The Morphology of Atmospheric Aerosol and Some Implications

Claudio Mazzoleni
Michigan Technological University

Swarup China
Michigan Technological University

Barbara Scarnato
University of Oslo

Noopur Sharma
Michigan Technological University

Janarjan Bhandari
Michigan Technological University

See next page for additional authors

Follow this and additional works at: https://digitalcommons.mtu.edu/chemistry-fp
Part of the Chemistry Commons

Recommended Citation
Retrieved from: https://digitalcommons.mtu.edu/chemistry-fp/9

Follow this and additional works at: https://digitalcommons.mtu.edu/chemistry-fp
Part of the Chemistry Commons
The Morphology of Atmospheric Aerosol and Some Implications

Claudio Mazzoleni (1), Swarup China (1), Barbara Scarnato (2), Noopur Sharma (1), Janarjan Bhandari (1), Lynn Mazzoleni (1), Paulo Fialho (3), Cristina Facchini (4), Stefano Decesari (4), Stefania Gilardoni (4), and Nicola Zanca (4)

(1) Michigan Technological University, Atmospheric Sciences Program, Physics, Houghton, United States (cmazzoleni@mtu.edu), (2) University of Oslo, Oslo, Norway, (3) Azores University, Angra do Heroismo, Portugal, (4) ISAC-CNR, Bologna, Italy

The morphology of individual atmospheric particles, including their mixing state, shape and internal structure, can have important atmospheric implications. Understanding the mechanisms leading to specific morphologies, the role of morphology in different atmospheric processes, and accounting for these details in models present considerable challenges. Several approaches are currently underway to make progress toward the resolution of these difficulties; for example, development and deployment of improved single particle analytical and observational tools, use of accurate electromagnetic models to quantitatively predict the interactions of solar radiation with single complex particles, and particle resolved models. In this presentation we will present single particle analyses of samples collected during several field campaigns. Implications of these results on the effects upon aerosol optical properties will be discussed.