, AR(1) can be proved as the second order stationarity. To prove it, we firstly

rewrite the definition function of Xt as

Xt − εt = φ1(εt−1 + φ(εt−2 + φ1(εt−3 + · · · )))

= φ1εt−1 + φ2
1εt−2 + φ3

1εt−3 + · · · ,

Xt =
t−1∑
i=0

φi1εt−i.

Therefore, since εt is an independent sequence, from the “new” definition function

we can figure out that AR(1) is a linear process with the mean of Xt being 0, and

the autocovariance function being as follow:

γ0 = E(X2
t − E(Xt)

2) = E(X2
t )

= E

(
∞∑
i=0

φi1εt−i

)2

= E

(
∞∑
i=0

φ2i
1 ε

2
t−i

)

= σ2

(
∞∑
i=0

φ2i
1

)
= σ2 1

1− φ2
1

,

γl = E(XtXt+l) = E

(
∞∑
i=0

φi1εt−i

∞∑
j=0

φj1εt−j+l

)

= σ2 φl1
1− φ2

1

.

Note that not all AR(p) process is stationary. For example, if φ1 = 1 for AR(1)

model, V ar(Xi) diverge to infinity. To find the conditions on the AR coefficients so

14



that in AR(p) process is stationary, we do the followings.

Since in AR(p) model, Xt and Xt−1 are related. Back-shift operator B is defined as

BXt = Xt−1 and BkXt = Xt−k for all k,

then AR(p) can be rewritten with back-shift operator as

Xt =

p∑
i=1

φiXt−i + εt

=

p∑
i=1

φiB
iXt + εt.

(2.4)

Some operations can be applied on 2.4 to calculate the conditions of φi’s.

Xt −
p∑
i=1

φiXt−i = εt

(1−
p∑
i=1

φiB
i)Xt = εt.

Denote 1 −
∑p

i=1 φiB
i as Φ(B) which is named as autoregressive polynomial of Xt,

then

Φ(B)Xt = εt

Xt = Φ(B)−1(εt).

15



Calculate moments of Xt,

E(Xt) = Φ(B)−1E(εt) = 0, (2.5)

V ar(Xt) = Φ(B)−2V ar(εt) > 0. (2.6)

From 2.5, Φ(B) 6= 0. From 2.6, Φ(B)−2 > 0, where Φ(B)−2 = 1/(Φ(B)2). So,

Φ(B)2 > 0

By using the fundamental theorem of algebra, characteristic function Φ(z) can be

factored as

Φ(z) =

p∏
i=1

(1− z

ri
),

where r1, · · · , rp ∈ C is the roots of Φ(z) and C is complex number set. Then AR(p)

is stationary and ergodic if and only if |ri| > 1 for all i where |ri| is the modulus of ri.

2.2.1.3 ARMA Processes

Another common process belong to the linear processes is the autoregressive moving

average process of orders p and q, denoted as ARMA(p, q), where it’s time depen-

dence is modeled using an autoregressive representation as well as moving average

16



representation. To define ARMA(p, q), we define the function as

Xt =

p∑
i=1

φiXt−i +

q∑
j=0

θjεt−j.

Treat the sum of residuals as a whole part, then ARMA(p, q) can be written as the

form of AR(p) model. Then it is a linear process with calculation.

Consider the special case, ARMA(1, 1), the defining equation can be written as

Xt = φ1Xt−1 + εt − θ1εt−1. (2.7)

The condition of stationarity for ARMA(p, q) is the same as the condition of AR(p)

model, i.e., all roots ri’s of Φ(B) = 0 lie outside the unit circle, |ri| > 1.

2.2.2 α-Mixing Processes

Another well known process is α-mixing process. If the process is stochastic, “mix-

ing” represents the dependence between Xt1 and Xt2 approaches to zero when |t1−t2|

is increasing, or means “asymptotically independent”.

Consider the probability space, (Ω,F , P ), and let F ji , −∞ ≤ i ≤ j ≤ ∞ be the

σ-field generated from the random variables Xt, where i ≤ t ≤ j and t ∈ Z. The

17



dependence coefficient for any positive integer n and given random sequence X is

defined as

α(n) = sup
A∈Fm−∞, B∈F∞m+n, m∈Z

|P (A)P (B)− P (A ∩B)|.

Then, a strictly stationary stochastic process {Xt} is said to be α-mixing if

α(n)→ 0 as n→∞.

Remark 2.2.1 ARMA(p, q) is a α-mixing process.

2.3 Conventional Method to Conduct Testing of

Confidence Interval for µ

After the introduction of the stationary process above, we can consider the estimation

of the mean.

Suppose that we are observing process which satisfy

Xt = µ+ εt,

18



where {εt} is a stationary time series with mean zero and summable covariances, i.e.∑
|γl| is infinite. Our purpose is to looking at the estimation of the mean µ. The

unbiased estimation of the mean, µ, is the sample mean, given as

Xn =

∑n
i=1Xi

n

Consider the variance of Xn, we could easily obtain that

V ar(Xn) =
1

n

n∑
l=−n

(
1− |l|

n
γl

)

=
1

n

{
γ0 + 2

∑
1≤l≤n

(
1− l

n
γl

)}
.

Let σ2
n = V ar(

√
nXn), then Theorem 7.1.1 in [4] shows that as n→∞,

V ar(Xn)→ 0 if γn → 0,

and

σ2
n →

∞∑
l=−∞

γl if
∞∑

l=−∞

|γl| <∞.
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Refer to Theorem 27.4 in [3], suppose that Xt is stationary and α-mixing process

with α(n) = O(n−5) and E(Xt) = 0, E(X12
t ) <∞, then

V ar(
√
nXn)→

∞∑
l=−∞

γl = V,

√
n(Xn − µ)

d−→ N(0, V ). (2.8)

When estimating V , Andrews (1991) [2] states that the result of V equals the spectral

density function at λ = 0 multiplied by 2π motivates the use of spectral density

function. Therefore, we consider to use the spectral density function to estimate V .

Consider the estimator of V as

V̂ =
n

n− 1

n−1∑
l=−n+1

k

(
l

Sn

)
γ̂l =

n

n− 1

(
2
n−1∑
l=1

k

(
l

Sn

)
γ̂l + k(0)γ̂0

)
, (2.9)

γ̂l is one of the estimator of γl and γ̂l =
1

n

∑n
t=|l|+1 ε̂tε̂t−l where ε̂t = Xt − Xn for

|l| < n.
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In 2.9, Sn is a band-width parameter. The class of kernels K , is a set of the real-

valued kernels, k(·), which is given by

K =


k(x) ∈ [−1, 1], x ∈ R

∣∣∣∣∣∣∣∣∣∣∣∣

k(x) = k(−x), k(0) = 1, ∀x ∈ R,∫∞
−∞ k

2(x)dx <∞,

k(x) is continuous at 0 at all but finite other points


.

According to Parzen (1957) [17] and Andrews (1991) [2] mentioned, we consider the

corresponding class of kernel estimators of the spectral density function. Parzen

(1957) [17] recommends several kinds of kernels and Andrews (1991) [2] selected five

of them. We consider two kernels that are commonly used, Bartlett and Quadratic

Spectral kernel.

Bartlett: kBT (x) =


1− |x| for |x| ≤ 1,

0 otherwise,

Quadratic Spectral: kQS(x) =
25

12π2x2

(
sin(6πx/5)

6πx/5
− cos(6πx/5)

)
.

(2.10)

Andrews (1991) [2] presented how to get an original bandwidth parameter. The

optimal bandwidth estimators, Ŝn, for Bartlett and Quadratic Spectral kernels, are

quite different. The estimators for two kernels can be calculated as follows.
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Bartlett: Ŝn = 1.1447((α̂(1)n)1/3 ,

Quadratic Spectral: Ŝn = 1.3221((α̂(2)n)1/5 .

(2.11)

where α(q) is a function of the unknown spectral density function f(·), and α̂(q) is

the estimator.

As for α(q), the function of the spectral density function, for AR(1) model, let ψ be

the autoregressive variance parameter, and φ1 be the AR coefficient. Let ψ̂ and φ̂1

be their estimators respectively. Then, as mentioned by Andrews (1991) [2],

α̂(1) =

(
2ψ̂

(1− φ̂1)(1 + φ̂1)

)2

,

α̂(2) =

(
2ψ̂

(1− φ̂1)2

)2

.

(2.12)

For ARMA(1,1) and MA(1) models, the estimated functions α̂(q) are not the same

as AR(1). Andrews (1991) [2] derived the function for α̂(1) and α̂(2) for ARMA(1,1)

and MA(1) separately.

In ARMA(1,1), the estimation of ARMA parameter (φ1, θ1) is denoted as (φ̂1, θ̂1),

then

α̂(1) =

(
2(1 + φ̂1θ̂1)(φ̂1 + θ̂1)

(1− φ̂1)(1 + φ̂1)(1 + θ̂1)2

)2

,

α̂(2) =

(
2(1 + φ̂1θ̂1)(φ̂1 + θ̂1)

(1− φ̂1)2(1 + θ̂1)2

)2

.

(2.13)
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The general form of the function for MA(1) model is also given by Andrews (1991) [2].
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Chapter 3

Bootstrap Methods

3.1 Jackknife and Bootstrap Methods for i.i.d.

data

3.1.1 Jackknife Method

Before we start to introduce the bootstrap, jackknife method should be introduced

first and we can obtain a general idea of how jackknife works. The “delete-one”
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jackknife was first introduced by Quenouille (1949) [24]. Suppose that X1, · · · , Xn

is i.i.d. random sample, let θ̂n be the estimator of θ, for some function fn, θ̂n =

fn(X1, · · · , Xn). Then the definition of the jackknife average is

θ̂n,i = fn−1(X1, · · · , Xi−1, Xi+1, · · · , Xn).

The function denotes a statistic calculated with all sample except one observation.

Leaving out each observation at one time from the dataset, the jackknife estimator

calculates the estimate and find the average of the replicates.

The jackknife estimator of the bias E(θ̂n)− θ can be obtained as

Bias =
n− 1

n

n∑
i=1

(θ̂n,i − θ̂n).

Set θ̂∗ = nθ̂n − (n − 1)θ̂n,i, i = 1, · · · , n, which is called the ith pseudo value.

Therefore, the jackknife estimator of θ̂n, is given as θ̄∗ = θ̂n − Bias, which can be

calculated

θ̄∗ =
1

n

n∑
i=1

θ̂∗.
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Remark 3.1.1 Expand E(θ̂n) in powers of n−1 according to the property of Quias,

En ≡ = E(θ̂n) = θ +
∞∑
i=1

ak
nk
,

En−1 ≡ = E(θ̂n) = θ +
∞∑
i=1

ak
(n− 1)k

,

E(θ̄∗) = nEn − (n− 1)En−1 = θ − b

n(n− 1)
.

Remark 3.1.2 The jackknife estimator of V ar(θ̂n) is given as

V̂ ar(θ̂n) =
1

n(n− 1)

n∑
i=1

(θ̂∗ − θ̄∗n) =
n− 1

n
Ṽ ar(θ̂n−1).

The jackknife estimator Ṽ ar(θ̂n−1) of V ar(θ̂n−1) is always upwards.

Unfortunately, the jackknife estimator of variance fails for many non-sufficiently

smooth functions. Take the median as an example. The median of a dataset may

be influenced a lot when one observation is left out. Then the calculation of the

jackknife estimator of variance will not be accurate enough to describe the original

dataset.
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3.1.2 Bootstrap Methods

As we mentioned before, Efron (1981) [12] verified that the bootstrap is more

dependable than the jackknife. Here we give a brief introduction of bootstrap

methods and some particular bootstrap methods.

Suppose that x = (x1, · · · , xn) is an observed random sample from a distribution

with cdf F (x). If X∗ is selected at random from x, then

P (X∗ = xi) =
1

n
, i = 1, · · · , n.

Resampling generates a random sample X∗1 , · · · , X∗n by sampling with replacement

from x. The random variablesX∗i are i.i.d., uniformly distributed on the set x1, · · ·xn.

The empirical distribution function (ecdf) Fn(x) is an estimator of FX ,

Fn(x) =
1

n

n∑
i=1

I{Xi ≤ x},
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where

I{Xi ≤ x} =


1 if Xi ≤ x,

0 else,

It can be shown that Fn(x) is a sufficient statistic for F (x) and

supx|Fn(x)− FX |
a.s.−−→ 0, (3.1)

according to Gilvenko-Cantelli Theorem. Moreover, Fn(x) is the distribution function

of a random variable that is uniformly distributed on the set x1, · · · , xn. Hence the

empirical cdf Fn is the cdf of X∗, F ∗n .

Thus in bootstrap, there are two approximations: The ecdf Fn is an approximation

to the cdf FX , which we can treat this estimation as the first or the lower layer; the

ecdf F ∗n of the bootstrap replicates is an approximation to the ecdf Fn, which can

be treated as the second layer or the higher level. Resampling from the sample x is

equivalent to generating random samples from the distribution Fn.

To generate a bootstrap random sample by resampling x, generate n random

integers i1, · · · , in uniformly distributed on 1, · · · , n and select the bootstrap sample

x = (xi1 , · · · , xin).
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Suppose θ is the parameter of interest (θ could be a vector), and θ̂ is an estimator

of θ. Then the bootstrap estimate of the distribution of θ̂ is obtained as follows.

1. For each bootstrap replicate, indexed b = 1, · · · , B:

(a) Generate sample x∗(b) = x∗1, · · · , x∗n by sampling with replacement from

the observed sample x1, · · · , xn.

(b) Compute the bth replicate θ̂(b) from the bth bootstrap sample.

2. The bootstrap estimate of Fθ̂(·) is the empirical distribution of the replicates

θ̂(1), · · · , θ̂(B).

The bootstrap is applied to estimate the standard error and the bias of an estimator

in the following sections.

Bootstrap Estimation of Standard Error
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The bootstrap estimate of standard error of an estimator θ̂ is the sample standard

deviation of the bootstrap replicates θ̂(1), · · · , θ̂(B).

ŝe(θ̂∗) =

√√√√ 1

B

B∑
b=1

(θ̂(b) − ¯̂
θ∗)2

where
¯̂
θ∗ =

1

B

∑B
b=1 θ̂

(b).

Bootstrap Estimation of Bias

If θ̂ is an unbiased estimator of θ, E[θ̂] = θ. The bias of an estimator θ̂ for θ is

bias(θ̂) = E[θ̂ − θ] = E[θ̂]− θ

The bootstrap estimation of bias uses the bootstrap replicates of θ̂ to estimate the

sampling distribution of θ̂. For the finite population x = (x1, · · · , xn), the parameter

is θ̂(x) and there are B independent and identically distributed estimators θ̂(b). The

sample mean of the replicates θ̂(b) is unbiased for its expected value E[θ̂], so the
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bootstrap estimate of bias is

ˆbias(θ̂) =
¯̂
θ∗ − θ̂,

where
¯̂
θ∗ =

1

B

∑B
b=1 θ̂

(b), and θ̂ = θ̂(x) is the estimate computed from the original

observed sample.

The bootstrap method for i.i.d. data is two estimations. To apply bootstrap meth-

ods into dependent data, especially time series, covariance of the dependent data is

necessary to consider into different bootstraps since covariance is quite important

to describe the dependent data. Therefore, some different bootstrap methods are

introduced.

3.2 Bootstrap Methods for Dependent Data

As we mentioned before, the conventional method to estimate the population mean

is based on the limiting distribution being standard normal distribution. However,

in time series, Andrews method to estimate the variance can not be applied every

time. First, Andrews method is based on the selection of bandwidth in the kernel

calculation. Even though Andrews listed several selection of bandwidth, it is not

enough to cover all kind of models. Selection of bandwidth is a hard thing to be
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determined in Andrews methods. Second, it is known that Andrews method may

not deliver accurate size or coverage rates in finite samples. Hereby, we introduce

the bootstrap methods to approximate the limiting distribution. The main idea

of most bootstraps methods is re-sampling. The most popular bootstrap methods

for dependent data, especially time series, are block bootstrap, sieve bootstrap and

stationary bootstrap.

3.2.1 Block Bootstraps

Bootstrap methods are aiming to re-sample the data to get the estimator not

related on the limiting distribution. However, in normal cases, the bootstrap which

was introduced by Efron (1979) [11] is dealing with i.i.d dataset. Bootstrap has

been developed by several researchers to explore the fields that it can deal with to

make it more useful and developed. The principal ideas of different bootstraps are

quite similar, but with different models and procedures. The block bootstraps are

introduced to deal with dependent data series, especially time series.
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Instead of resampling the whole dataset which was introduced by Efron (1979)

[11], subsamples are randomly captured from the whole series which is divided into

several blocks, with block length l < n and b blocks, to keep the dependent structure

of neighbored observations. Hereby, we introduce two block bootstrap methods.

3.2.1.1 Moving Block Bootstrap

Moving block bootstrap, in short MBB, is one of the popular bootstrap methods

in inference of time series. Overlapping block bootstrap was introduced [13] in the

same setting. Suppose that the series {Xt} is a sequence of weak stationary variables,

divide the series into several blocks under the condition

l→∞ as n→∞ but with
l

n
→ 0,

where l is the block length and n is the number of total observations in time series.

Under the condition of weak stationary, dependence are kept within each block, and

these blocks can be assumed as i.i.d.
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In MBB, after determing the length of blocks, l, we can get N = n− l+1 i.i.d blocks

Yi = (Xi, · · · , Xi+l−1), 1 ≤ i ≤ N .

Figure 3.1: Moving Block Bootstrap

In N i.i.d blocks, we randomly select b = bn/lc blocks, Y ∗1 , · · · , Y ∗b , to construct

a new series with these selected blocks as {X∗1 , · · · , X∗m} where m = lb. The total

number of the samples in the new series is l×b. With the new series, we can calculate

the new sample mean X
∗
n in each replicates, denoted by X

∗(b)
n , and it is easy to get

the confidence interval with B replicates.

Theorem 6 in [16] shows the consistency of MBB under some conditions.

Theorem 3.2.1 Suppose that random variables {Xt}, t = 1, · · · , n construct a sta-

tionary m-dependent sequence with EX1 = µ and E|X1|4+δ < ∞ for some positive

δ. If l/n→ 0 when n→∞, then

sup
x
|P ∗{
√
m(X∗m − E∗(X∗m)) ≤ x} − P{

√
n(Xn − µ) ≤ x}| P−→ 0, (3.2)
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where P ∗ is the bootstrap probability and E∗ is the mean under the bootstrap proba-

bility and X
∗
m =

∑m
t=1X

∗
t

m
.

If the condition l/n → 0 can be replaced by l/
√
n → 0 as n → ∞, then E∗X∗m can

be replaced by X in 3.2.

In Theorem 3.2.1, m-dependence is defined as follows. Let {X1, X2, · · · } be

a sequence with random variables, let A be an event based on the sequence

{X1, · · · , Xh} and B be an event based on {Xh+1+m, · · · , }. If any pair of events A

and B are independent, then the sequence {Xt} is m-dependent. As Liu and Singh

mentioned in [16], “The notion of m-dependence is probably the most basic model

which takes into account such dependence.” The proof of this theorem can be found

in [16].

In Theorem 3.2.1, two different cumulative density functions are involved, and two

estimations are considered, which can be treated as two different layers. The first

estimation or the first layer, is the estimation of population with the given sample,

which is expressed as P{
√
n(Xn − µ) ≤ x}. This is the usual layer we are looking

at without bootstrap. If the limiting distribution is involves nuisance parameters,

bootstrap can be used to approximate the limiting distribution of a function of
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given data, for example, the mean. Therefore, the second estimation, or the second

layer, which is expressed by P ∗{
√
m(X

∗
m − E∗(X

∗
m)) ≤ x}, can be generated.

Then Theorem 3.2.1 shows that the difference between the two cumulative density

functions (one of them is the cdf of bootstrap method, and another one is the cdf of

the sample series) convergent to 0 in probability.

3.2.1.2 Non-overlapping Block Bootstrap

The nonoverlapping block bootstrap, as known as NBB, is firstly introduced by

Carlstein in 1986 for univariate time series. [9] NBB and MBB only have several

differences on defining the blocks. In MBB, the total number of blocks is n− l + 1,

and the blocks are defined overlapping. However, in NBB, we divide the whole series

into approximately independent blocks {Yi}, where Yi = {X(i−1)l+1, · · · , Xil}, i =

1, · · · , b, and then we sample b blocks Y ∗1 , · · · , Y ∗b , putting these blocks together to

get X∗1 , · · · , X∗m.

Figure 3.2: Non-overlapping Block Bootstrap
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Since we already showed the consistency of MBB, comparing MBB with NBB, if the

difference between MBB and NBB can be insignificant and negligible, then NBB is

consistent.

The estimated parameter in bootstrap version in general, can be denoted as θ∗bl,n =

T (F ∗bl,n), and in special, we are discussing the mean for all of these methods. To

separate MBB and NBB, the estimator of MBB in the bootstrap version is denoted

as θ
∗(M)
bl,n , while the estimator of NBB is θ

∗(N)
bl,n .

θ
∗(M)
bl,n =

1

bl

bl∑
j=1

X
∗(M)
j , and θ

∗(N)
bl,n =

1

bl

bl∑
j=1

X
∗(N)
j .

The probability of selecting any block is N−1,

P{(X∗1 , · · · , X∗l ) = (Xi, · · · , Xi+l−1)|Xn}

=P{Yj = i|Xn}

=N−1 ,for 1 ≤ i ≤ N.

(3.3)
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While the probability of selecting any block is b−1,

P{(X∗1 , · · · , X∗l ) = (X(i−1)l+1, · · · , Xil)|Xn}

=P{Yj = i|Xn}

=b−1 ,for 1 ≤ i ≤ b.

(3.4)

Hence, from 3.3, we get

E(θ
∗(M)
bl,n ) =

1

N

N∑
j=1

(
1

l

l∑
i=1

Xj+i−1

)

=
1

Nb

(
l−1∑
r=1

r(Xr +XNr+1) + l
N∑
s=l

Xs

)

=
1

N

(
n∑
r=1

Xr −
1

l

l−1∑
s=1

(l − s)(Xs +Xn−s+1)

)
.

(3.5)

And from 3.4, we get

E(θ
∗(N)
bl,n ) =

1

b

b∑
j=1

(
1

l

l∑
i=1

X(j−1)l+i

)

=
1

bl

(
n∑
r=1

Xr −
n∑

i=bl+1

Xi

)
.

(3.6)

Notice that when the process {Xt} is under some conditions and some standard

moment, the bias of these two estimators is E(θ
∗(M)
bl,n )−E(θ

∗(N)
bl,n ), and the expectation
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of the squared bias is E(E(θ
∗(M)
bl,n ) − E(θ

∗(N)
bl,n ))2 = O(l/n2), that is, for large sample

size, the difference between these two methods is insignificant and negligible. [15]

3.2.1.3 Circular Block Bootstrap

Another popular bootstrap method with fixed block length, is circular block

bootstrap, also known as CBB. After the introduction NBB and MBB, CBB was

firstly introduced by Politis and Romano in 1994 [20], which ’wrap’ the series into a

circle, to make fully use of every observation in the series, comparing with NBB. As

we can see, in NBB, the last several elements cannot be included in any block when

the length of the block is not a divisor of the total number of observations. Then,

when we construct bootstrap procedure, these not-included observations are deleted

by resampling. However, in CBB, when the series is wrapped like a circle, and there

are n blocks, while n− l + 1 blocks are constructed in MBB. The “wrapped circle”

is defined as Xi ≡ Xj for i > n, where j = i mod n, and X0 = Xn.

As mentioned above, let the series be {X1, · · · , Xn}, then the whole arc of the

“wrapped circle” is {X1, · · · , Xn, X1, · · · , Xn+l−1}, thus, by setting the block length

as l, there are totally n blocks, and each block is defined as Yi = {Xi, · · · , Xi+l−1}.The
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block set is {Y1, · · · , Yn}. Sampling with replacement with probability 1/n, ran-

domly select b i.i.d blocks from the set where lb = m ≈ n. Then we have a new

series as X∗1 , · · · , X∗m. With the new series, the confidence interval can be calculated

by following the similar procedure mentioned above, and we can also get the true

percentage.

Figure 3.3: Circular Block Bootstrap

The following theorem were stated by Politis, D.N., Romano, J.P. [20] shows the

consistency and asymptotic accuracy of CBB. The theorem is aiming to show the

consistency of circular block bootstrap with α-mixing series.

Theorem 3.2.2 Let {Xt} be a sequence assumed to be with weak stationarity. Spe-

cially, the α-mixing condition (α(h) → 0 as h → ∞, where α(h) is defined in

Chapter 2) is assumed. Assume that E|Xt|6+δ < ∞ for some positive δ, and
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∑∞
h=1 n

2(α(h))
δ

6+δ <∞. As n→∞, let m/n→ 1 where m = lb, and let l →∞ but

b/n→ 0. Then σ2
n ≡ V ar(

√
nXN) is limiting to σ2

∞ <∞, and V ar∗(
√
mX

∗
m)

P−→ σ2
∞,

where V ar∗ is the variance of
√
mX

∗
m under the bootstrap probability P ∗, and

supx|P ∗{
√
m(X

∗
m −Xn) ≤ x} − P{

√
n(Xn − µ) ≤ x}| p−→ 0, (3.7)

for almost all sample series {Xt} for t = 1, · · · , n.

The meaning of Theorem 3.2.2 is similar with the Theorem 3.2.1. The theorem

shows the consistency of CBB. Since blocks are defined similar in MBB, NBB and

CBB, the proofs of consistency of three block bootstraps are quite similar.

3.2.1.4 Stationary Bootstrap

In the previous three methods, the block length is fixed. A new resampling method,

which is also generally available and useful for stationary weakly time series, called

stationary bootstrap, also known as SB, was introduced by Politis and Romano

[21] in 1994. In contrast to the former mentioned block bootstraps, resampling

procedure is repeated in stationary bootstrap to get an approximation to the
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distribution of the statistic with generating the pseudo-time series as a stationary

time series, i.e. stationary bootstrap aims to retain the stationarity of the original

series in resampling. The block is of random length, and the block length can be

assigned to have some kind of distribution. Usually, the selected distribution of the

block length is a geometric distribution.

Suppose that {Xt} is a given stationary weakly time series as mentioned before.

Define each block as Bi,l = {Xi, Xi+1, · · · , Xi+l−1}, where l is length of the block.

Since when we randomly choose the starting point of each block and the block

length has a geometric distribution, then observations in some block may exceed

the given sample sequence. To avoid “cutting off” some observation in some blocks,

“wrapping” the series may help to keep all observations which should be included

in the blocks. Define the “wrap” as Xi ≡ Xj for i > n, where j = i( mod n), and

X0 = Xn. Since the block lengths may be different, then define l1, l2, · · · be the block

length independent to Xi, and {li} is a sequence of i.i.d random variables which

have a geometric distribution P{li = u} = (1− pS)u−1pS for u = 1, 2, · · · . Then for

any given pS, we can generate the sequence {li}. As for the index of the starting

point of each block ii independent to Xi and li, randomly select from {1, · · · , n}, i.e.

{ii} is a sequence of i.i.d random variables having the discrete uniform distribution
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on {1, · · · , n}. Therefore, the sampled sequence of blocks with random length is

{Bi1,l1 , Bi2,l2 , · · · } = {Xi1 , Xi1+1, · · · , Xi1+l1−1, Xi2 , Xi2+1, · · · , Xi2+l2−1, · · · }. If the

sequence length is greater then the sample size n, then stop the process once n

observations are generated. By simulating a large number of pseudo time series, the

distribution of T ∗ can be approximated, the critical value and confidence interval

can be calculated then.

Like the previous theorems mentioned above, the consistency of stationary bootstrap

aims to show the difference of two estimations convergent to 0. Theorem 1 in [21]

shows the consistency of stationary bootstrap.

Theorem 3.2.3 Assume that {Xt} for t = 1, 2, · · · is a strictly stationary process

which the autocovariance γ(·) satisfies γ(0)+
∑

r |rγ(r)| <∞. Assume the condition

3.8 holds where κ4(u, v, w) is the fourth joint cumulant of the distribution of

(Xi, Xi+u, Xi+v, Xi+u+v+w).

∑
u,v,w

|κ4(u, v, w)| = K <∞. (3.8)
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Assume E|X|2+δ <∞ and
∑

h[α(h)]
δ

2+δ for some positive δ where α(h) is defined in

Chapter 2.

Then, σ2
∞ = V ar(X1) + 2

∑∞
i=1 cov(X1, X1+i) is finite.

If σ2
∞ > 0, then

supx|P{
√
n(Xn − µ) ≤ x} − Φ(x/σ∞)| → 0, (3.9)

where Φ(·) is the standard normal distribution function.

Assume that the lag pS → 0 in the geometric distribution and npS → ∞ , then the

bootstrap distribution is close to the true sampling distribution given as

supx|P ∗{
√
n(X∗ −Xn) ≤ x} − P{

√
n(Xn − µ) ≤ x}| P−→ 0,

where P ∗ is the bootstrap probability mentioned above.

It has to be mentioned that, the form of the convergence in Theorem 3.2.3 is quite

similar with the previous theorems only with
√
n in the first cumulative function

instead of m. Since in stationary bootstrap, we stop generating sequence once n

variables are generated, then the total length of the new sequence is the same with

the original data. It is possible to get n variables in NBB, MBB or CBB if the block
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length is chosen in some way.

3.2.2 AR-Sieve Bootstrap

AR-sieve bootstrap develops another way. Instead of constructing blocks from the

original data, AR-sieve bootstrap aims to establish an AR(p̂) time series model and

construct series based on the model to estimate the parameter. The essentials in

AR-sieve bootstrap is to estimate the parameters in AR(p̂) model and to determine

the residuals from the original series in [5], [7], [6].

Let {X1, · · · , Xn} be the original time series. The purpose of AR-sieve approximation

is to construct an AR(p̂) model

Xt − µ =

p̂∑
i=1

φi(Xt−i − µ) + εt,

where µ is E(Xt) and εt is an innovation sequence independent of {Xs; s < t},

which is of i.i.d random variables with expectation 0. Since we need to estimate

the series with an AR(p̂) model, then the first thing is to determine the order p̂.
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Usually Akaike information criterion can help to find the autoregressive order p̂. Let

φ̂p̂ = (φ̂1,n, φ̂2,n, · · · , φ̂p̂,n) be the Yule-Walker autoregressive parameter estimators,

then

φ̂p̂ = Γ̂−1p̂ γ̂p̂,

γ̂k =
1

n

n−|k|∑
t=1

(Xt −Xn)(Xt−|k| −Xn), for 0 ≤ k ≤ p̂,

where Xn =

∑n
t=1Xt

n
, Γ̂p̂ = γ̂(|s− r|) for s, r = 1, · · · , p̂, and γ̂p̂ = (γ̂(1), · · · , γ̂(p̂))′.

With Yule-Walker estimators, some part of the estimated AR(p̂) can be determined.

Then another important part is the residuals. To keep the information of the original

data, let ε̂t = Xt −
∑p̂

i=1 φ̂iXt−i, i = p̂ + 1, · · · , n be the residuals of the model fit,

then we can define the empirical distribution function of i.i.d. residuals.

Fε̂t(x) =
1

n− p̂

n∑
t=p̂+1

I[ε̂t − ε̂t ≤ x],

where ε̂t =
1

n− p̂
∑n

t=p̂+1 ε̂t.

The last thing of AR-sieve bootstrap, is to construct a new series based on the fitted
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model. The fitted AR(p̂) model is given as

X∗t −Xn =

p̂∑
i=1

φ̂i(X
∗
t−i −Xn) + ε̂∗t , (3.10)

where ε̂∗t is i.i.d. residuals with marginal distribution Fε̂t(x). Since if we set p̂,

then the first p̂’s estimated values cannot be calculated according to 3.10, then in

order to get a series, it is necessary to set these estimated values. Several ways

can help to set these values, for example, set these as 0, or as Xn. Assuming that

Y = f(X1, · · · , Xn) is a function of the original data, then the AR-sieve bootstrap

function can be defined as Y ∗ = f(X∗1 , · · · , X∗n). To show the consistency of sieve

bootstrap, Theorem 3.1 in [5] gives a proof for general cases with AR(∞) model.

Assume that {Xt} for t ∈ Z is a stationary process with EXt = µ. As what has

been mentioned in [5], according to Wold’s Theorem, if the sequence {Xt} is purely

stochastic, it can be written as one-sided MA(∞) process according to Section 2.10

in [15]

Xt − µ =
∞∑
i=0

ψiεt−i, (3.11)

where ψ0 = 1 and {εt} is a sequence constructed with uncorrelated variables, with

Eεt = 0 and
∑∞

i=0 ψ
2
i <∞.

Under some additional assumptions of invertibility that we require of the process in
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3.11(see [1], Theorem 7.6.9), {Xt} can be represented as a one-sided AR(∞) model

∞∑
i=0

φi(Xt−i − µ) = εt, (3.12)

where φ0 = 1 and
∑∞

i=0 φ
2
j <∞.

Write

Φ(z) =
∞∑
i=0

φiz
i, φ0 = 1, z ∈ C,

Ψ(z) =
∞∑
i=0

ψiz
i, ψ0 = 1, z ∈ C.

Then model 3.11 and 3.12 can be written as

Φ(B)(X − µ) = ε, X − µ = Ψ(B)ε,

where B is the back shift operate (BX)t = Xt−1, x ∈ RZ . So Φ(z) = 1/Ψ(z).

Let Ft be the σ-field generated by {εt}ts=−∞, then Ft = σ({εs; s ≤ t}). Before we

start to show the consistency of sieve bootstrap, some assumptions are necessary to

mention. The following assumptions are shown as Assumtion A1, A1’, A2 and B in

[6]

Assumption 3.2.1 Xt−µ =
∑∞

i=0 ψiεt−i where ψ0 = 1 with {εt} stationary, ergodic.

And E[εt|Ft−1] ≡ 0, E[ε2t |Ft−1] ≡ σ2 <∞, E|εt|s <∞ for some s ≥ 4.
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Since sieve bootstrap process get independent residual from the innovations, usually

it is unable to satisfy the assumption with non-independent variables {εt}. Therefore,

we strength the assumption above.

Assumption 3.2.2 Xt−µ =
∑∞

i=0 ψiεt−i where ψ0 = 1 with {εt} i.i.d and E[εt] = 0,

E|εt|s <∞ for some s ≥ 4.

Assumption 3.2.3 Ψ(z) is bounded away from zero for |z| ≤ 1,
∑∞

i=0 i
r|ψi| < ∞

for some r ∈ N .

Assumption 3.2.4 let p̂ = p̂(n), p̂(n) → ∞ and p̂(n) = o(n) as n → ∞. And

φ̂p̂ = (φ̂1,n, · · · , φ̂p̂,n)′ satisfy the empirical Yule-Walker equations

φ̂p̂ = −Γ̂−1p̂ γ̂p̂.

Theorem 3.2 in [6] will show that the sieve bootstrap is consistent, even with

non-independent innovations in Assumption 3.2.1.
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Theorem 3.2.4 Let s = 4 in Assumption 3.2.1, r = 1 in Assumption 3.2.3,

p(n)→ o((n/ log(n))1/4) in Assumption 3.2.4, then

1. V ar∗
(∑n

t=1X
∗
t√

n

)
− V ar

(∑n
t=1Xt√
n

)
= op̂(1) as n→∞;

2. If, in addition,

∑n
t=1(Xt − µ)√

n

d−→ N(0,
∑∞

h=−∞ γ(h)), then as n→∞

supx

∣∣∣∣∣P ∗
{
n−1/2

n∑
t=1

(X∗t −X∗) ≤ x

}
− P

{
n−1/2

n∑
t=1

(Xt − µ) ≤ x

}∣∣∣∣∣ = op̂(1).

Theorem 3.2.4 shows that the consistency of sieve bootstrap in general case when

the lag is infinity. Our model is AR(1) model, which is a special case of AR(∞).

Therefore, sieve bootstrap is also consistent when the lag p = 1.

We will do simulation of each bootstrap method in the next chapter, and also compare

the simulation results.
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Chapter 4

Simulations of Methods

In Chapter 3, several bootstrap methods for time series are shown to be consistent.

However, different bootstrap methods have different results for basic models. Here,

we use four basic linear process models: three are AR(1), MA(1) and ARMA(1,1),

one is based on AR(1), AR(1)-SEASON, which considers the weights, like for 12

months, based on AR(1) model.

Andrews estimation of variance in [2] is quite simple and straightforward. The

process is shown in 4.1.1. As for the bootstrap methods, we would like to see
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which bootstrap methods is better to deal with the certain kind of time series

models by calculating the the average convidence interval coverage rate of µ = 0

lying in the confidence interval by Monte Carlo method. Different bootstraps have

different ways to approximate quantiles of limiting distribution for calculating con-

fidence interval from the empirical distribution, however, the main ideas are the same.

Suppose we wish to approximate the distribution of

T 2 =

(√
n(Xn − µ)

σ̂n

)2

. (4.1)

By using Monte Carlo simulations, we can draw many bootstrap samples and find

out the estimators to create the bootstrap version of T 2:

T ∗2 =

(√
n(X

∗
n −Xn)

σ̂∗n

)2

. (4.2)

Once we get the histogram of the distribution, we can find out the quantiles of this

distribution, and even create the confidence interval.

Xn ±
√
T ∗2α

σ̂n√
n
,

54



where T ∗2α is the 95% quantile of bootstrapped T ∗2.

By replicating computing the confidence interval, we can get the average convidence

interval coverage rate of 0 ling in the confidence interval in finite samples. When

φ1 = 0, i.e. the series contains random i.i.d. variables, the percentage we calculate,

should be close to 95%, as we set the confidence level being 95%.

Since we have to estimate the variance to get the confidence interval, one way to

avoid the estimation, is to change the form of the equations. We all know that the

confidence interval calculated with the critical value is

Xn ±
√
T ∗2α

σ̂n√
n
.

4.1 and 4.2 can be rewritten as

(T σ̂n)2 = (
√
n(Xn − µ))2,

(T ∗σ̂∗n)2 = (
√
n(X

∗
n −Xn))2,

Since the sample are generated from the same population, the standard deviation
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should be the same. Therefore, let the second equation as M∗, then

±M∗ =
√
n(Xn − µ),

±M∗
√
n

= Xn − µ.

Therefore, the confidence interval can also be calculated as

Xn ±
M∗
√
n
.

Here we calculate two percentages with two different ways to construct the confi-

dence interval as mentioned above in each bootstrap method.

We also consider about the average length of confidence interval. If the coverage

rates are similar, then comparing the interval length, the less the average interval

length, the more accurate the appxomation of the method based on a certain model.
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4.1 Simulation Process

4.1.1 Andrews Estimation Process

The Andrews estimation of variance method in [2] to estimate the variance for

dependent data is mentioned in Chapter 1. According to the formula, calculation of

estimated variance is quite straightforward.

1. Generate R = 10000 replicates for Bartlett kernel or Quadratic Spectral kernel

separately:

(a) Generate {Xt}, t = 1, 2, · · · , n from AR(1) model with certain φ1;

(b) Calculate the T 2 =
n ∗ (Xn − µ)2

V̂
, where Xn =

1

n

∑n
i=1Xi, V̂ is the

Andrews estimated variance with Bartlett kernel or Quadratic Spectral

kernel according to the formulas in Chapter 1, 2.9.
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(c) Compare T 2 with 95% quantile T 2
0 of χ2 distribution. If T 2 < T 2

0 , then

count it, i.e. q + 1.

2. Calculate the the average convidence interval coverage rate by q/R.

4.1.2 Bootstrap Processes

When simulating the bootstrap methods, we calculate the result with or without

Andrews estimation of variance in [2] using Quadratic Spectral kernel to compare

the influence of using the estimation of variance for each model. In the following

subsections, we only list the process of AR(1) model. The processes of other models

are the same. We also consider AR(1)-SEASON model mentioned by Andrews

(1991) [2] even though this model is not stationary.
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4.1.2.1 Moving Block Bootstrap Process

The process of MBB bootstrap is given as follows:

1. Generate the R replicates to get the the average convidence interval coverage

rate:

(a) Generate the AR(1) time series;

(b) Generate the B replicates for bootstrap of the series:

i. Divide the series into n − l + 1 blocks Y1, Y2, · · · , Yn−l+1 with length

l;

ii. Randomly select b blocks with replacement from these blocks, to

get a new series, Y ∗1 , Y
∗
2 , · · · , Y ∗b , which can also be represented as

X∗1 , X
∗
2 , · · · , X∗m;
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iii. Calculate the value T 2∗ or M2∗;

(c) Get the distribution of T 2∗ or M2∗ and their 95% quantile;

(d) Calculate the 95% confidence interval;

(e) Compare 0 with the confidence interval; if 0 lies in the confidence interval,

then count this replicate; otherwise, do not count it.

2. Get the percentage of the counted number respect to the R replicates.

The process of non-overlapping block method and circular bootstrap method are

quite similar. We also list the process in the following subsections. We consider

these three methods with the same block length.

4.1.2.2 Non-overlapping Block Bootstrap

The procedure of calculating the the average convidence interval coverage rate

with NBB is quite similar with MBB procedure, the only difference is the way to

determine blocks and the total number of blocks. Similar to MBB, the process is

given as:
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1. Generate the R replicates to get the the average convidence interval coverage

rate:

(a) Generate the AR(1) time series;

(b) Generate the B replicates for bootstrap of the series:

i. Divide the series into b blocks Y1, Y2, · · · , Yb with length l, where

b× l ≈ n;

ii. Randomly select b blocks with replacement from these blocks, to

get a new series, Y ∗1 , Y
∗
2 , · · · , Y ∗b , which can also be represented as

X∗1 , X
∗
2 , · · · , X∗m;

iii. Calculate the value T ∗2 or M∗2;

(c) Get the distribution of T ∗2 or M∗2 and their 95% quantile;

(d) Calculate the 95% confidence interval;
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(e) Compare 0 with the confidence interval; if 0 lies in the confidence interval,

then count this replicate; otherwise, do not count it.

2. Get the percentage of the counted number respect to the R replicates.

4.1.2.3 Circular Block Bootstrap

The process of CBB bootstrap is as follows:

1. Generate the R replicates to get the the average convidence interval coverage

rate:

(a) Generate the AR(1) time series;

(b) Generate the B replicates for bootstrap of the series:

i. “Wrap” the series as a circle;
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ii. Divide “wrapped circle” into n blocks {Y1, Y2, · · · , Yn} with length l;

iii. Randomly select b blocks with replacement from these blocks, to

get a new series, Y ∗1 , Y
∗
2 , · · · , Y ∗b , which can also be represented as

X∗1 , X
∗
2 , · · · , X∗m;

iv. Calculate the value T ∗2 or M∗2;

(c) Get the distribution of T ∗2 or M∗2 and their 95% quantile;

(d) Calculate the 95% confidence interval;

(e) Compare 0 with the confidence interval; if 0 lies in the confidence interval,

then count this replicate; otherwise, do not count it.

2. Get the percentage of the counted number respect to the R replicates.

These three block bootstrap methods mentioned above are with the fixed block

length and the total number of randomly selected blocks. Another kind of block

bootstrap with random block length having some distribution was introduced to

compare with the fix-block-length block bootstraps.
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4.1.2.4 Stationary Bootstrap

In stationary bootstrap, the block length is not fixed, it follows a geometric

distribution. We choose several values for parameter pS to compare the result.

Lahiri (1999) [14] mentioned the way to calculate the expected block length of

moving bootstrap method and stationary bootstrap. With the detailed calculation,

we can get the expected block length of stationary bootstrap, furthermore, we can

get the parameter pS. We will get the result in Chapter 5. The process of stationary

bootstrap is given as follows.

1. Generate the R replicates to get the the average convidence interval coverage

rate:

(a) Generate the AR(1) time series;

(b) Generate the B replicates for bootstrap:

i. Set the probability pS in the geometric distribution. Generate a
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sequence {li} which is formed as i.i.d random variables having the

same distribution;

ii. Generate sequence {ii} having discrete uniform distribution on

{1, cdots, n};

iii. Construct block sequence Bi1,l1 , Bi2,l2 · · · with random length li, stop

once n observations are generated. A new series can be represented

as X∗1 , X
∗
2 , · · · , X∗m;

iv. Calculate the value T ∗2 or M∗2;

(c) Get the distribution of T ∗2 or M∗2 and their 95% quantile;

(d) Calculate the 95% confidence interval;

(e) Compare 0 with the confidence interval; if 0 lies in the confidence interval,

then count this replicate; otherwise, do not count it.

2. Get the percentage of the counted number respect to the R replicates.
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Block bootstrap methods mentioned above are the most common block bootstraps

to deal with time series. Another kind of method, which is based on “rebuilding”

the series with AR(p̂) model to estimate the series, is AR-Sieve bootstrap.

4.1.2.5 AR-Sieve Bootstrap

Similar to the previous bootstraps, the process of AR-sieve bootstrap is as follows.

1. Generate the R replicates to get the the average convidence interval coverage

rate:

(a) Generate the AR(1) time series, a sequence will be generated and

assumed as the given data sequence;

(b) Generate the B replicates for bootstrap:

i. Calculate the estimated parameters in fitted model AR(p) with
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Yule-Walker estimators;

ii. Calculate the residuals {ε̂t} from the model and the original series;

iii. Construct the empirical distribution of the centered residual Fε̂t ;

iv. Generate a new sequence based on the fitted model and set the be-

ginning values as Xn;

v. Calculate the value T ∗2 or M∗2;

(c) Get the distribution of T ∗2 or M∗2 and their 95% quantile;

(d) Calculate the 95% confidence interval;

(e) Compare 0 with the confidence interval; if 0 lies in the confidence interval,

then count this replicate; otherwise, do not count it.

2. Get the percentage of the counted number respect to the R replicates.

The processes of bootstrap methods we mentioned above are quite similar except

AR-Sieve bootstrap. The results of all simulations are in tables in Section 4.3. We
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can compare the results of all models and all methods correspondingly.

4.2 Simulation Modes

We mentioned processes of five common bootstrap methods for time series above.

In the simulations, we consider AR(1), MA(1), ARMA(1,1) models with different

values of parameters to compare these five bootstrap methods. AR(1) model:

Xt = φ1Xt−1 + εt, (4.3)

MA(1) model:

Xt = εt + θ1εt−1, (4.4)

ARMA(1,1) model:

Xt = φ1Xt−1 + εt + θ1εt−1, (4.5)

where φ1 is the parameter in AR(1) model, θ1 is the parameter in MA(1) model,

εt is i.i.d. normally distributed, i.e., εt N(0, σ2). In Andrews (1991) [2], another

kind of time series model was mentioned, which is AR-SEASON model. However,
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AR-SEASON is not stationary model because of the unconditionally heteroskedastic

errors, which can also be considered as a seasonal weight. The model of AR(1)-

SEASON is given as

Xt = φ1Xt−1 + atεt, (4.6)

where at = {1, 1, 1, 2, 3, 1, 1, 1, 1, 2, 4, 6} mentioned in [22].

With each φ1 = 0, 0.3, 0.5, 0.7, 0.9, 0.95 and θ1 = 0.3, 0.5, 0.7, 0.99, we can generate

the replicates and calculate the average conficence interval coverage rates. With

different values of parameters and the total number of sample is n = 128, we can

find out the results of each methods, including Andrews estimation of variance,

moving block bootstrap (MBB), non-overlapping block bootstrap (NBB), circular

block bootstrap (CBB), stationary bootstrap (SB) and AR-Sieve bootstrap method.

In Andrews method, we only have one estimation, then by using Monte Carlo

method, we generate 10,000 times. As for bootstrap methods, set B = 500 replicates

in bootstrap method and R = 2000 replicates in Monte Carlo method.

It is necessary to mention that block length is important for moving block bootstrap,

non-overlapping Bootstrapping and circular bootstrap methods. To determine the
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block length of these three block bootstrap methods, we can let l = n1/3 mentioned

in [8]. More details about block length determination will be discussed in Chapter

5. By calculating l = n1/3, the block length of models with the total number of

Observation is n = 128 is l = 5. The number of blocks in NBB is approximately 25.

Then we create 25 blocks, as shown in Figure 3.2, and randomly re-sample 25 blocks

{Y ∗1 , · · · , Y ∗25} to create the bootstrap data {X∗1 , · · · , X∗125}. In MBB, according to

how we determine the blocks shown in Figure 3.1, there should be 124 blocks, and

128 blocks for CBB. However, in stationary bootstrap in which the block length is

not fixed, the values of parameter pS that we select is 0.5, 0.3, 0.1, 0.05. In AR-Sieve

bootstrap, we use AR(1) model to fit the original data since we use AR(1) model to

get one of the original series.

In the next section, we will show the simulation results and compare the methods.

4.3 Simulation Results

According to all descriptions of methods mentioned above, the results are shown

in the following tables. Each table is about one certain model with five different
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methods, even with different parameters in the methods. In the following tables, we

use “per” to denote the average confidence interval coverage rate, and “l” to denote

the average length of confidence interval.

Table 4.1
Andrews Simulation Results

φ1

0 0.3 0.5 0.7 0.9 0.95

θ1

0
BT 0.9471 0.9179 0.8965 0.8344 0.5551 0.3547

QS 0.9447 0.9184 0.9012 0.8585 0.7172 0.5984

0.3
BT 0.9258 0.8809 0.8586 0.8064 0.6043 0.4418

QS 0.9309 0.9077 0.8902 0.8398 0.6344 0.4682

0.5
BT 0.9223 0.8834 0.8628 0.8245 0.6384 0.4885

QS 0.9289 0.9078 0.8908 0.8537 0.6622 0.5045

0.7
BT 0.9263 0.8839 0.8638 0.8263 0.6534 0.5110

QS 0.9329 0.9082 0.8920 0.8551 0.6703 0.5165

0.99
BT 0.9302 0.8843 0.8639 0.8248 0.6709 0.5228

QS 0.9233 0.9049 0.8935 0.8540 0.6847 0.5308

In Table 4.1, when φ1 = 0, θ1 changes, then it is a MA(1) model, and if θ1 = 0,

then it is a AR(1) model. Other pairs of φ1 and θ1 values will determine the exact

expression in ARMA(1, 1) model.
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Table 4.1 - 4.5 present the coverage rates and average length of confidence interval.

In Table 4.1, we use AR(1), MA(1) and ARMA(1,1) models separately to compare

the coverage rate and average length of confidence interval of two different kernels

mentioned by Andrews [2]. In Table 4.2, Table 4.3 and Table 4.5, we use five

bootstrap methods separately and consider about using Andrews estimation of

variance during the simulation of each bootstrap method to get the coverage rates

and average length.

Except for the only non-stationary model considered in this paper, AR(1)-SEASON

model, simulations results show that the bootstrap methods with Andrews estima-

tion of variance is more accurate than other methods in general.

Take a look at each table separately. In Table 4.1, coverage rates are more accurate

if Andrews estimation of variance is used with quadratic spectral kernel than with

Bartlett kernel, closer to 0.95 in general, especially with large φ1’s. The Andrews

estimation does not change the result a lot if the model is MA(1). As for Andrews

estimation for ARMA(1, 1), with φ1 increasing, quadratic spectral kernel shows

more accurate coverage rates than Bartlett kernel, no matter what φ1 is. Under the

same φ1, the results are similar with different θ1 in ARMA(1, 1) model.

The results from AR(1) model with MBB, NBB and CBB are quite similar because

of the similar determinations of blocks based on the original data. In each fix-length

77



block bootstrap method, we also generate the results with Andrews estimation of

variance. With the help of Andrews estimation, coverage rates are closer to 0.95

than simulation results without the estimation of variance. It seems that MBB

method is quite more accurate than other two methods. With stationary bootstrap,

different value of parameter pS give different coverage rate. According to Table 4.2,

when pS = 0.1, the simulation results are more accurate when φ1 becomes larger.

However, the proper value of parameter pS has to be determined by φ1 in AR(1)

model. As for AR-Sieve method, since we determine the fitted model by setting an

AR(1) model, then AR-Sieve bootstrap method is suitable for original data based

on AR(1) model, and the coverage rates are much closer to 0.95.

The simulation results do not seem to have much differences for MA(1) model. The

reason why simulation results are quite close and similar is that MA(1) model does

not rely on time too much. According to the definition of MA(q) model, the relation

between residuals are essential, however, the relation between two variables are

not that strong. Therefore, no matter which method we use, except for AR-Sieve

method, the simulations results are quite acceptable, especially for MBB, NBB and

CBB. Stationary bootstrap also shows similar results, but with different parameter

pS to determine the block length for each block in stationary bootstrap, results are

not exactly the same. Parameter pS influences the results and it may be different
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with different lag q in MA(q) model. AR-Sieve bootstrap should work for MA

model, or ARMA models asymptotically as well as AR models, the reason why the

simulation results do not meet our expectation may be that coverage rates are not

as accurate in finite samples.

ARMA(1, 1) model is a little bit complex. As φ1 being different, the changes

of stationary bootstrap with parameters pS being larger are different. Further

discussion with optimal block length under different φ1’s will be shown in Chapter

5. MBB method also shows more accurate coverage rates for ARMA(1,1) model.

As φ1 and θ1 become large, the methods which can get more accurate coverage

rates are MBB, stationary bootstrap with proper pS and AR-Sieve bootstrap.

MBB, NBB and CBB share similar simulation results and the larger φ1 becomes,

the less accurate the coverage rate. This is similar with the previous inferences.

Also similar with what is mentioned above, different parameter pS in stationary

bootstrap method have different results. It is hard to conclude which parameter pS

is better during calculating the coverage rate and the average length of confidence

interval of the original data. However, it may help if we calculate the optimal block

length for ARMA(1,1) model. AR-Sieve method for ARMA(1,1) is abnormal since

the simulation coverage rate is much more than the expected value. One reason

why this circumstance happens may be that ARMA(1,1) model can not be fitted as
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AR(p) model. And because of a fault fitted model, the results are not reasonable to

be accepted. The simulation results are quite similar to the results of AR(1) model

when φ1 becomes 0.95. The possible reason may be that the parameter θ1 of MA(1)

in ARMA(1,1) does not influence a lot on AR(1) in ARMA(1,1), then when we use

AR-Sieve method, which means we use an AR(1) model to fit the original data, it

is quite accurate.

As for AR(1)-SEASON model, the results are close to the simulation results

under AR(1) model. Similar with the results of AR(1) model, MBB and AR-Sieve

methods get more accurate coverage rates of original data.

Through all tables shown above, compare Table 4.1 by using quadratic spectral

kernel with Table 4.2 and Table 4.5, Andrews method shows similar results with

fix-length block bootstrap methods without Andrews estimation of variance. For

these two methods, the method with more accurate coverage rage should be

AR-Sieve bootstrap. For different φ1’s, the results show similar inference. The

value of θ1 does not influence a lot on the results under the same φ1 in ARMA(1,1)

model. The second accurate methods according to tables shown above is MBB and

stationary bootstrap with certain parameter pS. NBB and CBB are similar to MBB

so that we do not need to consider about these two methods too much.
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As for the comparison of average length of confidence interval, the simulations with

Andrews method have larger average length in general. Compare the fixed length

block bootstrap, which are MBB, NBB and CBB, average length of confidence

interval will be smaller in MBB. And with different value of parameter pS in

stationary bootstrap, by choosing pS properly, average length of confidence interval

can be decreased.

In AR(1) and AR(1)-SEASON model, it seems that MBB presents the smallest

average length among all three fixed-length bootstrap methods. And consider the

coverage rate at the same time, MBB might be the best choice among MBB, NBB

and CBB. By using stationary bootstrap, different pS leads to different results. The

smallest average length will be when pS = 0.5. However, if we take the coverage

rate into consideration as well, then when pS = 0.5, the results indicate that this

is not a better choice. Although when pS = 0.01, the average length is not the

smallest, however, with Andrews estimation method, the coverage rate is the largest

in stationary bootstrap. Then we can consider that when pS = 0.01, stationary

bootstrap might be also accurate for AR(1) model. It is not hard to determine the

exact pS value which should be chosen for stationary bootstrap, however, we would

not talk about the method to choose pS in our report.

In MA(1) model, the inference of average length of confidence interval is similar to
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the inference of coverage rate because of weak time-dependence of MA(1) model.

However, average lengths are also different for stationary bootstrap when pS is not

the same.

In ARMA(1,1) model, results might be complicated. Comparing MBB, NBB and

CBB, when φ1 becomes larger, it seems that MBB with Andrews method gives a

better results consider the average length and the coverage rate as well. Consider

about stationary bootstrap, when φ1 and θ1 become large, then when pS = 0.05,

the simulation results give more accurate coverage rates and with wider average

length. However, whether stationary bootstrap is accurate or not, dependes on

the parameter value we choose. With a proper value, stationary bootstrap method

might be more accurate than MBB. As for AR-Sieve method, as we mentioned

above, the coverage rates of ARMA(1,1) may be closer to AR(1) model, however,

the average length of confidence interval is going to be very large, even more than

twice of the average length of AR(1) model when φ1 becomes 0.95. It is not what

we expected.

In conclusion, bootstrap methods show the advantages of dealing with time series,

especially MBB based on different models, for coverage confidence interval rate,

average length of confidence interval, model suitability. As what we mentioned

above, optimal block length can be taken into consideration when simulating
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different bootstrap methods. It might be more accurate if we choose more proper

optimal block lengths for block bootstraps. We will discuss the theoretical optimal

block length of CBB and stationary bootstrap under AR(1) model in Chapter 5.
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Chapter 5

Further Discussion

5.1 Determination of Block Length for Block

Bootstraps

Even though ways to define how blocks would be in NBB, MBB, or CBB are

different, all of them are based on the selection of the block length. The block

length we take to help to define the blocks in Chapter 4 is l = n1/3, which is

based on the common use of l = c · n1/3 where c is a constant. However, it is not

convincing that c = 1, that we chose to define the block length, is a good choice
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to decide the block length under different circumstances, e.g. different sample

size n, different φ1’s. Theorem 3.1, 3.2 and 3.3 in [23] showed how block length

should be determined and estimations of expected block lengths with different

bootstraps. Since NBB, MBB and CBB are quite similar, then it is enough to

show what the theoretical block length is with CBB in different cases. As for

stationary bootstrap, since the block lengths of stationary bootstrap are i.i.d

random variables having geometric distribution with parameter p, then we can cal-

culate the theoretical expected block length for stationary bootstrap as a comparison.

According to Lahiri’s theorem in [14] and [18], detailed approximations to the first

two moments of σ̂2
SB and σ̂2

CB are provided in the theorem. Block length can be

calculated with further steps.

Theorem 5.1.1 Assume that both E|Xt|6+δ and
∑∞

h=1 h
2(α(h))

δ
6+delta are finite for
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some positive δ. If l→∞ as n→∞, with l = o(n1/2). Define

g(w) =
∞∑

s=−∞

γ(s) cos(ws), G =
∞∑

h=−∞

|h|γ(h),

DSB = 2g2(0) +
2

π

∫ π

−π
G2(w)dw,

DCB =
4

3
g2(0).

Then

bias(σ̂2
SB) = −1

l
G+ o(1/l), V ar(σ̂2

SB) =
l

n
DSB + o(l/n),

bias(σ̂2
CB) = −1

l
G+ o(1/l), V ar(σ̂2

SB) =
l

n
DCB + o(l/n).

(5.1)

In Theorem 5.1.1, the bias and the variance of the variance of two bootstraps

depend on the block length l and the original data. Therefore, if we would like

to determine the block length, it is a way to consider minimize MSE to get the

theoretical optimal block length, see [23]. In [23] provided by Politis and White,

estimations of theoretical block length are shown for the stationary bootstrap and

the circular bootstrap in general cases. To show how to get the optimal theoretical

block length, we consider the Mean Squared Error (MSE), according to Politis and

White [23].
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The definition of MSE is given as

MSE(θ) = bias2(θ) + V ar(θ).

Since we already get bias and variance of σ2 with different bootstrap methods, it is

straightforward to find MSE of the variance.

MSE(σ̂2) =
G2

l2
+
Dl

n
+ o(1/l2) + o(l/n).

To minimize the large samle MSE, we could choose

l =

(
2G2

D

)1/3

n1/3.

Let c =

(
2G2

D

)1/3

, then

l = cn1/3,

as what we did above.

Therefore, we can calculate the exact value of the constant to get optimal block

length.
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5.2 Optimal Expected Block Length

With corresponding formulas in different bootstrap methods, we can calculate the

optimal expected block length for circular block bootstrap and stationary bootstrap

methods separately. Table 5.1 shows the result of optimal expected block length of

stationary bootstrap and circular bootstrap as well.

According to Table 5.1, different block length can be generated with different φ1’s.

From the optimal expected block length of stationary bootstrap, we can also calcu-

late the parameter p in the geometric distribution. The expectation of geometric

distribution with parameter p is given as E(l) =
1

p
, then from each expectation of

block length for stationary bootstrap, p can be calculated correspondingly.

Table 5.1
Optimal Expected Block Length

φ1 0 0.3 0.5 0.7 0.9 0.95

SB 1.044713 1.390087 2.089164 2.615999 2.700121 2.747743

p 0.9572 0.7194 0.4787 0.3823 0.3704 0.3639

CBB 1.870101 2.469882 3.651564 4.515018 4.650964 4.727709
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With the results shown in Table 5.1, we can do simulations again with circular

block bootstrap and stationary bootstrap methods. Here we only take two models

as examples, AR(1) with the same φ1’s and ARMA(1,1) with the same values of

parameters (φ1, θ). The simulation results are shown in Table 5.2.
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Table 5.2
AR(1) Simulation Results with Optimal Block Length

φ1 CBB SB

No V V No V V

0
per 0.939 0.920 0.949 0.950

l(10−4) 1.668 1.634 1.712 1.735

0.3
per 0.898 0.938 0.861 0.930

l(10−4) 2.242 2.869 1.916 2.312

0.5
per 0.888 0.926 0.834 0.916

l(10−4) 2.554 2.964 2.818 3.883

0.7
per 0.818 0.921 0.781 0.910

l(10−4) 4.453 5.782 3.622 5.301

0.9
per 0.594 0.892 0.577 0.827

l(10−4) 7.668 12.00 6.061 10.09

0.95
per 0.446 0.804 0.423 0.706

l(10−4) 11.96 22.36 6.968 11.95

The simulation results are quite similar with the results under a certain block length

given as l = 5 without Andrews estimation of variance. However, with Andrews
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estimation, the results are much more accurate than without Andrews estimation,

and they are much more accurate than with a certain block length l = 5. The

simulation results may be different for large lag l in AR(l) model, and consider the

estimation of the optimal block length given by Politis and White [23]. Since the

model is quite simple, then it may not be obvious enough for the improvement of the

theoretical optimal block length. Simulations with other models can be generated in

other work.
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Chapter 6

Summary

Time series is closely related to in our daily life. As a special case of dependent

data, many methods have been developed to deal with time series original data from

methods which can help to solve problems of independent data.

Basic time series models indicate the basic ideas of how time dependence works.

Moving average model, MA(q), indicates the relation between several residuals. It

is a stationary model in time series, the time dependence in MA model is relatively

weak because of the relation between residuals. Autoregressive model, AR(p), states

the relation between variables, according to its definition. As time goes by, param-

eter ρ shows the dependence of the latter variable Xt on the previous variable Xt−1
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in AR(1) model. With large p, Xt even depends on several previous variables. This

model is quite useful and helpful to describe a series which have time dependence.

With the development of time series model, people consider about these two models

together, and it is called autoregressive moving average model, ARMA(p, q), lag p

indicates the parameter in AR(p) and lag q represents the parameter in MA(q). By

combining these two models together, ARMA(p, q) become popular in time series

research. Researchers already showed the stationarity coditions of these three time

series models.

Andrews (1991) [2] came up with one way to estimate the variance of dependent

data and the simulation results also shows that the method is quite helpful with

some kernels. After that, bootstrap methods [11] for time series have been devel-

oped from bootstraps based on independent data. NBB, MBB, CBB and stationary

bootstrap methods are based on block selection. With different type of selecting

blocks, different block bootstrap methods have different results, and in general, sta-

tionary bootstrap method might be more accurate depending on the parameter pS

selection. MBB is also quite accurate for models mentioned in this report. Another

kind of bootstrap method for time series is AR-Sieve bootstrap method. It shows

strengths to estimate the parameter for AR models by construct a fitted model and

resampling based on the fitted model. These methods are quite accurate for MA(1)
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because of the lack time dependence of MA(1) model. Take a general look of all

simulation results, we also considered bootstrap methods with Andrews estimation

of variance at the same time, and it shows more accurate estimations and the results

we get are closer to 0.95.

According to the selection of block length in block bootstrap methods, results may

be better if we choose an optimal block length for each block bootstrap. Since the

selection of blocks for MBB, NBB and CBB are quite similar, then they can share

the same way to determine the block length. By using MSE, optimal block length

can be calculated for CBB and stationary bootstrap.

In general, bootstrap methods with Andrews estimation of variance would be more

accurate for models we consider in this report. Other models or other methods will

be considered in the future work.

95





References

[1] Theodore W. Anderson. The Statistical Analysis of Time Series. Wiley Series

in Probability and Statistics. Wiley, 2011.

[2] Donald Andrews. Heteroskedasticity and autocorrelation consistent covariance

matrix estimation. Econometrica, 59(3):817–58, 1991.

[3] Patrick Billingsley. Probability and Measure. Wiley-Interscience, 3 edition, April

1995.

[4] Peter J. Brockwell and Richard A. Davis. Time Series: Theory and Methods.

Springer-Verlag New York, Inc., New York, NY, USA, 1986.
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