CHAPTER 8-1
TROPICS: GENERAL ECOLOGY

JANICE M. GLIME AND S. ROBBERT GRADSTEIN

TABLE OF CONTENTS

General Ecology ... 8-1-2
Water Relations .. 8-1-5
Light .. 8-1-8
Life and Growth Forms .. 8-1-9
Nutrient Relations .. 8-1-12
Productivity ... 8-1-13
Climate Effects ... 8-1-16
Reproductive Biology and Phenology ... 8-1-16
Life Cycle Strategies ... 8-1-17
Mosses .. 8-1-18
 Antheridia and Archegeonia ... 8-1-20
 Monoicous vs Dioicous ... 8-1-20
 Propagules and Regrowth ... 8-1-21
 Propagule Forms ... 8-1-22
 Fragments .. 8-1-25
 Spore Size .. 8-1-25
 Diaspore Banks .. 8-1-25
 Prolonged Protonemal Stage ... 8-1-27
Liverworts ... 8-1-28
 Monoicous vs Dioicous ... 8-1-28
 Neoteny .. 8-1-28
 Reduced Numbers of Antheridia and Archegeonia ... 8-1-29
 Short Life Cycles ... 8-1-29
 Short Spore Longevity ... 8-1-31
 Prolonged Protonemal Stage ... 8-1-32
 Types of Gemmae ... 8-1-32
 Diaspore Banks .. 8-1-35
 Rheophilic Adaptations .. 8-1-36
Dispersal .. 8-1-36
Sampling ... 8-1-40
 Braun-Blanquet Sampling Method .. 8-1-40
 Drying Specimens ... 8-1-41
Summary ... 8-1-41
Acknowledgments .. 8-1-42
Literature Cited ... 8-1-42
CHAPTER 8-1
TROPICS: GENERAL ECOLOGY

Figure 1. World map indicating tropics in pink band, subtropics in orange dotted line. Photo from KVDP, through Creative Commons.

General Ecology

Occupying the area between the Tropic of Cancer and the Tropic of Capricorn, the tropics comprise the most complex ecosystems of the world (Figure 1), extending 23°27’ north and south of the Equator. The tropical land mass is nearly one-third of the land on the planet (Schuster 1988). Complex ecosystems provide multiple niches (Figure 2), and the tropics undoubtedly provide the highest number of niches anywhere with their multi-storied forests (Figure 3).

Bryophytes in the tropics were largely ignored in early botanical studies. Resident botanists, lacking training by bryologists and preceding the development of taxonomic aids, largely ignored the bryophytes (Moreno 1992). Although bryophytes have been recorded from the tropics since the 18th century, tropical bryophyte ecology started to emerge only rather recently because keys to identify tropical bryophytes were long lacking. Early fieldwork in the tropics was done by foreign bryologists, e.g. Goebel (1888), Schiffler (1900), Fleischer (1904-1923) and Giesenagen (1910) in Asia, and by Spruce (1884-1885) and Spruce and Wallace (1908) in tropical America. Spruce collected extensively in the Amazon regions and the Andes of Ecuador and Peru, and identified the liverworts himself, but gave his moss collections to William Mitten, who subsequently published them in *Musci Austro-Americani* (Mitten 1869).

Early studies on the ecology of tropical bryophytes has been summarized by Pócs (1982) and Richards (1984a). Some of the earliest studies were on *epiphyllous* (growing on leaves of other plants) bryophytes and will be discussed in the subchapter on epiphylls.

In Puerto Rico, Fulford *et al.* (1970, 1971) described liverwort communities in the elfin (cloud) forest (Figure 4). Griffin *et al.* (1974; Griffin 1979) reported on altimontane (Figure 5) bryophytes. Steere (1970) took advantage of the haploid condition of bryophytes to report on the effects of ionizing cesium radiation in Puerto Rico.
Figure 3. Microhabitats in tropical forests. 1: Bases of large trees; 2: upper parts of trunks; 3: macro-epiphyte nests; 4: bark of main branches; 5a: terminal twigs and leaves; 5b: bark of lianas, shrub branches, and thin trunks; 6: *Pandanus* stems; 7: tree fern stems; 8: palm trunks and basal prop roots; 9: roting logs and decaying wood; 10: soil surface and termite mounds; 11: roadside banks and cuttings; 12a: rocks and stones; 12b: submerged or emergent rocks in streams. Image modified from Pócs 1982.

Once the bryophytes were better known, bryologists began asking ecological questions (e.g. Frahm & Gradstein 1990). Based on the results of elevational transect analyses throughout the tropics, Frahm & Gradstein (1991) recognized five tropical rainforest belts using bryophytes as indicators: lowland rainforests (Figure 6–Figure 7), submontane rainforests (=premontane rainforest; Figure 8), lower montane rainforests (Figure 9), upper montane rainforests (Figure 10), subalpine rainforests (Figure 11).
To further complicate our ecological understanding, early differences in methodology made ecological comparisons nearly impossible, while poor understanding of the taxonomy gave that area of study priority and limited the kinds of ecological studies that were feasible. The earliest limited ecological studies have included the relationships among climate, mountain topography, vegetation zones (Pócs 1976), ecology, reproductive biology, and dispersal trends (Schuster 1988), biomass (Frahm 1990b), water relations, and CO$_2$ exchange (Zotz et al. 1997).

Richards (1984a) provided a very useful overview of the ecology of tropical forest bryophytes, making it clear that studies at that time were limited and his coverage was superficial. One of the things that quickly becomes obvious is that most of the known ecological information relates to epiphytes (growing on other plants). This is because most of the tropical bryophytes are epiphytes, limited by low light levels and leaf burial on the forest floor.

In the Luquillo Mountains of Puerto Rico (Figure 12), three environmental factors cause contrasting communities of leafy liverworts (Bryant et al. 1973). Using area x area (Q-mode) analysis, they demonstrated that high-altitude liverwort communities contrast with those of low altitudes, shaded, moist habitats contrast with open, exposed habitats of all elevations, and disturbed low-elevation habitats contrast with less disturbed habitats of all elevations. R-mode analysis (species x species) produced nearly identical results to those of Q-mode.
Chapter 8-1: Tropics: General Ecology

Figure 12. Luquillo Mountains, Puerto Rico. Photo by Stan Shebs, through Creative Commons.

Figure 13. Octoblepharum albidum, a species that produces most of its juvenile, immature, and mature gametangia during the rainy season in tropical Brazil. Photo by Niels Klazenga, with permission.

Water Relations

In general, tropical adaptations reflect moisture conditions, with light and other factors being secondary (Frahm 1990a). Hence, we find that lowland forests are dominated by mats, and montane and cloud forests by wefts (loosely interwoven, often ascending growth form). Thiers (1988) reported the leafy liverworts Radula (Figure 109), Frullania (Figure 14), and various Lejeuneaceae (Figure 128-Figure 129) to exhibit the mat growth form on their bark substrate; these taxa tend to lack dominance in the main axis. Where they form extensive mats on tree boles, they are able to trap water as it runs down the tree.

Figure 14. Frullania sp. from the Neotropics, demonstrating mat growth habit. Photo by Michael Lüth, with permission.

Studies on water relations seem to have been more common than other areas of tropical bryophyte ecology. Pócs (1980) studied the water interception and retention by bryophytic cover (biomass) in different types of tropical forest, forming the basis for all other studies on the subject. He found a positive correlation between the amount of "surplus" rainfall (rainfall above 100 mm/month) and the epiphytic biomass in rainforest climates. Rainfall and epiphytes will be discussed in Chapter 8-3 of this volume.

When working on disturbance, Norris (1990) suggested four aspects of water relations that required consideration: hydration/dehydration frequency; hydration duration; dehydration duration; degree of water loss. We have since learned that rate of dehydration is important (Greenwood & Stark 2014). As Norris (1990) further surmised, these are all biomass-dependent functions, wherein large colonies typically maintain hydration longer than smaller colonies. Lateral branching of the colony allows lateral movement of capillary water. This spread of the water extends to clones that are in contact with each other. On the other hand, when tufts and cushions are separated, they contribute little to lateral spread of the water over the substrate.

Johnson and Kokila (1970) experimented with ten species of tropical mosses to determine their resistance to desiccation. These were exposed to relative humidities ranging 10-76% for four hours. After a recovery period of 24 hours, the researchers found the mosses could be divided into high and low resistance groups. Those species in the high resistance group occur in tropical forests with low humidity.

Pócs (1980) found a positive correlation between the amount of "surplus" rainfall (rainfall above 100 mm/month) and the epiphytic liverwort biomass in rainforest climates. As demonstrated by Larson (1981) mosses with a large surface area to weight ratio are able to absorb water very rapidly.
Thompson et al. (1994) calculated the bryophyte cover on a single tree of *Sloanea woollsii* (Figure 15-Figure 16) in a notophyll forest of southeast Queensland, Australia, to be 66 sq m. Water collected by the bryophytes in a single rainfall event exceeded that of the maximum daily transpirational loss from the host tree. Hence, bryophytes can contribute significantly to the relative humidity of the forest through evaporation.

Frey et al. (1990) recognized three principles of water conduction and storage by plants. In the wet season, it is necessary to drain off surplus water. In the dry season, storage and use of condensation of water vapor are important. Above 1700 m, structures that encourage condensation from water vapor aid in water capture. They felt that leaves with grooves could permit support as well as a means of draining off excess water, an adaptation that seems to reach its maximum in the cloud forest and subalpine zone. In the lowland forest, water sacs, mats, and smooth bark combine to preserve water during short dry periods.

Karger et al. (2012) considered air humidity to be one of the most difficult and time-consuming climatic measurements to obtain. Thus, they tested the use of bryophyte cover as a proxy, a suggestion proposed by van Reenen and Gradstein (1983), van Reenen (1987), and Frahm and Gradstein (1991). Using 26 study sites in tropical forests, these researchers considered the possibility of using bryophyte cover as a surrogate for relative humidity as a climatic measurement. They found only a weak correlation between bryophyte cover and relative humidity across all the sites. However, when the highland (1,800-3,500 m asl) data were separated from that of the lowland (<1,800 m asl) sites, relative air humidity had a significant and distinct relationship to bryophyte cover ($R^2 = 0.36-0.62$). Temperature, on the other hand, was related to bryophyte cover only in the lowlands ($R^2 = 0.36$). The researchers concluded that epiphytic bryophyte cover can be used as a proxy for air humidity if both temperature and altitude are considered, but cover might not be a good proxy across extensive elevational gradients or wide temperature differences.

Proctor (1990) has demonstrated the reasons for bryophyte distributions through the use of physiological experiments. Whereas many bryophytes tolerate drying, even down as low as 5% water by dry weight, their photosynthesis declines rapidly as water is lost. Regaining photosynthesis can be rapid or slow upon remoistening, depending on the species and the drying conditions. In the tropics, it is important to know that most bryophytes are shade plants, even when they grow in habitats with lots of sunlight, due to their low chlorophyll $a:b$ ratios. This means that they become light-saturated at relatively low light levels and do not benefit when the canopy opens up, admitting more light. But it also means that photosynthesis does not occur at a high rate, so having moist conditions provides them with a longer period of photosynthetic activity.

Both moisture and light relationships can be seen easily within a single tree as well as between habitats. For example, when Sillett and coworkers (1995) compared bryophyte diversity in a cloud forest and pasture in Costa Rica, they found 127 species of bryophytes (50 mosses, 76 liverworts, 1 hornwort) in the crowns of just 6 *Ficus tuerckheimii* (Figure 17) trees in the lower montane wet forest. Of these, 109 species were on 3 intact forest trees and only 76 on 3 isolated trees, the isolated trees having more macrolichen cover. The isolated trees were more subject to drought conditions, with higher evaporation in the inner crowns and more exposure to sunlight. The higher moisture of the intact forest supported not only a greater bryophyte species richness and cover, but also a greater frequency of pendants, tall turfs, tails, and fans. Furthermore, 52 species were found only on the intact
forest trees, whereas only 18 were exclusive to the three isolated trees.

Cardosa (2012) described the hydrological cycle and the implications of climate change, using data from a La Réunion cloud forest. As already noted, the bryophytes intercept both fog and rainfall over their entire surface. This ability is important in the hydrological cycle of their ecosystems. Using two liverwort species, *Mastigophora diclados* (Figure 18-Figure 19) and *Bazzania decrescens* (see Figure 20), they determined biomass, water storage capacity, atmospheric and cloud water interception, and photosynthetic response to desiccation. Compared to *M. diclados*, *B. decrescens* stored water at approximately double the mean and maximum per hectare while at the same time occupying less than half the bryophyte volume of *M. diclados*. On the other hand, *M. diclados* had a greater ability to intercept the atmospheric moisture. Both species showed a significant relationship between photosynthesis and water content, with both species losing photosynthetic capacity at both low and high water contents. If the clouds lift, as they are predicted to do by the global climate change models, these bryophytes will most likely not survive and their role in the water cycle will be lost.

In addition to decreasing diversity, tropical bryophyte productivity is already being impacted by global climate change (Zotz & Bader 2008; Jácome *et al.* 2011; Song *et al.* 2012; Pardow & Lakatos 2013). Jácome and coworkers...
used transplanted communities to determine potential climate change effects on the ecology of these bryophyte species.

As a result of climate change, periods of drought are becoming longer and microclimatic conditions are drier (Pardow & Lakatos 2013). Unfortunately, few physiological studies are available on tropical bryophytes, and even less is known about community responses. Pardow and Lakatos, in the first pilot study for effects of climate change on bryophyte ecology in the tropics, used chlorophyll fluorescence to indicate recovery of bryophytes from a tropical lowland forest in French Guiana (Figure 21). They found that canopy species were well adapted to desiccation events, with 13 of the 18 species maintaining more than 75% of their photosynthetic capacity after recovery from 9 days of desiccation at 43% relative humidity. Understory species were sensitive and could recover only if the relative humidity did not go below 75%. Water vapor, as one might find in fog, was sufficient to rehydrate and reactivate photosynthesis in all of these bryophytes.

Figure 21. Top of lowland rainforest canopy, French Guiana. Photo by Renske Ek, courtesy of Robbert Gradstein.

Additional discussions of water relations as they relate to habitat can be found in the following subchapters.

Light

Although moisture is the overriding factor in bryophyte distribution in most of the tropics, light is limiting near the forest floor in well-developed multi-story rainforests (Richards 1984a; Cornelissen & ter Steege 1989). Cornelissen and ter Steege demonstrated that true sun epiphytes increase in photosynthetic rates with increasing light intensity, even when that intensity is very high and atmospheric humidity is low. Hosokawa *et al.* (1964) found that the vertical gradient of bryophyte and other cryptogamic species and growth forms is somewhat related to light and atmospheric humidity, with the lowermost canopy species being more limited by illumination and the uppermost occurrences of trunk species being limited by insufficient atmospheric humidity.

Although high temperatures may be detrimental to some species, Barkman (1958) considered that these are probably not damaging to the bryophytes, but rather that direct solar radiation may be harmful. He cited examples of adaptive coloration exhibited by some bryophytes. Cornelissen and ter Steege (1989) found red to black pigmentation represented in many sun epiphytic species, including *Orthotrichaceae, Frullania* spp., and several members of holostipous *Lejeuneaceae*. The upper canopy species *Frullania apiculata* (Figure 22), *F. kunzei* (Figure 23), and *F. nodulosa* (Figure 24) are always dark red in these locations. By contrast, *F. mucronata* from zones 3 and 4 is dark olive green and *F. obcordata* (Figure 25), a generalist, is more strongly pigmented with red color in zones 5 and 6 than in zone 4. Krinsky (1968) described photochemical pathways that can be used by colored pigments that protect plants.

Figure 22. *Frullania apiculata* stem, SEM, a species that is dark red in sunny locations. Photo by Matt von Konrat, with permission.

Figure 23. *Frullania kunzei*, a species that is dark red in sunny locations. Photo by Juan Larrain, with permission.
Figure 24. *Frullania nodulosa* stem ventral view, a species that is dark red in sunny locations. Photo by Matt von Konrat, with permission.

Figure 25. *Frullania obcordata*, a generalist species that is more strongly pigmented in tree zones that receive more light. Photo by Blanka Aguero, with permission.

Life and Growth Forms

Bryophyte life and growth forms reflect the habitat conditions, particularly that of available moisture. Life forms of tropical bryophytes were described in detail by Mägdefrau (1982). Aceby *et al.* (2003) found that 4-15-year-old fallows have a significantly decreased diversity of bryophyte families and mosses in Bolivia (Figure 26). Liverworts, on the other hand, have nearly as much diversity in the fallows as in the submontane rainforest. The life form is ~72% smooth mat, a much higher percentage than that found in the forest.

Pardow *et al.* (2012) used life forms as an indicator of high diversity in a tropical lowland cloud forest of the Guianas (Figure 27-Figure 28). These lowland cloud forests are hotspots of bryophyte diversity in tropical lowland areas compared to the common lowland rainforest, as shown in detail by Gradstein (2006) and Gehrig-Downie *et al.* (2011, 2013). The cloud forest benefits from the frequent early morning fog in the valleys. Pardow *et al.* compared the distribution of the functional groups of epiphytes across height zones in the lowland cloud forest and lowland rainforest and found a higher diversity of life forms of bryophytes in the cloud forest. In the cloud forest, tail, weft, and pendants are common, whereas in the rainforest they are almost absent. The researchers suggested that identification of life forms could be used as a rapid method for identifying lowland cloud forests for conservation.

Figure 26. Bolivian old field at 600 m, surrounded by secondary forest with submontane rainforest in the background. Photo by Thorsten Krömer, courtesy of Robbert Gradstein.

Figure 27. Lowland cloud forest of French Guiana. Photo courtesy of Robbert Gradstein.

Figure 28. Canopy of lowland cloud forest in French Guiana. Photo by Renske Ek, courtesy of Robbert Gradstein.
In our study (Li et al. 1989) of *Frullania* (Figure 14, Figure 22–Figure 25) in Papua New Guinea (Figure 29), moisture and elevation gradients were important in determining taxa assemblages. Although we suspected that light and temperature were likewise important, we had no data to test these directly. Pócs (1982) and Richards (1984a, b) and a review by Thiers (1988) likewise report that the most important influences on tropical rain forest liverwort (*Jungermanniales*) growth are relative humidity, rainfall, light, and temperature (Thiers 1988). Frahm (1990a) found compensation points for two mosses in controlled temperature regimes, relating these to the tropical temperature regimes. Within this group, growth habit and stem anatomy are often modified, but perhaps the most adaptive features are the development of both simple and complex saccate leaf lobules in liverworts such as *Frullania* (Figure 22–Figure 25), presumably for retention of water, and elongate, thin-walled leaf cells.

On the other hand, excess water can be a problem because it reduces diffusion of CO₂ and can encourage fungal growth (Frey et al. 1990). Trees in the tropics often have leaves with prolonged (acuminate) tips. This has been considered by some to be an adaptation that permits water to run off the leaf, thus reducing the colonization by fungi on leaves that are subjected to daily rains. Pendant bryophytes in rainforests have a somewhat similar adaptation, but the interpretation has been more debatable. For example, in north temperate forests, *Frullania* (Figure 30) is recognized as a liverwort that closely adheres to its bark substrate (mats). However, in the rainforest, several pendant species of *Frullania* (Figure 31) exist (Li et al. 1989). One interpretation of this is again the possibility of the water to be shed by running down the rope-like plant body. However, an alternate interpretation seems to be just the opposite. The pendant form is actually a response to the weight of water, first in weighing down taller plants with weak stems, and then in collecting the water at the tips of the branches where the dividing cells are. Thus, the tip of the moss, during the rainy season, may be bathed in water nearly all the time, giving it a nearly aquatic environment. This continual supply of water permits the cells to divide uninterrupted by periods of drought during the rainy season. Such bryophytes can be found not only in tropical and subtropical forests such as those of southern Japan, but also in the rainforests of the Pacific Northwest in North America.

Proctor (2002) found that the pendant mosses *Floribundaria floribunda* (Figure 32) and *Pilotrichella ampullacea* (Figure 33) hold large amounts of external capillary water. Nevertheless, both species are able to recover from 11 months of dry storage at 5°C (not a very likely temperature in lowland tropics, but possible at some higher elevations). Both require several days to recover, with *F. floribunda* taking somewhat longer. Short desiccation periods elicit rapid recovery, with *P. ampullacea* reaching a positive carbon balance after only 30–60 minutes following 20 hours of air drying. After six days, they require 2-5 hours, suggesting that they are adapted to the short periods of desiccation found in the humid tropical forests, but not to longer, frequent periods. *Floribundaria floribunda*, on the other hand, is best adapted for more shady and continuously moist forests.
In the leafy liverworts, Thiers (1988) recognized stem characters such as growth habit (projecting, prostrate, rheophytic) and anatomical characters such as epidermal thickenings, stem reduction, and stem flattening (often present in mats) as conserving moisture during dry periods. The flattened stems, such as those in *Pteropsiella frondiformis* (Lepidoziaceae), do most of the photosynthesizing, and accompanied by reduced leaves, the reduced life form would most likely conserve water during dry periods. Other leaf modifications include development of simple and complex saccate leaf lobules [e.g. *Pleurozia* (Figure 34-Figure 35) and *Colura* (Figure 36-Figure 37)] and presence of elongate, thin-walled, hyaline cells in the leaf margins [e.g. *Cololejeunea marginata* (Figure 38), *C. cardiocarpa* (Figure 39)], all of which help to hold or absorb water.

Further descriptions of life forms and growth forms as they relate to habitat can be found in the following subchapters. For an introduction to the topic, see Volume 1, subchapter 4-5.
Nutrient Relations

Nutrients are also affected by the rainy and dry seasons. Nutrient pulses occur as bryophytes dry and rewet. Damaged membranes leak nutrients and other substances such as sugars and polyols. Rainfall leaches these nutrients from the bryophytes, including their surfaces, and carries them to the forest floor (Lodge et al.). These pulses synchronize nutrient availability that maintains higher rates of nutrient mineralization, plant uptake, and forest productivity. It provides nutrients at the beginning of the growing seasons, a time at which they should be most beneficial to forest species. Thus the bryophytes serve as storage units that provide nutrients at the most critical time.

Coxson and coworkers (Coxson 1991; Coxson et al. 1992) noted the importance of wetting/drying cycles for the accumulation of sugars and polyols to more than 950 kg ha\(^{-1}\) in the epiphytic bryophytes of the cloud forest canopy of Guadeloupe (French West Indies). These sugars can stimulate the growth of microbes and thus facilitate the breakdown of litter. These relationships suggest some of the importances of these wet to dry changes in nutrient release from the epiphytic bryophytes (and for some, probably ground-dwelling species as well) and their role in the forest dynamics.

Further support for these responses comes from differences between upper and lower canopy bryophytes. Coxson and coworkers (1992) found that the upper canopy leafy liverwort *Frullania atrata* (Figure 40) holds 17% of its dry weight as sugar and polyol reserves. [Note that the name *F. atrata* has been misapplied to a number of tropical *Frullania* specimens, so information regarding the species may actually belong to one of its look-alikes (pers. comm. Robbert Gradstein).] By contrast the lower canopy moss *Phyllogonium fulgens* (Figure 41) holds these reserves as less than 6% of its dry weight. The upper canopy bryophytes seem better adapted at retaining these, with *F. atrata* releasing only 0.3 g m\(^{-2}\) compared to 0.9 g m\(^{-2}\) for *P. fulgens*. This relationship was supported by similar relationships of bryophytes under field conditions in the tropical montane cloud forest of Guadeloupe, French West Indies.
The bryophytes in these tropical flood plain communities appear to retain nutrients and serve as filters during flooding in these communities.

In the coastal forests of Kenya, some bryophytes specialize on acid or alkaline substrates (Wilding et al. 2016). For example, *Tortella tortuosa* (Figure 42) is strongly associated with calcareous substrates, whereas *Racomitrium lanuginosum* (Figure 43) only occurs on acid ground. These preferences most likely relate to their ability to obtain their needed nutrients, without getting them in excess.

Frangi and Lugo (1992) studied the biomass and nutrient accumulation in ten-year-old communities in a flood plain at the Luquillo Experimental Forest, Puerto Rico. They found a higher bryophyte cover on streambanks where flooding was frequent but of short duration. The cover decreased toward the longer-lasting flood plain, with the minimum cover occurring in depressions where water remained and became stagnant. They measured nutrient accumulations in ash-free biomass of bryophytes. These accumulations in kg ha⁻¹ were 14.5 for N, 0.8 for P, 5.3 for K, 2.7 for Ca, 2.7 for Mg, 0.5 for Mn, 18.5 for Fe, and 22 for Al. These numbers were similar to those found in fine litter. Nevertheless, these values were low compared to that of other bryophyte communities. Both biomass and nutrients were greater in streambank slope communities and slopes of tree mounds than that in depressions that remained wet for a long time.

Further discussion of nutrient relations of tropical bryophytes is in the subchapters on Epiphytes.

Productivity

Productivity studies, in particular, are difficult to compare because of differences in methodology. Moreover, few exist.

Pócs (1987) was among the early productivity researchers, examining the changes in biomass among bryophytes in the East African rainforests. As we might expect from temperate studies (Proctor 1982), physiological and experimental studies indicate that net productivity drops rapidly as temperatures rise above 25°C (Frahm 1990b). Add low light levels to the high temperatures and the bryophytes are hindered by high...
respiration rates and low photosynthetic rates, resulting in low or negative net assimilation. Due to differences in precipitation, humidity, temperature, and desiccation (Frahm 1990a, b), it is generally true that biomass of epiphytic bryophytes in equatorial latitudes increases from the tropical lowlands to the treeline. Thus, high temperatures, combined with low light intensities, can account for the low diversity of bryophytes in the lowlands. Richards (1952) found data indicating that during the wet, and thus cloudy, season, the maximum temperatures in the ground layer are lower than those in the dry season when the sun shines a greater proportion of the time.

This raises the question of how the limited numbers of species in the lowlands survive. Frahm (1990b) suggested this could involve a specialized phytochrome system or more effective storage of the photosynthetic products. Perhaps more realistically, the relatively high nutrient supply that arrives through abundant precipitation could support a positive net photosynthesis. Another factor that could contribute is that the forest floor can have high CO₂ concentrations due to enhanced decomposition of leaves in a hot, moist environment, but increased CO₂ levels are most beneficial in high light levels.

Zotz et al. (1997) provided further information on the CO₂ and water relations for net photosynthesis. Using six tropical bryophytes, these researchers measured the daily changes in water status and net CO₂ exchange in a submontane tropical rainforest in Panama (Figure 44). Daily variation of water content was "pronounced." Both high and low water content limited carbon gain. Low light during rainstorms was less important in limiting CO₂ exchange compared to water content. More than half the carbon gain was lost at night to respiration.

In a more recent publication, Chen et al. (2016) examined photosynthetic properties of epiphytes in Southwest China. These adaptations include higher total chlorophyll concentrations, specific leaf area, and chlorophyll per unit leaf N (Chl/N), lower ratio of chlorophyll a:b, and greater photosynthetic nitrogen-use efficiency. Measurements, in μmol m⁻² s⁻¹, showed means for light-saturated net photosynthetic rate (0.55), light saturation point (106.72), light compensation point (4.17) and dark respiration rate (0.25). They demonstrated photosynthetic down-regulation under high light conditions for these low-light epiphytes. These trunk-dwelling epiphytes are adapted for high resource retention rather than high resource gain. This is accomplished by low respiration rates and low light compensation points in shady habitats.

Waite and Sack (2010) hypothesized that leaf trait values would "reflect the distinctive growth form and slow growth of mosses, but also that trait correlations would be analogous to those of tracheophytes." Using ten species from Hawaii (Figure 45), they quantified 35 physiological and morphological traits of cell, leaf, and canopy level of bryophytes growing on the ground, trunk, and canopy. These bryophytes had low leaf mass per area (A mass) and low gas exchange rates. Perhaps not surprisingly, but in contrast to that of tracheophytes, the moss light-saturated photosynthetic rate per mass did not correlate with habitat irradiance. However, leaf area, cell size, cell wall thickness, and moss canopy density all correlated with microhabitat irradiance. Waite and Sack furthermore found that costa size, canopy height, and A mass were coordinated traits linked with structural allocation.
Tropical forests generally have a larger biomass of epiphytic bryophytes than do temperate forests (Norris 1990). However, when trees are widely spaced or occur as lone trees, the greater penetration of wind can quickly desiccate the adhering bryophytes.

Overall, bryophytes comprised 40% of the epiphytic biomass in a Neotropical lower montane cloud forest at ca. 1600 m in Costa Rica (Nadkarni 1984) compared to 6% in the leeward rainforest (Ingram & Nadkarni 1993). In both forests, bryophytes were most abundant among the smallest branches. The gnarled, windblown trees and the frequent mist in the elfin forest provide extremely favorable conditions for bryophytic growth (see Lawton & Dryer 1980).

In an upper montane cloud forest at 3700 m in the Andes of Colombia (near the forest line), the bryophyte contribution to total epiphyte biomass was much higher, almost 70% (Hofstede et al. 1993) and total epiphytic biomass (including suspended soil) was a staggering 44 tons per hectare, the highest value ever reported.

Light is an important limiting factor for photosynthesis in the tropics. For three species of *Pogonatum*, chlorophyll content and chloroplast size differed with light intensities where they predominated (Nasrulhaq-Boyce et al. 2011). For *P. cirratum* subsp. *macrophyllum* (Figure 48) and *P. subtortile*, the total chlorophyll and beta-carotene content are higher than that in *P. neesii* (Figure 49). The latter lives in the areas with much higher light intensities ($751 \pm 45 \text{ W m}^{-2}$), compared to 28 ± 4 and $230 \pm 39 \text{ W m}^{-2}$, respectively. The sun species, *P. neesii*, had a higher soluble protein content, likewise having a higher soluble protein to total chlorophyll ratio. *Pogonatum cirratum* subsp. *macrophyllum*, the species from the lowest light, had significantly larger chloroplasts as well as more grana and thylakoids per chloroplast than did the other two species. And the two species from the lowest light had more than double the numbers of starch grains. On the other hand, the leaf lamellae (vertical stack of cells on leaf; Figure 50) were shortest in the species receiving the lowest light levels. Nevertheless, the CO$_2$ assimilation rates were highest in *P. neesii* even when light intensities were low. Lamellae can provide more surface area for photosynthesis and capillary spaces to hold water longer. In low-light *P. cirratum* subsp. *macrophyllum*, these are rudimentary, whereas those of *P. subtortile* are 5-7 cells high.
Further discussions of productivity and biomass will be provided in the succeeding subchapters as they pertain to particular habitats.

Climate Effects

As noted above, moisture and temperature are important determinants of the types of bryophyte vegetation that survive. And precipitation events and cloud cover will diminish the light intensity. Among the early studies on the effects of these climate parameters on tropical bryophytes is a study by Biebel (1964, 1967). He examined temperature resistance of jungle mosses. Weber (1985) examined the effects of El Niño on bryophytes of the Galápagos. Furthermore, hurricanes can be devastating to epiphytes, ripping them from the trees or breaking branches and even toppling trees.

Rainy "seasons" are common in the tropics, punctuated by dry periods. If there are two periods in the year when the sun is overhead in the tropics, two wet seasons will occur (Richards 1952). If the two periods of overhead sun are close together, the two wet seasons will merge, but two maxima will still occur.

In the winters of many parts of the tropics, a dry season turns the area into near desert conditions. Akande (1984, 1985) attempted to understand the desiccation tolerance, or lack of it, among several tropical African bryophytes. Using the leafy liverwort *Mastigolejeunea florea* (now called *Spruteanthus floreus* according to Robbert Gradstein; see Figure 51) and the mosses *Calymeres palisotii* (Figure 52) and *Entodontopsis nitens*, he concluded that these mosses were more desiccation-tolerant than the liverwort. It is interesting that bryophytes maintained at 0% relative humidity for one week and one month at 28°C were able to resume respiration more quickly than those kept at 32 and 54% relative humidity. He considered this ability to recover from 0% humidity so easily to be a case of anhydrobiosis (living state without water).

Reproductive Biology and Phenology

As discussed earlier, the timing of reproduction must coincide with conditions favorable for dispersal. For example, both *Sematophyllum subpinnatum* (Figure 53) and *Octoblepharum albidum* (Figure 13) in the tropical Brazilian lowland forest have considerably more juvenile, immature, and mature gametangia during the rainy season than during the dry season, and that corresponds with an increase in the number of fertilized eggs in the archegonia.
Chapter 8-1: Tropics: General Ecology

(Oliveira & Pôrto 2001; Pôrto & Oliveira 2002). One must keep in mind that unlike the desert, the dry season is subject to occasional, but short, rainfall events. In contrast to gametes, spores benefit from dry air for dispersal, and these two species derived that advantage by beginning sporophyte development during the rainy season, but completing it during the dry season.

Figure 53. Sematophyllum subpinnaatum, a species that produces most of its juvenile, immature, and mature gametangia during the rainy season in tropical Brazil. Photo by Michael Lüth, with permission.

Despite our limited taxonomic knowledge, there have been several studies on the reproduction of tropical bryophytes. By their very nature, individual studies are limited to one or few species (e.g. Fatoba 1998). Nevertheless, Kürschner and Parolly (1998a, b), Kürschner et al. (1999), and Kürschner (2004) were able to review the life strategies and adaptations of bryophytes, noting that functional types are "important for the establishment, habitat maintenance, and dispersal of species," indicating relationships among site ecology, niche differentiation, and species evolution.

Bryophytes in tropical regions seem to have relatively fast population dynamics when compared to those of temperate species (Monge-Nájera 1989; Coley et al. 1993; Zartman 2004). This is often an adaptation to the ephemeral nature of many of their substrates.

Cerqueira et al. (2016) studied the seasonality of reproduction of epiphytic bryophytes in the flooded forests of the eastern Amazon. Of 54 species, 34 were fertile. They were unable to identify a pattern in the seven studied species when comparing those in dry vs rainy conditions. Two species, however, were associated with the seasonality. They concluded that some bryophytes may maintain constant fertility as an adaptation to these tropical forests.

Batista et al. (2018) found that in a humid forest in northeastern Brazil, with seasonal rainfall and dry season, the 76 bryophyte species were predominantly monoicous (67%) and exhibited reproductive traits that tolerated adverse conditions, permitting them to persist under the seasonal water availability of the forest. A total of 80% of the species had sporophytes, mostly among the monoicous species. Only 21% exhibited asexual reproduction, including gemmae, regenerating fragments, and caducous leaves. Of these with asexual means, 75% were dioicous.

Life Cycle Strategies

Tropical forest substrata are usually rather temporary (Richards 1988), whether it be due to rapid decay, exfoliation, or soil erosion. In fact, Richards considers all substrata available to bryophytes in the tropics to be impermanent. Hence efficient short-distance dispersal is important. Epiphyllous species are frequently colonists with a short life span and production of numerous propagules. Species of Fissidens (Figure 71) and others that grow on termite mounds have a short-lived strategy. Richards (1988) carefully stated that the perennial shuttle with its relatively long life span and only moderate sexual or asexual reproduction is probably the commonest life strategy in the tropics, but that epiphylls are likely to be colonists because of the short duration of their substrate. Fugitives are rare, exceptions being the thallose liverwort Riccia (Figure 54) and the moss Micromitrium (Figure 55), as seen in West Africa.

Figure 54. Riccia cavernosa, a thallose liverwort; members of this genus are fugitives in West Africa. Photo by Des Callaghan, with permission.

Figure 55. Micromitrium tenerum; members of Micromitrium are fugitives in West Africa. Photo by Amelia Merced, with permission.
Mosses

The earliest of the tropical reproductive studies I could locate were those of Odu (1979, 1981). Studies on the mosses *Racopilum* (Figure 56) and *Fissidens* (Figure 71), indicate the importance of temperature in early life stages, with germination occurring at 30°C and protonema growth at 25°C (Odu 1979). This temperature requirement coincides with the maturation and dispersal of spores in the dry season, favoring the establishment of new shoots.

Figure 56. *Racopilum africanum*, a tropical species that relies on the rainy season for sexual reproduction. Photo by Jan-Peter Frahm, with permission.

Where seasons alternate between rainy and dry seasons, the rainy season is critical for completion of reproduction in species that rely on sexual reproduction. Odu (1981) demonstrated this for four species in southwest Nigeria, showing that release of spores was timed to take advantage of the dry season. The reproductive phenology of several tropical African mosses (*Racopilum africanum* (Figure 56), *Fissidens weirii* (see Figure 71; syn.=*F. glauculus*), *Pelekium gratum* (Figure 57; syn.=*Thuidium gratum*), *Stereophyllum* sp. (Figure 58) illustrate this. Using populations in southwestern Nigeria, Odu found that gametangia develop at the onset of the rainy season (March-April), whereas the development of sporophytes occurs later, with capsule maturation occurring at the end of the same rainy season (October-December). This permits dispersal of spores during and after the dry season (November-April). Thus the entire reproductive cycle is completed within one year. A similar relationship occurred among four species in a savannah in southwestern Nigeria (Makinde & Odu 1994).

Figure 57. *Pelekium gratum*, a tropical moss species that relies on the rainy season for sexual reproduction. Photo by Manju Nair, through Creative Commons.

Both Olarinmoye (1974) and Egunyomi (1979a) determined that in studied bryophytes of west tropical Africa moisture is the regulatory factor for both growth and sporophyte production. Nevertheless, differences between species exist (Odu 1982). Odu found that *Fissidens weirii* (see Figure 71) and *Racopilum africanum* (Figure 56) have the shortest fertilization period, occurring in May. This fertilization period is earlier in *Pelekium gratum* (Figure 57) and much later in *Octoblepharum albidum* (Figure 13; Figure 59) (July-September). Nevertheless, the sporophytes of all four species mature toward the end of the rainy season (October-November). Herbarium specimens of these mosses collected over an 11-year period support this pattern.

Maciel-Silva and Oliveira (2016) examined the seasonal relationships of *Octoblepharum albidum* (Figure 13; Figure 59) in Brazil. Among 100 sporophyte-bearing plants, representing ten populations, the development was clearly seasonal, relating principally to rainfall. The early stages (immature to post-meiotic) occurred primarily during the dry season. Dehiscence, on the other hand, occurred mostly during the rainy season. This seems to be the opposite of that found for the species in Africa.

Octoblepharum albidum (Figure 59) is an autoicous pantropical species. Thus, its handling of various climatic regimes can help us to understand adaptations of reproductive strategies. Maciel-Silva *et al*. (2013) compared reproductive traits of this species in two Atlantic rainforests and two coastal sites in northeastern Brazil. This species not only produces spores frequently (Figure 59), but also produces gemmae at the leaf tips (Figure 60). In the coastal sites, the shoots had higher numbers of sporophytes, male and female branches per shoot, male gametangia per sexual branch, and longer setae than in the forest sites. Numbers of female gametangia per sexual branch did not differ between the two habitats and the male-biased sex ratio was present at all sites. Longer shoots produced more sporophytes, protonemata, and/or buds than did shorter ones, compared to production of gemmae, but only in the forest sites. The researchers suggested that the longer setae could favor spore dispersal, aiding colonization in coastal sites.
Figure 59. *Octoblepharum albidum* with capsules, a pantropical species that adjusts its reproductive strategies based on habitat climate. Photo by John Bradford, with permission.

Figure 60. *Octoblepharum albidum* with gemmae on the leaf tips. Photo by Li Zhang, with permission.

Oliveira and Pórtio (2005) examined sporophyte production and population structure of two moss species in the *Pottiaceae* in Brazil. Both *Hyophila involuta* (Figure 61) and *Hyophiladelphus agrarius* (Figure 62) produce capsules in the Atlantic forest at Recife, Pernambuco, Brazil (see Figure 63). Both species had a significantly female-biased sex ratio. The ratio of sterile to fertile shoots was close to 1:1. *Hyophila involuta* had a mean shoot density of 19 cm⁻², whereas it was 27 for *Hyophiladelphus agrarius*. Furthermore, *H. involuta* had only 48% sporophyte production, whereas *H. agrarius* had 55%. Neither species seemed to change its sporophyte production based on any of the environmental parameters measured. The males and females do not clump by sex, favoring sporophyte production.

Figure 61. *Hyophila involuta* with capsules. Photo by M. C. Nair, K. P. Rajesh, and Madhusoodanan, through Creative Commons.

Figure 62. *Hyophiladelphus agrarius* with capsules. Photo by Fred Essig, with permission.
Antheridia and Archegonia

Pôrto and Oliveira (2002) did a more intensive study on the reproductive phenology (study of cyclic and seasonal natural phenomena) of *Octoblepharum albidum* (Figure 59) in the Atlantic Forest in Brazil. In this 2-year study, they found an average of 13.4 antheridia per perigonium (envelope of modified leaves surrounding antheridia) and 6.7 archegonia per perichaetium (ensheathing cluster of modified leaves surrounding archegonia). All stages of gametangia were much greater in the rainy season, with a concomitant increase in fertilized eggs in archegonia. The sporophytes began development during the rainy season and matured in the dry season, at which time spores were dispersed.

Even in the moss *Sematophyllum subpinnatum* (Figure 53), in which antheridia and archegonia initiate, mature, and achieve fertilization throughout the year, the frequency increases in the rainy season (Oliveira & Pôrto 2001). Sporophytes (see Figure 64) initiate primarily in June through September, indicating that the rainy season is the most favorable time for fertilization.

Maciel-Silva and Valio (2011) found that in two different sites in the Brazilian rainforest, the phenology was somewhat different. Examination of eleven species of bryophytes indicates that the reproductive organs are active year-round. Female gametangia often mature before the onset of the rainy season. Male gametangia, however, tend to mature at the end of the dry season. Furthermore, at sea level, the highest production of immature male gametangia occurs at the start of the rainy season, whereas in the montane region, the highest production of immature male gametangia is at the end of the dry season. The researchers suggested that high temperatures could damage the development of male gametangia during the rainy season. Sporophytes dehisce before the rainy season begins, a time when spores can be dispersed farther by dry winds.

In summary, tropical gametangia mature primarily at the end of the dry season or beginning of the rainy season, most fertilizations occur during the rainy season, and spore dispersal occurs during the dry season.

The pantropical moss *Sematophyllum subpinnatum* (Figure 53) is autoicous (having both sex organs on same plant but different branches) (Oliveira & Pôrto 2001). Sampling of two populations for two years in northeastern Brazil revealed that the average number of antheridia per perigonium ranges 9-20; archegonia per perichaetium ranges 3-26.

Monoicous vs Dioicous

As one might expect, monoicous (having both sexes on same plant) species have the highest levels of sporophyte production compared to dioicous (having sexes on separate plants) (Maciel-Silva et al. 2012a). Gradstein (1975, p. 29) found the highest level of sporophyte production in the autoicous *Acrolejeunea fertilis* (Figure 65) and *A. pycnoclada*, with a 15% presence of sporophytes in 100 collections of each of the two species studied. In other *Acrolejeunea* species mature sporophytes were present in less than 10% of collections studied, and sporophytes were not seen in two dioicous species. In their study of fertilizations in 11 species from a Brazilian Atlantic rainforest, Maciel-Silva and coworkers found that female-biased sex ratios and low rates of fertilization are typically balanced by high production of reproductive structures at the beginning of the reproductive cycle.
These same 11 species expressed sexual organs continuously over the 15-month period of study (Maciel-Silva & Valio 2011). Nevertheless, male gametangia are typically mature by the end of the dry season, with fertilization occurring during the wettest months. Female gametangia, on the other hand, are receptive over the entire period, with many maturing before the rainy season begins. Male gametangia experience a high abortion rate and take longer to develop. This pattern of male gametangia taking longer to develop is typical of bryophytes in many parts of the world. Sporophytes subsequently develop during the dry season, dispersing their spores toward the end of the season. Although the patterns of gametangia and sporophyte development differ among the species, it does not differ between the sea level and montane sites.

In Mexico, two dioicous species of \textit{Syntrichia} \cite{S. fragilis} (Figure 66), \textit{S. amphidiacea} (Figure 67) are abundant \cite{Mishler 1988}. Both produce sporophytes only in limited circumstances within their range. Nevertheless, they are just as abundant in areas where sporophytes are rare or absent. This suggests that they must rely heavily on asexual reproduction in these areas.

Propagules and Regrowth

Some widespread tropical bryophytes do not produce capsules and spores, usually due to absence of the opposite sex, poor gamete dispersal, or unsuccessful development of the sporophyte. Olarinmoye (1986) examined survival strategies of the mosses \textit{Hyophila crenulata} (see Figure 68), \textit{Barbula lambarenensis} (see Figure 69-Figure 70), and \textit{Fissidens asplenioides} (Figure 71) in Ibadan, Nigeria. He established that survival strategies during unfavorable periods of drought could be as spores (only in \textit{Hyophila crenulata}), gemmae, and regrowth from the gametophores, as well as regrowth from rhizoids, shoot bases, apices, and the main stem. Rhizoids produce more regrowth than do shoot apices and main stems. He considered the production of spores in \textit{H. crenulata} to give it a competitive advantage. Nevertheless, the gemma production and success of the other two species seems to more than compensate for lack of spores, as witnessed by their abundance and widespread distribution there.

Figure 66. \textit{Syntrichia fragilis} dry, an abundant dioicous species in Mexico, but seldom producing capsules. Photo from Dale A. Zimmerman Herbarium, Western New Mexico University, with permission.

Figure 67. \textit{Syntrichia amphidiacea} dry, an abundant dioicous species in Mexico, but seldom producing capsules. Photo by Claudio Delgadillo Moya, with permission.

Figure 68. \textit{Hyophila involuta} (Pottiaceae) with capsules; \textit{Hyophila crenulata} survives dry periods by spores, gemmae, and regrowth from any of its gametophore parts. Photo by Michael Lüth, with permission.

Figure 69. \textit{Barbula horrinervis} (Pottiaceae) with bulbils in leaf axils; \textit{B. lambarenensis} survives dry periods by gemmae that serve the same function as bulbils. Photo by Michael Lüth, with permission.
Figure 70. *Barbula tenuirostris* (*Pottiaceae*) showing broken leaves that could regenerate; *B. lambarenensis* uses such fragments to regrow following drying out. Photo by Michael Lüth, with permission.

Figure 71. *Fissidens asplenioides*, a species that survives following drought through regrowth from various plant parts. Photo by Jan-Peter Frahm, with permission.

Propagule Forms

Tropical moss gemmae do not seem to have the same limited number of forms as do liverwort gemmae. Odu (1987) found a "great multiplicity of forms" among the gemmae in tropical West African mosses. These occur in a variety of locations, including leaf and leaf axils, and sometimes occur in more than one type of location. Odu concluded that gemmae are of "immense ecological importance" to the tropical mosses. This is facilitated in *Calymperaceae* (Figure 52) by rapid germination – within 1-2 days after becoming dislodged from the leaves. In *Bryaceae*, asexual propagules are often produced as multicellular rhizoidal tubers (Figure 72). In addition to these, there may be gemmae in leaf axils and on rhizoids. As in *Calymperaceae*, gemma germination is rapid, within 2-3 days. In southern Nigeria, some species of *Pottiaceae* (Figure 68-Figure 70) have few male plants and hence rely on gemmae.

Figure 72. *Bryum dichotomum* rhizoidal tuber, a common means of reproduction in West Tropical Africa. Photo by Des Callaghan, with permission.

Calymperes (Figure 52) is one of the prominent gemmiferous mosses in the tropics. When examining *C. afzelii* (Figure 73) and *C. erosum* (Figure 74) Odu and Owotomo (1982) found that the shoots are **dimorphic** (having two forms). That is, the first leaves to develop do not produce gemmae. Later leaves are gemmiferous (Figure 74), and these alternate in coordination with the dry and rainy seasons.

Figure 73. *Calymperes afzelii*, a species that produces protonemata and single-layered gemmae in leaf axils. Photo by Piers Majority, through Creative Commons.
Egunyomi (1984) surveyed the asexual diaspores (propagule; any structure that functions in plant dispersal) of mosses in Nigeria. He recognized two major categories: caducous shoots and gemmae. Species with one or more of these asexual diaspores comprise 15% of the Nigerian moss flora. He considered this means of reproduction to be especially important for mosses that do not produce sporophytes in all or part of their range. Seven of these species are sexually sterile.

The miniature caducous (can break away from the stem) shoots are often found with rhizoids (Egunyomi 1984). Species with this type of diaspoare include Trachycarpidium tisseranti (see Figure 75), Archidium sp. (Figure 76), Bryum argenteum (Figure 77), B. coronatum (Figure 78), Bryum nitens, and Campylopus (Figure 79) species. The latter two are strongly caducous.
Figure 79. *Campylopus subulatus* with broken tips that become dispersal units. Photo by David T. Holyoak, with permission.

The second type is the gemma (Egunyomi 1984). In some, these are uniseriate (having only one cell layer) and produced from protonemata in leaf axils. This type includes *Splachnobryum gracile* (see Figure 80), *Jaegerina scariosa* (Figure 81), *Henicodium geniculatum* (Figure 82), and *Bryum argenteum* (Figure 77). Production of rhizoidal gemmae in *Splachnobryum gracile* and *B. argenteum* seems to be related to the high humidity where they were collected. Another type of gemma is borne on excurrent (extending beyond leaf tip) costae (leaf rib) and is clavate (club-shaped, like a baseball bat). Species with these include *Calymperes erosum* (Figure 74), *C. afzelii* (Figure 73), *C. palisotii* (Figure 52), and *C. rabenhorstii*. *Calymperopsis martinicensis* produces filamentous gemmae that occur in splash cups at the shoot apex. In *Octoblepharum albidum* (Figure 13), the gemmae occur at leaf apices and along the margins. Multiseriate gemmae occur in *Semibarbula lambarensis* and *Hyophila crenulata* (see Figure 61). *Gemmabryum apiculatum* (see Figure 83-Figure 85), and *Anoectangium spathulatum* (see Figure 86) produce tubers (Figure 85). These tubers are present on rhizoids in the soil and can germinate when the soil is disturbed. This can occur when wet season rains first disturb the soil. Tubers are able to remain viable 9-12 months after collection.

Figure 80. *Splachnobryum obtusum*. *Splachnobryum gracile* produces rhizoidal gemmae in the tropics. Photo from British Bryological Society, with permission.

Figure 81. *Jaegerina scariosa*, a species that produces protonemata and single-layered gemmae in leaf axils. Photo courtesy of Lucas Matheus da Rocha.

Figure 82. *Henicodium geniculatum*, a species that produces protonemata and single-layered gemmae in leaf axils. Photo by Piers Majestyk, through Creative Commons.

Figure 83. *Gemmabryum dichotomum*. *Gemmabryum apiculatum* is a species with both bulbils and tubers. Photo from Dale A. Zimmerman Herbarium, Western New Mexico University, with permission.
Fragments

In many cases throughout the world, fragments of bryophytes are important in producing new colonies [see, for example, Octoblepharum albium (Figure 13) Egunyomi et al. 1980]. Nadkarni et al. (2000) tested the interception and retention of bryophyte fragments on branches in a tropical montane cloud forest in Costa Rica. They found that for canopy-dwelling tracheophytes, establishment of bryophytes frequently occurs first. Most fragments don't succeed in becoming established, but about 1% do adhere and become established when dropped from above. On the other hand, 24% were retained among undisturbed bryophytic epiphytes during the 6-month study and 5% were retained on stripped branches.

Spore Size

Richards (1984a) found that sun epiphytic mosses usually have larger spores than do shade epiphytes. This would provide a better energy source for the establishment of the sun mosses, whereas the shade mosses would have a better opportunity for dispersal. Spore size seemed to be unimportant among the liverworts, but van Zanten and Gradstein (1988) determined that some shade liverwort epiphytes had spores with much less drought resistance, failing germination after only a few days of desiccation. This lack of drought resistance greatly limits the dispersal range.

Diaspore Banks

Diaspore (structure that functions in plant dispersal; propagule) banks provide temporary refuge for spores, gemmae, and sometimes fragments, particularly in habitats that are frequently dry (During & Moyo 1999).

Egunyomi (1979b) tested longevity of spores from Nigeria by keeping them at room temperature and humidity for 1-3.5 years. Subsequent germination ranged from 0 to 92%. Fifteen of 21 species had no germination after that time. Only four species [Weisiopsis nigeriana, Microcampylopus nanus (see Figure 87), Mittenoanthium overlaetii (see Figure 88), Weissia papillosa (see Figure 89)] had at least 50% germination after two years. Calymperes erosum (Figure 74) survived at least 1 year with 71% germination. Microcampylopus nanus and Weissia papillosa had 75 and 76% survival, respectively, of alternate wetting and air drying every 24 hours for four weeks following two years of desiccation. None of the four species with 50% germination listed above survived 4 weeks at -2º following 2 years of desiccation. All four species had at least 43% survival for 4 weeks at 8ºC following 2 years of desiccation, with Microcampylopus nanus having 80% and Weissia papillosa having 81%. Continuous submersion in water was as detrimental as freezing, with none of the four species surviving up to 3 weeks and the highest survival after one week was only 31% (Weissia papillosa). Egunyomi suggested that the submersion led to deterioration of the spores due to fungal attack.
Zander and During (1999) described a new species of the moss family *Pottiaceae* – *Neophoenix matoposensis* (Figure 90) from the diaspore bank of an experimental fire plot in Zimbabwe. They noted that diaspore banks often harbor the small species with a short life cycle that make them difficult to find above ground. In addition, they found the accompanying species *Bryoceuthospora aethiopica* (Figure 91) (new to Zimbabwe) and *Uleobryum occultum* (Figure 92) (new to Africa, a species formerly known only from Brazil and Australia).
Maciel-Silva et al. (2012b) examined the properties of diaspore species in diaspore banks in the tropical rainforests. They compared species from the Atlantic rainforest (montane and sea level) in Brazil. Of the species identified, 68 were from bark, 55 from decaying wood, and 22 from soil. These species numbers differed little between sites. Mosses predominated, and monoicous species were more numerous than dioicous species. There was little pH effect on shoot emergence. The extant vegetation was well represented, with gemmae and spores making a high contribution. The researchers postulated that the diaspore banks contribute to fast establishment of species after disturbance of the tropical rainforests, as well as contributing to succession there. This is particularly true for species that produce lots of gemmae or monoicous mosses with a large commitment to sexual reproduction.

Bisang et al. (2003) germinated diaspores from Malaysian soil. Many of the germinated plants could not be identified and lived only a short time. Two moss species germinated from stem fragments – *Isopterygium* (Figure 93) and possibly *Ectropothecium* (Figure 94). The diaspore origin of the third identifiable moss, *Calymperes* (Figure 52), could not be determined.

Diaspore banks can be especially important after a major disturbance such as a fire (During 1998, 2007). In his study in southern Zimbabwe, During found emergence of 2 hornworts, 10 liverworts, and 22 mosses from surface soil samples of the savannah Matopos Sandveld Fire Plots. Annual burning did not seem to harm the diaspores hidden in the soil.

Conditions are not good for sexual reproduction in the tropics. Even if the plant has successful fertilization, sporophyte maturation and dispersal might not be successful. For example, in *Bryum coronatum* (Figure 78), sporophytes are common in Nigeria (Egunyomi 1982). Nevertheless, Egunyomi found 42% of the capsules remained undehisced even in the dry season. Furthermore, 41% of the setae had no capsules. On the other hand, spore germination was successful 65-88% of the time, but the protonemata exhibited abnormal growth. Egunyomi suggested that the numerous axillary propagules were important in dispersal in this species.

Prolonged Protonemal Stage

One adaptation to the short growth period is to prolong the duration of the protonema. As Gradstein and Wilson (2009) put it, this can be interpreted as a short-cut in the life cycle that permits rapid maturation and reproduction, both providing benefits in unstable, impermanent habitats. In this extreme, it is known as neoteny. The most extreme of these are in bryophytes that produce capsules directly on the protonema. The thalloid type occurs only among epiphyllous bryophytes. In the tropics, the epiphytic moss *Ephemerosis* (Figure 95-Figure 96) produces persistent thalloid protonemata.

Figure 92. *Uleobryum occultum*, a species known from diaspore banks in Zimbabwe. Photo by Claudio Delgadillo Moya, with permission.

Figure 93. *Isopterygium tenerum*, the genus *Isopterygium* was among those that germinated from diaspore banks in the Malaysian mountain rainforest. Photo by Scott Zona, with online permission.

Figure 94. *Ectropothecium* sp., a genus tentatively identified among those that germinated from diaspore banks in the Malaysian mountain rainforest. Photo by Niels Klazenga, with permission.

Figure 95. *Ephemerosis trentepohlioides* with capsules. Photo by David Tng, with permission.
Liverworts

Liverworts in general produce gemmae more commonly than do mosses. And many of them are more sensitive to desiccation and low humidity. This leads to some differences in their adaptations to living in the tropics.

Monoicous vs Dioicous

Schuster (1988) surmised that sexuality of liverworts shifts to monoicous (both sexes on same plant) in the tropics, with *Plagiochila* (Figure 97) being a notable exception as entirely dioicous (sexes on separate plants). Schuster considers the ability of monoicous taxa to easily achieve fertilization to be an advantage on impermanent substrata such as leaf surfaces, twigs, and even tree trunks.

Neoteny

The monoicous property is further enhanced by multiple examples of neoteny (ability of juvenile plants to reproduce, e.g. species of *Cololejeunea* (Figure 98-Figure 100), a condition known for liverworts only in the tropics (Schuster 1988; Gradstein *et al.* 2006). Gradstein and Wilson (2009) note that botanists have interpreted neoteny as a short-cut in the life cycle because it permits rapid maturation and reproduction, an advantage in unstable, impermanent habitats. This is especially important for those species, like *Cololejeunea* species, that live on such temporary substrata as leaves (Schuster 1988; Gradstein *et al.* 2006). The high level of reproduction, especially sexual reproduction, coupled with the high diversity of niches in tropical forests, has resulted in a large number of liverwort taxa. In some cases, the leafy liverwort gametophyte is replaced by a large and persistent protonema (Figure 100) (Gradstein & Wilson 2009).

Figure 96. *Ephemerosis tjibodensis* protonematal mat on palm in Fiji. Photo by Tamás Pócs, with permission.

Figure 97. *Plagiochila* sp., a dioicous tropical leafy liverwort. Photo by Lin Kyan, with permission.

Figure 98. *Cololejeunea minutissima*; members of *Cololejeunea* exhibit neoteny in the tropics. Photo by Michael Lüth, with permission.

Figure 99. *Cololejeunea cardiocarpa* archegonium and antheridia exhibiting neoteny. Photo by Paul Davison, with permission.
Reduced Numbers of Antheridia and Archegonia

Many temperate liverwort taxa produce numerous antheridia (5-16) and archegonia (12-25) (Schuster 1988). This is wasteful since only one archegonium on a branch can successfully produce a sporophyte. In tropical liverworts, these numbers are reduced to a more typical 1-4 archegonia and 1-2 antheridia per set of bracts (Figure 99). Furthermore, the size of gametangial branches is reduced (Figure 100) in many tropical taxa. Since gametes are typically released during the wet season, the danger of their drying out without achieving fertilization is reduced.

One rather unusual tropical leafy liverwort is *Colura irrorata* (Figure 101), a rheophilous (thrives in running water) member of Lejeuneaceae that grows part of the year submerged in torrential water (Figure 101). It was long known only from the banks of the Rio Topo in the Pastaza province of Ecuador (Thiers 1988) where it was discovered by Richard Spruce in 1857. It was long considered extinct until it was rediscovered there by Gradstein *et al.* (2004). A second locality of the rare species, in the same type of habitat, was recently found several hundreds of km further to the south in Ecuador (Gradstein & Benitez 2014). The species is more robust and has a more complex structure than other members of the Lejeuneaceae, but its most outstanding feature is its reproduction. Thiers (1988) estimated that a 2-cm section of stem could produce as many as 1600 gynoecia (archegonia and surrounding bracts, *i.e.* female reproductive structures).}

Short Life Cycles

These tropical liverworts enjoy short life cycles (spore to spore), with epiphyllous species completing a full cycle in one year and those on other substrata in 2-3 years (Schuster 1988; Piippo 1992). This is enhanced by green spores (Figure 102) that are able to germinate immediately, and that predominantly germinate within the capsule (Schuster 1988). Despite these indicators that long-distance dispersals are unlikely, there is ample evidence that at least some of them are successful.

One example of the spore germination for a common tropical species is that of the leafy liverwort *Frullania ericoides* (Figure 102-Figure 103) (Silva-e-Costa *et al.* 2017). This species is endosporic (spores divide within spore wall), producing a globular protonema within the spore wall. By the fourth week, the protonema breaks through the spore wall and produces tightly concave primordial leaves. This germination occurs at 1/4, 1/2, full, and 1 1/2 strength Knop's nutrient solution, but fails to occur at double strength solution. This suggests that nutrient requirements for successful germination are relatively low (compared to that of tracheophytes) and that nutrient-rich substrates would be detrimental to these liverworts.
Alfayate et al. (2013) examined the spores of four pleurocarpous mosses in the Canary Islands, islands with a subtropical climate. They found that two of these were isosporic (all spores same size), but Leucodon canariensis (Figure 104) had two size classes of spores: medium-sized 1-celled spores and large multicellular spores. Furthermore, Cryptoleptodon longisetus (see Figure 105) has two sizes of spores, small spores and medium-sized spores. Spores germinate within the capsules in three of these species: Leucodon canariensis, Cryptoleptodon longisetus, and Neckera intermedia (Figure 107). Neckera cephalonica (Figure 108) spores do not germinate in the capsule. The perine wall of the spores of these species is papillose, an uncommon character for spores. The spores contain abundant lipid-like structures and chloroplasts with well-developed thylakoids.

Figure 103. Frullania ericoides, a common tropical leafy liverwort. Photo by Blanka Aguero, with permission.

Figure 104. Leucodon canariense, a species with two spore sizes: medium-sized 1-celled spores and large multicellular spores. Photo from BBS website, with permission from Barry Stewart.

Figure 105. Cryptoleptodon sp. in its habitat in India. Photo by Michael Lüth, with permission.

Figure 106. Cryptoleptodon sp. Cryptoleptodon longisetus is a species with two sizes of spores. Photo by Michael Lüth, with permission.

Figure 107. Neckera intermedia, a species with spores that germinate in the capsule. Photo by Jan-Peter Frahm, with permission.
Figure 108. *Neckera cephalonica*, a species with spores that do not germinate in the capsule. Photo by Jan-Peter Frahm, with permission.

Short Spore Longevity

Tropical liverwort spores have a short longevity and are unable to survive desiccation (Schuster 1988). Rather, they have several adaptations for rapid germination. They are typically *endosporic* (germinating and beginning development within spore wall; Figure 102), spores germinate within the capsule, and spores have elastic walls to facilitate development.

Prolonged Protonemal Stage

Several liverworts have remarkably prolonged protonemal stages, as in *Radula yanoella* (Figure 109) from the Amazonian rainforest (Thiers 1988; Gradstein & Wilson 2009). This species has since been found in French Guyana, Ecuador, and Costa Rica (Gradstein & Ilkiu-Borges 2009). In *Protocephalozia ephemeroideis* (Figure 110) and *Cololejeunea metzgeriopsis* (Figure 111-Figure 112; syn.=*Metzgeriopsis pusilla*), the protonemal stage replaces the leafy gametophyte except in association with the reproductive structures (Gradstein et al. 2006). *Metzgeriopsis pusilla* was formerly considered the only species in its genus, but has since been placed in *Cololejeunea* as *C. metzgeriopsis* (Gradstein & Wilson 2009). It lives in humid montane forests of tropical southeast Asia, growing as an epiphyll on living leaves. Its thallus is unistratose with minute, leafy sexual branches arising from the margins. *Protocephalozia ephemeroideis* is a very rare liverwort, known only from two localities in southern Venezuela, near the border with Brazil, where it was collected by Richard Spruce. There it was growing on moist earth in shade and on little mounds "thrown up by mud worms." Thiers (1988) suggests that the normally short-lived liverwort protonemal stage has been lost in these taxa, replaced by a long one, because of the always abundant moisture. The protonemal stage of most bryophytes is typically subject to damage from rapid drying. This protonema can be thalloid, as in the liverworts *Cololejeunea metzgeriopsis* (Figure 112) and *Radula yanoella* (Figure 109), or filamentous, as in the leafy liverwort *Protocephalozia* (Figure 110) (Gradstein & Wilson 2009).
Types of Gemmae

Even gemmae differ between the tropics and temperate zones (Schuster 1988). In temperate zones, the commonest types of gemmae are 1-2 cells and occur in branching chains (Figure 113). As such, they are easily dispersed, much like spores. These small gemmae occur in the *Jungermanniales* [e.g. *Cephalozia* (Figure 114), *Calypogeiaceae* (Figure 115-Figure 116), *Scapaniaceae* (Figure 117-Figure 119), *Lophoziaceae* (Figure 120-Figure 122), *Cephaloziellaceae* (Figure 123-Figure 124)]. A single shoot can produce thousands of gemmae in a single growing season. This type of gemma is not so common in the tropics, where the more common *Porellales* (including *Lejeuneaceae*; Figure 125-Figure 126) have large gemmae. Instead, many tropical species tend to have discoid and single-layered gemmae, permitting easy dispersal to "considerable distances." The number of types is more limited, including discoid gemmae (Figure 126) and caducous (deciduous) branches (Figure 127). Even fragmenting branches are rare in the tropics. Gemmae are in general less common and less important among sexually reproducing tropical liverworts, even though many liverworts may produce both gemmae and sexual organs.
Figure 117. *Diplophyllum albicans* (*Scapaniaceae*), a species with worldwide distribution that includes the tropics. Photo by J. C. Schou, with permission.

Figure 118. SEM of *Diplophyllum albicans* leaves with gemmae. Photo courtesy of Jeff Duckett and Silvia Pressel.

Figure 119. SEM of *Diplophyllum albicans* gemmae. Photo courtesy of Jeff Duckett and Silvia Pressel.

Figure 120. *Lophozia ventricosa*, a widespread species that occurs in the Neotropics. Photo by Hermann Schachner, through Creative Commons.

Figure 121. *Lophozia ventricosa* with gemmae on the leaf tips, a species found in the Neotropics. Photo from Dale A. Zimmerman Herbarium, Western New Mexico University, with permission.

Figure 122. *Lophozia ventricosa* gemmae. Photo by Hermann Schachner, through Creative Commons.
Another anomaly among tropical liverworts is that gemmae and sexual organs can be produced at the same time, as in many species of *Cololejeunea* (Figure 125-Figure 126, Figure 128-Figure 129) (Schuster 1988). By contrast, in temperate regions many species of *Lophoziaceae* and *Scapaniaceae* (Figure 130) may produce gemmae and sex organs at the same time. Their gemmae are typically produced in response to submarginal growth conditions that would often suppress production of sex organs.

Figure 126. *Cololejeunea cardiocarpa* gemmae, showing the large gemma size typical of the *Lejeuneaceae*. Photo by Paul Davison, with permission.

Figure 127. *Prionolejeunea saccatiloba* showing small, caducous branch that can fall off for asexual reproduction. Photo by Michaela Sonnleitner, with permission.

Figure 128. *Cololejeunea minutissima*; many species in this large genus produce gemmae and sexual organs at the same time. Photo by David T. Holyoak, with permission.
Van Zanten and Gradstein (1987) found that spores of endemic liverwort species had less resistance to drying and freezing than did the transoceanic species of Colombian liverworts. When subjected to intercontinental transport on the wing tips of a jet airplane, spores of 60 out of 61 species became inviable, presumably due to high UV levels at jet stream levels. Only spores of two species growing at high elevation (ca. 4000 m) were able to germinate after the flight. Probably they were well-adapted to UV radiation. On the other hand, van Zanten and Gradstein found that wet freezing permitted survival. They suggested that liverworts from high altitudes had a "good possibility" for aerial long-distance dispersal through hurricanes and tropical storms.

Diaspore Banks

Bisang et al. (2003) cultured diaspores from three Malaysian mountain rainforests. They found that more liverworts than mosses germinated in the samples, especially those from lower altitudes. Samples from higher elevations produced twice the species diversity compared to those from lower elevations. They were able to identify the liverworts *Calypogeia arguta* (Figure 131), *C. fusca*, *Lepidozia wallichiana* (Figure 132), and *Zoopsis liukiuensis* (Figure 133), all common taxa in the collection area. The diaspore origin of the liverworts could not be determined.
Rheophilic Adaptations

River banks present problems unique to that habitat. The leafy liverwort *Cololejeunea stotleriana* (Figure 134) from Ecuador presents a highly specialized morphology and represents adaptations to that habitat (Figure 135) where little study has occurred (Gradstein *et al.* 2011). This species is both rheophilous and epiphyllous. Its adaptations include a robust stem, flatness, triangular lobules, large rhizoid fields not produced near each leaf base, super fertility, and clustered gynoecia. It was growing with the rare mosses *Fissidens hydropogon* (Figure 136) and *Lepidopilum caviusculum* (Figure 137).

Figure 134. *Cololejeunea stotleriana* on a fern frond. Photo by F. Werner, courtesy of Robbert Gradstein.

Figure 135. Habitat of the rheophilous *Cololejeunea stotleriana*, *Fissidens hydropogon*, and *Lepidopilum caviusculum*. Photo by F. Werner, courtesy of Robbert Gradstein.

Figure 136. Herbarium specimen of *Fissidens hydropogon*, a rare rheophilic moss from Ecuador. Photo from Alchetron.com, through Creative Commons.

Figure 137. Herbarium specimen of *Lepidopilum caviusculum*, a rare rheophilic moss from Ecuador. Photo from the Natural History Museum, London, through Creative Commons.

Dispersal

Norhazrina *et al.* (2016) considered bryophytes to be very good dispersers, especially in contrast to flowering plants. This superior dispersal of bryophytes may lead to similar species richness patterns among the tropical regions, although tropical Africa has significantly fewer species than tropical America and tropical Asia. They found a slight but significantly higher beta diversity within tropical regions than among them. For many locations, oceans act as a barrier to “routine” dispersal, causing large-scale floristic patterns.
Suitable dispersal differs among regions and habitats. The tropics is in some places remote, separated from propagule sources by a wide expanse of ocean, and in others a mountain-valley topography likewise provides an expanse of unsuitable habitats. Thus, in discussing an area as expansive as the tropics, dispersal considerations are important for both biogeography and ecology.

With no experimental evidence but with vast ecological experience in the tropics and other regions, Richards (1988) ventured to apply his experience to hypothesize about dispersal of bryophytes in the tropics. First, he noted the impermanent nature of tropical substrates and suggested that these conditions would require efficient short-distance dispersal. He furthermore noted that each microhabitat has a distinct synusia of bryophytes that are characterized by particular life forms and life strategies. The swampy or oft-flooded sites are usually richer in species than sites that are well drained. The undergrowth probably has less effective wind dispersal than does the canopy.

For various asexual diaspores, splash is probably important (Richards 1988). For example, Calypneporosis species in Africa, as noted above, have their gemmae in splash cups. And discid Lejeuneaceae (Figure 128-129) gemmae are probably dispersed by splashing rainfall. Richards also considered it likely that birds disperse fragments, particularly of Meteoriaceae (Figure 32-33), when they gather the mosses for nest building.

Baas-Becking (1934) introduced the concept that "everything is everywhere" for small things that can be dispersed by wind. The tropics seem like a good place to test this concept for bryophytes. Shaw et al. (2005) considered global patterns of moss diversity, patterns that must to some degree reflect dispersal patterns. Based on 86 globally distributed taxonomic checklists, they concluded that mosses are not more species-rich in the tropics than elsewhere. On the other hand, analysis of only North, Central, and South American samples demonstrate that a latitudinal gradient is apparent. Molecular diversity suggests that moss diversity is highest in the Southern Hemisphere, thus lowest in the Northern Hemisphere. The tropics are intermediate. These differences, however, are small, and essentially all moss lineages are represented in all three latitudinal zones. Hence, their data support the "everything is everywhere" hypothesis (Baas-Becking 1934) that is evident among many organisms with small propagules. (See Chapter 4-8 for more information on the topic of "everything is everywhere.")

But liverworts seem to exhibit a somewhat different pattern, more closely mimicking the distribution patterns of the tracheophytes (Schuster 1969). Schuster cites as evidence their patterns of endemism and disjunction, as well as their having highly specific, restricted ranges. He cites further support from the high number of species of liverworts in the Arctic. Nevertheless, some taxa, especially the monoicous (both sexes on same plant) ones, seem to have wide spore dispersal, as suggested by their presence on islands in the Mid-Atlantic and Indian Ocean ridges. Interpretation is complicated by our inability to distinguish between ancient "overland" dispersal and more recent dispersal by spores.

But in 1969, tropical liverworts were poorly known. Can we still support Schuster's (1969) distributional conclusions today?

Based on analysis of a large, world-wide data set of species distributions, Wang et al. (2016) found a clearcut latitudinal diversity gradient in liverworts and hornworts. The highest species richness was found in the tropics, which they explained by the explosive diversification of some of the most speciose liverwort lineages, such as Lejeuneaceae (Figure 36-39, Figure 65, Figure 98-101, Figure 111-112, Figure 125-129, Figure 134), Plagiochilaceae (Figure 97), and Frullaniaceae (Figure 14, Figure 103) in the humid tropical forests. But they also noted that there is much evidence to suggest that dispersal is not limiting, and that long-distance dispersal is common among bryophytes. In fact, bryophytes exhibit a much lower global turnover of beta diversity (ratio between regional and local species diversity) than do flowering plants and maintain relatively constant levels of alpha diversity (local species richness) on a gradient of geographical isolation (Patiño et al. 2015).

New ideas are emerging suggesting that islands, including tropical islands, are sources of diversity instead of the previously thought evolutionary dead ends and diversity sinks (Patiño et al. 2015). The dead end concept was based on "perceived low levels of genetic diversity, poor interspecific competitive and defensive ability, and loss of dispersal capacities." But bryophytes do not fit well into this model. They have high dispersal capabilities compared to most tracheophytes, and when genetic diversity was examined, it proved to be higher in island populations than in continental populations. Patiño and coworkers suggest that rather than being evolutionary dead ends for such organisms as bryophytes, islands become sources of diversity for bryophytes that subsequently disperse to continents. They also found that species richness of islands correlates by habitat diversity, not by size or age of the islands or distance to the continent, hence is not driven by dispersal.

Karlin et al. (2012) examined genetic diversity on the remote Hawaiian Islands in the Neotropics. Because of this remoteness, the popular opinion was that long-distance dispersal to the islands was rare. In their investigation into the population genetic diversity, the researchers concluded that the peat moss Sphagnum palustre (Figure 138) most likely arrived with a single dispersal event. This species lacks sporophytes on the Hawaiian Islands and most likely lacks sexual reproduction. Further evidence to support a single dispersal event is that all samples share a rare genetic trait. They concluded that the original Hawaiian dispersal event was from vegetative propagation.
Bryophytes exhibit a high capacity for transoceanic dispersal (Lewis et al. 2014) when compared to flowering plants (Patiño et al. 2014). This thinking is further supported by the low levels of competition among bryophytes compared to that among flowering plants (Rydin et al. 2009). This low competition suggests that the niche preemption hypothesis (Whittaker & Fernández-Palacios 2007) does not apply to bryophytes and thus makes it easier for them to succeed when they arrive on an island or subsequently on a new continent. The clonal nature of bryophytes (Cronberg et al. 2006; Hutsemékers et al. 2010, 2013; Karlin et al. 2011; Patiño et al. 2013), and their ability to disperse viable fragments means that the minimum population size is quite small (Bengtsson & Cronberg 2009) and further enables them to succeed when they colonize. Thus, as indicated by a compilation of data, island populations of bryophytes are not necessarily genetically depauperate (Fernández-Mazuecos & Vargas 2011; Laenen et al. 2011; Désamoré et al. 2012; García-Verdugo et al. 2015). Even seed plants can have a larger genetic diversity on islands than in associated continents (Désamoré et al. 2012). Based on these studies, and particularly that of Patiño et al. (2015), it is likely that the Macaronesian archipelagos, including the tropical portion, have provided a stepping stone for trans-continental bryophyte immigration to other tropical regions in new continental locations. Hence, islands may help to explain the pantropical (distribution covers tropical regions of both hemispheres) distribution of many bryophytes.

Another possibility, potentially as an additional scenario rather than a preferred one, is that islands can serve as refugia during times when the continent becomes uninhabitable. Such seems to be the case for the leafy liverwort Radula lindenbergiana (Figure 139) in Macaronesia (Laenen et al. 2011). It appears that a number of European plants, including R. lindenbergiana, share a Macaronesian common ancestor and that these species may have back-colonized Europe. The widespread (including tropical Africa and tropical America) aquatic moss Platyhypnidium riparioides (Figure 140–Figure 141) likewise supports the concept that oceanic islands serve as major sources of biodiversity for recolonization of continents following glaciation (Hutsemékers et al. 2011). The lack of morphological diversity among the bryophytes, but presence of high genetic diversity, reflects the simple structure of the bryophytes.

For the moss Platyhypnidium riparioides (Figure 140–Figure 141), Hutsemékers et al. (2013) found that some genetic variation occurs along the river basin and indicates that this widespread aquatic moss has weaker dispersal than
that expected for pollen or wind-dispersed seeds. Rather, it
appears that fragments are more important than spores for
local dispersal of this moss, thus explaining the low levels
of genetic diversity.

Even the dispersal-limited dung moss Tetraplodon
(Figure 142) has amphitropical (distributed on both sides
of the tropics) and bipolar (distributed in cold temperate
regions) disjunctions that seem to require long-distance
dispersal (Lewis et al. 2014). Lewis and coworkers
suggested that the disjunct distribution in the Western
Hemisphere may have been accomplished through stepwise
migration along the Neotropical Andes. But Tetraplodon
is typically dispersed by flies that provide only short
dispersal ranges. Furthermore, experiments indicate that
the spores of Tetraplodon cannot survive long-distance
dispersal by wind. The researchers suggest that instead,
birds might provide the dispersal vector necessary to
account for the widespread but disjunctive distribution of
the species in South America.

In examining bryophytes on oceanic islands, Patiño et
al. (2013) concluded that even bryophytes exhibit an island
syndrome. They exhibit genetic drift, indicating relatively
slow migration rates between the oceanic islands and
continents. This suggests that the ocean does impede
migration. This period of isolation seems to lead to an
increase in production of specialized asexual diaspores and
a decrease in sporophyte production on the oceanic islands.
To demonstrate the relatively large number of Afro-
American distributions in bryophytes, Gradstein (2013)
examined records of liverworts in tropical regions of both
Old World and New World tropics. Based on the
disjunctions of 74 liverworts in 13 genera with Afro-
American ranges, he estimated that about 5% of the
Neotropical and 8% of the African liverwort species had
Afro-American disjunct distributions. This number is
doubled when pantropical species are included. Gradstein
cited spore dispersal experiments and molecular-
phylogenetic studies to conclude that for the majority of
these genera, long-distance dispersal was the reason for the
disjunction.

Ah-Peng et al. (2010) demonstrated the high bryophyte
diversity on the small, oceanic La Reunion Island. In only
2512 km², 776 taxa are known. This island is near East
Africa and Madagascar. The high diversity is fostered by
its subtropical climate, a high altitudinal range (to 3070 m
asl), and high rainfall.

Much of our understanding of long-range dispersal
comes from van Zanten (1978; van Zanten & Pócs 1981;
vanzanten and Gradstein 1987). In their laboratory
experiments using 86 Colombian liverwort species, van
Zanten & Gradstein (1987) found that spores of
transoceanic species were more durable than those of
endemic species. Survival was also greater in wet air-
currents at high altitudes than in dry air currents. When
they placed the spores on airplane wing tips during flights
at jetstream elevation from Amsterdam to Los Angeles
and back, however, only two species, the endemic Marchantia
chenopoda (Figure 143) and the transoceanic Gymncoleopsis
cylindriformis, could survive. All others were dead, probably
due to exposure to UV radiation. Presumably G. multiflora
spores survive because this species grows in the high Andes above 4000 m, where UV
radiation is high. Van Zanten and Pócs (1981) concluded
that tropical lowland moss species are much less drought
tolerant than are temperate species. These tropical species
are, however, resistant to wet-freezing and can be dispersed
over short distances by rain showers and typhoons. They
concluded that north-south dispersal across the equator was
the most difficult and occurred rarely, if at all.
splashing rain. Hanging mosses get dispersed by birds through dropped fragments when they are collected for nest making.

Dispersal adaptations reflect moisture relationships. The secretion of sticky mucilage (Thiers 1988) can aid in the attachment to vertical surfaces and prevent being washed away during rainstorms. Gemmae and the precocious development of spores permit more rapid development and thus greater chance for establishment. The prolongation of the protonemal stage may also aid in insuring attachment, whereas the neotenuous life cycle (see under Liverworts above) permits early maturity, providing greater likelihood of completion of the life cycle before host leaves are shed during the rainy season.

I must re-emphasize the strategies of the Lejeuneaceae (Figure 36-Figure 39, Figure 128-Figure 129), a large pantropical family of considerable importance among the liverworts. This family has many monoicous species, and many species have intercontinental ranges, but all have large, multicellular spores – an atypical character for taxa with transoceanic distributions (Gradstein et al. 1983; Gradstein & Pócs 1989). Nevertheless, the multicellular large spores should permit the species to become established more easily once they arrive because of greater food reserves to permit a quick start. And the monoicous character facilitates sexual reproduction.

Sampling

Sampling in the tropics can present problems that are less important elsewhere – such difficulties as canopy height and excessive moisture. Mountainous areas may be remote, with some available only by foot paths. Tall trees make small branches of the canopy almost impossible to sample; methods to overcome this obstacle are in the subchapter on epiphytes. Several researchers have addressed the problems unique to bryological collecting in the tropics (Mori & Holm-Nielson 1981; Edwards 1986; Delgadillo 1987; O'Shea 1989; see Frahm et al. 2003 for a comprehensive review).

One important consideration when collecting in tropical countries is that researchers there are often struggling with inadequate herbarium materials, particularly ones that can be used for checking their own collections. Duplicate specimens should always be provided to an accessible herbarium in the country – one that has a curator and can loan specimens. And of course one should be aware of local collection laws, obtain proper collecting permits, and determine in advance what restrictions there might be by customs and plant control in both the country of collection and in the receiving country.

Delgadillo (1987) and Frahm et al. (2003) detail many things to consider before departing for the tropical country, behavior during the visit, and how to treat specimens from another country upon return home. He suggests researching the geography, customs, and language of the country and contacting one or more resident bryologists for suggestions on places to stay and places to sample. Obtain collecting permits in advance for each country you plan to visit. Be sure you have health insurance to cover you in the places you will visit. Follow the routines of the local herbaria and institutions you visit and take their advice on food, roads, and other items of local knowledge. Remember that appointment times are not as rigid in some countries, so be patient, especially with local natives who might help you. Be sure you provide the local herbarium or national herbarium with a set of identified specimens. If possible, use their herbarium specimens in their herbarium so you don't have to borrow from their typically small number of specimens. To get both loans and your own specimens back to your own country, use registered mail. Be sure you understand the quarantine regulations in both countries. Avoid travelling in the field alone; taking a local student along can benefit both of you. Carry a first-aid kit and a letter of introduction from the local university or herbarium in case it is needed to satisfy local authorities. Upon returning home, return loaned specimens as soon as possible, being sure to meet quarantine requirements. Send a set of duplicate specimens from your own identified collections for any species you have not already deposited in a herbarium in the country visited.

Braun-Blanquet Sampling Method

While sampling may be more difficult in a tropical jungle, methods used elsewhere often work well. A
common method of sampling vegetation, particularly in Europe, is the Braun-Blanquet method. This method uses a cover-abundance scale to describe the vegetation. These levels are divided into cover classes, typically using 5-7 categories:

- **1** <1
- **2** 1-5
- **3** 5-10
- **4** 10-25
- **5** 25-50
- **6** 50-75
- **7** 75-100

The levels are estimated through the use of relevés. This system has been applied originally to tracheophytes, but many bryologists have adapted it for a more efficient means of quantitative sampling. Poore (1955) criticized the system, but Moore (1962) countered those criticisms, stating that Poore had misapplied the method. Damgaard (2014) determined that despite its bias to over-estimate abundance, the Braun-Blanquet method gave results comparable to those of other methods of estimating plant cover. It has the added advantage of providing comparisons to the many studies that have used it, permitting data comparisons over time.

Wikum and Shanholzer (1978) noted that most methods of measuring vegetation density are time-consuming and costly. The Braun-Blanquet method requires only about one-third to one-fifth the amount of field time, giving comparable results. I am unaware of any studies comparing the Braun-Blanquet system with other cover estimates for bryophytes, but it has been used in tropical studies and provides a relatively rapid method that is helpful when time is often quite limited.

A discussion of the unique methods for sampling epiphytes is in the subchapters on epiphytes and epiphylls in this chapter.

Drying Specimens

Because of periods of daily rain, there isn’t enough time for anything to get dry, and that includes your clothes and your bryophytes. And both damp clothing and bryophytes can soon become a garden for molds. Molds make the bryophytes difficult to identify, and certainly make them unsightly, not to mention a health hazard. They introduce molds to the herbarium, and their spores can cause allergic reactions and asthma. They will also make it difficult to get the bryophytes through plant protection agencies when you enter another country. Frahm and Gradstein (1986) note these difficulties in the tropics, making several suggestions to overcome them.

One method that is used is to place the bryophytes in paper bags on a dry floor of a tent with open flaps (Frahm & Gradstein 1986). The opening is covered with mosquito netting to permit air movement. But during the rainy season, the dry periods are often insufficient for the bryophytes to dry. Some bryologists have resorted to putting a professional plant dryer in the back of a truck, using butane to provide the heat. But this method is not practical when only foot paths are available to the campsite. And most budgets can’t afford such equipment. A less expensive approach is to suspend the bryophytes near a campfire, but the fire might get too hot and thus requires close watching. It can heat the bryophytes too much and thus damage them, particularly for those who might later want to use them for chemical analysis.

Frahm and Gradstein (1986) suggest an inexpensive, lightweight apparatus for drying bryophytes (Figure 146). It is constructed of L-shaped aluminum pieces with a frame that supports a wire mesh. Nylon should not be used because of its flammability. The heat source is two kerosene camping stoves (see also Croat 1979). The structure should then be surrounded with cotton cloth, as shown in the inset, again avoiding the more flammable nylon. The frames are about 1 m high, but the level of the screen can be adjusted to change the heat level. The apparatus should be monitored until you learn how much flame you need to avoid toasting the bryophytes or causing a forest fire. Once the ideal flame size is determined, the apparatus can be left unguarded overnight.

Figure 146. Light-weight drying apparatus for bryophytes in the field. From Frahm & Gradstein 1986.

Greene (1986) used chicken wire instead of wire screening. He suggested a method for keeping the specimens dry once getting them that way. They should immediately be put into large, heavy-duty plastic bags with silica gel to absorb moisture and sealed. [The plastic bags can be sealed by folding in the top corners, then folding down the top several times and fastening it with several large paper clips. – JG.] The specimens themselves can be kept in paper bags or packets. Greene transported the silica gel containers to the site in cotton bags. When they were needed, the silica gel containers were put into paper specimen bags and heated along with the specimens so that they were dry and ready when the specimens were stored.

Summary

Bryophytes in the tropics undoubtedly have a crucial role in water and nutrient retention, releasing nutrients during re-wetting, but filtering them from the lower branches and ground during rain events. Because of their sponge-like behavior, they can maintain moisture and nutrients for other members of the ecosystem. Nutrients can be released slowly, providing nutrients to the forest floor at critical times.

The primary environmental drivers determining the types of bryophyte communities are moisture, temperature, and light intensity. Life and growth forms differ among the habitats, with such forms as pendants,
fans, and tails in moist habitats and mats and short acrocarpous mosses in dry conditions. Likewise, productivity differs with habit, with dense growths in wet cloud forests and little biomass on the rainforest floor where there is little light penetration. Furthermore, growth periods and reproduction coincide with rainy periods, whereas the bryophytes are typically dormant in dry seasons.

Moss reproduction varies with habitat, but antheridia and archegonia are typically produced during the rainy season. Monocious species have the most sexual reproduction. Many species lack sexual reproduction and spread through gemmae and regrowth. Sun species typically have larger spores than do shade species. Protonemal development is often prolonged.

Some liverworts and a few mosses may exhibit neoteny. Liverworts often have shortened life cycles, fewer antheridia and archegonia, longer sporae lives, longer protonemal stages, and fewer types of gemmae in the tropics. Both mosses and liverworts can survive as spores, vegetative propagules, or fragments in diaspore banks, but liverwort spores typically have short longevity in the tropics. Liverworts have a limited number of propagule types, whereas the mosses have many.

Dispersal is mostly by wind and occurs in most cases in the dry season. Long distance dispersal is often important between mountains, and some species exhibit disjunct distributions between Africa and the Neotropics.

Rheophilic species probably have similar adaptations to the stream habitat, but few tropical studies have occurred.

Sampling brings special problems of getting mosses dry in the cloud forest or in the rainy season, often necessitating drying racks and a heat source. Investigators need to gain permission and should leave a set of herbarium specimens with a notable herbarium in the host country.

Acknowledgments

My appreciation goes to Noris Salazar Allen for her efforts to make an early version of this chapter reliable. Her helpful discussions kept me going on this part of the world I know so little about. My co-author, Robbert Gradstein, has been very helpful in discussions, obtaining images and references, and in providing a critical review of the chapter. Without his input this chapter would be far less complete. Tatiany Oliveira da Silva provided a critical reading for clarity, provided additional references, and shared her knowledge of the Amazon.

Literature Cited

Kürschner, H. 2004. Life strategies and adaptations in bryophytes from the Near and Middle East. Turkish J. Bot. 28: 73-84.

CHAPTER 8-2
TROPICS: GEOGRAPHIC DIVERSITY DIFFERENCES

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diversity - Geographic Differences</td>
<td>8-2-2</td>
</tr>
<tr>
<td>Africa</td>
<td>8-2-6</td>
</tr>
<tr>
<td>Asia and Australia</td>
<td>8-2-9</td>
</tr>
<tr>
<td>Neotropics</td>
<td>8-2-16</td>
</tr>
<tr>
<td>Endemism</td>
<td>8-2-28</td>
</tr>
<tr>
<td>Africa</td>
<td>8-2-30</td>
</tr>
<tr>
<td>Asia</td>
<td>8-2-31</td>
</tr>
<tr>
<td>Neotropics</td>
<td>8-2-32</td>
</tr>
<tr>
<td>Causes of Endemism</td>
<td>8-2-34</td>
</tr>
<tr>
<td>Dangers to Endemics</td>
<td>8-2-34</td>
</tr>
<tr>
<td>Tropical Rainforests</td>
<td>8-2-35</td>
</tr>
<tr>
<td>Pantropical Distributions</td>
<td>8-2-36</td>
</tr>
<tr>
<td>Substrate Specificity</td>
<td>8-2-37</td>
</tr>
<tr>
<td>Forest Floor</td>
<td>8-2-38</td>
</tr>
<tr>
<td>Rock Houses</td>
<td>8-2-39</td>
</tr>
<tr>
<td>Summary</td>
<td>8-2-39</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>8-2-39</td>
</tr>
<tr>
<td>Literature Cited</td>
<td>8-2-40</td>
</tr>
</tbody>
</table>
Diversity – Geographic Differences

Only in the 21st century are we seeing publications with keys that cover broad areas or a wide range of taxa in the tropics, especially the Neotropics. This lack of taxonomic understanding has hindered our understanding of diversity and geographic differences.

Among these recent publications, the publication by Gradstein et al. (2001) dealing with all bryophytes of the Neotropics (mosses, liverworts, hornworts) is notable. In addition, there is a large series of floras dealing with Neotropical mosses (for a list see Gradstein et al. 2001), fewer on liverworts (Gradstein & Costa 2003; Gradstein & Ilkiu-Borges 2009). For Africa, a broad spectrum moss key has been translated from 1978, lacking modern familial classifications, but is somewhat comprehensive (Petit 1992). More recent treatments on liverworts and hornworts was published for West Africa by Jones et al. (2004), based on an unpublished flora manuscript of the specialist of African liverworts E. W. Jones, and for Rwanda by Fischer (2013), including keys to genera and species and many color photos. For the southwestern part of Asia (Arabia) one can use the treatise by Kürschner and Frey (2011), for Singapore mosses by Tan et al. (2008) and for liverworts and hornworts of Java by Gradstein (2011). Other treatments are available for China and Japan, where bryology has long been studied, but publications were mostly in the native languages until recently. Recent publications include dozens of good floristic papers by young bryologists from the tropical countries, for example.
from Brazil, Bolivia, Venezuela, Costa Rica, Puerto Rico, Guadeloupe, but also West Africa, Reunion, Madagascar and Malaysia.

Hedenäs (2007) used checklists from 78 countries to determine the global diversity patterns of pleurocarpous mosses. He found that most of this moss diversity occurred outside the Holarctic area. Rather, the tropics have an especially diverse pleurocarpous moss flora. Furthermore, species turnover among pleurocarpous mosses is higher in the tropics than in the temperate zone.

It is not surprising that the greatest number of bryophyte species occurs in the tropics, with one-third of the Earth's flora occurring in the tropical Americas alone (Gradstein 1995a, b; Gradstein et al. 2001). Nevertheless, there are fewer species of mosses in the tropics than in the temperate zone; it is the liverworts and hornworts that reach their peak of species here. Delgadillo (1998) reported 3,900 species of mosses recorded from the Neotropics but considered that the real number, taking into account taxonomic revisions, might be considerably lower. Gradstein et al. (2001) accepted about 2,600 species of mosses, 1,350 of liverworts, and 30 of hornworts in the region, and this number may further fluctuate due to synonymy and new discoveries. This number is commensurate with the high diversity of flowering plants (90,000) in the Neotropics, compared to 250,000 species of flowering plants worldwide (Churchill et al. 1995a). Frahm (1995) compared the European, tropical African, and Neotropical moss floras, a task that provides the knowledge base for many kinds of ecological studies.

On the other hand, estimates of the number of bryophyte species in the tropics is compromised by the large number of synonyms in the literature. For example, *Frullania atrata* (Figure 2) has been widely misinterpreted in the literature and has been confused with other *Frullania* species, whereas the true *F. atrata* is rare (Uribe & Gradstein 2003; Gradstein, pers. comm. 9 September 2018). The common Neotropical *Marchantia chenopoda* (Figure 3-Figure 4) has 15 synonyms (Bischler 1984) and the common pantropical moss *Leucomium strumosum* (Figure 5) has almost 30 synonyms from all over the tropics (Allen 1987). Such synonymy is mostly the result of researchers in different parts of the world naming a species as new because of inadequate knowledge of or access to bryophytes in other locations.

Tropical liverworts in the families *Lejeuneaceae* (Figure 6), *Frullaniaceae* (Figure 7-Figure 8), *Radulaceae* (Figure 9-Figure 10), *Plagiochilaceae* (Figure 11), and *Lepidoziaceae* (Figure 12) predominate among the liverworts, with lesser numbers in *Metzgeriaceae* (Figure 13) and *Aneuraceae* (Figure 14) (Schuster 1988). Gradstein (1995a) suggests that the liverwort genus *Plagiochila* (Figure 11), with hundreds of species in tropical montane forests, is generally considered the most
diverse liverwort genus. Pendent taxa are common on branches and tree trunks of the montane forests.

Figure 6. *Cololejeunea truncatifolia* (*Lejeuneaceae*) from Uganda. Photo by Martin Wigginton, with permission.

Figure 7. *Frullania* (*Frullaniaceae*) in the Neotropics. Photo by Michael Lüth, with permission.

Figure 8. *Frullania* (*Frullaniaceae*) in the Neotropics. Photo by David Tng <www.davidtng.com>, with permission.

Figure 9. *Radula buccinifera* on a tree in the Asian tropics. Photo by Michael Lüth, with permission.

Figure 10. *Radula cf. voluta* (*Radulaceae*) from the Neotropics. Photo by Michael Lüth, with permission.

Figure 11. *Plagiochila adianthoides* (*Plagiochilaceae*) from the Neotropics. Photo by Michael Lüth, with permission.
Despite all these cautions about conspecific taxa that have been given multiple names in multiple locations, DNA genetics may once again expand the species number. For example, Dong et al. (2012) analyzed molecular data from the epiphyllous liverwort Diplasiolejeunea (Figure 15) with the former containing mainly epiphytic species, the latter mainly epiphylls] and one predominantly Palaeotropical subgenus, Physolejeunea (Figure 16), an epiphytic montane subgenus.

Checklists of the tropics are listed in Frahm et al. (2003). For the geographic areas treated in this chapter, the number of references given are probably less than representative, but are listed to help researchers get started on the areas. More recent references have been included only as I have discovered them, with much help from Robbert Gradstein.

Frahm et al. (2003) estimated that about 8,000 species of bryophytes occur in the tropics, comprising half to two-thirds of all the bryophyte species in the world. The European flora has only about 1,600 species that one can find in 32 floras. For the tropics, as of 2003, only 16 floras existed. As will be seen in the following subchapters, the liverworts and hornworts are much more abundant and occupy a much higher percentage of the bryophyte flora in the tropics compared to other regions of the world. Nevertheless, many areas remain unexplored or poorly explored, so numbers of species and numbers of endemics...
Norhazrina et al. (2016) considered the beta diversity [ratio between gamma (regional) and alpha (local) diversities] of bryophytes in the tropics. They examined the beta diversity of 7485 tropical moss species and 3276 tropical liverwort and hornwort species in 164 and 154 operational geographical units, respectively. They found a "slight but significantly higher beta diversity among than within tropical regions." They concluded that oceans provide a significant barrier to the routine dispersal, even for the easily dispersed bryophytes, causing large-scale floristic patterns.

The following sections on diversity and endemism are mostly historic. Hence, numbers are likely to be out-dated. They are designed to provide the background and explain why ecological studies in the tropics are occurring only recently.

Africa

Africa is a continent with a wide range of tropical habitats, from dry desert of the Sahara to the 5,895 m summit of Mt. Kilimanjaro. The climate ranges from tropical to subarctic, but much of the land is desert, particularly the northern half.

One of the earliest recorded observations relating to ecology of the African desert is that of Mungo Park. As quoted in Crum (1983), Park was crossing 3220 km of unknown land and African desert when he reported "I considered my fate as certain, and that I had no alternative but to lie down and perish... At this moment, painful as my reflections were, the extraordinary beauty of a small moss in fructification irresistibly caught my eye." Stark (1860) captured the story in this poem (author not specified):

Sad, faint, and weary on the sand
Our traveller sat him down; his hand
Cover'd his burning head.
Above, beneath, behind, around,
No resting for the eye he found;
All nature see'd as dead.

One tiny tuft of moss alone
Mantling with freshest green a stone
Fix'd his delighted gaze;
Through bursting tears of joy he smiled
And while he raised the tendril wild
His lips o'erflowed with praise

O! shall not He who keeps thee green,
Here in the waste, unknown, unseen,
Thy fellow-exile save?
He who commands the dew to feed
Thy gentle flower, can surely lead
Me from a scorching grave.

Mungo Park lived to tell the tale and a specimen of this lowly moss was later identified as a species of *Fissidens* in the *F. bryoides* (Figure 17) group. This genus is particularly common in Africa, with ~90 known species out of 450 worldwide (Bruggeman-Nannenga, 2013a, b), with a new one soon to be published from termite mounds (Bruggeman-Nannenga in press; Ezukanma et al. in prep.).
for all of tropical Africa and 30 were new for all of continental Africa. Other studies reporting on African bryophytes include Arnell (1956 – East African Mountains – liverworts), Bizot & Pócs (1974, 1979, 1982 – East Africa), Pócs (1990, 2011 – East Africa), Kürschner & Onraedt (1990 – Republic of Djibouti), Grolle [1993 – Zaire and Rwanda – Pallaviciniaceae (Figure 19), Haplomitriaceae (Figure 20)], and Miehe & Miehe (1994 – Ethiopia).

Figure 19. Symphogyna brasiliensis female from the Neotropics. This family Pallaviciniaceae also occurs in Africa. Photo by George Shepherd, through Creative Commons.

Figure 20. Haplomitrium hookeri; Haplomitriaceae are among the liverworts known from Zaire and Rwanda. Photo by Des Callaghan, with permission.

In an update of his earlier checklist, O'Shea (1997a, b) reported 3,048 taxa from sub-Saharan Africa (Figure 18), but suggested that it will probably be reduced to ~1300 species by revisions. Based on an expedition of the British Bryological Society to the Mulanje Mountain (Figure 21), Wigginton (2001a) reported 64 taxa in the single leafy liverwort family of Lejeuneaceae (Figure 6, Figure 15-Figure 16). This report acknowledged 47 species new to Malawi, emphasizing how poorly we knew the bryophyte flora in so many tropical areas. Frahm (2003) bemoaned the lack of studies in Africa and the likely number of synonyms. Such taxonomic and floristic studies and compilations as these laid the foundation that permitted ecological work to begin.

Figure 21. Mount Mulanje, Africa. Photo by David Davies, through Creative Commons.

Not all of the African tropics have a high bryophyte diversity. In three locations in the Ekiti State, Nigeria (Figure 22), 69 samples yielded only 8 species of mosses (Adebiyi & Oyeyemi (2013), two of which were among those studied by Odu (1981, 1982) in Nigeria for their reproductive phenology: Pelekium gratum (syn.=Thuidium gratum; Figure 23) and Racopilum africanum (Figure 24). A study of bryophytes in the Eastern Nigerian Highlands yielded only 27 bryophyte taxa – 22 mosses, 5 liverworts (Ezukanma et al. 2017).

Oyesiku (2012) reviewed the Nigerian bryophytes, including a discussion of uses. His was one of the few attempts to assess the importance of bryophytes to agriculture and the effects that agriculture is having on the bryophytes. He expressed concern that so few people are working on Nigerian bryophytes.

Figure 22. Ikole Town, Ekiti State. Photo by Tijae07, through Creative Commons.
Few studies seem to be available from Ghana. Hodgetts et al. (2016) reported on the bryophytes of the Atewa Forest in eastern Ghana. The region is highly threatened by farming, hunting, and illegal mining. Hodgetts and coworkers explored the swamp forest and upland evergreen forest where they expected the greatest bryophyte richness. They identified 164 species, 58 of which were new to Ghana.

The cover of bryophytes differs markedly, dependent on light availability, litter cover, and climate. Petit and Symons (1974) found that in the planted woods of Cupressus (Figure 25) and Acacia (Figure 26) in Burundi (an east African country with an equatorial climate), the ground surface is mostly covered with bryophytes. Nevertheless, in 17 woods, only 28 species were found, and only 15 of these were typical for that habitat.

To demonstrate just how poorly some African floras are known (Hylander et al. 2010), we need only look at the new records from the biosphere reserve of Kafa in Ethiopia (Figure 27). A team of 29 experts, but no bryologists, spent 10 days collecting plants (Müller & Flügel 2016). They did, however, bring some bryophyte specimens back. While this yielded only 13 liverwort and 24 moss species, it revealed 5 mosses not previously known from Ethiopia!

Hylander et al. (2010) found 89 species of liverworts, of which 41 were new to Ethiopia (Figure 27), further emphasizing that bryological explorations have been inadequate there. Among these are many epiphyllous species that are typically sensitive to drought. These are mostly along streams where humidity remains higher. The family Lejeuneaceae (Figure 6, Figure 15-Figure 16) is the most common family, with several representatives in other families, including Frullaniaceae (Figure 2, Figure 7-Figure 8), Plagiochilaceae (Figure 11), and Radulaceae (Figure 9-Figure 10).

In a more recent study, Hylander et al. (2017) found 139 moss species in montane forests of Ethiopia (Figure 28), of which 53 are newly reported for the country. Meteoriopsis reclinata (Figure 29) is a new record for Africa.
species and infraspecific taxa to 776 in 2010 with the addition of 123 taxa. They considered the presence of a high altitudinal gradient and high rainfall regime, coupled with relatively short distance to East Africa, to account for the large number of species on an island with only 2512 km².

Several studies have compared the bryophyte floras of parts of Africa with other parts of the tropics (Frahm 1995), including Asia (Pócs 1976), and Madagascar (Pócs 1975). Oyesiku (2012) noted the "moribund" state of bryology in Africa.

Asia and Australia

The earliest studies on tropical Asian bryophytes are those in Java. Dozy and Molkenboer produced *Bryologia Javanica* (1856 – vol. 1, 1867 – vol. 2) on the Java mosses. Later Max Fleischer produced a three volume set, the *Moss Flora of Java* (1900-1922). For liverworts, Reinwardt *et al.* (1824) and Nees von Esenbeck (1830) provided the first species lists. These were followed later by the floras of vander Sande Lacoste (1857, 1864) and Schiffner (1900) (in Gradstein 2011). The latter work remained unfinished. Most recently, Gradstein (2011) has presented the Guide to the Liverworts and Hornworts of Java, covering nearly 200 years of bryological studies in Java. Approximately 1000 species of bryophytes are now known from Java (Robbert Gradstein, pers. comm. 9 September 2018). The presence of a biological research station at Cibodas (Figure 30) in Indonesia, founded by the Dutch around 1890 in the montane rainforest belt, has been of enormous help in accomplishing these bryological studies, including also work by Schiffner, Goebel, Giesenhagen, Verdoorn, and others.
One of the early Asian studies was that of Dixon (1935) who reported on the moss flora of Borneo. Other studies on Asian tropics in China and Japan have been unavailable to people from other countries because they were published in the native languages and not understood by others. In some cases political boundaries and cultural differences complicated the ability of bryophyte ecologists to conduct studies. Redfearn (1990) points out that many of the early studies in China have been lost during the Cultural Revolution. And isolationism led to much synonymy, even within China. At that time he noted that much study was needed. Now there are many bryologists in China, but work is still needed on the many diverse habitats that define the country.

Asia has the most generic and familial diversity in the tropics, with many taxa that occur only in the Asian tropics. Africa, on the other hand, has few taxa of its own and little liverwort diversity, as we currently understand the flora. In the Americas, there are fewer unique moss taxa, but the liverworts are more diverse, with cover of liverworts in montane forests exceeding that of the mosses.

Unique to Asia are the large *Dawsoniaceae* (Figure 31), *Garovagliaceae* (Figure 32), *Hypnodendraceae* (Figure 33), and *Spiridentaceae* (Figure 34) among mosses (Gradstein & Pócs 1989). Asia is the center for distribution of a number of tropical taxa in a variety of families and is home to the *epiphyllous* (living on leaves) moss *Ephemeropsis* (Figure 35) and liverwort *Metzgeriopsis* (Figure 36). Again, members of the *Lejeuneaceae* (Figure 6, Figure 15-Figure 16) dominate the liverworts, but with a number of different genera. The African flora is less rich and has few elements of its own. Typical mosses in the Asian rainforest (Figure 37) are *Leucoloma* (*Dicranaceae*; Figure 38), *Cryphaeaceae* (Figure 39), *Rutenbergiaceae*, *Hildebrandtiella* (Figure 40) and *Renaudia* (*Pterobryaceae* – see Figure 134), and in both lowlands and montane regions, *Fissidens* (Figure 41). Among the liverworts, *Lepidozia* (Figure 12; subgen *Sprucella*) is most common (vanden Berghen 1983; Gradstein & Pócs 1989).
Chapter 8-2: Tropics: Geographic Diversity Differences

Figure 34. *Spiridens reinwardtii*, a species in the common Asian tropical family *Spiridentaceae*. Photo by Daniel Nikrent, with online permission.

Figure 35. *Ephemeropsis trentepohlioides* with capsules, an Asian tropical species. Photo by David Tng, with permission.

Figure 36. *Metzgeriopsis* growing on a palm leaf on Bukit Larut, Malaysia, 1100-1200 m, with Malaysian bryologist Kien Tai Yong (right). Photo courtesy of Robbert Gradstein.

Figure 37. Misty forest at Emei Shan, China. Photo by McKay Savage, through Creative Commons.

Figure 38. *Leucoloma* sp., a typical rainforest species. Photo by Shyamal L., through Creative Commons.

Figure 39. *Cryphaea heteromalla*, a typical rainforest species. Photo by Tim Waters, through Creative Commons.
Figure 40. *Hildebrandtiella guyanense* from the Neotropics, in a typical rainforest genus. Photo by Michael Lüth, with permission.

Figure 41. *Fissidens asplenioides*, in a genus that is found in both lowlands and montane regions. Photo by L. Jensen, University of Auckland, with online permission.

Gradstein (1991) summarized the known Asian *Ptychanthoideae* (Figure 42) in the leafy liverwort family *Lejeuneaceae* (Figure 6, Figure 15-Figure 16). This group was represented by 88 species in 17 genera, having fewer genera but more species than this group in the Neotropics. Gradstein suggested that the greater number of species in Asia might be the result of the greater latitudinal extension of the rainforest in the Far East. That region has 22% non-tropical species of *Ptychanthoideae* compared to less than 2% in the Neotropics. It could also represent greater early exploration.

In Malaysia (Figure 43-Figure 44), the diverse vegetation consists of swampy mangroves, extensive river floodplains, dipterocarp forests, and montane forests (Chuah-Petiot 2011). *Altimontane* (montane grasslands, shrublands, and woodlands; Figure 44) communities occur on Mt. Kinabalu in Sabah above 3300 m asl, with average temperatures from 6º to 10ºC. The tropical climate of Malaysia ranges in temperature from 21º to 32ºC; annual rainfall is from 2000 mm to 3500 mm.

Figure 42. The tropical leafy liverwort *Ptychanthus striatus*. Photo by Li Zhang, with permission.

Figure 43. Malaysian Pathway to Mount Kinabalu. Photo by Arto Marttinen <Wandervisions.com>, through Creative Commons.
Malaysian (Figure 45) liverwort studies can be traced to the year 1838 (Lee et al. 2018). Most of the collections have been made from 1950 to 2000, with many new taxa described. In a recent paper, Chuah-Petiot (2011) published a checklist of liverwort and hornwort species and infra-specific taxa, citing 758 liverworts and 6 hornworts. The Lejeuneaceae (Figure 6, Figure 15-Figure 16) far outnumber the other liverwort families (282 taxa), as found also in the study by Pócs and Chantanaorrapint (2016) in Thailand, where 30 out of 38 liverworts were in the Lejeuneaceae. In Malaysia, Chuah-Petiot found that species richness of the Lejeuneaceae was followed by Lepidoziaceae (110, Figure 12), Frullaniaceae (67; Figure 2, Figure 7-Figure 8), Plagiochilaceae (52; Figure 11), Geocalycaceae (36; Figure 46), Lophoziaaceae (35; Figure 47), and Radulaeaceae (35; Figure 9-Figure 10). As in many areas of the tropics, the genera with the most Malaysian species are Cololejeunea (84; Figure 48), Frullania (67; Figure 2, Figure 7-Figure 8), Bazzania (53; Figure 49, Figure 104), Plagiochila (47; Figure 11), and Radula (35, Figure 9-Figure 10). More recently, Lee et al. (2018) reported 747 liverwort species from Malaysia, occupying nearly 15% of the liverwort diversity in the world.
Among the older studies including mosses of Malaysia (Figure 45) are those of Tixier (1980), Mohamed and Tan (1988), Frahm et al. (1990), Inoue (1989), and Akiyama et al. (2001). Mohamed and Tan (1988) reported 475 taxa of mosses, a number that has changed with further studies and nomenclatural synonymies. More recently, Suleiman et al. (2006) enumerated 582 moss taxa from Sabah, Borneo. Tan and Iwatsuki (1999) considered Mt. Kinabalu (Figure 44, Figure 50) to be one of four diversity hotspots for mosses in Malesia, an area that includes the Malay Peninsula, the Malay Archipelago, New Guinea, and the Bismarck Archipelago. Higuchi et al. (2008) found 97 species of mosses, exclusive of pleurocarpous species, on Mt. Kinabalu. Among the rare species there is the moss Takakia lepidozioides (Figure 51) near Paka Cave. Higuchi and Lin (2005) found that the size and life form of Takakia lepidozioides in Taiwan differ between sheltered and exposed sites. Higuchi and coworkers (2008) found that plants in their open sites on Mt. Kinabalu were larger, forming loose mats, compared to those from sheltered places.

Kürschner (2003a) is among the more recent of the Asian researchers. He studied epiphytes in the Asir Mountains of Saudi Arabia and Yemen (see Tropics subchapters on epiphytes). In a second study (Kürschner 2003b), he examined the xeric bryophyte community in Yemen. He described a new association of Riccia jovet-astiae with R. argenteolimbata and Barbula unguiculata (Figure 52). This association occurs typically on the shallow soils overlying volcanic rock outcrops in the Sterculia africana (Figure 53) woodland. This area is beset with monsoons. It supports a number of Ricciaceae (Figure 54-Figure 55) and Marchantiaceae (Figure 3-Figure 4) that are typical or xerotropical Africa. Riccia atrormarginata var. jovet-astiae (see Figure 54) and R. albolimbata (Figure 55) are characteristic of this habitat. The life strategies are characterized by shuttle species with large spores, providing for a good diaspore bank.
Figure 53. *Sterculia africana* woodland, where shallow soils support xeric bryophytes such as *Ricciaceae* and *Marchantiaceae*. Photo by Joachim Beyenbach, through Creative Commons.

Figure 54. *Riccia atromarginata*, a species found on the thin soils of the *Sterculia africana* woodland. Photo by Jan-Peter Frahm, with permission.

Sukkharak and Chantanaorrapint (2014) summarized the bryophyte studies that have occurred in Thailand (Figure 56). They indicated two periods in bryological studies. In the first period (1899-1977), foreign bryologists were the contributors. In the second period (1977 to present), bryologists from Thailand conducted the studies. These studies resulted in 2 new species of hornworts, 20 of liverworts, and 63 of mosses. Based on studies elsewhere, 48 remain unique to Thailand and may therefore be considered endemic.

Figure 55. *Riccia albomarginata*, a species found on the thin soils of the *Sterculia africana* woodland. Photo from Dale A. Zimmerman Herbarium, Western New Mexico University, with permission.

Figure 56. Thai rainforest. Photo by Michael Cory, through Creative Commons.

Many areas of the Asian tropics remain poorly explored for bryophytes. Sulawesi, Indonesia (Figure 57), is among such locations. Steep mountains with dense vegetation make exploration difficult (Rowe et al. 2016). In their exploration of the island, Gradstein et al. (2005) found 476 species of bryophytes. Four moss species and one liverwort species appear to be endemic to the island. But several large genera are unknown from Sulawesi, suggesting that sufficient exploration may be lacking.

Figure 57. South Sulawesi, Indonesia, Mountains. Photo by Achmad Rabin Taim, through Creative Commons.
Few studies seem to be available on Viet Nam (Figure 58) bryophytes. Pócs (1969) surveyed the leafy liverwort genus *Bazzania* (Figure 49, Figure 104). A more comprehensive study by Ninh (1993) recorded 178 taxa. Much more comprehensive work is needed in that country, and ecological work seems to be absent.

![Figure 58. Vietnamese valley. Photo by Ottre, through Creative Commons.](image1)

Sri Lanka (Figure 59) is likewise an understudied country bryologically. Rubasinghe and Long (2014) reviewed the history of bryological work in the country and remarked on the goal to produce a comprehensive bryophyte flora for Sri Lanka, the first of its kind for the country.

![Figure 59. Rainforest in Sri Lanka. Photo by Dan Lundberg, through Creative Commons.](image2)

Australia has received much more attention (at least in English publications) than many of the Asian countries. This has permitted ecological and physiological studies to take place. Ramsay and Cairns (2004) contributed a checklist for the Wet Tropics bioregion in northeastern Queensland (Figure 60), listing 398 species. This permitted them to determine the families represented by the most species (Table 1). They elaborated on habitat, distribution, and bryogeographical affinities for the wet tropics. Ramsay is best known for her genetic work with bryophytes. Cairns has published several papers on interactions with animals. These areas of study have been possible due to the strong taxonomic background that is available (see, for example, Scott 1985). Nevertheless, most of the studies have been in southern Australia where bryophyte-friendly habitats are more common and accessible.

![Figure 60. Tropical rainforest in northeastern Australia. Photo by Thomas Schoch, through Creative Commons.](image3)

<table>
<thead>
<tr>
<th>Family</th>
<th>Number of genera</th>
<th>Number of species</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bryaceae</td>
<td>5</td>
<td>23</td>
</tr>
<tr>
<td>Calymperaceae</td>
<td>7</td>
<td>47</td>
</tr>
<tr>
<td>Dicranaceae</td>
<td>7</td>
<td>29</td>
</tr>
<tr>
<td>Meteoriaceae</td>
<td>8</td>
<td>13</td>
</tr>
<tr>
<td>Sematophyllaceae</td>
<td>16</td>
<td>32</td>
</tr>
</tbody>
</table>

This history is representative of the background necessary to carry out ecological studies on species dominance, community structure, comparative diversity, biomass comparisons, and many other aspects of ecology. It demonstrates the long process needed before ecologists can begin many kinds of studies and helps to explain the paucity of ecological studies in many parts of the tropics.

Neotropics

The Neotropics (Figure 61) is synonymous with New World Tropics. It includes areas of Mexico, Central America, the West Indies, Chocó, Northern Andes, Central Andes, Amazonia, Guyana Highland, Planalto, and Southeastern Brazil (Gradstein et al. 2001).

Until relatively recently, any comprehensive guide to the bryophytes of the Neotropics was lacking. Researchers had to find the scattered treatments among individual papers, making comprehensive ecological studies, especially community studies, difficult to impossible. The publication by Gradstein et al. (2001) made it possible to expand the types of ecological studies that are feasible.
Most studies have been exclusive to either mosses or liverworts. Various studies contributing to these records include, for mosses, Steere 1948 – Ecuador, Pursell 1973 – Venezuela, Bowers 1974 – Costa Rica, Hermann 1976 – Bolivia, Yano 1981, 2011 – Brazil, Florschütz Waard 1990 – Guinas, Menzel 1992 – El Salvador, Moreno 1992a, b – Venezuela, Sharp et al. 1994 – Mexico, and Churchill & Linares 1995 – Colombia. For liverworts, these include Gradstein & Hekking 1989 – Guinas and Bolivia; Gradstein 2006 – French Guiana, Gradstein et al. 2007 – Ecuador, Gradstein 2016 – Colombia, Gradstein & León-Yánez 2018 – Ecuador, Gradstein et al. 2018 – Colombia. But these provided primarily checklists and descriptions. Those publishing the lists of species often did not have access to specimens collected elsewhere. Hence, many species from multiple countries were named more than once, creating synonyms and inaccurate estimates of species numbers and distributions. It was not until keys became available that an ecologist had the tools needed to conduct ecological studies that included species information.

To illustrate the problems caused by synonyms among the bryophytes of the Neotropics, we need only examine a few studies. Delgadillo et al. (1995) indicated 4,103 species and varieties of mosses recorded from the Neotropics. Within five years, subsequent taxonomic revisions reduced the number to 3,869 species and varieties (Delgadillo 2000). Only one year later, Gradstein et al. (2001, Table 2, page 3) estimated 3,980 species of all bryophytes in the Neotropics, including only 2,600 mosses, 1,350 liverworts, and 30 hornworts, based on systematic studies that found many synonyms.

Based on the 1996 expedition in the Chagos Archipelago (Neotropics; Figure 62), Seaward et al. (2006) found a good correlation of bryophyte diversity with island size. But only 19 taxa were recorded on the 25 islands (out of 55) that they explored. They attributed the low diversity to the remoteness and young age of the islands, as well as their small size. Nevertheless, where the bryophytes are found on these islands, they tend to be in abundance and play "significant" ecological roles. They found no evidence of host specificity of epiphytes and no epiphyllous species were found by the expedition.

Bryophytes are advantageous as indicators of biodiversity and can be useful in broader conservation efforts in the Neotropics (Salazar Allen et al. 1996). Hence, the presentation of the treatise of Gradstein et al. (2001) is of tremendous value to all Neotropical bryophyte researchers. The two volumes present 200 genera of liverworts and 400 of mosses. They provide not only taxonomic aids, but also ecological attributes such as habitat indicators.

The rainforest of the Americas (Neotropics) is quite different from that in the African or Asian tropics (Gradstein & Pócs 1989). The New World Americas are characterized by Pilotrichaceae (Figure 63), Phyllogoniaceae (Figure 64), Porotrichodendron (Figure 65; Lembophyllaceae), Chorisodontium (Figure 66; Dicranaceae), Octoblepharum (Figure 67; lowland; Octoblepharaceae), and Phyllocladaceae (Figure 68; Phyllocladaceae) among the mosses, and Monolechaceae (Figure 69) and numerous Lejeuneaceae (Figure 6, Figure 15-Figure 16) among the liverworts. In the Asian Lejeuneaceae, the subfamily Ptychanthoideae (Figure 42) predominates, whereas in the Neotropics the Brachiolejeuneae (Figure 70-Figure 71) predominate (Gradstein 1991, 1994).
Figure 63. *Cyclodictyon* sp. (*Pilotrichaceae*) from the Neotropics. Photo by Michael Lüth, with permission.

Figure 64. *Phyllogonium viride* (*Phyllogoniaceae*), a genus characteristic of the Neotropics. Photo by Michael Lüth, with permission.

Figure 65. *Porotrichodendron superbum*, a characteristic species of the Neotropics. Photo by Juan David Parra, through Creative Commons.

Figure 66. *Chorisodontium mittenii*: *Chorisodontium* is a characteristic genus in the Neotropics. Photo by Jan-Peter Frahm, with permission.

Figure 67. *Octoblepharum albidum*: *Octoblepharum* is a characteristic genus in the Neotropics. Photo by Niels Klazenga, with permission.

Figure 68. *Phyllophespanium falcifolium*, a moss characteristic of the Neotropics. Photo by Juan David Parra, through Creative Commons.
Nevertheless, disjunctions among the liverworts between the Neotropics (American tropics) and Africa are well known (Pócs 1976, 1992; Gradstein et al. 1983; Delgadillo 1993; Frahm 1995). Records in 1983 indicate 35 Afro-American shared species (see examples in Figure 72-Figure 73) (Gradstein et al. 1983). Most of these liverwort disjuncts are in the Jungermanniales (leafy liverworts) (Gradstein et al. 1983). By 1993, records indicated the Neotropics shared 334 bryophyte species and infraspecific taxa with the African tropics (Delgadillo 1993). This might be the result of an ancient land connection or long-distance dispersal. These are just hypotheses as experimental data on longevity of liverwort spores is greatly lacking (Gradstein et al. 1983). Another possibility is dispersal from Gondwanaland.
North and South America seem to have more species in common, sharing about 675 species (Delgadillo 1992, 1995). These include those with a continuous range and those with a disjunct distribution. Migration seems to have been stepwise, but some of these occurrences may have resulted from the breakup of previous distributions. Others arrived by long-distance dispersal. Other connections of the bryophyte flora to other parts of the Americas is through elevational distributions (Delgadillo & Cárdenas 1989). For example, the highlands of Chiapas, Mexico (Figure 74), are suitable for growth of species that may be found at lower elevations farther from the equator. The Chiapas have 155 taxa of mosses that fit into five phytogeographical elements. Mexico and Colombia alone share 371 moss species (Delgadillo 1992). Of these, 25 have a disjunct distribution that suggests long-distance dispersal. The Central American bridge facilitates the exchange of species, but the northern Andes in Colombia and the Neovolcanic Belt of Mexico form barriers that limit that exchange.

Delgadillo (1984) reported on mosses of the Mexican part of the Yucatan Peninsula (Figure 75). He identified 69 moss species and varieties and noted the similarities to the flora of the West Indies. There are virtually no endemics, perhaps due to the close connections with the Mexico mainland and the West Indies.

In the Liquidambar forest (Figure 76) of Mexico, 194 species of mosses were known in 1979 (Delgadillo 1979). Of these, 70% are strictly American. This flora exhibits both a wide altitudinal and latitudinal range in Mexico and represents both tropical and temperate species.

Herrera-Paniagua et al. (2008) reported 212 moss species for the Mexican state of Querétaro. As indicated by endemism, this state has three distinct regions: the conifer-cloud-temperate forests in the northeast (Sierra Madre Oriental), the more xeric parts in the center and southeast (Mexican Plateau and ecotone areas of the Transmexican Volcanic Belt), and the almost temperate areas in the south (Transmexican Volcanic Belt). The Sierra Madre Oriental province has the highest species richness.

It seems that almost any expedition even now is likely to reveal new records for the region. In 2001, Equihua et al. reported nine new moss records for Mexico from the Lacandona rainforest. The authors noted that these and other records continue to corroborate the continuity of bryophytes from North America to South America through the Central American bridge.
In a study of only 6 hectares (about 6 rugby fields or 10 American football fields) in a Costa Rican upper montane Quercus (oak) forest (Figure 77), Holz et al. (2002) found 100 species of mosses, 105 of liverworts, and 1 hornwort. In the oak forests and páramo of the Cordillera de Talamanca, Costa Rica, Holz and Gradstein (2005) found 401 species of bryophytes. In both studies, the number of mosses and liverworts was almost equal, with Holz and Gradstein finding 209 mosses, 191 liverworts, and 1 hornwort. To illustrate the limitations that early ground-based studies imposed, studies in the lowland rainforest found 50% of the bryophyte species only in the crowns and upper trunks, >10 m above the ground (Cornelissen & Gradstein 1990).

Acebey et al. (2003) found similar high numbers of species in Bolivia (Figure 78). In a submontane rainforest there, they found 80 species on just six trees, 48 liverwort and 32 moss species. But they are quick to point out that finding nearly all the species in the forest requires only a small sample size. They estimate that these six trees had floras that represented 95% of the total bryophyte flora of the forest. Churchill et al. (2010) published a catalog of the bryophytes of Bolivia with discussions of diversity, distribution, and ecology.

In Cuba (Figure 79), an island in the Greater Antilles, 383 taxa were reported, mainly from mountain areas (Motito et al. 1992). However, more recent studies seem to be lacking, preventing an evaluation of Cuban species compared to those of other localities.

Acebey et al. (2003) found similar high numbers of species in Bolivia (Figure 78). In a submontane rainforest there, they found 80 species on just six trees, 48 liverwort and 32 moss species. But they are quick to point out that finding nearly all the species in the forest requires only a small sample size. They estimate that these six trees had floras that represented 95% of the total bryophyte flora of the forest. Churchill et al. (2010) published a catalog of the bryophytes of Bolivia with discussions of diversity, distribution, and ecology.

The tropical Andes (Figure 80) has by far the highest bryophyte diversity in the tropical Americas. For a general review on liverwort diversity in the Andes see Gradstein (1995b). Gradstein et al. (1977) compared oil body structures and examined the ecological distributions of selected species of the leafy liverworts in the Andes of Colombia. Churchill and co-workers listed 2,058 moss species names but suggested the actual number was probably closer to 1,500-1,700 because of likely synonyms (Churchill et al. 1995b).

The extraordinary biological richness of the Andean region is due to the great climatic and elevational variation of the area as well as historical factors. The authors concluded that an "increase in species diversity from the poles to the equator does not apply to mosses" (Churchill et al. 1995b). The latitudinal gradient has recently been studied by Shaw et al. (2005) for mosses and by Wang et al. (2016) for liverworts. These papers indicate that moss diversity is highest in the Southern Hemisphere and lowest in the Northern Hemisphere, with the tropics having an intermediate level. Liverwort diversity, in contrast, is highest in the tropics.

The tropical Andes (Figure 80) has by far the highest bryophyte diversity in the tropical Americas. For a general review on liverwort diversity in the Andes see Gradstein (1995b). Gradstein et al. (1977) compared oil body structures and examined the ecological distributions of selected species of the leafy liverworts in the Andes of Colombia. Churchill and co-workers listed 2,058 moss species names but suggested the actual number was probably closer to 1,500-1,700 because of likely synonyms (Churchill et al. 1995b).

The extraordinary biological richness of the Andean region is due to the great climatic and elevational variation of the area as well as historical factors. The authors concluded that an "increase in species diversity from the poles to the equator does not apply to mosses" (Churchill et al. 1995b). The latitudinal gradient has recently been studied by Shaw et al. (2005) for mosses and by Wang et al. (2016) for liverworts. These papers indicate that moss diversity is highest in the Southern Hemisphere and lowest in the Northern Hemisphere, with the tropics having an intermediate level. Liverwort diversity, in contrast, is highest in the tropics.
An example of the high diversity is the San Francisco Biological Reserve in the Andes of southern Ecuador (Figure 81) (Gradstein et al. 2007). The reserve ranges from 1,800 to 3,100 m asl and consists of about 1,000 ha of pristine montane forest and páramo. Almost 570 species of bryophytes (357 liverworts, 206 mosses, 3 hornworts), including more than half the total number of liverwort species known from Ecuador, have been recorded from the reserve and the number is still rising (Schäfer-Verwimp et al. 2013; Gradstein & Benitez 2017). One reason for the high number of species recorded is probably the large number of bryologists who conducted fieldwork in the reserve and studied the collections. As Churchill et al. (2009) remarked: "One could readily predict similar diversity numbers throughout the montane forest of the tropical Andes employing such expertise. This study provides a basis for comparing other localities of similar vegetation and elevational range."

In contrast, lowland habitats are usually less rich in bryophytes and do not provide for the same diversity seen by the rest of the flora and fauna (Churchill et al. 2009). While the number of niches in the multi-layered rainforest is relatively high, much of the tropical lowland is inhospitable to bryophytes, being too dry, too hot, or too dark. Whereas Churchill (1991) suggested that there is no strong latitudinal gradient of species richness from the temperate zone to the tropics, Hallingbäck (1992) further asserted that the temperate regions have a much higher diversity of mosses than is known in the tropics. But "known" may be the operative word. On the one hand, many species have been described as different species multiple times; Ireland (1992) reduced the number of Latin American species of Isopterygium (Figure 82) from 92 to 8, Edwards (1980) accepted only 6 of the 93 species of Calymperes (Figure 83) from West Africa, and Bischler (1984) only 9 of 69 previously described New World Marchantia (Figure 3) species. Many taxa have been viewed as different simply because they were from a new place (O'Shea 2002). On the other hand, we are just beginning to explore the bryophytes high in the canopy through the use of a number of somewhat recent techniques (McClure 1966; Grison 1978; Perry 1978; Whitacre 1981; Parker et al. 1992; Gradstein 1996; Zott & Vollrath 2003). Cornelissen and Gradstein (1990) report that about 50% of the lowland rainforest bryophyte species of Guyana occur in the crowns and upper bole, typically missed by early bryological studies. Bryologists are beginning to find that the canopy of these primary forests may support many more species than the more-readily studied understory (Cornelissen & ter Steege 1989; Wolf 1993a, b). Bryophytes in the tropics find their dominance in different places from those in the temperate forests.

In the lowland rainforests of Mabura Hill, Guyana (Figure 84), South America, Cornelissen and Gradstein (1990) found 134 bryophyte species. The dominant bryophyte family is the leafy liverwort family Lejeuneaceae (Figure 6, Figure 15-Figure 16), comprising about 30% of the cryptogamic flora (including bryophytes and lichens). As seems to be typical, the canopy accounted for 50% of the species. The humid mixed forest on loamy soil sports the richest liverwort flora.
In Guyana (Figure 84), Calymperaceae (Figure 83), Hookeriaceae (Figure 133), Hypnaceae (Figure 85), Orthotrichaceae (Figure 112), and Sematophyllaceae (Figure 86) dominate the mosses. Lepidoziaceae (Figure 12), Plagiochilaceae (Figure 11), and Frullaniaceae (Figure 2, Figure 7-Figure 8), in addition to the species-rich Lejeuneaceae (Figure 6, Figure 15-Figure 16), are the predominant liverworts (Gradstein 1992). As will be discussed in another subchapter of this chapter, epiphylls (those algae, plants, and fungi living on leaves of other plants) are common in the lowland and lower montane rainforests.

Montfoort and Ek (1990) have provided us with a detailed study in French Guiana (Figure 87), reporting 154 bryophyte species from only 28 mature trees (22 species) in a lowland rainforest by sampling from tree base to top of the canopy. Of these, 88 were liverworts, with 71 of these in the Lejeuneaceae (Figure 6, Figure 15-Figure 16).

In Kartabo, Co-operative Republic of Guiana (Figure 87), Graham (1933) also found the most diverse family to be the leafy liverwort family Lejeuneaceae (Figure 6, Figure 15-Figure 16). The most abundant moss here, by far, is Rhaphidorrhynchium subsimplex (see Figure 88), a species that is likewise abundant in Trinidad. Gradstein and Ilkiu-Borges (2009) compiled a guide to the liverworts and hornworts of Central French Guiana, including descriptions of habitats, especially the lowland cloud forest. This guide included 175 species of liverworts and 2 of hornworts, with the Lejeuneaceae again being the most species rich with 117 species. This guide recognized new combinations, providing updated nomenclature.
Figure 88. *Rhaphidorrhynchium callidum*, *R. subsimplex* is abundant in Kartabo in the Co-operative Republic of Guiana and in Trinidad. Photo by Juan Larrain, with permission.

In Moraballi Creek rainforest in the Co-operative Republic of Guyana (Figure 87), few species are very frequent (Richards 1954). *Calymperes lonchophyllum* (see Figure 89) and *Octoblepharum albidum* (Figure 90) occur in all synusiae (high canopy epiphytes, shade epiphytes, dead wood) except epiphyllous ones. Like most of the moist rainforests, the stream area is characterized by absence of ground-dwelling bryophytes, abundance of epiphyllous bryophytes, and dominance of the leafy liverwort family *Lejeuneaceae* (Figure 6, Figure 15-Figure 16).

Figure 88. *Rhaphidorrhynchium callidum*, *R. subsimplex* is abundant in Kartabo in the Co-operative Republic of Guiana and in Trinidad. Photo by Juan Larrain, with permission.

The Chocó region (Figure 91) of Colombia has the highest precipitation level in the Neotropical rainforests (Frahm 2012) and one of the wettest rainforests in the world (Frahm 1994), with an annual rainfall up to 12,000 mm, in some places even up to 15,000 mm. As a result, the bryophyte flora differs from elsewhere and the mosses do not serve as adequate indicators of the vegetational zones. Rather, this location permits us to observe the effects of high humidity on bryophytes.

Figure 89. *Calymperes tenerum* showing gemmae on leaf tips. *Calymperes lonchophyllum* is a frequent species, occurring in all synusiae except epiphylls at Moraballi Creek, Guyana. Photo by P. J. de Lange, through Creative Commons.

Figure 90. *Octoblepharum albidum*, a frequent species occurring in all synusiae except epiphylls at Moraballi Creek, Guyana. Photo by Janice Glime.

Figure 91. Everwet lowland rainforest of the Chocó, Pacific coast of Colombia. Photo by Jan-Peter Frahm, with permission.

Frahm (1994, 2012) worked on the moss flora of the Chocó region. Although it has a high level of endemism in flowering plants, birds, and butterflies, the moss flora was
too poorly known to assess endemism. Frahm found 125 species of mosses on a transect from sea level to 1600 m elevation, using 10-hectare plots and different altitudes. In contrast, liverwort diversity in the same area was much higher, more than 200 species were reported, including 13 endemic taxa (Gradstein & Reiner-Drehwald 2017). In fact, Frahm (2012) found that mosses comprise only ~10% of the bryophyte cover, whereas elsewhere at the same elevational vegetation zone in the rainforest they comprise 40-50%. Gradstein (pers. comm.) commented that Frahm was able to finish his moss identifications quickly and get them published because there were rather few species only, whereas it took years to complete the many more liverwort identifications.

Some of the endemic liverworts of the Chocó region (Figure 91), such as *Fulfordianthus pterobryoides* (Figure 92), *Luteolejeunea herzogii*, and *Symbiezidium dentatum*, all members of *Lejeuneaceae* (Figure 6, Figure 15–Figure 16), are surprisingly common and widespread in the Chocó despite their absence elsewhere (Frahm 1994). The higher liverwort diversity in the Chocó is probably due to the exceedingly high humidity in the area.

Figure 92. The endemic *Fulfordianthus pterobryoides* on a twig in Chocó, Colombia. Photo by Jan-Peter Frahm, with permission.

When Vital and Visnadi (1994) surveyed the bryophyte flora of the Rio Branco Municipality in Brazil, they found only 76 species of bryophytes; 66 of these were new records for the State of Acre and 2 were new records for Brazil. The only hornwort was *Notothylas vitalii* (Figure 93). We now know that there are at least 12 species of hornworts in Brazil (Felipe et al. 2016).

Figure 93. *Notothylas* sp.; *N. vitalii* was the only hornwort known to Vital and Visnadi from Rio Branco Municipality in Brazil in 1994. Photo by Blanka Aguero, with permission.

Costa (2003) studied the Amazonian rainforest bryophytes in Acre, Brazil. She revealed 514 species, with two field trips increasing the known bryoflora by 50%. She concluded that the diversity is still poorly known for the Brazilian Amazon.

In their study in the Chapada Diamantina region of Brazil, Valente et al. (2013) identified 400 bryophyte taxa, with the forests and *campos rupestrés* (Figure 94; dry, rocky grasslands) accounting for 51% and 40%, respectively. The *caatinga* (Figure 95; shrub and thorn desert vegetation in interior northeastern Brazil) and *cerrado* (Figure 96; savanna) accounted for only 5% and 4%, respectively.

Figure 94. *Notothylas* sp.; *N. vitalii* was the only hornwort known to Vital and Visnadi from Rio Branco Municipality in Brazil in 1994. Photo by Blanka Aguero, with permission.

Costa (2003) studied the Amazonian rainforest bryophytes in Acre, Brazil. She revealed 514 species, with two field trips increasing the known bryoflora by 50%. She concluded that the diversity is still poorly known for the Brazilian Amazon.

In their study in the Chapada Diamantina region of Brazil, Valente et al. (2013) identified 400 bryophyte taxa, with the forests and *campos rupestrés* (Figure 94; dry, rocky grasslands) accounting for 51% and 40%, respectively. The *caatinga* (Figure 95; shrub and thorn desert vegetation in interior northeastern Brazil) and *cerrado* (Figure 96; savanna) accounted for only 5% and 4%, respectively.
Recent studies mostly support the earlier ones, but changes in nomenclature are reducing the numbers of endemic species. Costa and Peralta (2015) reported 1,524 species of bryophytes in Brazil, including 11 hornwort, 733 liverwort, and 880 moss species. As has been typical, the Lejeuneaceae (Figure 6, Figure 15-Figure 16) are the most abundant (285 species!). Following that record high are Lepidoziaceae (Figure 12) (48), Frullaniaceae (Figure 7-Figure 8) (37), Ricciaceae (Figure 54-Figure 55) (36), Plagiochilaceae (Figure 11) (27), Radulaceae (Figure 9-Figure 10) and Metzgeriaceae (Figure 13) (26 each), Lophocoleaceae (Figure 97) (18), Aneuraceae (Figure 14) (15), and Calypogeiaceae (Figure 98) (13). Surprisingly, Sphagnaceae (Figure 99) sets the record for mosses with 83 species, followed by Fissidentaceae (Figure 100) (65), Pottiaceae (Figure 101) (63), Dicranaceae (Figure 38, Figure 66) (54), Bryaceae (Figure 102) and Sematophyllaceae (Figure 86, Figure 135) (53 each), Orthotrichaceae (Figure 112) and Pilotrachaceae (Figure 103, Figure 133) (51 each), Calymperaceae (Figure 83, Figure 89) (48), and Hypnaceae (Figure 85) (28). Together, these account for 71% of the known bryophyte species in Brazil.
Other new records include those of Oliveira and Alves (2007) for the State of Ceará, Brazil. Even at this recent date, 35 of the 81 species they identified were new for the state, and one was new for Brazil. In the Parque Ecológico de Gunma, Pará, Brazil, Fagundes et al. (2016) found 103 species, with the liverworts exhibiting the greater diversity (59). Of course the Lejeuneaceae again had the predominant representation of species (42). The rare species predominated with 62 species, whereas generalists were represented with only 47 species. Five new records were uncovered.

Oliveira and Bastos (2009) contributed to the knowledge of Anthocerotophyta and Marchantiophyta from Chapada da Ibiapaba, Ceará, Brazil. Of the 10 thallose liverwort species found, this study revealed 3 species of thallose liverworts for the first time in northeastern Brazil.

Florschütz-de Waard and Bekker (1987) compared the bryophyte flora in different forest types in West Suriname. They found the highest species richness in the marsh forest and the lowest in the savannah and xeromorphic (having structural adaptations to dry conditions) scrub forests. Based on their microclimatic data, they considered liverworts to have a greater ecological amplitude in these forests than that of mosses, a conclusion different from that in many ecosystems.

Although the Neotropics have not been studied to the degree of the temperate systems, most areas have had at least some studies. Spruce (1884-1885), Fulford (1963, 1966, 1968, 1976) and Gradstein (numerous papers, e.g. Liverwort Flora of Brazil by Gradstein & Costa 2003 and Liverwort Flora of French Guiana by Gradstein & Ilkiu-Borges 2009) studied liverworts. Very little work, however, has been done on the hornworts, a problem that Villarreal (2007) and others are attempting to rectify.

A number of additional general Neotropical floristic studies are available, but nomenclature should be reviewed to find more recent revisions: Delgadillo (1976) on bryophyte ecology in Veracruz, Mexico, Magdefrau (1983 – forests and páramos of Venezuela and Colombia), van Reenen and Gradstein (1983, 1984), Timme (1985 – Peru), Buck & Thiers (1989), Gradstein et al. (1990 – Guianas, especially lowland forest), Richards (1991 – Co-operative
Republic of Guiana and West Indies), Sastre de Jesus & Santiago-Valentín [1996 – Puerto Rico, managed forests of Cupressus (Figure 25) and Acacia (Figure 26)], Churchill (1996 – Andes), Gradstein (1998 – páramos), Benavides et al. (2006) in the Colombian Amazon, Gradstein et al. (2016) on bryophytes of Sierra Nevada de Santa Marta, Colombia among others.

A few have ventured into ecological studies such as the vegetative variability of liverworts as demonstrated by Bazzania (Figure 104) (Bernecker 1990) or the differences among physiognomies in species richness and distribution (Valente et al. 2013). Others have sought to make broader statements regarding the ecology and biogeography (Gradstein & Pócs 1989). More recent studies, particularly on epiphytes, epiphylls, altitude, and rock outcrops, will be covered in more detail in subsequent subchapters of this chapter. These studies point to the need for more studies in order to gain a clear understanding of tropical bryophyte ecology.

Endemism

Endemism (condition of species being unique to defined geographic location) has in the past been considered high in the tropics. In 1994 Delgadillo reported 48% endemism for mosses in the Neotropics. He suggested that endemism for mosses is higher in Bolivia, Costa Rica, and Ecuador than in other Neotropical areas. But he also considered that low numbers in some areas may be due to insufficient study. In others, low numbers result from strong connections with adjacent land masses having suitable habitat. I would also caution that high numbers may be the result of synonymy.

Frahm (2003) concluded that the rate of endemism is much higher in the tropics than outside the tropics but it is always much lower than that of tracheophytes (Table 2). Furthermore, we must consider these earlier numbers of endemics with skepticism. Throughout the tropics, many researchers worked independently of each other. They encountered bryophytes that were new to them and gave them new names. But researchers in other locations encountered these same bryophytes and gave them different names. There were no comprehensive keys to species from the tropics, and it was difficult to know that a species had already been named by someone else in a different location.

<table>
<thead>
<tr>
<th>Tracheophytes</th>
<th>Bryophytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Galapagos Islands</td>
<td>50%</td>
</tr>
<tr>
<td>Cuba</td>
<td>50%</td>
</tr>
<tr>
<td>Kilimanjaro</td>
<td>6%</td>
</tr>
<tr>
<td>Usambara Mtns.</td>
<td>3%</td>
</tr>
<tr>
<td>Réunion</td>
<td>9%</td>
</tr>
<tr>
<td>Mauritius</td>
<td>6%</td>
</tr>
</tbody>
</table>

Schuster (1982) explained the high degree of endemism in the liverwort flora of Gondwanaland (Figure 105) as a result of the break up and dispersal of Gondwanaland. The resulting isolation permitted speciation that led to endemism. This was further enhanced by extinctions in the Antarctic, leaving behind an isolated flora in New Zealand. Schuster attributes the current degree of endemism seen in the Antipodes (Australia and New Zealand) to the climate changes and breakup of Gondwanaland.

In Australia (Figure 60), endemism in the Wet Tropics is among the highest in the country (Stevenson et al. 2012). That area likewise had the highest number of species. Areas having high numbers of species were not necessarily the areas with endemism.
Schuster (1982) contended that only two areas had high levels of endemic genera: Australasia and South America. India (Figure 106) has few endemic groups, most likely reflecting widespread extinction of cool-adapted taxa. By contrast, Schuster listed 39 genera and 11 subgenera of leafy liverworts that were endemic to tropical America. All but two of these endemic genera are in the families **Acrobolbaceae** (Figure 107), **Cephaloziaaceae** (Figure 106; Figure 110-Figure 111), **Gymnomitriaceae** (Figure 108), **Jungermanniaceae** (Figure 109), and **Plagiochilaceae** (Figure 11), or the very specialized **Lejeuneaceae** (Figure 6, Figure 15-Figure 16). (Note that family classification may be different now.) The endemic species, furthermore, are usually highly specialized. One common feature of the liverwort genera *Pteropsiella* and *Protocephalozia* in the **Lepidoziaceae** (Figure 12) and *Phycolepidozia* (Figure 106, Figure 110-Figure 111) in the **Cephaloziaaceae** is that they develop either a thalloid or coniferoid (loosely interwoven) gametophyte (Figure 111).

Figure 106. *Phycolepidozia indica* growing on rock in a forest fragment at Mt. Tandiandamol at 1600 m in the Western Ghats, India. Photo by Uwe Schwarz, courtesy of Robbert Gradstein.

Figure 107. *Acrobolbus ciliatus*, in the **Acrobolbaceae**, a family with several endemic species in the Neotropics. Photo by Blanka Aguero, with permission.

Figure 108. *Gymnomitrium concinnatum*, in the **Gymnomitriaceae**, a family with several endemic species in the Neotropics. Photo by Herman Schachner, through Creative Commons.

Figure 109. *Jungermannia rubra* with perianth, in the family **Jungermanniaceae**, a family with a number of Neotropical endemic species. Photo by Ken-ichi Ueda, through Creative Commons.

Figure 110. *Phycolepidozia indica* habitat in forest fragments on Mt Tandiandamol, Western Ghats, at 1600 m. Photo by Uwe Schwarz, courtesy of Robbert Gradstein.
Karlin et al. (2012) used *Sphagnum palustre* (Figure 114) in Hawaii to explore the viability of a species from a single propagule. They concluded that this species currently has significant genetic diversity in Hawaii and that vegetative propagation does not preclude evolutionary success. This species is not known to produce sporophytes in Hawaii, although it does in other parts of the world (Figure 115).

Figure 111. *Phycolepidozia indica*, a species that can develop either a thalloid or *confervoid* (loosely interwoven) gametophyte. Photo by Uwe Schwarz, courtesy of Robbert Gradstein.

In Australia (Figure 60), four endemic species of the moss *Macromitrium* (Figure 112) occur in higher elevation rainforests dominated by *Nothofagus moorei* (Figure 113) (Ramsay et al. 1987). The tropical rainforests have three endemic *Macromitrium* species: *M. peraristatum*, *M. dielsii*, and *M. funiforme*.

Figure 112. *Macromitrium ochraceum*, in a genus with four endemic species in Australia, three in the tropical rainforests there. Photo by Li Zhang, with permission.

Figure 113. *Nothofagus moorei* forest. Photo by David, through Creative Commons.

Figure 114. *Sphagnum palustre*, a species with significant genetic diversity in Hawaii. Photo by Bernd Haynold, through Creative Commons.

Figure 115. *Sphagnum palustre* with capsules in Sweden. Photo by Oskar Gran, through Creative Commons.

Africa

In sub-Saharan Africa (Figure 116), O'Shea (1997b) reported 77% of the 3,000 taxa to be endemic. However, he warned that this figure may be misleading because the bryophyte flora of Africa was (and still is) so poorly known (and many may turn out to be synonyms).
Pócs (1998) found a high species diversity (~700 species known in 1998) along the Eastern Arc Mountains of Africa (Kenya and Tanzania; Figure 117), with only 32 (4.5%) endemic species, a low number even when compared to that of tracheophytes in the area.

Asia

In 2003, O’Shea reported 11% bryophyte endemism in Sri Lanka. The bryophyte flora of Sri Lanka is relatively rich, with 561 taxa. In fact, Gunawardene et al. (2007) considered the Western Ghat and Sri Lanka to be biodiversity hotspots.

In the Azores (Figure 118), of the 89 epiphyllous bryophyte species, 14 were considered endemic to the Azores or to Macaronesia (Sjögren 1997). These are somewhat frequent members of the endemic epiphyllous (Figure 119) association, the Cololejeuneo-Colurion: Cololejeuneetum azoricae (see Figure 48, Figure 119, Figure 120).

The Asian endemics of the Ptychanthoideae (Figure 42) in the Lejeuneaceae (Figure 6, Figure 15-Figure 16) tend to be restricted to subtropical and temperate regions, with the majority also known from Eocene fossils (Gradstein 1991). They are largely relicts (something that has survived from earlier period). The Lejeuneoideae (Figure 121-Figure 122) are mainly in the tropical rainforests of the Malesian archipelago, are frequently highly specialized, and have no fossil records.
In 1987 Piippo et al. reported 48% endemism among the liverworts of New Guinea; 23% of the moss species seemed to be endemic. Most of these occur between 1500 and 3500 m elevation. The researchers found a high degree of endemism in the Frieda River Area and concluded that this is due to the high levels of metals in the area. The leafy liverworts *Bazzania* (Figure 104), *Frullania* (Figure 2, Figure 7-Figure 8), *Plagiochila* (Figure 11), and *Radula* (Figure 9-Figure 10) have a high degree of species endemism. The highest percentages of endemics among liverworts were in the *Plagiochilaceae* (Figure 11) (78%) and *Schistochilaceae* (Figure 123) (74%). Among the mosses, the number of species is much smaller, so the percentages may not be meaningful. The most notable may be the *Bryaceae* (Figure 124) with 35 species, 12 of which were considered endemic. The researchers cautioned that many of the families had not been studied well, so these numbers for both mosses and liverworts should be considered preliminary. All of these numbers will need revision after eliminating synonymy.

Piippo (1994a) reported 38.2% endemism in Western Melanesia among the 440 species there. The highest reported endemism occurs in *Frullaniaceae* (Figure 2, Figure 7-Figure 8) and *Plagiochilaceae* (Figure 11). Although this is a slightly more recent study, synonyms again create a problem in determining endemism.

Piippo (1994b) also studied the liverwort family *Lejeuneaceae* (Figure 6, Figure 15-Figure 16) of Western Melanesia and reported that only 20.5% of these species were endemic. She attributed this to the large number of epiphyllous species in the family, a group that is widespread throughout the tropics.

Neotropics

Holz and Gradstein (2005) found more endemics in the oak (*Quercus*) forests of Central America than in the páramo. They considered that the high percentages of endemic bryophytes in oak forests in Central America reflected the importance of climatic changes associated with Pleistocene glaciations. In an older publication, Delgadillo (1998) likewise reported a high endemic element, with ca. 47% endemics. At that time, he reported 2,900 species of mosses, a number that decreases when systematic studies uncover synonymy. He considered isolation as the major contributor to endemism.

Delgadillo et al. (2003) compared endemism in the mosses, grasses, and Asteraceae. Of the 2,373 endemic taxa known among these groups, 86 are mosses; 2030 are Asteraceae. In an earlier study, Delgadillo and Cárdenas (2002) reported no endemic taxa from the Monies Azules Biosphere Reserve, where they identified 136 species and varieties, plus 8 more from published records.

Fortunately, there are now good Neotropical bryologists who are increasing our knowledge of that bryoflora. Costa et al. (2015) examined the species richness and floristic composition on an elevation gradient in the Itatiaia National Park in Brazil. They reported 519 taxa, representing 10 elevations, using literature, herbarium samples, and data banks. These represented 34% of the total Brazilian bryoflora.

In southeastern Brazil, the endemic *Bromeliophila natans* (Figure 125) is difficult to distinguish from *Lejeunea* (Figure 126) (Gradstein 1997). It was so-named because it lives in the basins of bromeliads (Figure 127) (Heinrichs et al. 2014). The Neotropical moss
Philophyllum tenuifolium (Leucomiaceae; Figure 128) is also restricted to this unusual habitat.

Figure 125. Bromeliophila natans, an endemic species that lives in bromeliad basins. Drawing from Heinrichs et al. 2014, slightly modified, through Robbert Gradstein.

Figure 126. Lejeunea floridana and Cololejeunea cardiocarpa on leaves. Photo by Scott Zona, with permission.

Figure 127. Bromeliads in the trees, showing basins where bryophytes can grow. Photo by Gail Hampshire, through Creative Commons.

It is interesting that Spruceanthus theobromae (Figure 129) is endemic to the Cacao (source of cocoa) plantations (Figure 130) of western Ecuador (Gradstein 1999). Kautz and Gradstein (2001) concluded that because of its host specificity on Cacao and its exclusive occurrence in plantations, it should be removed from the World Red List of Bryophytes and its status changed to that of a near threatened species. Its survival depends on the low management intensity of plantations such as those in western Ecuador.

Figure 128. Philophyllum tenuifolium herbarium specimen. Photo from Natural History Museum, London, through Creative Commons.

Figure 129. Spruceanthus theobromae, a species endemic to Cacao plantations in western Ecuador. Photo by Robbert Gradstein, with permission.
of pre-adapted immigrant lineages and descendants from the mountain (6 million years). This mountain exhibits a mix of the unique species of the mountain are younger than the mountain in Sabah, East Malaysia. They found that most species on Mount Kinabalu, a 4,095 m high mountain, diverged for a long enough period of time that a new species was separated from interbreeding with the original species volume 2. This would presume that the species arrived, but as discussed in the interaction chapter on amphibians in separation of many frog species on different mountain tops, localities elsewhere. The latter could be similar to the local lowland taxa or from long-range dispersal from cool mountain habitat.

Visnadi (2015) likewise reported on the Atlantic Forest of southeastern Brazil, at Mata Atlântica. This research revealed 199 species newly known for the area, bringing the total for the area to 220 species. This added two new records for Brazil and revealed locations of 13 Brazilian endemic species.

Causes of Endemism

Merckx et al. (2015) surmise that tropical mountains are diversity hot spots, but also exhibit a high degree of endemism. They point out that researchers have debated whether these mountain endemics originate more from local lowland taxa or from long-range dispersal from cool localities elsewhere. The latter could be similar to the separation of many frog species on different mountain tops, as discussed in the interaction chapter on amphibians in volume 2. This would presume that the species arrived, but was separated from interbreeding with the original species for a long enough period of time that a new species evolved. On the other hand, if the population originated from lower elevations, it might have become a new species through the founder principle (loss of genetic variation that occurs when new population is established by very small number of individuals from larger population), followed by natural selection for characters that suited their mountain habitat.

To try to answer this question, Merckx et al. (2015) examined the species on Mount Kinabalu, a 4,095 m high mountain in Sabah, East Malaysia. They found that most of the unique species of the mountain are younger than the mountain (6 million years). This mountain exhibits a mix of pre-adapted immigrant lineages and descendants from local lowland ancestors, suggesting that the species did not arrive by long distance. Nevertheless, substantial shifts from lower to higher vegetation zones in these lowland groups were rare. The presence of sibling pairs of Frullania (Figure 2, Figure 7-Figure 8) with each member of the pair at a different elevation range of the same mountain (Figure 131) would tend to support the latter (Glime et al. 1990). Is there any reason to think that both processes could not occur? Is one of them the dominant cause?

Figure 130. Cacao plantation in Cameroon. Photo by Barada-nikto, through Creative Commons.

Due to the efforts of a number of bryologists, the flora of Brazil is reasonably well known. Endemism in the Atlantic rainforest of Brazil reaches 242 endemic species out of the 1,337 species present (Costa & Peralta 2015). The dense ombrophilous forest here has 73% of these species represented, 62% of which are endemic. The southeastern region, with 1,228 species in total, has 219 endemic species. But the Atlantic rainforest in southeastern Brazil has most of the endangered species. Further monographic, worldwide or continent-wide studies may reduce the number of endemic species, but numbers are starting to approach reality.

Visnadi (2015) likewise reported on the Atlantic Forest of southeastern Brazil, at Mata Atlântica. This research revealed 199 species newly known for the area, bringing the total for the area to 220 species. This added two new records for Brazil and revealed locations of 13 Brazilian endemic species.

Causes of Endemism

Merckx et al. (2015) surmise that tropical mountains are diversity hot spots, but also exhibit a high degree of endemism. They point out that researchers have debated whether these mountain endemics originate more from local lowland taxa or from long-range dispersal from cool localities elsewhere. The latter could be similar to the separation of many frog species on different mountain tops, as discussed in the interaction chapter on amphibians in volume 2. This would presume that the species arrived, but was separated from interbreeding with the original species for a long enough period of time that a new species evolved. On the other hand, if the population originated from lower elevations, it might have become a new species through the founder principle (loss of genetic variation that occurs when new population is established by very small number of individuals from larger population), followed by natural selection for characters that suited their mountain habitat.

To try to answer this question, Merckx et al. (2015) examined the species on Mount Kinabalu, a 4,095 m high mountain in Sabah, East Malaysia. They found that most of the unique species of the mountain are younger than the mountain (6 million years). This mountain exhibits a mix of pre-adapted immigrant lineages and descendants from local lowland ancestors, suggesting that the species did not arrive by long distance. Nevertheless, substantial shifts from lower to higher vegetation zones in these lowland groups were rare. The presence of sibling pairs of Frullania (Figure 2, Figure 7-Figure 8) with each member of the pair at a different elevation range of the same mountain (Figure 131) would tend to support the latter (Glime et al. 1990). Is there any reason to think that both processes could not occur? Is one of them the dominant cause?

Figure 131. Levins and Freeman-Tukey niche width and elevational range of sibling pairs of Frullania on Mount Albert Edward, Papua New Guinea. Redrawn from Glime et al. 1990.

Patiño et al. (2014) attempted to explain the emergence of endemism by questioning why some genera diversify and others do not. Speciation on islands through gradual change from a founder population has been termed anagenetic speciation. They challenge this approach, saying that this process does not lead to "rapid and extensive speciation within lineages." Using surveys of the endemic bryophyte, fern, and seed plant floras of nine oceanic archipelagos, they showed that anagenesis (species formation without branching of evolutionary line of descent) was highest in bryophytes (73%), as measured by the proportion of genera with a single endemic species. Ferns had 65% and seed plants 55%. They concluded that the dominance of anagenesis in island bryophytes and pteridophytes [ferns] is a result of a mixture of intrinsic factors, notably their strong preference for (sub)tropical forest environments, and extrinsic factors, including the long-term macro-ecological stability of these habitats and the associated strong phylogenetic niche conservatism of their floras.

Dangers to Endemics

Silva et al. (2014) raised concerns about conserving key species of bryophytes. They created potential distribution models for ten species that had been classified as bio-indicators of environmental quality and/or were endemic to the Atlantic Forest or to Brazil. Distributions of nine of the species could be explained by the Mean Diurnal Temperature Range. They raised concern that these species were not known in all the potentially suitable areas and that only 27% of the potentially suitable areas overlapped with Conservation Units. While these species were not specifically endemic, this approach could be used for determining the need for areas to protect endemic species.

Like Silva and coworkers (2014), Raxworthy et al. (2008) found that temperature was important in shifting altitudinal distributions of plants and animals, with
increasing temperature likely to surpass a warming threshold for some species. Of three endemic species in the tropical montane of Madagascar, two could not be relocated after 10 years. In addition, out of nine species analyzed, seven species had shifted their distributions to higher elevational means. In the 10 years of study, the mean lower elevation limit had shifted upward 29-114 m.

Tropical Rainforests

Whitmore (1998) provided an introduction to the tropical rainforest. These forests are evergreen, and the precipitation occurs more or less equally throughout the year, exceeding ca. 2000 mm per year. Under the umbrella of rainforests (Figure 132), Frahm and Gradstein (1991) recognized elevational rainforest types (see Chapter 8-1). The elevations of the different types of rain forest are lower on islands than on the continent. In areas with prolonged dry periods (>3 months), these forests are replaced with deciduous forests, seasonal forests, and savannahs. These types of forests will be discussed more specifically in the subchapters on Altitude.

![Figure 132. Hawaiian tropical rainforest. Photo from Photoeverywhere, through Creative Commons.](image)

Early researchers in the tropics considered the tropics to be an "inexhaustible" source of new bryophyte species (Pócs 1982). Richards (1954) bemoaned the scantiness of studies on the species and their ecology in tropical rainforests.

As one moves from the temperate zone into the tropics, there will be an increase in members of the moss families **Calymperaceae** (Figure 83, Figure 89) and **Sematophyllaceae** (Figure 86, Figure 135), in particular, as well as **Fissidentaceae** (Figure 17, Figure 41), **Leucobryaceae** (including *Octoblepharum*; Figure 67), **Pilotrichaceae** (Figure 133), and **Pterobryaceae** (Figure 134) (Pócs 1982). The **Calymperaceae** are distributed primarily in the humid lowland tropical and subtropical forests (Reese 1993). These primarily epiphytic taxa are usually dioicous but produce numerous gemmae at their leaf tips, facilitating short-distance dispersal (Gradstein & Pócs 1989). Whereas **Calymperes** (Figure 83) is restricted to the lowlands, another tropical member of **Calymperaceae**, *Syrhopodon* (Figure 136), extends up to more than 2,000 m elevation. Both are primarily corticolous (growing on bark), but occur also on logs in the first stages of decomposition. In the **Sematophyllaceae**, *Taxithelium planum* (Figure 135) is abundant enough to be termed a weed in the lowland tropical forests of the Americas (Buck 1985; Churchill & Salazar Allen 2001).

![Figure 133. *Cyclodictyon* sp., representing *Pilotrichaceae*, a family that increases in representation as one goes toward the tropics. Photo by Michael Lüth, with permission.](image)

![Figure 134. *Pireella pohlii*, representing *Pterobryaceae*, a family that increases in numbers as one goes toward the tropics. Photo by Michael Lüth, with permission.](image)

![Figure 135. *Taxithelium planum*, a common moss species in lowland Neotropical forests. Photo by Michael Lüth, with permission.](image)
Ramsay et al. (1987) stressed the importance of learning the role of bryophytes in the rainforest ecosystem in order to encourage more study of rainforest bryophytes. Jordan et al. (1980) could only hypothesize on the role of epiphytes in scavenging nutrients and moderating the flux of nutrients in the throughfall. Since then, Nadkarni and her students have greatly increased our knowledge of the role of bryophytes in nutrient relationships in the tropics (see Nutrient Relations in Chapter 8-1 of this volume).

Elevation and waterways are major contributors in determining the flora. Dixon (1935) described that below the Borneo ridgetop, cushions of the moss family Dicranaceae (Figure 38, Figure 66) are relatively common on both the ground and on logs, but liverworts remain more abundant. Near the stream, the large, pendent moss *Spiridens reinwardtii* (Figure 34) might be found on tall tree ferns. Dixon also reported abundant *Macromitrium ochraceum* (Figure 112) under the thin cover of *Dacrydium* (Figure 137; Podocarpaceae) and *Leptospermum* (Figure 138; Myrtaceae).

Pantropical Distributions

Although liverworts seem to reach particularly high diversity in the tropics, moss richness estimates, based on 86 taxonomic checklists, do not support the hypothesis of a richer moss flora in the tropics compared to that of other latitudes (Shaw et al. 2005). Nevertheless, the latitudinal gradient for just North, Central, and South America was significant. Molecular data suggest that the Southern Hemisphere exhibits a higher diversity than does the Northern Hemisphere. The tropics are intermediate. Furthermore, virtually all the moss lineages are represented in all three latitudinal zones. Hence, it should be no surprise that mosses have travelled long distances and that many tropical mosses, particularly above the species level, are pantropical. This reasoning fits the Baas-Becking Hypothesis that everything is everywhere, a principle that seems to apply well to organisms with small, resistant propagules such as spores (see Volume 2, Chapter 2-6; Pisa et al. 2013).

By examining tropical bryophyte communities in both Old World and New World tropics, Kürschner and Parolly (1999) could compare the differences. They concluded that although communities may be similar among the Americas, Africa, and Asia, there is not a pantropical (in tropics of both Eastern and Western Hemispheres) bryophyte flora. Could this be a result of too many bryologists giving different names to the same species in different places? In any case, there are clear similarities among the bryophyte communities of the three continents and a pantropical class of epiphyte communities can be recognized. Earlier, similarities and differences among the bryofloras of the tropical Americas, Africa, and Asia have been described by Theodor Herzog (1926) in his classical treatise *Geographie der Moose*. Recent studies such as that of Dauphin L. and Grayum (2005) support the relatively large number of
pantropical species, with 16% of their 55 collected species of bryophytes from the dry lowland forests and moist montane forests of the Santa Elena Peninsula and Islas Murciélago, Guanacaste Province, Costa Rica, being pantropical.

While most of the species are not pantropical, many families and genera are, and certain general community characters are present. For example, Germano and Pôrto (2006) examined bryophytes in Pernambuco, Brazil (Figure 139), and found that the community distribution patterns and growth forms were similar to those of other humid tropical forests, but in Pernambuco the richness was somewhat less. In their study, the most diverse bryophyte flora was that of corticolous (living on bark) bryophytes (33% of species). Epixylic (growing on wood, i.e., trunks without bark, mostly logs) bryophytes were next (23%). With this high diversity, it is somewhat surprising that communities share 75% of the species. Liverwort diversity is higher than that of mosses, with a ratio of 23:1 among the epiphyllous (living on leaves) and 2:1 among corticolous species. However, terricolous (living on ground) species exhibited a 1:3 ratio of liverworts to mosses. The researchers also found that epixylic species were not specific for degree of decomposition, nor did richness vary with degree of decomposition.

Schofield and Crum (1972) summarized the theories on causes of disjunctions in bryophytes. These included continental drift, long-distance dispersal, and fragmentation of a formerly continuous distribution.

Substrate Specificity

Usable substrates in the understory of mature lowland forests are somewhat limited. The forest floor is typically covered with leaf litter that buries bryophytes. Rock surfaces may be available, especially vertical surfaces, if there is sufficient light. The forest itself provides trunk, branches, and leaf surfaces as substrates. At higher elevations, the soil and rock surfaces provide suitable surfaces. Soil in disturbed areas and other areas with sufficient light provides an available substrate. Bien (1982) examined substrate specificity of the leafy liverworts in a rainforest in Costa Rica. A later subchapter will be devoted to the leaf as a substrate for epiphyllous liverworts.

In a study in the Ecological Reserve of Gurjáu, Pernambuco, Brazil, Germano and Pôrto (2005) found few species that have substrate specificity. Rather, they typically occurred on two or three types of substrates. Some, however, were exclusively corticolous (bark-dwelling): Archilejeunea fusescens (see Figure 140), Cheilolejeunea rigidula (see Figure 141), Lejeunea monimiae (Figure 142), some species of Frullania (Figure 2, Figure 7-Figure 8), and additional members of the Lejeuneaceae (Figure 6, Figure 15-Figure 16, Figure 142-Figure 143). Few epiphyllous species were restricted to leaves, including several species of Cololejeunea (Figure 119) and Leptolejeunea elliptica (Figure 143). Only Neckerospis disticha (Figure 144) was restricted to rocks (rupicola). On the ground the typical bryophytes were Fissidentaceae (Figure 17, Figure 41), thallose liverworts, and the hornwort Notothylas vitalii (see Figure 145).

Panropical bryophytes may represent convergent evolution under similar selection pressures, long-distance dispersal, or previous land bridges. Gradstein (2013) listed about 75 pantropical species of liverworts, and the number of pantropical mosses is probably similar. See Wołowski et al. (2014, pp. 176-177) for a list of pantropical species. Some pantropical species are notable.

Octoblepharum albidum (Figure 67) is a good example of a pantropical species and the most common of the Leucobryaceae (currently Octoblepharaceae), occurring on bark, tree bases, and early stages of log decomposition in lowlands and montane forests, up to more than 2,000 m (Churchill & Salazar Allen 2001). Its ability to reproduce vegetatively from easily broken leaf fragments, coupled with its monocious condition resulting in numerous sporophytes, most likely contributes to its widespread and common pantropical presence.
Figure 141. *Cheilolejeunea imbricata*, *Cheilolejeunea rigidula* is a species that grows very commonly on bark at Pernambuco, Brazil. Photo by Yang Jia-dong, through Creative Commons.

Figure 142. *Lejeunea monimiae*, a species that is strictly corticolous in the Pernambuco study site in Brazil. Photo by Elena Reiner-Drehwald, with permission.

Figure 143. *Leptolejeunea elliptica*, a species restricted to leaves at the Pernambuco study site in Brazil. Photo by Yang Jia-dong through Creative Commons.

Figure 144. *Neckeropsis undulata*, a family (*Neckeraceae*) that indicates very shady, wet habitats in the tropics. Photo by Michael Lüth, with permission.

Figure 145. *Notothylas javanica*, *N. vitalii* is a similar common hornwort on the ground in the Ecological Reserve of Gurjaú, Brazil. Photo by Li Zhang, with permission.

Forest Floor

The forest floor of the lowland rainforest is nearly devoid of bryophytes, suffering from the same leaf burial found in temperate deciduous forests (Richards 1954), but also suffering from the multi-layered canopy that blocks a large percentage of the sunlight.

But decaying logs, stumps, and branches here can host a number of taxa. It is here, in the low light and high humidity, that one finds *Leucobryum* (Figure 146) and mosses in the *Hookeriaceae* (Figure 133), *Hypnaceae* (Figure 85), and *Sematophyllaceae* (Figure 86, Figure 135) (Gradstein & Pócs 1989). Liverworts of the *Lepidoziaceae* and *Lophocoleaceae* (Figure 147), rather than the seemingly ever-present *Lejeuneaceae* (Figure 6, Figure 15-Figure 16, Figure 142-Figure 143), thrive here. Generally, only on road cuts, termite mounds, and other disturbed soil can one find bryophytes, including many *Fissidens* (Figure 17, Figure 41) species.
Figure 146. *Leucobryum juniperoideum*. *Leucobryum* occurs on stumps, logs, and branches in the tropics. Photo by Hermann Schachner, through Creative Commons.

Figure 147. *Leptoscyphus* sp., a tropical representative of the *Lophocoleaceae*, where the family is common on logs. Photo by Paul Davison, with permission.

Rock Houses

Outside the tropics, *rock houses* can mimic the conditions prevailing in some tropical habitats. These rockhouse cliffs, occurring as geologic formations in the eastern United States, are sufficiently deep holes among the rocks to buffer both temperature and moisture extremes. Added to this are very low light conditions, thus in several ways mimicking conditions deep under the tropical rainforest canopy. These caves house a group of endemic species whose closest relatives are tropical, as well as disjunct species with a primarily tropical range (Farrar 1998). Although the ferns are the most conspicuous of these plants, the bryophytes are the most numerous (Figure 148). Farrar suggests that their vegetative reproduction and adaptation to net photosynthetic gain in very low light makes their existence in these unusual habitats possible. Evidence of morphology, physiology, genetics, and geology suggest that they have persisted in these relict habitats since the pre-Pleistocene when the eastern U.S. experienced tropical and subtropical climates.

Figure 148. *Trichomanes petersii* and bryophytes. Rock houses have collections of plants similar to these. Photo by Robbin Moran, with permission through Dale Vitt.

Summary

Although some bryophytes are pantropical or have disjunct distributions on both sides of the Atlantic, their specialized habitats often restrict their distributions. This is indicated by a higher beta diversity among than within tropical regions. Nonetheless, the greatest number of bryophyte species occurs in the tropics. But many publications represent synonyms and many areas remain to be explored. Furthermore, it appears that increase in species diversity from the poles to the equator does not apply to mosses.

Tropical liverwort families are dominated by *Lejeuneaceae*, *Frullaniaceae*, *Radulaceae*, *Plagiochilaceae*, and *Lepidoziaceae*, with lesser numbers in *Metzgeriaceae* and *Aneuraceae*. The moss *Fissidens* has ~90 species in Africa. In tropical Asia, common mosses include the large species in *Dawsoniaceae*, *Garovagliaceae*, *Hypnodendraceae*, and *Spiridentaceae*. The liverwort family *Lejeuneaceae* is particularly species-rich in Asian tropics.

In the Neotropics, typical moss families are *Pilotrichaceae*, *Phyllogoniaceae*, *Lembophyllaceae*, *Dicranaceae*, *Octoblepharaceae*, and *Phyllodrepaniaceae*. Dominant liverwort families include *Monoleaceae* and *Lejeuneaceae*, with the subfamily *Ptychantheae* mainly in Asia and subfamily *Brachiolejeuneae* mainly in the Neotropics.

An inordinate number of endemic species has been reported from the tropics, but this number has been steadily decreasing as synonyms are determined. Furthermore, the rate of bryophytic endemism is much lower than that of tracheophytes. O’Shea reported that 77% of the sub-Saharan bryophyte flora was endemic, but warned that this large number probably represented many synonyms. Some of the liverwort families in Asia reach such high numbers, but mostly the endemism reported there is notably lower. Records are similar to those of Asia in the Neotropics. Tropical mountains are often diversity hot spots, and distance from similar habitats can lead to endemism, but these
also are a source of many synonyms. Nevertheless, differences in selection pressures with elevation can cause speciation. But endemic species, by their very nature of having a restricted distribution, increases their probability of extinction. Only 27% of the areas deemed suitable for them occur in protected areas.

The tropical rainforest provides a wide range of niches due to its multiple levels of vegetation heights. To the usual substrata of rocks, logs, trunks, and branches, the tree and shrub leaves add a highly diverse assemblage of liverworts. The soil, however, typically has too many leaves and not enough light penetration for bryophytes to survive. As one goes from the temperate zone to the tropics, the moss families Calymperaceae, Sematophyllaceae, Fissidentaceae, Leucobryaceae/Octoblepharaceae, Pilotrichaceae, and Pterobryaceae increase in representation. Liverworts are typically more species-rich than mosses.

In the eastern United States, rock houses created on mountainsides and slopes provide a tempered environment where a number of tropical species are able to survive.

Acknowledgments

My appreciation goes to Noris Salazar Allen for her efforts to make a very early version of this chapter reliable. Her helpful discussions kept me going on this part of the world I know so little about. S. Robbert Gradstein has been very helpful in discussions, obtaining images and references, and in providing a critical review of the chapter. Without his input this chapter would be far less complete. Tatiana Oliveira da Silva provided a critical reading for clarity, provided additional references, and shared her knowledge of the Amazon.

Literature Cited

O’Shea, B. 1997a. The mosses of sub-Saharan Africa 1. A

Yano, O. 2011. Catálogo de musgos Brasileiros: Literatura original, basiônimo, localidade-tipo e distribuição geográfica. [Catalog of Brazilian mosses: Original literature, basiônimo, locality-type and geographical distribution.]. São Paulo, Instituto de Botânica.

CHAPTER 8-3
TROPICS: EPIPHYTE ECOLOGY, PART 1

TABLE OF CONTENTS

Water Relations.. 8-3-4
 Water Content.. 8-3-4
 Growth Forms and Life Forms .. 8-3-5
Osmotic Potential... 8-3-10
Desiccation Recovery .. 8-3-12
Rainfall Interception ... 8-3-12
Fog Interception.. 8-3-14
Microclimate .. 8-3-15
Nutrient Dynamics ... 8-3-18
 Rainfall vs Throughfall ... 8-3-19
 Nitrogen Dynamics ... 8-3-20
 Pulse Release ... 8-3-21
 Keystone Resource .. 8-3-22
Canopy Roots.. 8-3-23
Productivity and Biomass .. 8-3-12
Epiphyte Litterfall .. 8-3-31
Summary .. 8-3-32
Acknowledgments ... 8-3-33
Literature Cited .. 8-3-33
Barkman (1958) has contributed the definitive work on cryptogamic epiphytes (bryophytes, lichens) in 628 pages. It provides an account of the ecology and adaptations as they were known at the time and is the "bible" on cryptogamic epiphyte ecology. The work is restricted to temperate regions and does not treat tropical epiphytic bryophytes, which were very little known at the time. Nevertheless, much of the ecological information provided in this book is also valid for the tropics.

I was surprised to learn that approximately 10% of the tracheophytes are epiphytes (Prosperi & Michaloud 2001). It was not a surprise to learn that these are almost exclusively tropical, where they represent up to 25% of the tracheophytes. Overall, bryophytes comprised 40% of the epiphytic biomass in a neotropical cloud forest in Costa Rica (Nadkarni 1984) compared to 6% in the leeward cloud forest (Ingram & Nadkarni 1993). In both forests, bryophytes were most abundant among the smallest branches. The gnarled, windblown trees and the frequent mist in the elfin forest provide extremely favorable conditions for bryophytic growth (see Lawton & Dryer 1980).

The epiphytic habitat (Figure 1) is the most diverse one for tropical rainforest bryophytes, with 14 of the 15 main bryophyte families being predominantly epiphytic (Figure 1) (Gradstein & Pócs 1989). This is where the greatest bryophytic biomass of the rainforests occurs (Hofstede et al. 1993). Not surprisingly, the dry weight of epiphytes in the tropics is generally less than that shown in a New Zealand study (Hofstede et al. 2001), where lower temperatures and shorter dry periods are more favorable for bryophytes. In a New Zealand lowland, a single tree supported 61 tracheophyte species compared to 94 non-tracheophytes (lichens included). Pócs (1980) found a positive correlation between the amount of "surplus" rainfall (rainfall above 100 mm/month) and the epiphytic biomass in rainforest climates.

Chapter 8-3: Tropics: Epiphyte Ecology, part 1

Gradstein et al. (2007) compared the species richness on various substrates in southern Ecuador. This study demonstrated the preponderance of epiphytes there (Figure 2).

Frahm (1990a, 1994) found that in Borneo lowland and montane rainforests, even bark texture (smooth, fissured, flaky, or striped) made a difference in the epiphytic communities that developed. All bryophytes were considered to be acidophilic, with epiphytic bryophytes having no significant correlation with pH. On the other hand, rich concentrations of Na, K, and Mg seemed to be important in the substrate.

Akiyama et al. (2001) contributed to the knowledge of the Borneo bryophyte flora through two expeditions to the Kinabalu National Park in Malaysia. They reported 203 moss species and 31 liverwort species, with 25 species added to the checklist for the park and 17 new to Borneo.

Kürschner and Parolly (1998a) examined pantropical (covers tropical regions of both eastern & western hemispheres) features that determined distribution of the epiphytic bryophytes. They found that distribution is correlated with structural parameters of the tree stands and with temperature zone intervals. Using only supraspecific taxa (i.e., above the species level) they concluded that communities at low altitudes and those at high altitudes, respectively, resemble each other more pantropically than do lowland and montane communities on the same continent. Kürschner and coworkers were instrumental in elucidating epiphytic bryophyte communities in Africa (Kürschner 1995a, b).

Kürschner and Parolly (1999) sought to derive a consistent system for classifying the tropical epiphytes on a pantropical basis. Instead of using species, they used higher classification levels. For the lowland and submontane tropics they recognized the Coeno-Ptychanthetalia (Figure 3), whereas in the montane zones they recognized the Coeno-Bazzanio-Herbertetalia (Figure 4-Figure 5). Using this thinking, they found that the low-altitudinal and high-altitudinal communities are more similar to each other pantropically than the communities of lowland and montane vegetation units occurring on the same continent.

Figure 2. Substrate types of liverworts and hornworts at Reserva Biológica San Francisco, southern Ecuador. Number above each bar is number of species on that substrate type; e = epiphytic (bark); s = soil (incl. humus); r = rock; el = epiphyllous (living leaves); d = decaying wood. From Gradstein et al. 2007.

Frahm (1990a, 1994) found that in Borneo lowland and montane rainforests, even bark texture (smooth, fissured, flaky, or striped) made a difference in the epiphytic communities that developed. All bryophytes were considered to be acidophilic, with epiphytic bryophytes having no significant correlation with pH. On the other hand, rich concentrations of Na, K, and Mg seemed to be important in the substrate.

Akiyama et al. (2001) contributed to the knowledge of the Borneo bryophyte flora through two expeditions to the Kinabalu National Park in Malaysia. They reported 203 moss species and 31 liverwort species, with 25 species added to the checklist for the park and 17 new to Borneo.

Kürschner and Parolly (1998a) examined pantropical (covers tropical regions of both eastern & western hemispheres) features that determined distribution of the epiphytic bryophytes. They found that distribution is correlated with structural parameters of the tree stands and with temperature zone intervals. Using only supraspecific taxa (i.e., above the species level) they concluded that communities at low altitudes and those at high altitudes, respectively, resemble each other more pantropically than do lowland and montane communities on the same continent. Kürschner and coworkers were instrumental in elucidating epiphytic bryophyte communities in Africa (Kürschner 1995a, b).

Kürschner and Parolly (1999) sought to derive a consistent system for classifying the tropical epiphytes on a pantropical basis. Instead of using species, they used higher classification levels. For the lowland and submontane tropics they recognized the Coeno-Ptychanthetalia (Figure 3), whereas in the montane zones they recognized the Coeno-Bazzanio-Herbertetalia (Figure 4-Figure 5). Using this thinking, they found that the low-altitudinal and high-altitudinal communities are more similar to each other pantropically than the communities of lowland and montane vegetation units occurring on the same continent.

Figure 2. Substrate types of liverworts and hornworts at Reserva Biológica San Francisco, southern Ecuador. Number above each bar is number of species on that substrate type; e = epiphytic (bark); s = soil (incl. humus); r = rock; el = epiphyllous (living leaves); d = decaying wood. From Gradstein et al. 2007.

Figure 3. Ptychanthus striatus, the Ptychanthalia synusia is typical in the lowland and submontane tropics, with pantropic distribution. Photo by Li Zhang, with permission.

Figure 4. Bazzania sp. from the Neotropics, a genus characteristic of the Coeno-Bazzanio-Herbertetalia in the montane zone. Photo by Michael Luth, with permission.

Figure 5. Herbertus aduncus, in a genus characteristic of the Coeno-Bazzanio-Herbertetalia in the montane zone. Photo by Barry Stewart, with permission.
Much remains to be found among the tropical bryophytes. Lee and Pócs (2018) have recently added to our knowledge of the distribution of the large genus *Lejeunea* (Figure 6), describing the new species *Lejeunea konratii* from Fiji.

Figure 6. *Lejeunea flava; L. konratii* was a new species in Java in 2018. Photo by Jia-dong Yang, through Creative Commons.

Some epiphytic bryophytes are facultative, growing on other types of substrate. Ando (1969) reported that the epiphytic bryophytes on *Buxus microphylla* var. *insularis* (= *B. sinica* var. *insularis*; Figure 7) also grew on limestone ridges in Taishaku.

Figure 7. *Buxus microphylla*. Epiphytic mosses of this species also grow on limestone ridges. Photo by Sage Ross, through Creative Commons.

Frahm and Kürschner (1989) investigated factors related to bryophyte success on trees. Rhoades (1995) provided an extensive review on the nontracheophyte epiphytes of the canopy, including distribution, abundance, and ecological roles, but this paper mainly focuses on temperate forests.

Water Relations

The distribution of epiphytic bryophytes in the tropics seems to be all about water. The bryophytes in the crowns of the trees generally are more desiccation-resistant than are those at the tree base (Hosokawa & Kubota 1957; Hosokawa *et al.* 1964).

Water is always a primary limiting factor for epiphytes, and in the tropics the daily change from wet to dry can be particularly problematic (Johnson & Kokila 1970). For some species in the saturated rainforests, as little as 4 hours of exposure to a relative humidity of 63% or less can result in damage. Thus, such sensitive species often live on the wettest sides of the trees. Within a range of 10-76% humidity for four hours, two groups of mosses emerged. One group had low resistance, but the other had a high resistance to desiccation. This latter group of species grew in microhabitats of the forest with low humidity.

Löbs *et al.* (2019) opined that our understanding of the role of the extensive epiphytic bryophyte cover was largely unknown, noting their potential importance in biosphere-atmosphere exchange, climate processes, and nutrient cycling. Their water content could have important impact on local, regional, and even global biogeochemical processes. The researchers measured a vertical gradient from the Amazon Tall Tower Observatory in the Amazonian rainforest and determined that only minor variations occurred in the monthly average ambient light intensity above the canopy, but that different patterns emerged at different heights. At 1.5 m, the values were extremely low, exceeding 5 μmol m⁻² photosynthetic photon flux density only 8% of the time. These values differed little throughout the year. The temperatures likewise showed only minor variation throughout the year, with larger values and more height dependence during the dry season. Water levels, on the other hand showed more variability. At higher levels they were affected by the frequency of wetting and drying; at low levels near the forest floor they retained water over a longer time period. They concluded that water content is the deciding factor for overall physiological activity, with light intensity determining whether net photosynthesis or dark respiration occurs. Temperature was of only minor importance. Light was limiting on the forest floor; in the canopy the bryophytes had to withstand a larger variation in microclimatic conditions.

Water Content

Klöge (1963) reported on the epiphyte humus from El Salvador. Their role in forest water and nutrient dynamics, however, seemed to attract little attention. Water content of bryophytic epiphytes in an old-growth forest in Costa Rican cloud forest reached maximum values of 418% of dry weight, with a minimum of 36% (Köhler *et al.* 2007). The epiphytic bryophytes experienced more dynamic wetting and drying cycles than did the canopy humus. The maximum water loss from bryophytes through evaporation was 251% (dry weight), whereas it was only 117% from the canopy humus, following three days of sunny weather with no intervening precipitation.

Pócs (1989) estimated that high altitude epiphytic bryophytes in Tanzania can absorb up to 30,000 L ha⁻¹ of water during one rainstorm. When high humidity and high
temperatures occur at the same time, as they often do, they cause respiratory losses that cannot be balanced by photosynthesis in these C₃ plants, thus limiting their productivity, especially in the lowland forests (Richards 1984, Frahm 1990b).

Karger et al. (2012) measured the relationship of bryophyte cover to air humidity at two elevation ranges in the tropics. When the highland site (1800-3500 m asl) was considered separately from the lowland site (<1800 m asl) there was a significant relationship between bryophyte cover and relative air humidity. Temperature related to cover in the lowlands only. They confirmed that bryophyte cover is a good proxy for relative air humidity along the elevational gradient in the tropics, proposed earlier by van Reenen and Gradstein (1983).

Müller and Frahm (1998) compared the water-holding capacity of epiphytes in a montane rainforest in the Andes of Ecuador. They found an average of 0.57 L m⁻² on the trunks, 19.51 L m⁻² on branches, and 4.16 L m⁻² on twigs. This is ten times the dry weight on branches, but only three times on twigs. Using a representative tree of 27 m height, which has an average of 65.4 kg dry weight of epiphytes, they calculated that the epiphytic bryophytes on one such tree could store 669 liters of water.

Growth Forms and Life Forms

Several life forms and their role in water relations have already been discussed in an earlier chapter. For definitions, illustrations, and examples, see Chapter 4-5 in the Physiology volume.

Kürschner (1990) looked at the distribution of life forms and water-bearing and water-storing structures in epiphytic moss communities on Mt. Kinabalu, North Borneo. Norris (1990) concluded that water relations must be understood along at least four dimensions: hydration/dehydration frequency; duration of hydration; duration of dehydration; degree of water loss. More recent studies of xerophytic bryophytes suggest that the rate of drying is also important (Greenwood & Stark 2014). Norris further concluded that large colonies generally maintain hydration longer than do smaller colonies. Water can be conducted laterally among contiguous clones. Separated tufts and cushions, on the other hand, may store more water, but they contribute little to transfer of water over the surface of the host tree. In the tropical rainforests, the mass of the bryophytic epiphytes is typically larger than that found in temperate forests. The biomass is reduced as a result of disturbance, probably due to increased opportunity for desiccation with increased isolation and wind movement. This further results in the loss of water transfer and reduction in both water and mineral retention. Norris cited the Braunfelsia community in Papua New Guinea as an example of sensitivity to deforestation in Papua New Guinea. Photo from the Natural History Museum, London, through Creative Commons.

Working in the tropical montane oak-bamboo forest of Costa Rica, Romero et al. (2006) conducted investigations on four pendent bryophyte species, listed from most protected to most exposed: Phyllogonium viscosum (Figure 9), Pilothrichella flexilis (Figure 10), Dendropogonella rufescens (Figure 11), and Frullania convoluta (Figure 12). They found that the most exposed species had higher light saturation and compensation points, higher dark respiration rates, more chlorophyll, higher chlorophyll a:b ratios, and higher N concentrations. Contrary to expectations, the most exposed species had the lowest water content at full saturation. Rate of water loss differed little among the species. The rather exposed moss Dendropogonella rufescens had a substantially higher moisture compensation point for carbon uptake than did the other three species. The researchers concluded that density, size, and arrangement of leaves, as well as clump architecture, defined the physiological patterns of water storage and transport they observed.
bryophytes in the lowland forest of Mt. Kinabalu, North Borneo. Rhizoid discs (Figure 17) maintain attachment. In areas with high humidity in the montane belt, the **mat** form is replaced by **fan** (Figure 21), **weft**, and **pendant** (Figure 9-Figure 12, Figure 34-Figure 35) life forms that are able to obtain water from fog and mist (**fog-stripping**). Fine leaves (Figure 10) or deeply divided leaves are able to capture this water.

Kürschner and Parolly (1998b) discussed adaptations to water conduction and storing. The **mat** life form that is typical of lowland habitats correlates with such water-holding structures as leaf lobules (Figure 13) [especially **Lejeuneaceae** (Figure 6)] and water sacs as well as rhizoids that can act like sponges to hold and move water in capillary spaces. In addition to these, Frey et al. (1990) included **alar cells** (Figure 14), **vittae** (row of elongated cells down center of leaf, only one cell deep; Figure 15), and **ocelli** (darkened cells in row in leafy liverwort leaf; Figure 13, Figure 16) as characteristic of epiphytic
Frey et al. (1990) suggested three principles of water conduction and storing mechanisms: draining surplus water, storing water in dry seasons, and condensing water vapor. They cited the "groovelike" arrangement of leaves as a mechanism to permit water support as well as drainage of water surplus. They found a significant correlation between water sacs (Figure 13), mat life form, and smooth bark in the epiphytic bryophyte communities of the lowland forest, facilitating water availability during short periods of dryness.

Parolly and Kürschner (2004) noted that the adaptive trends of functional types (life forms, life strategies, water conduction, and water storage) among the oreal (pertaining to mountains) trunk epiphytes at various elevations of southern Ecuador were distinct. They further concluded that these trends occur worldwide among tropical trunk epiphytes.

Kürschner (2003) conducted a phytosociological analysis on the epiphytic Afromontane bryophytes of southwestern Arabia. These epiphytes are affected by monsoons, but at the same time must be drought-tolerant. Orthotrichum diaphanum (Figure 18) and Syntrichia laevipila (Figure 19) provide "character species" that define alliances. As in other studies, life forms and life strategies correlate with the ecological site conditions. The Orthotricho (Figure 18) – Fabronietum socotranae (see Figure 20) is a drought-tolerant, light-tolerant, and xerophytic alliance. It is dominated by cushions, short turfs, and mats of perennial stayers that regularly produce sporophytes. In contrast, the alliance in the shaded, subhumid habitats are described as the Leptodonto (Figure 21) – Leucodontetum schweinfurthii (see Figure 22) association. This association is comprised of tail or fan-forming pleurocarpous perennial shuttles that have large spores. This life strategy adapts them for short-range dispersal and moderately limited reproduction, with large spores more likely to survive and germinate than would smaller ones. Furthermore, this more humid atmosphere supports a much higher diversity in life forms and life strategies.
Figure 18. *Orthotrichum diaphanum*, member of a drought-tolerant, light-tolerant, and xerophytic alliance. Photo by Michael Lüth, with permission.

Figure 19. *Syntrichia laevipila* with capsules, a character species that defines an alliance of epiphytic Afromontane bryophytes in southwestern Arabia. Photo by Michael Lüth, with permission.

Figure 20. *Fabronia pusilla*; *Fabronia* forms a drought-tolerant, light-tolerant, and xerophytic epiphytic alliance with species of *Orthotrichum* in Afromontane regions of southwestern Arabia. Photo by Michael Lüth, with permission.

Figure 21. *Leptodon smithii*; *Leptodon* forms an epiphytic alliance with *Leucodon schweinfurthii* in the shaded, subhumid habitats of the Afromontane in southwestern Arabia. Note the tail or fan-forming pleurocarpous habit. Photo by Michael Lüth, with permission.

Figure 22. *Leucodon sciuroides*; *Leucodon schweinfurthii* forms an epiphytic alliance with *Leptodon* in the shaded, subhumid habitats of the Afromontane in southwestern Arabia. Photo from Elurikkus, through Creative Commons.

In a similar study on Socotra Island, Yemen, Kürschner (2004) described the epiphytic *Lejeunerhodesiae* (see Figure 23) – *Sematophylletum socotrensis* (see Figure 24) from the upper parts of Haghier Mountains. This association characterizes the evergreen Afromontane forests where heavy fogs and mists are typical. Kürschner identified three subassociations *typicum*, *Hyophiletosum involutae* (drought-tolerant; Figure 25), and *Papillarietosum croceae* (shade-loving humid; Figure 26).
These subassociations are dependent on altitude, forest structure, life conditions, and humidity. Both the typicum and *Hyophiletosum involutae* subassociations are characterized by perennial stayers or perennial shuttle species that form mats and short turfs. They regularly produce sporophytes. The *Papillarietosum croceae* subassociation is likewise characterized by perennial stayers and perennial shuttle species that are pendant or mat-forming, but these have large spores with moderate-low reproductive rates. As seen in the more humid areas in the 2003 study, the *Papillarietosum croceae* subassociation has a much higher species richness with more diverse life forms and life strategies.

For a comparative discussion of life strategies in bryophytes as functional types, see Kürschner and Frey (2013). This treatise addresses vegetation types and their associated bryophyte life strategies for both temperate and tropical systems, based on more than 140 bryophyte communities and 1,300 taxa for corticolous, saxicolous, and terrestrial bryophytes. Sporn (2009) compared life forms of bryophytes in various height zones in the forests of Central Sulawesi, Indonesia (Figure 27).

Figure 23. *Lejeunea* sp. growing as an epiphyll; *L. rhodesiae* forms an epiphytic alliance with *Sematophyllum socotrense* from the upper parts of Haghier Mountains, Yemen. Photo by Bramadi Arya, through Creative Commons.

Figure 24. *Sematophyllum substrumulosum; S. socotrense* forms an epiphytic alliance with *Lejeunea rhodesiae*. Photo by Johathan Sleath, with permission.

Figure 25. *Hyophila involuta*, in the drought-tolerant subassociation *Hyophiletosum involutae*, drying. Photo by Bob Klips, with permission.

Figure 26. *Papillaria crocea* in cloud forest – a species that prefers humid shade, found in the *Papillarietosum croceae* subassociation. Photo by Peter Woodard through Creative Commons.

Figure 27. Comparison of eight life forms of bryophytes among five zones (Z1-Z5) of canopy trees and 3 zones of understory trees (U1-U3) in southwestern Nigeria. See Figure 28 for location of zones. From Sporn 2009.
Experimental studies on tropical bryophytes are still rare. However, several have looked at osmotic potential. This is the potential of water molecules to move from a hypotonic solution (more water, less solutes) to a hypertonic solution (less water, more solutes) across a semi permeable membrane. The osmotic potential becomes more negative as solutions become more concentrated.

Hosokawa and Kubota (1957) discussed the resistance to desiccation of epiphytic mosses from a beech forest in southwest Japan and related this to osmotic pressure. They found that the amount of time adult bryophytes could tolerate desiccation varied by species, but also by season of collection.

Akande (1984) looked at the use of anhydrobiosis (strategy that permits organisms to survive severe dry and/or extreme cold or hot conditions they often encounter) by corticolous tropical bryophytes as a means of surviving dry periods. Akande (1985b) also demonstrated the importance of osmotic potential (measure of tendency of solution with dissolved salts to withdraw water from pure water by osmosis, across differentially permeable membrane) as a factor in resistance to water stress in four Nigerian corticolous species. Using the mosses Stereophyllum nitens (see Figure 29-Figure 30) and Calymperes palisotii (Figure 31-Figure 32) and the leafy liverworts Spruceanthus floreus (syn. = Mastigolejeunea florea; see Figure 33) and Frullania spongiosa (see Figure 12) he found that the osmotic potentials of the corticolous mosses are higher than those of the tested liverworts. These osmotic potentials increase from wet to dry season. Spruceanthus floreus is less desiccation tolerant than the two mosses, but all three of these taxa could survive desiccation of 0%, 32%, and 54% relative humidities for six months at room temperature.
Chapter 8-3: Tropics: Epiphyte Ecology, part 1

Figure 32. Calymperes palisotii, a species with high osmotic potential. Photo by Scott Zona, through Creative Commons.

Figure 33. Spruceanthus planiusculus in a genus where some of the tropical African species are less desiccation tolerant than mosses. Spruceanthus floreus has a demonstrated low osmotic potential. Photo by Claudine Ah-Peng, courtesy of Robbert Gradstein.

Proctor (2002) measured water relationships in two pendent mosses [Pilotrichella ampullacea (Figure 34), Floribundaria floribunda (Figure 35)] in Uganda. The estimated osmotic potential at full turgor in P. ampullacea was -1.82 MPa and in F. floribunda it was -1.43 MPa. Based on the definition above, net diffusion of water occurs from regions of less negative potential to ones of more negative (or lower) potential. Hence, in this case, more water would move into P. ampullacea. Both species are able to hold large quantities of external capillary water, up to ca. 12 in P. ampullacea and ca. 6 in F. floribunda. Pilotrichella ampullacea has a very rapid initial recovery (30-60 minutes after 20 h air drying at -37 MPa), but as desiccation time increased from 20 hours to 12 days recovery became less complete and full recovery time was slower. This osmotic relationship is well suited to its humid tropical forest environment. Floribundaria floribunda requires more continuously moist conditions.

Figure 34. Pilotrichella ampullacea, a species in Uganda that holds large quantities of external water. Photo by Jan-Peter Frahm, with permission.

Figure 35. Floribundaria floribunda, a species in Uganda that holds large quantities of external water, but requires nearly continuously moist conditions. Photo through Creative Commons.
Desiccation Recovery

One advantage that bryophytes have following desiccation is that liverworts and some mosses recover their full photosynthetic capacity within hours of rehydration, whereas resurrectable ferns such as Polypodium (Figure 36) need at least a full day (Peterson et al. 1994). On the other hand, liverworts and most mosses lose water very quickly, whereas orchids, bromeliads, and other succulent tracheophytes lose water slowly. But some mosses also are able to retain their water for a longer time, as, for example, Leucobryum (Figure 37). Leucobryum has several adaptations that facilitate its water storage. It has a tight, compact cushion life form (Figure 37); its leaves are several cells thick (Figure 38); and it has hyaline (colorless – lacking chloroplasts; Figure 38) cells that permit water storage. Peterson and co-workers found that plants in the understory and gaps dried more slowly than did plants in their box treatment that simulated the canopy. Those in the gap dried slightly faster than did those in the understory.

Figure 36. Polypodium polypodioides, a resurrection fern that requires a full day to recover from desiccation. Photo by Korall, through Creative Commons.

Figure 37. Leucobryum boninense, showing the cushion life form. Photo by Tomio Yamaguchi, through Creative Commons.

In French Guiana (Figure 39), 13 of 18 tested bryophyte species were able to maintain more than 75% of their photosynthetic capacity, as indicated by chlorophyll fluorescence, after 9 days of desiccation at 43% relative humidity (Pardow & Lakatos 2012). However, species from the understory required maintenance at 75% or higher relative humidity in order to recover. The researchers reactivated these bryophytes with water vapor only, a condition that is common in many tropical habitats, but which has been largely ignored in physiological ecology studies. The researchers concluded that tolerance to desiccation is of utmost importance as climatic changes occur (see also Wagner et al. 2013 and pertaining discussions in the subchapters on Tropics: Altitude).

Figure 38. Leucobryum glaucum leaf cs showing the outer hyaline cells surrounding the green chlorophyllous cells, typical of Leucobryum leaves. Photo by Walter Obermayer, with permission.

In French Guiana (Figure 39), 13 of 18 tested bryophyte species were able to maintain more than 75% of their photosynthetic capacity, as indicated by chlorophyll fluorescence, after 9 days of desiccation at 43% relative humidity (Pardow & Lakatos 2012). However, species from the understory required maintenance at 75% or higher relative humidity in order to recover. The researchers reactivated these bryophytes with water vapor only, a condition that is common in many tropical habitats, but which has been largely ignored in physiological ecology studies. The researchers concluded that tolerance to desiccation is of utmost importance as climatic changes occur (see also Wagner et al. 2013 and pertaining discussions in the subchapters on Tropics: Altitude).

Rainfall Interception

Frahm (2003a) compared the microhabitats of epiphytic bryophytes and lichens to determine why some trees were covered by lichens and others by bryophytes
(Figure 40) or others where lichens were in the crowns and bryophytes were on the trunks. Using humidity data loggers for one year, he used periods when the plants were wet and the relative humidity was at least 80%. He found that bryophytes typically thrive where there is a 20-30% longer duration of the wet period than where the lichens thrive. He cautioned that when doing pollution studies, such humidity differences should be considered.

Figure 40. Moss forest Mt. Ruwenzori Africa. Photo by G. Miehe, courtesy of Robbert Gradstein.

Pócs (1980) in the Uluguru Mountains, Tanzania (Figure 41), East Africa, examined the effect that epiphytic biomass (all kinds of epiphytes) had on the water balance of two rainforest types. With 2,130 kg ha⁻¹ dry matter in the submontane rainforest, the rain interception capacity was approximately 15,000 L ha⁻¹. By contrast, the mossy elfin forest (cloud forest; Figure 42) at 2,120 m altitude had approximately 14,000 kg ha⁻¹ with an interception capacity of 50,000 L ha⁻¹ during a single rainfall. Aerial humus accounts for a large portion of the interception capacity of the elfin forest, with ca 4,700 kg ha⁻¹ compared to ca 375 kg ha⁻¹ in the submontane rainforest.

Hölscher et al. (2004) examined the importance of epiphytes to rainfall interception in a tropical montane rainforest of Costa Rica. These canopy epiphyte masses are comprised mostly of mosses, liverworts, and lichens, all known for their ability to intercept rainfall. Biomass of all epiphytes was 1.9 t ha⁻¹ dry weight in the studied 35-m-tall old-growth oak (Quercus) forest. The monthly moss water contents measured in situ ranged 24-406% of moss dry weight. This contrasts with sums of observed throughfall, stemflow, and interception measurements of 70, 2, and 28%, respectively, of the associated 2,150 mm of rain. Cloud water was not a factor in this ecosystem. This study suggested that mosses contributed only about 6% to the interception total, making the bryophytes much less important than in many rainforest ecosystems.

In central Veracruz, Mexico, Holwerda et al. (2010) assessed rainfall and cloud-water interception in a mature forest (Figure 43) and a 19-year-old secondary lower montane cloud forest. The researchers used separate calculations for events with rainfall only. They estimated cloud-water interception at 6% of dry-season rainfall (640 mm on average) for the secondary forest and 8% for the mature forest. On the other hand, annual values of cloudwater interception were less than 2% of the total rainfall (3,180 mm). The researchers considered the higher
loss in the mature forest to be the result of a higher canopy storage capacity, reflected in the greater tree leaf area and more epiphyte biomass.

Figure 43. Cloud forest, Bosque Comaltepec, Mexico. Photo by Prsjl, through Creative Commons.

In Colombia, Veneklaas and van Ek (1990) found that rainfall interception was 262 mm (12.4%) of the 2,115 mm of annual precipitation at 2,550 m elevation and 265 mm (18.3%) of the 1,453 mm precipitation at 3,370 m elevation. They found no evidence of fog precipitation. Most of this rainfall interception was accomplished by the epiphytic bryophytes. They attributed the higher rainfall retention at 3,370 m to differences in rainfall distribution and canopy storage capacities. They considered epiphytes to have an important role in this retention. The total epiphyte mass was approximately 12 tonnes (metric ton = 1,000 kg) dry weight per hectare, with most of it consisting of bryophytes and dead organic matter. In experiments, Veneklaas et al. (1990) found that epiphyte-covered branches were efficient in capturing rainfall. Most of this capture was accomplished by bryophytes. Release of this rainwater was very gradual, and most was lost by evaporation.

In southeast Queensland, Ford (1994) found that epiphytes could absorb water 6-7 times their dry weight. This absorption affects stemflow and throughfall. The increased weight can cause outer, thin branches to break.

Figure 44. Spider web with fog drops; a similar appearance of water drops occurs on spider webs, fine wires, bryophyte leaf awns, and other thin structures in fog. For mosses, this is a source of water. Photo by Janice Glime.

Fog Interception

Some areas that receive little rainfall do experience fog on a regular basis (Lakatos et al. 2012). Fine wires and thin leaves are able to collect this fog water (Figure 44). Lakatos and coworkers measured dew formation on bark and lichens to be 0.29-0.69 mm d⁻¹. This water aids in cooling and provides enough moisture to prolong photosynthetic activity.

Fog (Figure 45) is an important contributor to the cloud forest (elfin forest) (Camilo et al. 2008). The abundant epiphytes in these forests benefit from this fog input, especially during periods of lower rainfall. Camilo and coworkers suggested that it is especially important when wind speed is high and leaf water content has intermediate values, but that at both low and high leaf water content the interception of fog water is constrained.
In a subtropical montane forest in northern Taiwan, Chang et al. (2002) estimated fog deposition rate on epiphytic bryophytes by measuring the increase in plant weight when exposed to fog. Fog duration in this forest averaged 4.7 hours per day in summer months and 11.0 hours per day in other months. The maximum duration was 14.9 hours per day in November. The bryophytes experienced an average fog deposition rate of 0.63 g water g\(^{-1}\) dw h\(^{-1}\).

Many bryophytes in the cloud forest and some tropical rainforests are *pendent* (Figure 34–Figure 35). Renner (1932) referred to these as dripping liquid water under various conditions in Javanese forests. León-Vargas et al. (2006) demonstrated the humidity stratification in the lowland Amazonian forest in upper Orioco (Figure 46). They found that all six species of *pendent* bryophytes in their Venezuelan cloud forests could survive at least a few days of desiccation. High humidities supported more recovery than low humidities. They considered droplets of cloudwater to be important sources of water for *pendant* and other bryophyte life forms, particularly during periods of low rainfall.

Gradstein et al. 2010; Obregón et al. 2011; Gehrig-Downie et al. 2013). This habitat is created by frequent early morning fog events in the valleys, providing suitable habitat for a richer epiphytic species diversity compared to the common lowland rainforest. In the French Guiana (Figure 39) they compared the distribution of functional groups of epiphytes by height zone in the lowland cloud forest and lowland rainforest. These forests differed in composition of epiphytes in the canopy, especially in the mid and outer canopy, with the cloud forest exhibiting both a higher biomass and cover of both bryophytes and tracheophytes. Furthermore, the cloud forest had a richer bryophyte life-form composition. The cloud forest frequently exhibited tails, wefts, and pendants, life-forms that were nearly absent in the canopies of the common rainforest.

Pardow et al. (2012) described a recently discovered tropical lowland cloud forest type in the Guianas (Figure 47), originally discovered by Gradstein (2006) (see Gradstein et al. 2010; Obregón et al. 2011; Gehrig-Downie et al. 2013). This habitat is created by frequent early morning fog events in the valleys, providing suitable habitat for a richer epiphytic species diversity compared to the common lowland rainforest. In the French Guiana (Figure 39) they compared the distribution of functional groups of epiphytes by height zone in the lowland cloud forest and lowland rainforest. These forests differed in composition of epiphytes in the canopy, especially in the mid and outer canopy, with the cloud forest exhibiting both a higher biomass and cover of both bryophytes and tracheophytes. Furthermore, the cloud forest had a richer bryophyte life-form composition. The cloud forest frequently exhibited tails, wefts, and pendants, life-forms that were nearly absent in the canopies of the common rainforest.

Microclimate

In any ecosystem, a diversity of microclimates can increase the diversity of species. These provide differences in substrate, temperature, light, and moisture availability. With their many layers of canopy, the tropical forests provide a wide range of microclimates and niches.

One might expect that gradients in light and humidity would affect species diversity and richness. In a Brazilian Atlantic Forest remnant, Silva and Pórrto (2013) found the highest diversity and richness in the trunk zone. But they found no significant difference of bryophyte total richness or diversity along edge distance or vertical zonation gradients. However, at the species level, they found that shade epiphytes decreased significantly along vertical gradients, while sun epiphytes increased. They concluded that the bryophyte distribution in the forest is more related...
to the microenvironmental gradation than to such landscape characteristics as edge distance.

Early studies by Biebl (1964, 1967) attempted to relate success of the tropical species to water and temperature. Wolf (1993a) recognized that some species from the Colombian lower montane rainforest were able to occupy the more exposed habitats in the warmer lowland rainforest of Guyana where they could receive more radiant energy. Furthermore, the epiphytes in the northern Andes tropical montane rainforests were divided by height on the tree, occupying a gradation of microhabitats characterized by differences in moisture (Figure 46) and light (Figure 48).

Figure 48. Light gradation from ground to canopy in an Amazonian lowland forest. Modified from León-Vargas 2001.

Temperature is one of the important aspects of microclimate. As noted by Wagner et al. (2013), bryophyte biomass and diversity both decrease dramatically as one goes from high to low altitudes in the tropics. They surmise that high respiration rates at high temperatures may at least in part explain this decrease. They transplanted two bryophyte species from 1,200 and 500 m asl to 500 m and sea level, respectively, in Panama and studied the short-term temperature acclimation of CO$_2$ exchange for 2.5 months. They also compared survival and growth for 21 months. Mortality was highest and growth lowest in transplanted samples, with no evidence of short-term acclimation.

Whereas the Wagner et al. (2013) study implies that temperature is important in altitudinal distribution of species, Wolf (1993c) suggests that it is a moisture gradient that accounts for epiphyte community differences in the northern Andes. Nevertheless, in a study in Panama, Zotz et al. (1997) found a strong diurnal variation in water content of tropical bryophytes in a lower montane rainforest. Both low and high water content limited carbon gain. More than half of the daily carbon gain was lost during the night as respiration, suggesting that temperature also was important.

Hosokawa and Odani (1957) tied the limits on the period of assimilation to the loss of carbon from respiration. They found that those species at the tree base (Thuidium cymbifolium (Figure 49), Loeskeobryum cavifolium (Figure 50), Thamnobryum subseriatum (Figure 51), Homaliodendron scalpellifolium (Figure 52) had a minimum light requirement of 400 lux, whereas those species higher in the trunk had a higher light compensation point (light level at which photosynthetic gain = respiration loss on daily basis). On cloudy days, only the mosses at the tree base could reach their compensation point.

Figure 49. Thuidium cymbifolium with capsules, a tree base species with minimum light requirements. Photo by Li Zhang, with permission.

Figure 50. Loeskeobryum cavifolium, a tree base species with minimum light requirements. Photo by Digital Museum Hiroshima, with permission.

Figure 51. Thamnobryum subseriatum, a tree base species with minimum light requirements. Photo by Michael Luth, with permission.
The CO₂ levels differ throughout the canopy. In a subalpine forest of Taiwan, higher CO₂ levels occur in the lower canopy (Kao et al. 2000). Low CO₂ levels can limit photosynthesis, but higher levels can help to compensate for limited light.

Cao et al. (2005) found a correlation between epiphylls and light, moisture, habitat, and disturbance due to human activities. They found that the number of epiphytes increased from the center of the city to the outer suburbs. In the city, 67.4% of the epiphytes had a Levin's niche width of less than 0.1.

Gehrig-Downie et al. (2011) found that the lowland cloud forest had significantly more epiphytic biomass than the lowland rainforest without fog in French Guiana (Figure 39). The lowland cloud forest is characterized by the high air humidity and morning fog that characterize river valleys in hilly areas, explaining the higher epiphytic bryophyte biomass.

Some of our understanding of microhabitat differences can be derived from studies on the effects of disturbance. For example, Werner and Gradstein (2009) conducted the first study comparing tracheophytic epiphytes and bryophytes along a disturbance gradient in a dry forest. They compared various degrees of disturbance in closed-canopy mixed acacia forest (old secondary), pure acacia forest (old secondary), forest edge, young semi-closed secondary woodland, and isolated trees in grassland (Figure 53). They found that density of bryophytic epiphytes on 100 trees of *Acacia macracantha* (in northern Ecuador; Figure 54) was significantly lower in edge habitat and on isolated trees than in closed forest. Forest edge was more impoverished than semi-closed woodland and had similar floristic affinity to isolated trees and to closed forest types. The microhabitats among these habitat types varied, contributing to the diversity. As they pointed out, "Assemblages were significantly nested; habitat types with major disturbance held only subsets of the closed forest assemblages, indicating a gradual reduction in niche availability." They found no diversity effect from distance to the forest for epiphytes on isolated trees. Species density was closely correlated with crown closure. They concluded that microclimate, not dispersal constraints, determined most of the epiphyte assemblage. Their most important conclusion is that in these dry environments, tracheophytic epiphyte diversity is not affected by disturbance, whereas bryophyte diversity is clearly affected. They attribute this to the poikilohydric bryophyte condition that is more sensitive to changes in microclimate as compared to that of the homoiohydric tracheophytic epiphytes. The importance of microclimate for niche assembly of epiphytic bryophytes and absence of dispersal constraints is further supported by Oliveira et al. (2009) in the Guianas.

Oliveira (2018) noted that the major differences from base to outer canopy are those of relative abundance. She then tested character traits of 104 species of epiphytic Lejeuneaceae (Figure 6, Figure 23) in the Amazonian terra firme forests. She examined dispersal ability, dark pigmentation of leaves, ability to convolute leaves when
drying, possession of thickened cell walls, monoicous vs dioicous reproduction, and facultative epiphyllous habit. Four of these six traits proved useful in separating canopy and/or understory communities. Interestingly, high dispersal ability did not vary much along the height gradient. She further noted that asexual propagules were not over-represented in the dynamic environment of the canopy, seemingly challenging the bryophyte life strategy theory.

Oliveira (2018) found that facultative epiphylls were over-represented on the tree bases. Dark pigmentation and convolute leaves were significantly more common in the canopy and less common at the base. These two traits can protect against high light intensity and prolong periods of hydration, respectively. The paucity of these species at the bases of trees may be the result of high temperatures and low light, made lower by the pigmentation, while the prolonged hydration in these conditions would add to a high rate of respiration relative to photosynthesis.

Stuntz et al. (2002) noted that microclimate goes two directions. Bryophytes not only respond to the microclimate around them, but they can have a major impact on the microclimate of the forest around them. To put it in the descriptive wording of the researchers, they "air-condition the forest."

Although their study included only two orchids and a bromeliad, Stuntz et al. (2002) showed that the space around these epiphytes had significantly higher temperatures than did areas of the same tree with no epiphytes. Evapotranspiration was reduced about 20% compared to microsites with no epiphytes. This study would suggest that the effect of bryophytes on the microclimate in tropical forests could likewise be significant.

Understanding of the microclimate is important in management strategies if one wants to protect the bryophytes (Sporn 2009; Sporn et al. 2009). These researchers sampled understory trees in a natural forest and in two types (natural shade trees and planted shade trees) of Theobroma cacao (cacao; Figure 55) agroforests in Central Sulawesi, Indonesia. The two agroforests had low air humidity and high afternoon temperatures. Although bryophyte species richness differed little among the habitats, the species composition was markedly different between the natural forest and the agroforests. These differences were most likely the result of microclimate differences.

Nutrient Dynamics

Akande et al. (1985a) found that the nutrients in the tested corticolous bryophytes increased from the dry season to the wet season. The nutrient fluctuations were more pronounced in mosses than in the liverworts tested. They concluded that bryophytes must be significant in the nutrient cycling of tropical ecosystems.

We are beginning to understand now how bryophytes play a major role in nutrient dynamics in the tropical forest. Their ability to sequester rain and fog water consequently means that they can sequester the nutrients dissolved in this water. When they dry out, damaged membranes release the nutrients, and the early stages of precipitation dissolve these released nutrients and carry them downward.
Nadkarni (1983, 1986) noted the importance of epiphytes in making a significant contribution to the overall nutrient cycling in both temperate forests and tropical rainforests. In both forest types they absorb nutrients collected from the atmosphere during the dry season. The net release from branches with epiphytes during the wet season is greater than that from branches stripped of their epiphytes. Chang et al. (2002) measured ion input in a subtropical montane forest in Taiwan and found that more than 50% of the ecosystem input arrived in fog deposition, suggesting that fog is an important nutrient contributor in some tropical ecosystems.

Nadkarni et al. (2004) found that the primary forest canopy of a cloud forest in Costa Rica had 63% of its organic matter as dead organic matter (DOM). Bryophytes comprised 12%. By contrast, the canopy organic matter of the secondary forest was 95% bryophytes, with only 3% DOM. Different locations within the primary canopy varied, with branch junctions having only dead organic matter and roots. Rather, bryophytes were the only organic matter at branch tips, subcanopy, and understory substrates. The trunks had diverse organic matter, but were dominated by tracheophytes and bryophytes; little dead organic matter was present. The secondary forest differed in having little difference in organic matter between trunks and branches. Canopy organic matter was high because of the strong presence of bryophytes. One surprise was that bryophytes were absent in branch junctions, although that is a likely place for them in other ecosystems. The researchers recommended transplant studies to try to determine the causes of the bryophyte distribution on the trees.

Rainfall vs Throughfall

Not all nutrients respond to their trip through the bryophyte sponges in the same way. Clark et al. (1998b) assessed net retention of ions by the canopy in a tropical montane forest, Monteverde, Costa Rica. They found that phosphate, potassium, calcium, and magnesium were leached from the canopy, but nitrogen compounds were retained.

Höscher et al. (2003) determined that differences in the canopy structure of predominately *Quercus copeyensis* (Figure 57) forests and epiphyte (mosses, liverworts, and lichens) abundance in old growth vs two ages of secondary growth in Cordillera Talamanca, Costa Rica, resulted in large differences in the way nutrient transport was divided into stemflow and throughfall. Nevertheless, the nutrient transfers reaching the soil were similar. Significantly higher litterfall of non-tracheophyte epiphytes indicated the higher epiphyte load in the old-growth forest.

In seeming contrast to the findings of Clark et al. (1998b), in a Venezuelan rainforest with a low-nutrient forest floor, the fluxes in calcium, sulfur, and phosphorus in the rainfall were greater than those in the throughfall (Jordan et al. 1980). Other elements occasionally had greater fluxes in the rainfall than in throughfall. Jordan and coworkers suggested that the canopy epiphylls (algae, lichens) intercepted and modulated the nutrients, resulting in their conservation in the canopy. Phosphate, potassium, calcium, and magnesium were at sometime later leached from the canopy. Seasonal data suggest that biomass burning increased concentrations of NO₃⁻ and NH₄⁺ in cloud water and precipitation at the end of the dry season.

Regardless, a large majority of the inorganic N in atmospheric deposition was retained by the canopy at this site.

![Quercus copeyensis with trunk epiphytes. Photo through Creative Commons.](image)

To help us understand the effects the rainforest has on the nutrients, Wilcke et al. (2001) established five 20-m transects on the lower slope of a tropical lower montane rainforest in Ecuador. In the soil, they found the total Ca (6.3-19.3 mg kg⁻¹) and Mg concentrations (1.4-5.4) in the O horizon were significantly different between the transects. The throughfall ranged 43-91% of the rainfall; cloudwater inputs were less than 3.3 mm yr⁻¹ except for one of the five transects where it was 203. Even the pH was affected by filtering through the canopy and associated epiphytes, increasing from a mean of 5.3 in the rainfall to 6.1-6.7 in the throughfall.

The leaves in this rainforest increase the element (Al, TOC, Ca, K, Mg) concentrations in the throughfall due to leaching from the leaves and washing off the dry deposition (TOC, Cu, Cl, NH₄⁻-N) (Wilcke et al. 2001). This could be an advantage for inner canopy bryophytes that receive these nutrients from the top of the canopy. Only Mn, Na, and Zn escape enhancement as a result of throughfall contacts. However, in high flow events, even Mn and Zn are elevated in the throughfall.

The nutrient input to forest bryophytes is higher at 2,250 m than at 3,370 m asl in two montane tropical rainforests of Colombia (Veneklaas 1990) attributed this to the greater precipitation volume at the lower altitude. The losses of nutrients from the canopy were likewise higher at 2,550 m. Veneklaas considered the differences between forests to be related to differences in precipitation, geographical situation, and soil nutrient availability.

Bryophytes can alter the nutrient dynamics of the forest in a variety of ways. They act as sponges, absorbing rainfall, and with it the nutrients carried by that rainwater. Epiphytes furthermore trap water and nutrients as they flow down branches and tree boles, retaining nutrients leached from bark, leaves, and other kinds of epiphytes or collected in their dust. They host a variety of nitrogen-fixing bacteria, most notably the Cyanobacteria (Figure 58).
Nitrogen Dynamics

Bergstrom and Tweedie (1998) found that epiphytes were able to access at least three sources of nitrogen, including atmospheric, the phorophyte through decomposed litter, and a source of nitrogen fixation. The 15N exhibited considerable spatial heterogeneity within the tree.

Clark and coworkers (Clark 1994; Clark et al. 2005) reminded us of the large role bryophytes can have in nitrogen dynamics of a tropical forest. The assemblages of epiphytic bryophytes, vascular epiphytes, litter, and associated humus harbor ~80% of the inorganic nitrogen retained in the canopy (Clark 1994). The forest canopies are able to trap and retain inorganic nitrogen from rainfall, dry deposition of gasses, vapors, and particles, and nitrogen previously trapped by clouds. Because they form much of the surface area in the canopy and lack a thick cuticle (many, perhaps all, bryophytes have a waxy cuticle, but it is very thin) and epidermis, they are able to trap and retain this nutrient much more effectively than the tree leaves. Clark and coworkers compared nitrogen retention of field samples of epiphytic bryophytes, epiphytic assemblages, epiphytic tracheophyte foliage, and host tree foliage to cloud water and precipitation in a tropical montane forest canopy in Costa Rica. They estimated, using models and field data, that epiphytic bryophytes and epiphyte assemblages retained 33-67% of the nitrogen deposited by cloud water and precipitation. The model predicted an annual retention of 50% of the inorganic nitrogen that arrived through atmospheric deposition. The bryophytes are important in the transformation of inorganic nitrogen such as nitrates to less mobile forms such as ammonia, but also deposit some of it in recalcitrant (unresponsive to treatment; resistant, i.e., it doesn't break down easily, if at all) forms of biomass, litter, and humus.

The collected nitrogen that is added to the epiphytic biomass, litter, and canopy humus (Vance & Nadkarni 1990, 1992) is eventually added to the very large pool of nitrogen in the soil organic matter (Edwards & Grubb 1977; Grieve et al. 1990; Bruijnzeel & Proctor 1995). Clark et al. (1998b) found that the net nitrogen accumulation was ~8-13 kg ha$^{-1}$.

Cloud loadings can contribute to nutrient availability. Clark and Nadkarni (1992) experimented with excised epiphytes from Monteverde, Costa Rica, by subjecting them to NO$_3^-$ loadings; from 0% to 90% of that NO$_3^-$ is retained by the epiphytes. Ammonium (NH$_4^+$) is considerably more variable, ranging from a 200% loss to a 90% gain. These bryophytic epiphytes retain ca. 85% of the nitrate N from the atmospheric deposition to the canopy.

Wania et al. (2002) used 15N levels to compare nitrogen in various positions within the forest canopy of a lowland rainforest in Costa Rica. The 15N levels of canopy soils did not vary significantly, but the content in the epiphytes (including bryophytes) in different canopy layers did. The researchers concluded that epiphytes in different levels exhibited different 15N during nitrogen acquisition.

Wanek and Pörtl (2008) examined nitrogen (NO$_3^-$, NH$_4^+$, and glycine) uptake in bryophytes of a lowland rainforest of Costa Rica. They found no significant differences between the epiphyllous and epiphytic bryophytes. The mean uptake rates for these bryophytes are 1.8 µmol g$^{-1}$ dw h$^{-1}$ for nitrate, 3.6 µmol g$^{-1}$ dw h$^{-1}$ for ammonium, and 3.4 µmol g$^{-1}$ dw h$^{-1}$ for glycine, suggesting that amino acids such as glycine significantly contribute to bryophyte nutrition in these epiphytes.

Most of the nitrogen fixation probably occurs on leaves with epiphylls. In any case, it is an important contributor to the tropical forest nitrogen dynamics. Matzek and Vitousek (2002) found that the total nitrogen fixation in a Hawaiian montane rainforest (Figure 59) was highest in sites having low N:P ratios in the leaves and stemwood. They suggested that epiphytic bryophytes and lichens depend on canopy leachate for their mineral nutrients, but the heterotrophic nitrogen fixation is controlled by the nutrient supply in the decomposing substrate. Differences in substrate cover had a larger effect on total N input from fixation than did fixation rates, a conclusion consistent with the low fixation rates observed in young forests. Nitrogen fixation in the phyllosphere (space surrounding a leaf) will be discussed under epiphylls.
In 1998, Clark et al. (1998a) used epiphytic bryophyte samples in enclosures to estimate rates of growth, net production, and nitrogen (N) accumulation by shoots in the canopy in a tropical montane forest in Monteverde, Costa Rica. They also used litterbags to estimate rates of decomposition and N dynamics of epiphytic bryophyte litter in the canopy and on the forest floor. They estimated N accumulation at 1.8-3.0 g N m\(^{-2}\) yr\(^{-1}\). The cumulative mass loss from litterbags in the canopy after one year was 17±2\% (mean ± 1 SE) and after two years 19±2\% of initial sample mass. Mass loss from litter in litterbags after one year on the forest floor was 29±2\%, and from green shoots 45±3\%. On the forest floor, ca 47\% of the initial N mass was lost within the first three months. The N that remained in the litter was apparently recalcitrant (resistant to microbial decomposition), although there was no evidence for net immobilization by either litter or green shoots. The annual net accumulation of N by epiphytic bryophytes was ca 0.8-1.3 g N m\(^{-2}\) yr\(^{-1}\).

Akande and coworkers (Akande 1985a; Akande et al. 1985) concluded that the role of bryophytes in nutrient cycling of African tropics is significant and requires study. Nutrient contents of bryophytes fluctuate with season, and in three forests at Ibadan, Nigeria, the highest mean monthly nutrient composition of the bryophytes is in June to July, with the lowest in November to January. Magnesium is an exception, reaching its peak in October to July, with the lowest in November to January. The cycling rates for mineral nutrients fluctuate with season, and there are considerable differences between species, although the phenological patterns are very similar, with mosses accumulating more than liverworts. Relationships of bryophyte concentrations to those of bark suggest that the bryophytes obtain its nutrients from stemflow containing leachates not only from the canopy leaves, branches, and canopy dust, but also from the bark, and that bryophytes do not get nutrients directly from the bark, but rather get them only from those leached out by rain. Akande et al. concluded that the predominant source of these nutrients was from dust and other pollutants such as smoke and sulfur dioxide.

Base cation and fluxes increase in throughfall, but NH\(_4\)\(^{+}\)-N and NO\(_3\)^{-1}-N decrease relative to that in rainfall in a subtropical montane moist forest in Yunnan, southwest China (Liu et al. 2002). The throughfall inputs of N, P, Ca, and S come primarily from precipitation, whereas most of the potassium and 2/3 of the magnesium in throughfall come from canopy leaching. The cycling rates for mineral elements are generally low compared to other tropical forests. Epiphytes are abundant on the bole and affect the chemical composition of the stemflow through selective uptake or release of elements. The total N, NH\(_4\)\(^{+}\)-N, Mg, Na, and SO\(_4\)\(^{2-}\)-S are enhanced, while NO\(_3\)^{-1}-N, K, P, and Ca are depleted in stemflow. Nitrogen from nitrogen-fixing organisms is low, most likely due to constraints by low temperatures.

In a study in the subtropical forest of northeastern Taiwan (Figure 60), Hsu et al. (2002) noted that nutrients in epiphytes and tree foliage are more readily available than those in the woody parts of the tree, making the tiny bryophytes proportionally more important than their size would suggest.

Pulse Release

One mechanism by which the bryophytes help the forest floor plants is through pulse release of nutrients. This burst of nutrients occurs when dry bryophytes with damaged membranes first get water that wets them. This pulse is especially important for nutrients that are typically held in nutrient pools within the cells. The damaged membranes resulting from drying permits the rain to leach these nutrients from their otherwise safe interior locations. Coxson (1991) estimated the efflux of these solutes from stem segments of canopy bryophytes in tropical montane rainforest in Guadeloupe (Figure 61). These reached 80.1 kg ha\(^{-1}\) yr\(^{-1}\) for potassium, 1.4 kg ha\(^{-1}\) yr\(^{-1}\) for phosphorus, and 11.8 kg ha\(^{-1}\) yr\(^{-1}\) for nitrogen in these rewetting episodes. On the other hand, estimates using intact bryophyte mats during natural field rewetting episodes were smaller, causing release of 28.7 kg ha\(^{-1}\) yr\(^{-1}\) for potassium and 0.2 kg ha\(^{-1}\) yr\(^{-1}\) for phosphorus. The lower numbers most likely result from internal recycling of released ions within the bryophyte mats.

Within the cloud forest canopy, and most likely elsewhere in the tropics, bryophytes accumulate considerable quantities of sugars (Coxson et al. 1992). In Guadeloupe, French West Indies (Figure 61), more than 950 kg ha\(^{-1}\) of sugars and polyols are released by epiphytic bryophytes per year as a result of wetting and drying cycles. The sugars come as a pulse during re-wetting, contributing to growth of the microbial flora both within and beneath the canopy. These sugars and polyols account for 17\% of the dry weight of the upper canopy liverwort *Frullania atrata* (Figure 62), while providing less than 6\% of the dry weight of the lower canopy moss *Phyllogonium fulgens* (Figure 63). (The name *Frullania atrata* may be incorrect as many species have incorrectly been identified as this one.)
Keystone Resource

Nadkarni (1994a) attributed to the canopy epiphytes the role of keystone resource in the nutrient cycling of tropical forest ecosystems. That is, this is a resource that is critical to the structure and function of the ecosystem, without which the system would cease to function as it does. The epiphytic bryophytes may have a key role in the nutrient dynamics of these forests.

In a subtropical forest of the Ailao Mountains in Yunnan, southwest China, Liu et al. (2002) found that bryophytes enhance the annual amounts of total N, NH$_4^+$-N, Mg, Na, and SO$_4^{2-}$-S but deplete NO$_3^-$-N, K, P, and Ca in the stemflow. Although many kinds of N-fixing organisms often are associated with epiphytic bryophytes, their contribution to total N in the mountains of Yunnan is most likely constrained by low temperatures. In a montane rainforest of the warmer Hawaii, on the other hand, Matzek and Vitousek (2003) found that the potential nitrogen fixation ranges from ~0.2 kg ha$^{-1}$ yr$^{-1}$ in a 300-year-old site to ~1 kg ha$^{-1}$ yr$^{-1}$ in a 150,000-year-old site. They felt that the dependence of epiphytic bryophytes and lichens on nutrients leached from the canopy might account for the fact that the highest fixation rates occurred in sites with low N:P ratios in the leaves and stemwood of the trees. For heterotrophic fixation, the nutrient supply offered by the decomposing substrate is also important in controlling the fixation rate. Thus, older substrata with more epiphytes are likely to contribute more nutrients to these N fixers, and indeed Matzek and Vitousek did find that the fixation rates relate to substrate cover.

With an epiphyte biomass and associated soil of 44 tons ha$^{-1}$, the epiphytes form a significant contribution to the Colombian upper montane rainforests (Hofstede et al. 1993). The 20 kg of epiphytes exceeded the biomass of the...
part of the tree that supported them. In this epiphytic community, the researchers found 2,360 g N, 215 g P, 1,350 g K, and 99 g Ca. The epiphytes create large accumulations of bryophytes, favored by low temperatures, continuous high humidity, low air turbulence, and the structure of the forest. The water-soluble phosphorus stored in the epiphytic biomass is higher than that of the forest floor soil.

Pentecost (1998) assessed the cryptogamic epiphytes in the upper montane forest of the Rwenzori Mountains of Uganda (Figure 64). He found that the lichens contain ~2% of the total above ground nutrients, whereas 8% occurs in the bryophytes. The concentrations of the three "fertilizer" nutrients were N (10 kg ha⁻¹), P (1 kg ha⁻¹), and K (3 kg ha⁻¹).

Nadkarni (1984) reported 141.9 kg of epiphytes on a single Clusia alata (Figure 65) in a Costa Rican cloud forest. The nutrients in these epiphytes were estimated as 1062 g N, 97 g P, 678 g K, 460 g Ca, 126 g Mg, and 207 g Na. This is significant because this relatively small component (less than 2%) of the forest biomass holds up to 45% of the nutrients found in the foliage of similar forests and stresses the importance of epiphytes as keystone resources in the nutrient dynamics of these forests.

Canopy Roots

To me, the most intriguing relationship is the relationship of bryophytes with canopy roots, first discovered and described by Nalini Nadkarni in her classical paper in Science (1981). Laman (1995) reported the improved germination of Ficus stupenda in moss beds associated with canopy knotholes, attributing their survival to good moisture retention. However, seed harvesting ants (Pheidole sp.; Figure 66) killed many of the seedlings later in development.
Epiphytic bryophytes also provide a rooting medium for adventitious roots (roots that arise from stem tissue; Figure 67) of trees. In fact, a dynamic interaction may occur in which the bryophytes help the tree, and the tree roots likewise help the establishment of the epiphytic community (Nadkarni 1994b). The bryophyte mat traps inorganic nutrients (Nadkarni 1986) and organic nutrients (Coxson et al. 1992) that are leached from members of the epiphyte community. These nutrients nourish the roots of the tree (Nadkarni & Primack 1989). The two appear to grow in mutual benefit, with the roots benefitting from the nutrients and providing a larger anchoring system for the epiphytes as they grow (Nadkarni 1994b). As the bryophytes and organic matter increase, they provide more leachates, causing the tree roots to increase.

Figure 67. Adventitious roots of banyan tree (Ficus benghalensis). Photo through Creative Commons.

Nadkarni (1981) found that epiphytes, including bryophytes, stimulate the growth of adventitious roots. The bryophytes serve to trap nutrients for them, and the relationship is so strong that Nadkarni argues that evolution has selected for it.

In Senecio cooperi (Figure 68), a species in the tropical cloud forest, Nadkarni (1994b) experimented with epiphytes air-layered on stem segments. For comparisons, she used wet epiphytes or dry epiphytes plus associated humus, sponges wetted with either water or nutrient solutions, dry sponges, and controls with no added layering. The wet epiphyte-humus mix and sponges with nutrient solutions were most successful in producing roots. Nadkarni suggested that the epiphytes intercept nutrients that they retain and provide the "cue" for the host tissue to produce the roots.

Some adventitious roots take advantage of the microenvironment created by epiphytic bryophytes (Sanford 1987). The roots are able to grow upward, and can do this in as rapidly as 5.6 cm in 72 hours. The roots are less than 2 mm in diameter and grow on the exposed bark surfaces, in bark fissures, and beneath attached epiphytic mosses, ferns, and vines.

Epiphytes decompose in the canopy to form soil on the large branches (Hietz et al. 2002). Epiphyte groups differ, in part relating to uptake of N through mycorrhizae or nitrogen fixation. These different sources affect the highly variable quantity of epiphytes, often depending on the systematic group and canopy position.

Figure 68. Senecio cooperi, a species that produces aerial roots in wet epiphytes. Photo by Dick Culbert, through Creative Commons.

In Hawaii, the koa tree (Acacia koa; Figure 69) takes advantage of the bryophyte mats for moisture and other favorable conditions (Leary et al. 2004). The roots of this tree actually grow upward and form nodules (Figure 70) with the bacterium Bradyrhizobium (Figure 71) in pockets of organic soils within the canopy. These organic soils in the tree contain significantly higher levels of exchangeable cations and total nitrogen, and significantly lower aluminum levels than the ground soils. Some of these mats have significant bryophyte presence.

Figure 69. Acacia koa, Maui, Hawaii, a species that forms adventitious roots in moss clumps on the trunk. Photo by Forest and Kim Starr, through Creative Commons.
Figure 70. *Acacia koa* nodules in a bed of mosses. Photo courtesy of Leary *et al.* 2004.

Figure 71. *Bradyrhizobium* from root nodule. Photo by Louisa Howard, through public domain.

Herwitz (1991) examined the aboveground adventitious roots of *Ceratopetalum virchowii* (see Figure 72) in an Australian montane tropical rainforest. These roots developed from stems and branches of this canopy species. In this case, Herwitz could find no evidence that this tree requires the epiphyte mats to stimulate its root growth. Instead, it appears that the stemflow of this species is particularly rich in Ca$^{2+}$, Mg$^{2+}$, and Na$^+$ compared to the soil. The bark of this species remains moist for a long period of time, providing a suitable environment for the adventitious root.

Productivity and Biomass

Studies on productivity in the tropics are rare. Jacobsen (1978) published one of the earliest studies. Most seem to be simply reports of standing crops. Several look at the effects of temperature on net carbon storage (see above under Microclimate).

Köhler *et al.* (2007) reported that bryophytes dominate the epiphytic vegetation in both an old-growth cloud forest and a 30-year-old secondary forest on slopes of the Cordillera in northern Costa Rica. The combined epiphyte biomass and canopy humus was 16,215 kg ha$^{-1}$ in the old-growth forest and 1,035 kg ha$^{-1}$ in the secondary forest.

Van Dunne and Kappelle (1998) studied epiphytic bryophytes on five small stems of *Quercus copeyensis* (Figure 73) in a Costa Rican montane cloud forest (Figure 73). They found 22 species of mosses and 22 species of liverworts. Biomass of the bryophytes correlates with their frequency, with bryophytes contributing 54-99% of the biomass. Nearly 90% of the biomass is contributed by only 14% of the species, with the predominant contributors being the mosses *Pilotrichella flexilis* (Figure 10), *Rigodium* sp. (Figure 74), *Porotrichodendron superbum* (Figure 75), *Prionodon densus* (Figure 76), *Neckerachilensis* (see Figure 77), and the leafy liverwort *Plagiochila* (Figure 78).
Frahm (1987) raised the question of how altitude affected the biomass and productivity of epiphytes in the tropics. Researchers had typically assumed that it related to greater light and lower temperatures at higher altitudes, permitting greater photosynthesis, but no physiological studies had been used to support this hypothesis. In his study, he used a transect with sampling at 200-m intervals from 200 to 3,200 m asl in Peru. He determined biomass in the field and measured CO₂ gas exchange in a series of light and temperature combinations in the lab. The lab experiments used specimens from 2,300 m asl collected in Colombia in October. These were 150 cm² specimens of the mosses *Neckera* sp. (Figure 77), *Heterophyllum affine* (Figure 79), *Porotrichum* sp. (Figure 80), and the liverwort *Metzgeria* (Figure 81). These experiments support the
hypothesis that it is a combination of high temperatures and low light that limits most of these tropical bryophytes at lower elevations. They are unable to store enough carbon in the low light to balance that lost to respiration at the high temperatures of the lowland forest. This is supported by experiments with temperature on the moss *Plagiomnium rhynchophorum* (Figure 82-Figure 83), but unfortunately, no methods were provided.

Figure 79. *Heterophyllum affine*, a species in which high temperatures and low light limits these tropical bryophytes. Photo by Blanka Shaw, with permission.

Figure 80. *Porotrichum bigelovii*, a species in this genus has high temperature and low light limits in tropical habitats. Photo by Ken-ichi Ueda, with online permission.

Figure 81. *Metzgeria*, a genus that has high temperature and low light limits in tropical habitats. Photo by Michael Lüth, with permission.

Figure 82. *Plagiomnium rhynchophorum* with capsules, a mostly Asian tropical moss that has no net photosynthetic gain at 25°C and above. Photo by Germaine A. Parada, through Creative Commons.

Figure 83. Photosynthesis of *Plagiomnium rhynchophorum* (Figure 82) under various temperature conditions at 1500 lux. The montane forest conditions of 5° and 15°C yield sufficient net photosynthesis; the lowland condition of 25°C permits photosynthesis throughout the day but no net photosynthetic gain. At 35°C no net photosynthesis occurs during the day. Graph modified from Frahm 2003b.

Wolf (1993b) found that altitude explains most of the variation in the epiphytic bryophytes and lichens on selected bark types of canopy trees, using 15 sites on an altitudinal transect from 1,000 to 4,130 m asl in the Central Cordillera of Colombia (Figure 84). Species richness varies among the three groups (mosses, liverworts, and lichens). Liverworts reach their greatest species richness (ca 100 taxa) at mid-elevational sites (2,550-3,190 m asl). In this case, biomass of bryophytes and lichens increases with altitude, coinciding with an increase in humidity.

Figure 84. Cordillera in central Colombia. Photo by Samuel Rengifo, through Creative Commons.
Hofstede et al. (1993) examined the relationship between the epiphytic biomass and the nutrient status in a Colombian upper montane forest near the treeline at 3,700 m asl with a massive presence of epiphytes. The amount of accumulated epiphytic mass, suspended soil, and living plants on a full-grown tree was 32.7 g dry weight per dm² surface area, the highest documented value ever. This high value is attributed to a combination of low temperatures, high humidity, low wind velocities, and structural characteristics of the tree.

Müller and Frahm (1998) sampled epiphytic bryophytes in a montane rainforest in the Andes of Ecuador at about 2,000 m asl. They measured the dry weight on various parts of the trees and found that on trunks it was 80 g m⁻², on branches 1,873 g m⁻², and on twigs 1,230 g m⁻².

Clark et al. (1998a) conducted one of the few studies on retention of carbon by the tropical epiphytic bryophytes. They found an annual net accumulation of carbon to be approximately 37-64 g C m⁻² yr⁻¹ in their study in a tropical montane forest in Monteverde, Costa Rica. Net production of epiphytic bryophytes in the forest was 122-203 g m⁻² yr⁻¹.

In the upper montane forest of the Rwenzori Mountains of Uganda, Pentecost (1998) found that large cushion-forming liverworts are dominant in the lower canopy. These are predominately Chandonanthus (Figure 85), Herbertus (Figure 86-Figure 87), and Plagiochila (Figure 88) species. Their productivity is controlled by light intensity and substrate tree age. In total, he found 14 species of bryophytic epiphytes. The total epiphytic biomass, including bryophytes, lichens, and algae, contribute nearly 1 ton ha⁻¹ standing crop, a figure that is approximately 10% of the above-ground standing crop.

Figure 85. Chandonanthus birmensis, in a genus that forms large cushions in the lower canopy of the Rwenzori Mountains of Uganda. Photo by Manju Nair, through Creative Commons.

Figure 86. Herbertus aduncus in BC, showing large "muffs" around branches. This genus forms large cushions in the lower canopy of the Rwenzori Mountains of Uganda. Photo by Botany Website, UBC, with permission.

Figure 87. Herbertus aduncus showing dense cushions formed by this genus in the lower canopy of the Rwenzori Mountains of Uganda. Photo from Botany Website, UBC, with permission.

Figure 88. Plagiochila cristata showing dense cushions like those formed by other members of this genus in the lower canopy of the Rwenzori Mountains of Uganda. Photo by Michael Lüth, with permission.
Lösch et al. (1994) describe differences in environmental conditions and photosynthetic rates for bryophytes in a rainforest (800 m asl), a bamboo forest, and a tree-heath (2,200-3,200 m asl) in east central Africa. In the lowland rainforest, the climatic conditions are a nearly constant 24°C, 100% relative humidity, and PAR below 100 µmol photons m⁻² sec⁻¹. The mountain bryophytes exhibit approximately 6 times those daily sums of PAR while experiencing temperatures of 10-25°C and relative humidities of 60-100%. In the bamboo forest, the epiphytic mosses experience water loss down to less than 70% of their water content, but become saturated again from the vapor-saturated air at night. In these habitats, the photosynthesis peaks between 22 and 30°C. The lowland species exhibit higher optima than do those of the mountain sites. The light saturation points for all species are below 400 µmol photons m⁻² s⁻¹, but the slopes differ. Those bryophytes from the lowland have a smaller light compensation point (3-12 µmol photons m⁻² s⁻¹), accompanied by a steeper slope in the low-light range. In the highland, the compensation point is 8-20 µmol photons m⁻² s⁻¹.

Waite and Sack (2010) considered the relationship of moss photosynthesis to leaf and canopy structure. These include ground-dwelling species as well as branch and trunk dwellers: Acroporium fuscoflavum (Figure 89), Campylopus hawaiicus (Figure 90), Distichophyllum freycinetii (Figure 91), Fissidens pacificus (Figure 92), Holomitrium seticalycinum (see Figure 93), Hookeria acutifolia (Figure 94), Leucobryum cf. seemannii (Figure 95), Macromitrium microstomum (Figure 96), M. piliferum (Figure 97), and Pyrrhobryum pungens (see Figure 98) (all mosses). Interestingly, they did not find any correlation between light saturation for photosynthesis and habitat irradiance. The bryophytes have low leaf mass per area and a low gas exchange rate. The nitrogen concentration, as well as Amax (maximum assimilation per unit leaf mass) has a negative correlation with the canopy mass per area. Campylopus pyriformis (Figure 99) exhibits a high Amax (maximum assimilation) that could be the result of its high leaf area index. Anatomical factors such as smaller cells, thicker cell walls, or physiological adaptations such as higher osmotic adjustment could lower the potential for a higher Amax in sun mosses.
Figure 92. *Fissidens pacificus*, a moss for which there is no correlation between light saturation for photosynthesis and habitat irradiance. Photo by Jan-Peter Frahm, with permission.

Figure 93. *Holomitrium trichopodum; Holomitrium seticalycinum* is a moss for which there is no correlation between light saturation for photosynthesis and habitat irradiance. Photo by Niels Klazenga, with permission.

Figure 94. *Hookeria acutifolia*, a moss for which there is no correlation between light saturation for photosynthesis and habitat irradiance. Photo by Michael Lüth, with permission.

Figure 95. *Leucobryum seemannii*, a moss for which there is no correlation between light saturation for photosynthesis and habitat irradiance. Photo by Jan-Peter Frahm, with permission.

Figure 96. *Macromitrium microstomum*, a moss for which there is no correlation between light saturation for photosynthesis and habitat irradiance. Photo by Janice Glime.
Epiphyte Litterfall

Both bryophyte and tracheophyte litter can fall from the trees, especially during severe storms. This is a loss of canopy productivity, but provides a new source of nutrients for the soil, and in some cases these plants may continue growth on the ground.

Matelson et al. (1993) considered the rate of nutrient release from bryophytic and other epiphytic litter fall. They determined that it varies with microhabitat and suggested that both spatial and temporal distribution should be studied at the species level as they relate to microhabitat characteristics.

Köhler (2002) investigated total epiphytes in 10-15-year-old early secondary forest, a 40-year-old later-stage secondary forest, and an old-growth (primary) forest in Costa Rican mountain rainforests. Succession resulted in an increase in epiphytic litterfall. They estimated 4.8 g m\(^{-2}\) in early secondary forests (160 kg ha\(^{-1}\) at stand level), 12.0 g m\(^{-2}\) in later secondary forest (520 kg ha\(^{-1}\) at stand level), and 78.5 g m\(^{-2}\) in the old-growth forest (3400 kg ha\(^{-1}\) at stand level). Nevertheless, epiphytes constitute only a small part of the litter.

In a Neotropical cloud forest in Monteverde (Figure 100), Costa Rica, Nadkarni and Matelson (1992) found that epiphyte litter (bryophytes, lichens, and tracheophytes) comprises 5-10% of the total fine litter at that site. This litterfall contributes to the nutrients of the forest, with measurements (in kg ha\(^{-1}\) yr\(^{-1}\)) of N (7.5), P (0.5), Ca (4.2), Mg (0.8), and K (0.1). These epiphytic litter components have a higher annual rate than does the litter from plants rooted in the ground. On the other hand, the turnover time of all nutrients except potassium is 4-6 times slower in the fallen epiphytic litter. Potassium turnover is ten times as fast. In a later study, Nadkarni (2000) determined that epiphyte litterfall in a lower montane cloud forest in Monteverde, Costa Rica, occurs at a rate of 50 g dry wt m\(^{-2}\) yr\(^{-1}\). This slow turnover of most bryophyte litter is most likely due to the high phenolic content that protects the bryophytes from herbivory and attack by fungi and bacteria.

When branches make contact with each other, by wind or storm, the impact can cause tiny branches at the tips to break, a phenomenon known as crown shyness (Figure 101) (Franco 1986). This can occur between the same species of tree, or among different species. The exact cause is not clearly known, but at least in some cases it appears that it is the result of reciprocal pruning as trees contact each other. It appears that lateral branch growth is usually not influenced by the neighbors until such mechanical abrasions occur. One such tree is Clusia alata (Figure 65). This branch breakage can cause any adhering bryophytes to lost from the canopy as the branch tips fall away.
Summary

Bryophytes in the tropics, particularly epiphytes, undoubtedly have a crucial role in water and nutrient retention, releasing nutrients during re-wetting, but filtering them from the lower branches and ground during rain events. They are adapted by their life forms and physiology to withstand desiccation. Anhydrobiosis and osmotic potential are typically used as means of surviving dry periods. Dry areas typically have mats; in areas with high humidity these are replaced by fans, wefts, and pendants that are able to obtain water from fog and mist (fog-stripping). Many are perennial stayers or perennial shuttle species.

Species of highly exposed locations have higher light saturation and compensation points, higher dark respiration rates, more chlorophyll, higher chlorophyll a:b ratios, and higher N concentrations than those of shade species. Some are able to retain water and nutrients in hyaline cells that hold water and surround photosynthetic cells. But most lose water easily and survive by their ability to recover quickly from desiccation, without the need to make new chlorophyll.

Substrate, temperature, light, and moisture availability are the microclimate variables that drive the community structure of epiphytic bryophytes. Their biggest physiological problem is the need to store more carbon than they lose to respiration.

Nutrients are obtained from the atmosphere, rain, and the bark and collected on the bryophyte surface until it becomes moist and can absorb them. Hence, nutrients in the bryophytes increase from the dry season to the wet season. Cyanobacteria living in the microenvironment of the bryophytes contribute to the usable nitrogen of the ecosystem. The ability of the bryophytes to leak nutrients but retain them on their surfaces permits external nutrient storage until rainfall returns, but releases them to the ecosystem as heavy rains carry them away. Light rains and fog permit the bryophytes to hydrate and absorb the nutrients. This makes the epiphytic bryophytes a keystone resource for the forest. These nutrient-rich, wet bryophytes furthermore provide a suitable substrate for canopy roots for some species.

Biomass of the bryophytes correlates with their frequency, with bryophytes contributing 54-99% of the biomass at higher elevations. Biomass increases with altitude, coinciding with an increase in humidity. At lower elevations, the combination of high temperatures and low light severely limit bryophyte productivity. Epiphyte litter (bryophytes, lichens, and tracheophytes) comprises 5-10% of the total fine litter in the cloud forests and only a small amount in the lowland forest. Whereas leaf litter decays rapidly in the tropics, bryophyte litter is slow to decay due to its many phenolic compounds that inhibit insects, bacteria, and fungi.
Acknowledgments

My appreciation goes to Noris Salazar Allen for her efforts to make a very early version of this chapter reliable and up-to-date. Her helpful discussions kept me going on this part of the world I know so little about. S. Robbert Gradstein reviewed this subchapter for accuracy and suggested references to add. Michael Lüth generously suggested references to add. Michael Lüth generously permitted my use of his beautiful images for this and other subchapters.

Literature Cited

Horikawa, Y. 1948. Extension of the range of sword moss (Bryoxiphiurn) and epiphyllous Hepaticae newly added to the Yakusima-flora. J. Jap. Bot. 15: 396-397.

Hosokawa, T. and Odani, N. 1957. The daily compensation period and vertical ranges of epiphytes in a beech forest. J. Ecol. 45: 901-915.

CHAPTER 8-4
TROPICS: EPIPHYTE ECOLOGY, PART 2

TABLE OF CONTENTS

Adaptations .. 8-4-2
Growth Forms and Life Forms .. 8-4-2
Life Cycle Strategies ... 8-4-7
Dispersal and Colonization .. 8-4-8
Host Trees .. 8-4-12
Height on Tree ... 8-4-15
 Tree Base .. 8-4-22
 Upper Trunk .. 8-4-27
 Lower Branches ... 8-4-28
 Twigs .. 8-4-29
 Canopy .. 8-4-30
Logs and Rotten Wood .. 8-4-31
Sampling .. 8-4-35
 Quadrats .. 8-4-36
 Rope Climbing .. 8-4-37
 Bow and Arrow ... 8-4-38
 Other Canopy Access .. 8-4-39
Role .. 8-4-40
 Adventitious Roots ... 8-4-40
 Substrata for Tracheophytes ... 8-4-41
 Friend or Foe? ... 8-4-42
 Faunal Habitat ... 8-4-42
Summary .. 8-4-43
Acknowledgments ... 8-4-43
Literature Cited .. 8-4-43
Adaptations

Living on trees often puts the bryophytes at the mercy of rainfall (where there is no fog), either as throughfall or stemflow. Thus, special adaptations are necessary for those times when it is not raining, for the substrate is unlikely to do much to maintain the humidity (Frahm & Kürschner 1989). Gradstein and Pócs (1989) suggest a number of adaptations that permit these taxa to be so successful in this living habitat:

1. **Green, multicellular spores with endosporous development** (Figure 2) [e.g. *Dicnemonaceae* (Figure 3), *Lejeuneaceae* (Figure 5, Figure 7-Figure 8)] (Nehira 1983), permitting the protonema to get a quick start.

2. **Sexual dimorphism** and **phyllo Dioicy** (having dwarf males that live on leaves or tomentum of females; Figure 4), possibly increasing gene flow by ensuring that males are close to females.

3. Numerous means of **asexual reproduction**, ** monoicous** condition, and **neoteny** (sexual maturity at early developmental stage; Figure 5), permitting movement from place to place among **ephemeral** (short-lived) substrata [e.g. *Lejeuneaceae* (Figure 5, Figure 7-Figure 8)] (Schuster 1984; Richards 1984).

4. **Rhizoid discs** (Figure 6) for anchorage and adhesion (Winkler 1967).

5. **Lobules** [*Frullaniaceae* (Figure 67), *Lejeuneaceae* (Figure 5, Figure 7-Figure 8)] and **hyaline leaf margins** for absorption and retention of water; *Colura* (Figure 7-Figure 8) even has a closing apparatus at the entrance of its lobule (Jovet-Ast
Many Calymperaceae (Figure 9) have hyaline cells (Figure 10) in their leaves (Richards 1984).

6. **Cushion** life form (Figure 25) on branches of open montane forests (Pócs 1982).
Frey et al. (1990) studied the epiphytes in Mt. Kinabalu (Figure 11) in North Borneo. They examined distribution patterns of life forms and the water-storing structures in epiphytes. They also looked at their role in water leaching, an important aspect in tropical forest nutrient cycling. Other useful studies on adaptations include those of Thiers (1988 – Jungermanniales, i.e. leafy liverworts; Figure 5, Figure 7) and Kürschner (2000 – adaptations in the tropical rainforest).

Figure 11. Mt Kinabalu in Borneo. Photo through Creative Commons.

Growth Forms and Life Forms

Growth forms, life forms, and life cycle strategies interact with other adaptations to provide the bryophytes with the best strategy for a particular environment. The main reference for growth or life forms of bryophytes is Mägdefrau 1982 and for life strategies During 1979. See also Volume 1, Chapter 4, of this series on Bryophyte Ecology for details on these.

Based on a number of pilot studies in the tropics (Frahm 1990; Frey et al. 1990, 1995; Frey & Kürschner 1991; Kürschner & Seifert 1995; Kürschner & Parolly 1998b; Kürschner et al. 1998), Kürschner et al. (1999) described generalizations of tropical growth forms, life forms, and life strategies for the epiphyte habitat. Perennial stayers and perennial shuttle species (see During 1979) are important life cycle strategies in most of the tropics. They dominate in the tropical lowland and submontane belt as well as in the cooler and more humid montane rainforest. However, in the former two they are mat formers, whereas in the montane rainforest they are mostly fans and wefts that rely on propagules and clonal growth. Some species have ciliate leaves that are able to collect water from fog. In the more xeric conditions of the open, upper montane forests, short turfs, tall turfs, and cushions predominate, but are also perennial stayers and perennial shuttle species. Colonists, by contrast, occur almost exclusively in secondary forests. Kürschner and coworkers considered these relationships to apply throughout the tropics.

In the Sulawesi rainforest (Figure 12) in Indonesia, the understory has a preponderance of dendroid and fan-like species of bryophytes, whereas the crowns of the trees have more tuft species than other types (Sporn et al. 2010). Like many other factors, this reflects the differences in microclimate between the upper canopy and the understory,
but it also reflects differences in substrate provided by understory trees vs canopy trees.

Kürschner and Seifert (1995) described epiphytic communities in the eastern Congo basin (Figure 13) and nearby mountain ranges. These included consideration of life forms and water storage.

Bryophyte life forms in flooded and non-flooded habitats in the Colombian Amazon (Figure 14-Figure 15) reflect the differences in humidity (Benavides et al., 2004). In the floodplains, the fan and mat forms predominate, whereas more epiphytic liverworts occur in the non-flooded forest.

Leerdam et al. (1990) described the epiphytes of a Colombian cloud forest (Figure 16). Bryophytes comprise most of the biomass. They found a sequence of life forms along the canopy branches, creating two groups: inner canopy and outer canopy. These are mostly tall turfs and smooth mats, respectively. The life forms corresponded with microclimatological factors, water and nutrient availability, and substratum age. The phorophyte species also influence the type of growth and life forms that grow there.

Some striking life forms that are almost exclusively tropical are the feather, bracket, and pendent (Figure 17) forms. These seem to reflect the high atmospheric humidity around the first few meters of the tree bole, where little air stirs to carry away the moisture quickly.

Pendent (Figure 17) bryophytes are common in areas with high humidity. Proctor (2004) examined the light and desiccation responses of two of these pendent taxa [Weymouthia mollis (Figure 18) and W. cochlearifolia]
Weymouthia cochlearifolia is more typical forming patches on the trunk and branches, but it can grow as a **pendent** form. Weymouthia mollis typically grows as a **pendent** form. Weymouthia cochlearifolia reached 95% saturation at 160 μmol m⁻² s⁻¹ PPFD, whereas W. mollis ranged 176-307 μmol m⁻² s⁻¹ PPFD or even more. They demonstrated the primary needs of **pendent** forms: high levels and reasonably regular precipitation, shelter from wind, and moderate shade. From this they surmised that exposure and the high evaporation rate that accompanies it will favor **small cushions** or **smooth mat** life forms. Proctor reasoned that exposure would minimize the boundary-layer resistance to CO₂ uptake and maximize the mechanical effects of wind. **Tight cushions** and **smooth mats** can more easily resist these. On the other hand, the more open life forms are more exposed for efficient light interception and CO₂ uptake.

Some bryophyte species develop different life forms based on their habitat (Ford 1994). For example in Queensland Papillaria (Figure 20) spp. on Sloanea woollsii (Figure 22) exhibit forms ranging from **long pendent** forms in the canopy branches to **creeping mats** on lower branches and the upper trunk. **Dendroid** forms are especially common on tree trunks. Stumps have mosses such as the dominant Camptochaete vaga (see Figure 21), but also can have **Dicranum** spp. (see Figure 23)
Life Cycle Strategies

One of the most important adaptations to tropical climates is that of life cycle strategies. These must be timed to coordinate with wet and dry periods. Sperm require at least some water for transfer. Spores are dispersed best by dry winds.

Furthermore, life strategies of epiphytic bryophytes change with altitude. Frey et al. (1995) compared these strategies in the eastern Congo basin (Figure 24), a tropical lowland. In the primary rainforests of the tropical lowland and lower montane, the epiphytes were generally perennial shuttle species and perennial stayers. These had low to moderate sexual and asexual reproduction. This strategy combination is well suited for the high temperature and humidity regime, particularly for the leafy liverworts that dominate these communities. In the montane rainforests and cloud forests the perennial shuttle species have high asexual reproduction, with both propagules and clonal growth contributing. In secondary woodlands (areas of regrowth), ericaceous woodlands, and subpáramo of African volcanoes, the perennial shuttle and perennial stayers with high levels of sexual reproduction reach their greatest numbers. This is facilitated by the regular production of sporophytes in the xeric (dry) conditions with a strong diurnal (daily) climate. This reproductive strategy is typical of epiphytes in xeric woodlands.

Kürschner (2003) described the life strategies of two epiphytic bryophyte associations in southwestern Arabia. The species are mostly drought tolerant. Their life strategies are distinctly correlated with their ecological site conditions. The Orthotricho (Figure 25)-Fabronietum socotranae (Figure 26) is a drought-tolerant association dominated by cushions, short turf, and mats – perennial stayers with regular sporophyte formation. By contrast, in the sub-humid Leptodonto (Figure 27)-Leucodontetum schweinfurthii (Figure 28) association, the typical life forms are tails and fans. These are pleurocarpous perennial shuttle species that have large spores. These large spores limit them to short-range dispersal, relatively low reproductive rates, and generative reproduction. This association has a much higher diversity of life forms and life strategies, including liverworts.
Spore size is an adaptive trait wherein small spores have a good chance for long-distance dispersal and large spores do not, but have a greater chance for successful germination and establishment (Kürschner & Parolly 1998a). Few bryophytes are able to use both strategies. However, one notable exception is an epiphytic heterosporous (having two sizes of spores) moss of the Andes of northern Peru – *Leptodontium viticulosoides* (Figure 29).

Having similar adaptive traits in similar conditions is common among bryophytic epiphytes (Kürschner 2003, 2004a) – a product of convergent evolution. This convergence is common among life strategies of tropical bryophytes.

Dispersal and Colonization

Colonization must be preceded by dispersal. Thus, to examine colonization rates, we must necessarily understand the limitations to dispersal.

Yeaton and Gladstone (1982) examined colonization patterns of epiphytic orchids on calabash trees (*Crescencia alata*; Figure 30) in Costa Rica. They hypothesized that the
number of propagules produced by the species determined the colonization pattern. The same hypothesis can be considered for bryophytes.

Wolf (1994) examined the factors that control the distribution of bryophytes and lichens in the northern Andes (Figure 31). He concluded that randomness of propagule supply appears to be the most important factor in determining the epiphyte composition on branch and trunk segments.

But Mari et al. (2016) reached a somewhat different conclusion. They avoided the differences among phorophytes (plants on which epiphytes grow) by sampling only one tree species, *Aldina heterophylla* (a legume). This is a dominant species in the Amazonian white-sand habitats and sports heavy loads of epiphytes. Mari and coworkers attempted to quantify the importance of the tree zone in colonization by comparing geographic distances at scales of 100 m² and 2,500 km². At the larger, regional scale, the tree zone explained approximately two-thirds of the primary compositional gradient – a factor more than double that accounted for by site differences. On the other hand, spatial effects were absent at the fine scale of 100 m², with more dissimilarity than expected by chance when compared to communities on neighboring phorophytes. The researchers concluded that microsite availability, not dispersal limitation, is the most important factor in structuring the epiphytic communities of this forest type.

The phorophyte itself can play a role in the colonization (Olarinmoye 1977). Such factors as bark roughness and smoothness determine whether a propagule is able to adhere once it arrives. Leachates from the host leaves could inhibit growth, but for the leafy liverwort *Radula flaccida* (Figure 32), it was only extracts, not leachates, that inhibited growth (Olarinmoye 1981, 1982).

Oliveira et al. (2009) noted the gradient of bryophyte species communities from the base of the tree to the top of the canopy in the Guianas (Figure 33), highlighting the role of niche assembly in defining these communities. They set out to test whether niche assembly, rather than dispersal limitation, drives species composition of epiphytic bryophyte communities on a large spatial scale. Using three lowland forests, they sampled six different height zones of several trees in each. They tested whether specialists maintain a preferred height zone across the Guianas. They found that 57% of the species had a preferred height zone throughout the localities. In fact, the communities were more similar across 640 km at the same height zone than they were among the heights on any single tree. Hence, they concluded that niche assembly was a stronger determinant of the communities than were dispersal factors on both local and regional scales.
While the similarity within a zone is greater even at 640 km than among height zones of a tree, the similarity within the same locality is greater than that with greater distances (Oliveira & ter Steege 2015). Using nine localities across 2800 km from east to west in the Amazon forest (Figure 14), these researchers again demonstrated that height zone explains most of the variation among communities. The outer canopy communities exhibit the greatest similarity between trees and localities. The variation at the geographic scale could be explained primarily by elevation and temperature.

Oliveira and ter Steege (2015) furthermore found that establishment limitation is strongest at the extremes of the vertical gradient. Communities of the tree base and the outer canopy draw individuals from outside the habitat species pool at a rate of 0.28 and 0.22, respectively, in contrast with values between 0.55 and 0.76 of other height zones, contrasting with the hypothesis that species inhabiting the canopy have higher chances of engaging in long-distance dispersal events (see e.g. Gradstein 2006, p. 17). Whereas the canopy may have a greater exposure to propagules that are in the air currents, they are also subject to winds that can dislodge the propagules. They might also be limited by propagule availability as those propagules might be constrained by their canopy of origin, preventing them from entering the air currents. Oliveira and ter Steege suggested that bryophytes in these two extreme zones (outer canopy and tree base) might be, through time, subjected to stronger selection.

Hietz (1997) studied the population dynamics of epiphytes in a Mexican humid montane forest. He used repeated photographs to follow 5,124 individuals (44 species) for more than two years. This study demonstrated the importance of branch loss as a contributor to the mortality of epiphytic flowering plants and ferns.

Nadkarni (2000) performed one of the few experimental studies on colonization by epiphytes. She stripped branch surfaces of their epiphytes in a lower montane cloud forest of Costa Rica, experimented with artificially dispersing bryophyte fragments in a tropical montane cloud forest of Costa Rica, using quadrats above branches of saplings and mature trees of Ocotea tonduzii (see Figure 34). Only 1% of the dispersed fragments were retained by the sapling crowns for the six months of the study. On the other hand, branches in the forest canopy, already possessing intact epiphyte communities, retained 24% of the dropped bryophytes. Branches that had been stripped of their epiphytes retained only 5%.

Colonization of bryophytes can be important to establish a suitable habitat for larger epiphytes such as orchids. Zotz and Vollrath (2003) found that epiphytes on the palm Socratea exorrhiza (Figure 35-Figure 36) become established in bryophyte clumps (Figure 36) more often than could be expected from randomness, but they nevertheless do not seem to depend on them 100%. This enhancement of the habitat by bryophytes most likely accounts for the delay in tracheophyte colonization until the trees are at least 20 years old.
A number of ant species live in the trees in the tropics and some even build nests using tracheophytes (Longino & Nadkarni 1990; Blüthgen et al. 2001). In Costa Rica, these ants often make nests in arboreal litter, mosses, and humus that accumulate under the canopy epiphytic tracheophytes. The species in the canopy are rarely found on the ground and their travels among the canopy branches are likely to contribute to the dispersal of bryophyte fragments, gemmae, and spores. Their role in dispersal needs to be explored quantitatively.

In contrast with the experimental colonization study by Nadkarni (2000), Frahm et al. (2000) observed that crustose lichens seemed to inhibit epiphytic bryophyte growth. They tested extracts of these lichens and bark samples on spore germination of the soil bryophytes *Ceratodon purpureus* (Figure 37) and *Funaria hygrometrica* (Figure 38). These extracts inhibit spore germination of these two species. They also tested the extracts on seeds of the bromeliad *Vriesea splendens* (Figure 39) and the soil-dwelling mustard *Lepidium sativum* (Figure 40). The extracts reduce the germination of seeds of *Vriesea*, but they actually promote germination of *Lepidium*. Thus we cannot conclude from this study of soil species whether the crustose lichens actually inhibit growth of bryophytes that are normally epiphytes, but the results suggest that such interaction needs to be tested.
Barkman (1958) and Póc's (1980) suggested that bryophytes may cause their own displacement by retaining water that makes tracheophytic epiphyte presence possible. They furthermore form humus, accelerate bark decay (Barkman 1958), and facilitate anchorage of seeds and other propagules.

Host Trees

Specific bryophyte-host relationships have been reported a number of times in temperate regions where tree species richness is very low, as for example those found by Slack (1976). As is often the case, she found strong preferences among eastern North American trees, but none of the bryophytes occurred exclusively on one tree sp.

Wolf (1995) summarized the forces leading to presence and abundance of species in epiphytic bryophyte communities in the canopy of an Upper Montane Rain Forest, Central Cordillera, Colombia. He considered two ways to look at these communities: emphasis on quality or quantity of preceding propagule supply; within community interactions such as competition. For the first of these, researchers have placed great importance on observed distribution patterns and high variability between epiphyte communities in seemingly identical habitats. But the great cover and biomass in these tropical montane rainforests suggests that competitive interactions may also be important. In his own study, Wolf found 120 bryophyte taxa (and 61 macrolichens). He recognized four community types from outer to inner canopy. Nevertheless, these four communities share many species and exhibit a species richness of about 100 taxa each. The inner canopy, with thick branches (21-80 cm diameter) had significantly fewer taxa per unit surface area, with an average of 1.72 taxa per dm² compared to 3.2 from the thinner middle canopy branches. Richness was even higher in the outer canopy, with 7.8 taxa per dm². If time were the most important factor, then the inner crown should have the highest number of species. Instead, one finds that the thick inner branches and trunks carry large patches of individual clones, suggesting competition through horizontal growth.

In the subtropical Tenerife, Canary Islands, González-Mancebo et al. (2003) described epiphytic bryophyte communities from five tree species in a laurel forest (Figure 41). Most of these bryophytes (37 species total) are facultative epiphytes, living on other substrates as well. And many are found on several tree species, with five being found on all five tree species. They further supported the observations that the species composition varies with bark characteristics, leeward vs windward exposure, height on tree, tree size, and degree of uprightness. Growth and life forms also relate to the moisture conditions of the bark.

In tropical forests that have high tree species richness, such host-tree relationships are absent; at the same height, one can expect to find mostly the same bryophytes in the same forest. However, in tropical forests with low tree species diversity, clear host-tree relationships may be observed. The best example is demonstrated by Cornelissen and ter Steege (1989; ter Steege and Cornelissen 1989) on dry evergreen forest in Guyana dominated by two tree species (Eperua grandiflora (rough-barked) or E. falcata) (wallaba, smooth-barked; Figure 42-Figure 43). Not surprisingly, the two tree species host different epiphytic bryophyte assemblages, with the rough bark of E. grandiflora supporting more epiphytes.
Thus, even in cases where host specificity is absent, certain characteristics seem to encourage or discourage bryophytes. As noted earlier, bark differences in the tropics can be important for some bryophyte species, but have little effect on bryophyte communities or species richness.

Host "trees" can also include tree ferns. Jaag (1943) examined the foliage renewal rate, leaf life, and epiphyte "involvement" on tropical tree ferns. Frahm (2003) described the meager studies on epiphytes on tree ferns. In Southeastern Brazil, he identified 142 species on *Cyathea* (Figure 45-Figure 46) and *Dicksonia* (Figure 47) trunks. Most of these seem to be chance occurrences, with only 20 species occurring on more than 10% of the fern trunks in the study. Vital and Prado (2006) found a species new to Brazil (*Ceratolejeunea dentatocornuta*; see genus in Figure 48) occurring on *Cyathea delgadii* (Figure 49-Figure 50). These were in a fragment of the Atlantic forest in the state of Sao Paulo. In total, the researchers found 35 bryophyte species, 12 of mosses and 23 of liverworts. Medeiros *et al.* (1993) reported epiphytes on *Cibotium* species (Figure 51) and *Sphaeropteris cooperi* (*Cyathea cooperi*; Figure 52), both tree ferns, in a Hawaiian rainforest (Figure 53).
Figure 47. *Dicksonia antarctica*. In Brazil, this genus serves as substrate for epiphytic bryophytes. Photo by Fir0002-Flagstaffotos, with online permission.

Figure 48. *Ceratolejeunea cubensis; C. dentacornuta* was found as a new species on *Cyathea delgadii* in Brazil. Photo by Scott Zona, with permission.

Figure 49. *Cyathea delgadii*, host of the new species of liverwort *Ceratolejeunea dentacornuta*. Photo by Alcatron, through Creative Commons.

Figure 50. *Cyathea delgadii*, host of the new species of liverwort *Ceratolejeunea dentacornuta*. Photo by Alcatron, through Creative Commons.

Figure 51. *Cibotium menziesii*; some members of this genus host bryophytic epiphytes in Hawaii. Photo by Forest and Kim Starr, through Creative Commons.
Using a line-intercept method, Batista and Santos (2016) studied the epiphytic bryophytes in the Atlantic Forest of southeastern Brazil (Figure 54). They identified 71 taxa. The mean coverage did not vary significantly among the various phytophysiognomies. Nevertheless, the species compositions were distinct among these phytophysiognomies, but no cohesive or isolated groups emerged. There was, however, a correlation between bryophyte cover and tree DBH. Bark pH of the palm *Euterpe edulis* (Figure 55) and bark roughness of members of the tree fern family *Cyatheaceae* (Figure 49-Figure 50, Figure 52) also affected species composition.

In areas with many plantations and more than one host species, more specificity may present itself. For example, in Nigeria over 60% of *Octoblepharum albidum* (Figure 56) collections were from *Elaeis guineensis* (Egunyomi 1975, 1978), whereas *Calymperes palisotii* (Figure 57) prefers *Albizia saman* (Figure 58-Figure 59) over the relatively smooth, non-fissured bark of *Lagerstroemia* sp. (Figure 60-Figure 61) (Egunyomi & Olarinmoye 1983). Different agroforests [mango (Figure 62) and *Citrus* (Figure 63)] house unique bryophyte communities. Ezukanma et al. (2019) found that each of these two communities had 12 bryophyte species, but only five were common to both.
Figure 58. *Albizia saman*, substrate for *Calymperes palisotii*. Photo by A. Gentry, MBG, through Creative Commons.

Figure 59. *Albizia saman* rough bark suitable for *Calymperes palisotii*. Photo by David Stang, through Creative Commons.

Figure 60. *Lagerstroemia speciosa* from India. The smooth bark of species of *Lagerstroemia* in Nigeria is not suitable for the moss *Calymperes palisotii*. Photo by Raju Kasambe, through Creative Commons.

Figure 61. *Lagerstroemia speciosa* bark from Hawaii, USA; smooth bark in this genus is not a preferred substrate for the moss *Calymperes palisotii* in Nigeria. Photo by Kim and Forest Starr, through Creative Commons.

Figure 62. Mango agroforest in India, a forest type that supports unique bryophyte communities in Nigeria. Photo from Bioversity International, through Creative Commons.
Figure 63. *Citrus* (orange plantation), a forest type that supports unique bryophyte communities in Nigeria. Photo by Hans Braxmeier, through Creative Commons.

Height on Tree

Andersohn (2004), working in central Guatemala, asked the question "Does tree height determine epiphyte diversity?" He listed the epiphytes, including the bryophytes. Many other studies have provided insight into this question.

Like epiphytes in other parts of the world, communities at the base, trunk, and crown differ due to light, moisture, and nutrients [Cornelissen & ter Steege 1986; Montfoort & Ek 1990; Kürschner 1990 (studied only base and trunk)]. In some forests, the tree bases receive so little light that even bryophytes are unable to grow there. The branches, on the other hand, can have complex, dense growths that sometimes surround the entire branch like a winter muff (Figure 1) for warming one's hands. In the crown, high light intensity and dryness become limiting. For example, in the dry evergreen (wallaba – *Eperua falcata*; Figure 42-Figure 43) forest of Guyana, bryophytes and lichens on the canopy twigs of mature *Eperua* trees are predominantly of two types, the sun-tolerants and the pioneers (facultative epiphylls) (Cornelissen & ter Steege 1989). Many researchers follow the zones as described by Johansson (1974) (Figure 64-Figure 65).

Figure 64. Vertical distribution (see Figure 65) of four moss and two leafy liverwort species in Guyana. Height zones are in Figure 65. Modified from Cornelissen & ter Steege 1989.

Figure 65. Epiphyte zones on a tree. Modified from Johansson 1974.

Zonation patterns occur from branch tips to center of the crown as well. Freiberg and Freiberg (2000) found that in the two lowland and two montane forests they studied in Ecuador (Figure 66), the epiphytic biomass per branch surface decreases from the center of the crown to the periphery.

Pócs (1982) found that mosses dominate the base of the trunk, but leafy liverworts, especially the ever-present *Frullania* (Figure 67) and *Lejeuneaceae* (Figure 5, Figure 7-Figure 8), dominate the branches.

Figure 66. Montane forests, Ecuador. Photo by Martin Zeise, through Creative Commons.
The lowland cloud forests included more indicator species, particularly shade epiphytes and generalists that also occur in the montane forests (Gehrig-Downie et al. 2013). The lowland rainforest exhibited sun epiphyte indicators that characterize dry, open sites. At least in this case, liverwort species richness differs more between forest types than it does among elevation types. Furthermore, the lowland cloud forest may be more species-rich than are the montane rainforests. As is typical throughout most tropical habitats, the Lejeuneaceae (Figure 5, Figure 8, Figure 17, Figure 48) represents the largest family, with 95 species. This was followed by Plagiochilaceae (9 spp.; Figure 69) and Frullaniaceae (7 spp.; Figure 67). In the Lejeuneaceae, Lejeunea (Figure 70) had 14 species; Ceratolejeunea (Figure 48), Cololejeunea (Figure 71), and Plagiochila (Figure 69) each had nine species there.

Figure 67. *Frullania* sp., a genus that dominates branches of tropical trees. Photo by George Shepherd, through Creative Commons.

In French Guiana (Figure 34), Gehrig-Downie et al. (2013) compared the diversity and vertical distribution of epiphytic liverworts between the lowland rainforest and the lowland cloud forest. These lowland cloud forests occur in river valleys with high air humidity and morning fog. This combination creates ideal conditions for epiphytic leafy liverworts. The researchers found a significantly higher species richness of these liverworts in the cloud forest and the species composition differed (Figure 68) in all six height zones (Figure 65).

![Box plot showing species richness of liverworts in lowland cloud forest and lowland rainforest](image)

Figure 68. Number of epiphytic liverwort species in each tree height zone (see Figure 65) in the lowland cloud forest and lowland rainforest. n=24 trees per forest type. Boxes are upper and lower quartile, unbroken lines are medians, dotted lines are means, whiskers are 95 percentile, and circles are max and min. *P<0.05, **P<0.01 for t-test differences. Modified from Gehrig-Downie et al. 2013.

In the Lejeuneaceae, *Lejeunea* (Figure 70) had 14 species; *Ceratolejeunea* (Figure 48), *Cololejeunea* (Figure 71), and *Plagiochila* (Figure 69) each had nine species there.

Figure 69. *Plagiochila* sp. in the Neotropics. Photo by Michael Lüth, with permission.

Figure 70. Epiphyllous *Lejeunea* sp., a species-rich genus in the Neotropics. Photo by Bramadi Arya, through Creative Commons.
Jarman and Kantvilas (1995), working on epiphytes of an old Huon pine (*Lagarostrobos franklinii*; Figure 72) in Tasmania, found 76 species of lichens, 55 of bryophytes, and 16 tracheophytes on that single tree. One factor accounting for the high diversity is that there is little overlap in species between the base and canopy taxa. Bryophytes dominate at the base, but lichens dominate in the more exposed crown. The bryophytes and lichens on these older trees build sufficient biomass peat on the branches that terrestrial tracheophytes are able to become established in the peat.

Oliveira and ter Steege (2013) used a standardized sampling method across the Amazon Basin (Figure 73) to describe the epiphytic bryophytes in five height zones from the forest floor to the canopy. They sampled eight canopy trees per locality, generating 3,104 records. They were able to identify 222 species and 39 morphospecies. As expected, the leafy liverwort family *Lejeuneaceae* (Figure 5, Figure 8, Figure 17, Figure 48) was the most common (55%), followed by the moss families *Calymperaceae* (Figure 9) (8%), *Leucobryaceae* (Figure 4) (4%), and *Sematophyllaceae* (Figure 99) (4%). Among these, 155 species occur in more than one locality, with 57 species considered to be specialists. In the canopy they found 29 species that are exclusive to the canopy.

Sporn et al. (2010) reported a record number of 146 epiphytic bryophyte species on eight canopy trees and eight trees from the understory of a submontane rainforest in Central Sulawesi, Indonesia (Figure 74). The trunks of canopy trees have significantly different species composition from that of the understory trees. Furthermore, 45% of the species are restricted to canopy tree crowns, whereas only 12% are restricted to the understory. This study emphasized that inventories of epiphytic bryophytes in a tropical forest should not only focus on canopy trees but also include the small understory treelets and shrubs, which may add at least 10% more species. A similar conclusion was reached by Krömer et al. (2007) in a study on tracheophytic epiphyte diversity in tropical submontane and montane forests.

Krömer et al. (2007) found that 90% of the tracheophytic epiphytes in the submontane and montane forests of the Bolivian Andes were represented in tree zones Z1-Z2 in the Johansson tree zones (Figure 65). Canopy tracheophytes were primarily orchids and ferns that had special adaptations to the frequent drought conditions. This vertical distribution responds to microenvironmental gradients of the tree, including light intensity, wind speed, and air temperature that increase with height, and moisture that decreases with height. But just what role do bryophytes have in their success?
In lowland rainforests around Mabura Hill (Figure 75), Guyana, South America, Cornelissen and Gradstein (1990) reported 134 (52 mosses, 82 liverworts) bryophyte species. Of these, ~30% are **Lejeuneaceae** (Figure 5, Figure 8, Figure 17, Figure 48). Mountaineering techniques permit study of the forest canopy. There, 50% of the bryophyte species are exclusive to the canopy. The mixed forest has more exclusive species than does the dry evergreen forest, largely because of the outer canopy effect where xerophytic species occur. The canopy species in the dry evergreen forest have wider vertical distributions than do those in the mixed forest, a difference the researchers attribute to the more open canopy foliage in the dry evergreen forest.

Wolf (1994) examined epiphytic vegetation in the northern Andes (Figure 31). He restricted the bark type and sampled four full-grown forest trees at altitudinal intervals of ca 200 m from 1,000 to 4,130 m asl. The variation he found did not seem to relate to any environmental factor. Rather, as noted above, it seemed to relate to randomness in propagule supply. Nevertheless, ordination indicates that distribution patterns relate to altitude and height within the host tree. Interestingly, Oliveira and ter Steege (2015) found the same relationship in Amazonian lowland rainforest (Figure 73). Unlike many other studies, Wolf also found a relationship between the epiphytic vegetation and the host species, particularly for the host **Brunellia occidentalis** (see Figure 76-Figure 77), a high altitude species with rapid growth. There is no indication of a relationship with chemical characteristics of suspended soil.
Oliveira et al. (2010) noted that, like tracheophytes, bryophytes demonstrate a species gradient from the base to the upper canopy of the host trees. They set out to test the role of niche assembly on a regional scale. They sampled six height zones on several trees in each of three lowland forests of the Guianas (Figure 34) and found that height zone was relatively consistent in the three localities, despite distances up to 640 km, and that that consistency was greater than among communities within the height zones of a single tree (30-50 m in height). More than half (57%) of the species exhibited a height zone preference.

Overall, Oliveira (2010) identified 225 species and 38 morphospecies of Amazonian basin epiphytic bryophytes. As we might expect, the leafy liverwort family Lejeuneaceae was the most species-rich family (55% of species). Among the mosses, the most common families were Calymperaceae (8%), Leucobryaceae (4%), and Sematophyllaceae (4%). All four of these families occurred in all 9 sampling locations. The most common species was the leafy liverwort Cheilolejeunea rigidula (see Figure 78), followed by Ceratolejeunea cornuta (Figure 79), Octoblepharum pulvinatum (Figure 80), Octoblepharum albidum (Figure 56), Archilejeunea fuscescens (see Figure 81), Sematophyllum subsimplex (Figure 82), Lopholejeunea subfusca (Figure 83), and Symbiezidium barbiflorum (see Figure 84). These eight species accounted for 21% of the known species in the study.
Oliveira (2010) found that a total of 155 species occurred in more than one locality, and of these 57 were considered to be specialists (37%), whereas 98 (63%) were considered generalists. The specialists were typically found at the extremes of the gradient, either in zone 1 or zone 6. Only 8 seemed to be specialists in other tree zones. Oliveira concluded that the structure of the communities fit the Neutral Model of Biodiversity and Biogeography, i.e., being there by random recruitment from the local environment. The distribution of the species appears to be influenced by two processes. On a local scale, the interaction between the environment and local abundance provide the greatest influence. Within the Amazon basin, the abundance of the species in the metacommunity (sum of all communities sampled in localities) are the primary influence. Furthermore, the frequency of long-distance dispersal increased with the height of the zone in the tree. What seems strange is that the greatest genetic distance occurs between the canopy and subcanopy.

In the constant clouds of the dense montane ombrophilous (capable of withstanding or thriving in presence of high rainfall) forest (1,000 to 1,500 m asl) in southern Brazil (Figure 85), Santos et al. (2018) characterized six vertical zones on 28 trees and identified 96 species of bryophytes in 31 families. The leafy liverwort family Lejeuneaceae (Figure 85) was the most species-rich family, followed by Frullaniaceae (Figure 67). Liverworts predominated. Species diversity was high, ranging from $H^\prime=2.6$ to $H^\prime=4.1$, with high abundances. Of the 28 trees sampled, across this elevation range, the species composition was similar, with only two differing by more than 50%. Bryophyte cover ranged from 3.04% (2 m high to first branches; epiphylls) to 8.97% (0.0-0.5m) in the six phorophyte zones.

Tree Base

In the rainforests, the least light reaches the bases of the great trees (Pócs 1982). At the same time, the bases have the highest humidity in the forest. The bole height of dense bryophyte growth is limited by humidity and the physical condition of the bark, but where it is extremely wet it can reach as high as the first main branches, which may reach 8-10 m high (Richards 1954; Pócs 1982). More typically, it reaches up to 1-3 m, being limited by humidity that sinks to 60% during dry periods (Pócs 1974).
On tropical tree bases one is likely to find mats and wefts of various *Thuidium* (Figure 86) species, intermixed *Fissidens* (Figure 87), and the leafy liverworts in *Lejeuneaceae* (Figure 5, Figure 8, Figure 17, Figure 48) and small turfs of mosses in *Orthotrichaceae* (Figure 25) (Gradstein & Pócs 1989). More suitable, porous bark often supports growths of the mosses *Leucobryum* (Figure 4), *Leucophanes* (Figure 9), and *Calymeres* (Figure 88). Farther up one might find turfs of the mosses *Dicranaceae* such as *Leucoloma* (Figure 89). As the wefts and turfs grade away from the base, one can find the feather type forming horizontal shelves on the bole (Figure 90) (Gradstein & Pócs 1989). The dendroid, feather, and bracket forms are specialists on the more narrow stems of small trees and branches of shrubs in this low-light zone, but they can also be found at the base (Pócs 1982). These include the mosses *Lopidium* (Figure 91) and *Pinnatella* (Figure 92) on all continents with tropical forests.
In the lowland rainforest of Guyana (Figure 93), Cornelissen and ter Steege (1989) found that the tree base community is characterized by the abundance of pleurocarpous mosses. In the wet, very shady habitats of tree bases these pleurocarpous species include *pendulous* and *dendroid* mosses in the **Neckeraceae** (Figure 95-Figure 96) and **Pterobryaceae** (Figure 113) (Pócs 1982). In Asia, these include the mosses *Homaliodendron* (Figure 94) and *Neckeropsis* (Figure 95-Figure 96), both in **Neckeraceae**; in Africa one finds the mosses *Renaudia* and *Hildebrandtiella* (Figure 97) in the **Pterobryaceae** and **Porotrichum** (Neckeraceae; Figure 98). In the Neotropics, *Neckeropsis disticha* (Figure 95) and *N. undulata* (Figure 96) are ubiquitous. The mosses *Sematophyllum* (Figure 99) and *Taxithelium* (Figure 114) are likewise common in this zone. The number of species seems to vary in this synusia, with ~100 species in Vietnam, 60 in East Africa, and 50 in Cuba.
Figure 96. *Neckeropsis undulata*, a species that occurs on tree bases of wet, shady Neotropical habitats. Photo by Scott Zona, with permission.

Figure 97. *Hildebrandtiella guyanensis*, in a genus that occurs on tree bases of wet, shady tropical habitats in Africa. Photo by Claudio Delgadillo Moya, with permission.

Figure 98. *Porotrichum bigelovii*, in a genus that occurs on tree bases of wet, shady tropical habitats in Africa. Photo from Calbrios, with permission through Paul Wilson.

Figure 99. *Sematophyllum substrumulosum*, in a genus that occurs on tree bases of wet, shady Neotropical habitats. Photo by James K. Lindsey, with permission.

In Costa Rica, Holz et al. (2002) documented the diversity, microhabitat differentiation, and distribution of life forms in the tropical upper montane *Quercus* forest (*Q. copeyensis* (Figure 100), *Q. costaricensis* (Figure 101)), using seven freshly fallen trees. They were surprised to find that not only is the tree base bryophyte community distinct from that of the rest of the tree, it is fundamentally the same as that of the forest floor! They also noted the importance of the understory as bryophyte habitat. On lianas (vines), poles, twigs on shrubs, ferns, and palms they found 65 species. More details of the Holz et al. study are in the subchapter Tropics: Altitude.
Equihua and Equihua (2007) examined spatial distributions of *Bryopteris filicina* (*Lejeuneaceae*; Figure 102) on tree trunks in Chiapas, Mexico (Figure 103). They found it to be over-represented on *Ampelocera hottlei* (Figure 104), *Brosimum alicastrum* (Figure 105), and *Guarea glabra* (Figure 106), all species with smooth bark. Its distribution was determined by height on the tree, bark texture, and orientation, preferring smooth texture and a north-facing orientation.

Further descriptions of the epiphyte bryophyte habitat can be found in Richards (1954) from Guiana (Figure 34), Iwatsuki (1960) from southern Japan, and Tixier (1966) from South Vietnam.
Upper Trunk

The upper trunks have mostly appressed species (Schofield 1985, pp. 313-314). These are most commonly leafy liverworts such as *Frullania* (Figure 67) and *Lejeuneaceae* (Figure 5, Figure 8, Figure 17, Figure 48) (Pócs 1982). Among the mosses one can find smooth mats and thread-like *Sematophyllaceae* (Figure 99) again, as well as *Hypnaceae* (Figure 107) and *Mitthyrium* (Figure 108), again being appressed.

Kürschner and Parolly (1998c) used the *Braun-Blanquet method* (system using cover-abundance classes; Poore 1955) to describe the various associations on tropical rainforest tree boles. The distribution patterns of the trunk-epiphytic vegetation can be generalized pantropically. Three alliances fall into two orders. Their distribution is correlated to structural parameters of the phorophyte stands and to *isothermic* (equal temperature) intervals: tropical lowland and submontane alliances (20-27°C mean annual temperature); subtropical and montane alliances of the montane rain- and cloud forests (12-20°C); temperate, boreal to subalpine alliances of elfin forests and ericaceous woodlands ((5)8-12°C). A fourth unit (<8°C) includes the
Afro-subalpine *Syntrichion cavallii* (see Figure 109), mostly known outside the moist tropics and typical of the subpáramo vegetation.

Lower Branches

The lower, thick canopy branches are typically inhabited by large mats of robust epiphytic bryophytes such as *Plagiochila* (Figure 69), *Bazzania* (Figure 102, Figure 110), *Macromitrium* (Figure 111), and others (Cornelissen & ter Steege 1989). Using mountaineering techniques, Cornelissen and ter Steege sampled the *Eperua* trees [*Eperua grandiflora* and *E. falcata* (Figure 42-Figure 43)] in the dry evergreen forest of Guyana (Figure 42) from the base to the highest canopy twigs. This revealed a clear vertical distribution pattern of species and life forms for bryophytes. The upper canopy twigs are particularly species rich with both sun epiphytes and pioneers (facultative epiphylls).

Epiphyllous bryophytes, predominantly leafy liverworts in the *Lejeuneaceae* (Figure 5, Figure 8, Figure 17, Figure 48), abound in this lower branch zone, but also occur in abundance in the forest understory (Gradstein & Pócs 1989), in both cases living out of the damaging and desiccating reaches of the sun. The general trend observed for epiphylls is a reduction of species richness from the understory to the canopy (see Montfoort & Ek 1990), while species richness of epiphytes usually increases. These epiphyllous communities are discussed in the subchapter Tropics: Epiphylls.

Figure 108. *Mithryidium micro-undulatum*, among the genera one can find on the upper trunks. Photo by Jan-Peter Frahm, with permission.

Figure 109. *Syntrichia* sp., *Syntrichia cavallii* is part of an Afro-subalpine association that lives in elfin forests with low temperatures. Photo by J. C. Schou, with permission.

Figure 110. *Bazzania* from the Neotropics. Photo by Michael Lüth, with permission.

Figure 111. *Macromitrium* sp. from the Neotropics. Photo by Michael Lüth, with permission.
Twigs

Wolf (1993a, b, c, 1995) described the changes in epiphytic bryophyte community structure of the montane forest, from the canopy twigs to the thickest lower canopy branches, in admirable detail. The lower branches and terminal twigs (Figure 112) of lowland forests support the pendent Meteoriaceae (Figure 112) and Pterobryaceae (Figure 113), provided it is sufficiently humid, and also the ever-present leafy liverworts Frullania (Figure 67) and Lejeuneaceae (Figure 5, Figure 8, Figure 17, Figure 48) (Pócs 1989). Here one finds Neckeraceae (Figure 95-Figure 96) and Pterobryaceae such as Lopidium (Figure 91) or Pinnatella (Figure 92), or others that are more specific to certain continents (Pócs 1982). Sematophyllum (Figure 99) and Taxithelium (Figure 114) reach their peak here. Farther up on the main branches, bryophytes must withstand high light and desiccation. There, dense mats occur, including the mosses Cryphaeaceae (Figure 115), Erpodiaceae (Figure 116-Figure 117), Orthotrichaceae (Figure 25), and Sematophyllaceae (Figure 99), as well as the liverworts Frullania and Lejeuneaceae (Figure 5, Figure 8, Figure 17, Figure 48). For those of us from the north temperate and boreal zones, only Orthotrichaceae and a few Frullania and Lejeuneaceae taxa are familiar.

Figure 112. Pseudobarbella mollissima, a pendent moss in Japan. Photo by Janice Glime.

Figure 113. Hildebrandtiella guyanensis (Pterobryaceae) in the Neotropics. Photo by Michael Lüth, with permission.

Figure 114. Taxithelium planum. Photo by Scott Zona, with permission.

Figure 115. Cryphaea jamesonii (Cryphaeaceae) from the Neotropics. Photo by Michael Lüth, with permission.

Figure 116. Aulacopilum abbreviatum forming mats on a tree in Bareilly India. Photo by Michael Lüth, with permission.
Several species found on the fine canopy twigs are not restricted to this habitat but also occur lower down in the forest on the upper trunks or on living leaves in the forest understory (Cornelissen & ter Steege 1989). These species are considered pioneer species of the rainforest, well adapted to growth on open, unstable substrates. Most of them are small Lejeuneaceae (Figure 5, Figure 8, Figure 17, Figure 48) and copiously reproduce by vegetative propagules.

Romero (1999) found the most abundant pendent bryophytes on the thin branches (<1 cm diameter). The highest biomass per unit substrate occurred on branches of shade-tolerant species.

Canopy

The canopy, especially the outer canopy, can be a very different and stressful habitat in the forest. It is exposed to the full force of the wind. But based on turbulence analysis of two Amazon rainforest canopies (Figure 14, Figure 73), Krujt et al. (2000) reported a sharp daytime attenuation of turbulence in the top third of the canopies. Thus, within the canopy there is very little air movement. Their hypothesis is that "the upper canopy air behaves as a plane mixing layer." This suggests that tropical rainforest canopies differ from other forests where there are rapid, coherent downward sweeps that penetrate the lower canopy. This penetration does not occur in these Amazonian rainforests. Rather, there is strong heat absorption by the canopy leaves near the top. The weak turbulence is unable to destroy the temperature gradient that is present through the large canopy depth. The inversion is likely to be maintained by strong heat absorption in the leaves concentrated near the canopy top, with the generally weak turbulence being unable to destroy the temperature gradients over the large canopy depth.

Sillett (1991) studied canopy bryophyte communities of six mature Ficus aurea (Figure 118-Figure 119) trees to elucidate the canopy bryophyte community and compare microhabitats. He divided these into three intact cloud forest and three isolated trees in Costa Rica. He used hemispherical canopy photography to compare light in the crowns, determining that the interior crowns of isolated trees were twice as bright as those in the intact forest. Isolated trees had lower species richness and life-form diversity. He found 41 species of mosses on the intact forest trees compared to only 29 on the isolated trees, with 50 species in total. The bryophytes on the forest trees are dominated by pendants, fans, wefts, and tall turfs, whereas the isolated trees have more short turfs. As in other studies, variation of bryophyte communities is greater within a single tree than among trees. Furthermore, the among-tree variation is greater in the forest than among isolated trees.

Gradstein (2006) described the lowland cloud forest of French Guiana (Figure 120) (in moist river valleys below 400 m asl) where the climate differs from that of the mixed lowland rainforest, but differs by the frequent presence of fog and a large presence of epiphytes, especially liverworts. This forest has species richness of epiphytic liverworts that is similar to that at 2,000 m asl in the Andes and exhibits three times the richness of the Amazonian lowland forest (Figure 14, Figure 73). The moisture counterbalances the high temperatures, permitting the large diversity. The taxonomic composition and abundance differ from those in the tropical montane cloud forest. In the lowland cloud forest, asexual reproduction and dispersal are significantly more common in the canopy than in the forest understory. These canopy species have significantly wider ranges than that found among understory species. Gradstein suggested that these wider ranges are due to long-range dispersal by spores.
Logs and Rotten Wood

Where lumbering or wind and hurricane disturbances occur, logs become a visible feature of the landscape (Figure 121). They also result from the normal aging and death of a tree. These logs provide a different habitat, especially in the epixylic stage (after bark is lost; Figure 122), than that of tree trunks.

Winkler (1976) conducted some of the earliest studies of tropical bryophytes on rotten wood. Frahm (2003) compared the taxa on rotten wood in the tropics. This is the primary available substrate in lowland forests due to the heavy cover of leaf litter elsewhere on the forest floor. Logs usually are inhabited by Sematophyllaceae (Figure 99), Hookeriaceae (Figure 131), and Leucobryaceae (Figure 4) among the mosses. At Monteverde, one can also find Pyrrhobryum spiniforme (Figure 123) (Gradstein et al. 2001). In the cloud forest of Monteverde, Costa Rica (Figure 124), one can find the bryophytes on logs that can differ from these (see subchapter Tropics: Altitude, part 2).
The rotten wood of moist tropical montane forests supports a rich bryophyte flora. Such logs on Mt. Meru and the Usambara Mountains in Tanzania (Figure 125) supported 102 taxa of bryophytes on logs (86 mosses, 16 liverworts), including 71 taxa in 51 20x20 cm plots. (Mattila & Koponen 1999). Cornelissen and Karssemeijer (1987) presented a scale to determine the decomposition stage of the wood: 1 – knife does not penetrate, 2 – penetrates one centimeter, 3 – penetrates several centimeters, 4 – penetrates to the handle. (See also Frahm 2003 for its use in the tropics.)

In Neotropical Puerto Rico, Sastre-de Jesús (1992) found that Lejeuneaceae (Figure 5, Figure 7-Figure 8) and Calymperaceae (Figure 9, Figure 88) dominated the logs with bark intact. Softwood logs frequently had Taxithelium planum (Figure 114) and Isopterygium tenerum (Figure 126). Bryophytes on heavily decayed logs tended to have species with higher water requirements, presumably due to the relatively constant water content of these logs.

Rotten logs and rotting wood with bryophytes are able to retain good moisture (Laman 1995). This in turn provides a suitable and important substrate for the germination of seeds such as Ficus crassiramea subsp. stupenda (Figure 127-Figure 128).
Parolly and Kürschner (2005) reported that under the relatively stable climatic conditions of tropical montane forests, the decay process is predictable. These conditions favor the weft and mat life form, following perennial stayers, a succession similar to that of the trunk epiphytic communities. Flood disturbance is more likely to favor species that are dendroid and mat-forming shuttle species that utilize a diaspore bank to return after flooding. In dry conditions, species are more likely to be short-turf-forming colonists. Shady sites are most suitable for wefts, giving them greater exposed surface area to take advantage of the low light conditions.

In the remnant Atlantic forest (seasonal coastal deciduous forest; Figure 129) of Brazil, Germano and Pôrto (1996, 1997) found 35 epixylic species of bryophytes. These comprised 11 families of mosses [Calymperaceae (Figure 9, Figure 88), Pilotrichaceae (Figure 130), Fissidentaceae (Figure 87), Hookeriaceae (Figure 131), Hypnaceae (Figure 132), Leucobryaceae (Figure 4), Leucocoleaceae (Figure 133), Orthotrichaceae (Figure 25), Plagiotheciaceae (Figure 134), Sematophyllaceae (Figure 99), Thuidiaceae (Figure 135)] and 5 families of liverworts [Aneuraceae (Figure 136), Frullaniaceae (Figure 67), Geocalycaceae (Figure 137), Plagiochilaceae (Figure 69), Radulaceae (Figure 32)]. Note the absence of Lejeuneaceae. They related the species composition to the decomposition stage of the substrate (Germano & Pôrto 1997).
In forest fragments in the Atlantic forest (Figure 129) of northeastern Brazil, Silva and Porto (2009) used 100 m transects and small (<100 ha), medium (100-500 ha), and large (>500 ha) fragments to examine fragmentation and
edge effects on bryophytes growing on decaying wood. They identified 99 species of epixylic bryophytes (52 liverworts, 47 mosses); liverworts barely predominated here. They found that fragment size was important in determining composition, richness, diversity, and abundance on epixylic substrata. Furthermore, species richness, coverage, and shade tolerance did not correlate with the distance from forest edge. Rather, edge effects seemed to be non-linear, extending beyond 100 m from the forest edge.

In Pernambuco, Brazil, Germano and Pönto (1996) described the dominant bryophytes in several community types. They found that *Cololejeunea sicaefolia* (see Figure 138), *Lejeunea quinque-umbonata* (Figure 139), both in the Lejeuneaceae, and *Riccardia* spp. (Figure 136) are exclusively **epixylic** in their study area.

Figure 138. *Cololejeunea subcristata; C. sicaefolia*, a leafy liverwort that occurs exclusively on decaying wood in the Pernambuco, Brazil, study area. Photo by Scott Zona, through Creative Commons.

Figure 139. *Lejeunea quinque-umbonata*, a leafy liverwort that occurs exclusively on decaying wood in the Pernambuco, Brazil, study area. Photo by Elena Reiner-Drehwald.

Figure 140. Rope-climbing to sample the canopy of a lowland rainforest in the Colombian Amazon. Photo by Laura Campos, courtesy of Robbert Gradstein.

Sampling

Many bryophytes grow high in the canopy and this provides a particular challenge for collection. Popular recent methods include rope-climbing (Figure 140) (Perry 1978; Whitacre 1981; Cornelissen & ter Steege 1986) and bow-and-arrow techniques (Dial & Tobin 1994). These methods can even be used to collect the tiny leafy liverworts that hide among the larger bryophytes and tracheophytes. Tweedie and Bergstrom (1995) developed a **hierarchical approach** for bryophytic epiphytes that could handle their spatially complex ecosystems.

Figure 141. Ladder quadrats, 10 x 10 cm quadrats at intervals of 40 cm, and a 10-cm-wide strip around the stem. The use of 10 x 10 cm quadrats at intervals of 40 cm proved to be the most effective and efficient sampling method for quantifying bryophyte cover and demonstrated a typical species-area curve (Figure 141).

Figure 142. Ladder quadrats to quantitatively sample the canopy of a tropical montane rainforest. They examined 10 x 10 cm quadrats at intervals of 40 cm and a 10-cm-wide strip around the stem. The use of 10 x 10 cm quadrats at intervals of 40 cm proved to be the most effective and efficient sampling method for quantifying bryophyte cover and demonstrated a typical species-area curve (Figure 141).

Bryan *et al.* (1973) used **R-mode analysis** (species x species) and **Q-mode analysis** (principal component analysis for linear discriminant analysis) (Lee *et al.* 2017) of area x area to compare the distributional patterns of 155 species of leafy liverworts in the Luquillo Mountains of Puerto Rico (Figure 142). They compared high altitude with low-altitude areas, shaded, moist habitats with open, more exposed habitats, and disturbed, low-elevation habitats with less disturbed habitats at all elevations. R-mode and Q-mode produced nearly identical distribution patterns. Therefore, either method can be used to determine which species are the best indicators of habitat differences.

A technique that has been used in ecological studies in several ecosystems is that of recording **morphospecies** (species forms). This permits the researchers to use a team of novices and accomplish a wide survey in a short time (Gradstein *et al.* 2003). Using the technique for bryophytes, lichens, and tracheophytes, but not epiphylls, they estimated that they could inventory one hectare of tropical rainforest in two weeks. No identifications were attempted, enabling a team of six with three specialists (bryophytes, lichens, tracheophytes) and three assistants to accomplish the survey.
Gradstein et al. (2003) developed a standard protocol of recording morphospecies (species forms) for rapid and representative sampling of epiphyte diversity of one hectare of tropical rainforest. Based on species-accumulation curves they found that inventories of 5 whole trees, using standard plots in all height zones, may be sufficient to sample 70-80% of the diversity of the epiphytic bryophytes of the forest. For vascular epiphytes and epiphytic lichens, however, more trees must be sampled. Using the protocol, the bryophyte inventory of one hectare can be accomplished in two weeks by a team of one specialist and one field assistant. The results obtained by means of the standard protocol have been used for making comparisons of bryophyte species richness along elevational gradients (Gehrig-Downie et al. 2013) and along disturbance gradients (Gradstein & Sporn 2010). A standardized technique also permits comparisons between locations (countries) and hopefully even among researchers.

Quadrats

Nadkarni (2000) established "cylindrats" that she used to track colonization. In a lower montane cloud forest, Monteverde, Costa Rica, she used photography to track the colonization in these epiphytic plots. She also wrapped a clear acetate sheet around the branch, then placed a second clear sheet with a matrix of 100 dots (10x10). Using five random locations around the branch segment she counted the number of dots that touched epiphytes. These counts were converted to percent cover.

Affeld et al. (2008) used single samples (30 x 25 cm) from 96 epiphyte assemblages located on inner branches of 40 northern rata (*Metrosideros robusta*; Figure 143-Figure 144) trees to show that epiphytes are important in determining community structure on South Island, NZ.

Gradstein et al. (2003) developed a standard protocol of recording morphospecies (species forms) for rapid and representative sampling of epiphyte diversity of one hectare of tropical rainforest. Based on species-accumulation curves they found that inventories of 5 whole trees, using standard plots in all height zones, may be sufficient to sample 70-80% of the diversity of the epiphytic bryophytes of the forest. For vascular epiphytes and epiphytic lichens, however, more trees must be sampled. Using the protocol, the bryophyte inventory of one hectare can be accomplished in two weeks by a team of one specialist and one field assistant. The results obtained by means of the standard protocol have been used for making comparisons of bryophyte species richness along elevational gradients (Gehrig-Downie et al. 2013) and along disturbance gradients (Gradstein & Sporn 2010). A standardized technique also permits comparisons between locations (countries) and hopefully even among researchers.

Quadrats

Nadkarni (2000) established "cylindrats" that she used to track colonization. In a lower montane cloud forest, Monteverde, Costa Rica, she used photography to track the colonization in these epiphytic plots. She also wrapped a clear acetate sheet around the branch, then placed a second clear sheet with a matrix of 100 dots (10x10). Using five random locations around the branch segment she counted the number of dots that touched epiphytes. These counts were converted to percent cover.

Affeld et al. (2008) used single samples (30 x 25 cm) from 96 epiphyte assemblages located on inner branches of 40 northern rata (*Metrosideros robusta*; Figure 143-Figure 144) trees to show that epiphytes are important in determining community structure on South Island, NZ.

Gradstein et al. (2003) developed a standard protocol of recording morphospecies (species forms) for rapid and representative sampling of epiphyte diversity of one hectare of tropical rainforest. Based on species-accumulation curves they found that inventories of 5 whole trees, using standard plots in all height zones, may be sufficient to sample 70-80% of the diversity of the epiphytic bryophytes of the forest. For vascular epiphytes and epiphytic lichens, however, more trees must be sampled. Using the protocol, the bryophyte inventory of one hectare can be accomplished in two weeks by a team of one specialist and one field assistant. The results obtained by means of the standard protocol have been used for making comparisons of bryophyte species richness along elevational gradients (Gehrig-Downie et al. 2013) and along disturbance gradients (Gradstein & Sporn 2010). A standardized technique also permits comparisons between locations (countries) and hopefully even among researchers.

Quadrats

Nadkarni (2000) established "cylindrats" that she used to track colonization. In a lower montane cloud forest, Monteverde, Costa Rica, she used photography to track the colonization in these epiphytic plots. She also wrapped a clear acetate sheet around the branch, then placed a second clear sheet with a matrix of 100 dots (10x10). Using five random locations around the branch segment she counted the number of dots that touched epiphytes. These counts were converted to percent cover.

Affeld et al. (2008) used single samples (30 x 25 cm) from 96 epiphyte assemblages located on inner branches of 40 northern rata (*Metrosideros robusta*; Figure 143-Figure 144) trees to show that epiphytes are important in determining community structure on South Island, NZ.

Gradstein et al. (2003) developed a standard protocol of recording morphospecies (species forms) for rapid and representative sampling of epiphyte diversity of one hectare of tropical rainforest. Based on species-accumulation curves they found that inventories of 5 whole trees, using standard plots in all height zones, may be sufficient to sample 70-80% of the diversity of the epiphytic bryophytes of the forest. For vascular epiphytes and epiphytic lichens, however, more trees must be sampled. Using the protocol, the bryophyte inventory of one hectare can be accomplished in two weeks by a team of one specialist and one field assistant. The results obtained by means of the standard protocol have been used for making comparisons of bryophyte species richness along elevational gradients (Gehrig-Downie et al. 2013) and along disturbance gradients (Gradstein & Sporn 2010). A standardized technique also permits comparisons between locations (countries) and hopefully even among researchers.
Rope Climbing

Early tropical researchers, in an attempt to get better representation of the canopy bryophytes, frequently used ropes to help them climb the trees (Wolf 1993a, b, c, 1995; Gradstein et al. 1996; Nadkarni 2000).

Sillett (1991) set out to develop a quantitative method for sampling tropical canopy bryophytes. He used hemispherical canopy photography to learn that interior crowns of isolated trees (Figure 145) are twice as bright as the interior crowns of intact forest trees of the same species (*Ficus tuerckheimii*, Figure 146). He climbed the trees to sample them. Sillett used a cost-benefit analysis that indicated more branches per tree and fewer plots per branch minimizes time but provides similar information.

Older techniques such as tree climbing for collecting canopy bryophytes can present several problems. Many twigs and small branches cannot be reached from those branches that are strong enough to support the climber. Pole-climbing techniques require using a harness and the climbing spikes used can dislodge bryophytes and other epiphytes and put holes in the tree trunks, providing entry sites for pathogenic fungi and insects (Perry 1978). Inspired by Perry (1978), Cornelissen and ter Steege (1989) developed a rope-climbing technique that has been used by many researchers, including Dimitri Montfoort, Renske Ek, Jan Wolf, Ingo Holz, Nicole Nöske, Simone Sporn, Sylvia Mota de Oliveira, Laura Campos, and Angel Benitez, among others.

Using this method, Lücking et al. (1996) and Gradstein et al. (1996) reported that trees can be prepared for rope climbing in an hour, permitting the researcher to climb to 30 m in 5-10 minutes. Unfortunately, the outer branches are too fragile for climbing and must be sawed off.

Non-bryologists who collect may be fascinated by the epiphyllous species and usually do not provide representative sampling of the branch species. They furthermore often fail to provide the necessary data, such as substrate, that helps the taxonomist to identify the samples. While their collections are valuable to increase our knowledge of the species in an area, they can miss whole groups of taxa and should be used with caution for quantitative conclusions or ecological inferences.
Bow and Arrow

Perry (1978) modified the pole climbing techniques by adding ropes to the equipment. Once the rope is thrown over a sturdy branch, it can be used to help hoist the climber to the level of the branches. The placement of the rope is facilitated by use of an 80-pound pull crossbow and weighted arrow tied to 30-pound test monofilament. The weight of the arrow insures that the arrow will fall to the ground. A spool can be wrapped around the line to prevent tangling.

This is only the first step. Next, a 120-240 pound test braided line is attached to the first, smaller line (Perry 1978). The line that can support the climber is too heavy for the bow and arrow. The heavier (240 pound test) line is needed if there are many large branches because abrasion by the branches can break the lighter-weight line. Safety is a foremost concern.

Ter Steege and Cornelissen (1988) described rope techniques (Figure 147-Figure 150) to climb trees to capture epiphytic bryophytes. These were based on previous use by Day (1962), Pike et al. (1975), Perry (1978), Perry and Williams (1981), Whitacre (1981), Hoi (1984). Ter Steege and Cornelissen (1986) used a rope technique in Guyana (Figure 93), Wolf (1986) in Colombia, Montfoort & Ek (1990) in French Guiana (Figure 140).

Ter Steege and Cornelissen (1988) emphasized safety aspects: making sure the branch is strong enough and has an angle of less than 45°; using a proper, strong knot; avoiding branches infected by parasites and hemiparasites. The technique requires shooting an arrow over the selected branch (Figure 147), carrying with it a strong nylon fishing line (50-60/100). Tangles are prevented by keeping the line on a fishing reel, preferably a sea-fishing reel, attached to the bow. The arrow head is weighted with lead to help it return to the ground through the branches. The arrow is then removed and a 3-mm cord is tied to the fishing line using a double sheet bend knot (Figure 147). Winding the reel helps to pull the line and attached cord over the branch. An 11-mm speleocord is attached to the 3-mm cord using a double sheet bend knot (see Figure 147 for knots). This 11-mm cord is hauled over the limb by hand power. Construct a lasso with a figure of eight knot and pull it against the limb. The 3-mm cord is attached to the free end of the knot to facilitate pulling the knot down after use. Test the strength of the branch by having two people hang onto it with their full weight. Be prepared to get out of the way if the branch breaks! Hang two ascenders or jumars (Figure 148) on the rope to facilitate ascent. Attach one ascender to a seat belt and the other to the climber's feet (Figure 148). Always use locking karabiners to link the ascenders (Figure 149-Figure 150). Another rope can be tossed over desired branches higher up, using a load attached to a 3-mm cord. The procedure of hanging a rope is then repeated. I recommend reading the original article for details. And if this vocabulary is unfamiliar to you, you might not have enough experience to use this method safely.

Figure 147. Knots used for rope climbing of trees. Modified from ter Steege & Cornelissen 1988.

Figure 148. Climbing gear. Modified from ter Steege & Cornelissen 1988.
Other Canopy Access

Hallé (1990) used an inflatable raft carried by a hot-air dirigible to gain access to canopy epiphytes. Other methods include the use of cranes (Figure 151-Figure 152) (Parker et al. 1992; Zotz & Vollrath 2003) and special platforms and walkways (Figure 153) (McClure 1966; Grison 1978; Perry 1978). Lowman et al. (2012) provide the standard modern reference on canopy research methods.
Role

Gotsch et al. (2016) emphasized the importance of epiphytic material in tropical montane cloud forests (Figure 153). As noted earlier, they intercept both nutrients and moisture from the atmosphere and contribute these over an extended period of time to the forest floor. The amounts of these contributions vary with stand age and microclimate. This epiphytic biomass provides food sources for both birds and mammals, and birds use bryophytic biomass for nest building. Gotsch and coworkers state that more than 200 species of birds use the epiphytes. Wilding et al. (2016) cited a number of pendent genera of mosses and liverworts that are used in nest building. These included the mosses Papillaria, Floribundaria, Meteorium, and Squamidium and the liverworts Frullania and Plagiochila.

Barkman (1958) and Pócs (1980) suggested that bryophytes may cause their own displacement by retaining water that makes tracheophytic epiphyte presence possible. They furthermore form humus, accelerate bark decay (Barkman 1958), and facilitate anchorage of seeds and other propagules.

Adventitious Roots

Herwitz (1991) found that adventitious roots of the montane tropical rainforest canopy tree species Ceratopetalum virchowii (see Figure 154) take advantage of the nutrient-rich stemflow, whereas the stemflow of other canopy tree species is nutrient-poor. Such observations as this raise the question of the role of bryophytes in the development of adventitious roots.

Nadkarni (1994) found that epiphytic bryophytes do not provide a rooting medium for adventitious roots of trees. In fact, a dynamic interaction may occur in which the bryophytes help the tree, and the tree roots likewise help the establishment of the epiphytic community. The bryophyte mat traps inorganic nutrients (Nadkarni 1986) and organic nutrients (Coxson et al. 1992) that are leached from members of the epiphyte community. These nutrients nourish the roots of the tree (Nadkarni & Primack 1989). The two appear to grow in mutual benefit, with the roots benefitting from the nutrients and providing a larger anchoring system for the epiphytes as they grow (Nadkarni 1994). As the bryophytes and organic matter increase, they provide more leachates, causing the tree roots to increase.

Leary et al. (2004) found that nodulation of the legume Acacia koa (Figure 155) occurred in the canopy in Hawaii. These nodules contain the bacterium Bradyrhizobium (Figure 156) in pockets within the canopy. These pockets provide organic soils with trapped nutrients and often form among bryophytes. They even have lower aluminum levels than the terrestrial soils.

Figure 154. Ceratopetalum apetalum; Ceratopetalum virchowii is a canopy tree in the tropical montane rainforest and uses adventitious roots to gain nutrients from stemflow. Photo by John Tann, through Creative Commons.

Figure 155. Acacia koa, Maui, Hawaii, a species that forms nodules in epiphytic organic soils, including among bryophytes. Photo by Forest and Kim Starr, through Creative Commons.
But finding orchids among bryophytes does not indicate any necessary role for the bryophytes. Tremblay (2008) relocated a rare epiphytic orchid after its dislocation from Hurricane Georges. He found that the orchid population size did not correlate with the percent of moss cover on the standing trees. Nevertheless, the orchids seemed to be more frequent when the tree bole had 40-90% moss cover. We need studies to determine the role in bryophytes in trapping and holding seeds and seedlings until the orchids and other plants are able to attach to the tree.

Probably the best example of a moss-dwelling epiphyte is the neotropical fern genus *Melpomene* (Figure 158). Almost all species in this genus grow in dense epiphytic bryophyte mats (Lehnert 2007). Sylvester *et al.* (2014) noted that the highest epiphyte elevation known for a tracheophyte was from the southern Peruvian Andes. They reported three species of the fern *Melpomene* from *Polylepis pepei* (see Figure 159) forests above 4,250 m, with *Melpomene peruviana* reaching close to 4,550 m asl. Could it be that bryophytes contribute in some way to their ability to live at these high elevations?

Substrata for Tracheophytes

Zotz and Vollrath (2003) used a canopy crane (Figure 151-Figure 152) to explore the epiphyte flora of the palm *Socratea exorrhiza* (Figure 35-Figure 36) in a primary lowland rainforest of Panama. They examined each palm in a 0.9 hectare and identified 701 tracheophyte epiphytes and hemi-epiphytes on 118 palm trees, identifying 66 species. The tracheophytes usually do not colonize trees less than 20 years old. These tracheophytic epiphytes are significantly associated with bryophytes, but the researchers could find no species that seemed to depend on the bryophytes. On the other hand, one must wonder if the bryophytes are important in maintaining moisture for the roots and storing nutrients trapped during precipitation events, as well as providing a suitable anchor for germinating seeds.

In Madagascar, orchids commonly grow in beds of *Leucoloma* (Figure 157) on tree trunks (Pócs 1982; Catherine La Farge, Bryonet September 2004). The bryophytes trap nutrients that make them a suitable substrate for epiphytes.
Ferns often inhabit bryophyte mats, where the bryophytes may support the heavy weight of the rhizome on vertical surfaces. Kelly et al. (2004) reported that *Elaphoglossum hoffmannii* was typically associated with mosses, specifically with *Syrhopodon gaudichaudii* (Figure 160). *Elaphioglossum wawrae* (Figure 161) is a Hawaiian epiphytic endemic that occurs in moss mats, and is among the tracheophyte species that characterize the montane zone (Higashino et al. 1988; Kitayama and Mueller-Dombois 1992). *Elaphoglossum glabellum* growing on *Epeura falcata* (Figure 42-Figure 43) is restricted to small moss mats that occur around forks and knots found only in the lower canopy in the lowland rainforest of Guyana (ter Steege & Cornelissen 1989). On *Epeura grandiflora*, this species occurs on bryophyte mats from the lower trunk to the middle canopy. The bryophyte mats provide a longer supply of water. But bark differences may account for the differences in bryophyte cover, with *E. grandiflora* having rougher bark than that of *E. falcata*. They may also provide a chemical buffer against toxins in the bark (Frei 1973).

On the other hand, Werner and Gradstein (2008) studied the factors important for seedling establishment of tracheophytic epiphytes in the Andes and found no relationship to bryophyte cover. Rather, isolated trees closer to the forest had significantly greater colonization by these plants, but colonization did not correlate with greater canopy or bryophyte cover.

Friend or Foe?

Cacao plantation owners had concerns over the epiphytes on the leaves, removing them in an effort to improve productivity of the fruit crop (Sporn et al. 2007). Removal of epiphytes from cacao had no notable effect on the harvest size of the cacao trees.

But sometimes the bryophytes seem to have negative effects on these trees. Akinfenwa (1989) reported that the epiphytic moss *Erythrodontium barteri* (Figure 162) reduced yield of the *Theobroma cacao* trees. They cause a "dressing" effect on palms wherein the leaf bases collect soil in the leaf axils. This soil supports an epiphytic community with microbial activities in the soil. The result is decay of leaf bases, causing the joints to weaken. They can no longer support the epiphytic community, causing it to fall gradually along with the remains of the leaf bases. This process continues as the trees age and grow taller, resulting in smooth boles and consequently fewer leaves for photosynthesis.

Faunal Habitat

The epiphytes provide a suitable habitat for a number of arthropods in the Neotropical cloud forest (Yanoviak et al. 2004). The arthropod morphospecies are similar between green and brown portions of the epiphyte mats, but relative abundances often differ. The most common of these arthropods was an oribatid mite; these preferred the brown portion in laboratory trials.

Bryophytes are home to a variety of frogs and salamanders and are even used by chimpanzees to gather water. Birds use them for nesting material. These interesting interactions are discussed in the volume on Interactions.
Tropical forests have an array of vertical niches, but on a horizontal scale, 4-5 trees are adequate to find 95% of the diversity. The Lejeuneaceae are common in the canopy as branch epiphytes and as epiphylls. Tree bases often have mats and wefts of Thuidium spp., with Fissidens spp., Lejeuneaceae, and Orthotrichaceae. Farther up the trunk are feather types. Dendroids, feathers, and brackets occur on narrow stems of small trees and branches of shrubs in the understory. Species on the upper trunk are more appressed and correlate with structure of the phorophyte stands and to temperature zones. The lower branches and thick canopy branches typically have large mats; epiphyllous Lejeuneaceae abound. In moist forests, twigs support pendent Meteoriaceae, Pterobryaceae, Frullania, and Lejeuneaceae. On drier twigs one can find CRYPTAEACEAE, ERPODIACEAE, ORTHOTRICHACEAE, SEMATOPHYLLACEAE, FRULLANIA, and LEJEUNEACEAE. The outer canopy contrasts with the inner canopy by having more light and less moisture, creating a stressful environment.

Logs and decaying wood are the primary substrate on the forest floor, raised above the thick litter layer. Dominant bryophytes are in the SEMATOPHYLLACEAE, Hookeriaceae, and Leucobryaceae. Under stable climatic conditions, perennial stayers precede wefts and mat, a succession similar to that of the trunk epiphytic communities. Flood disturbance favors dendroid and mat-forming shuttle species that utilize a diaspore bank. In dry conditions, species are more likely to be short-turf-forming colonists. Shady sites are most suitable for wefts.

Epiphyte sampling is best done with ropes or bow and arrow, unless cranes or skywalks are available, minimizing damage to the trees and their flora. Quadrats in all tree zones can permit quantitative sampling. Life forms are suitable for assessing functional ecology.

Bryophyte clumps can provide moist rooting media for adventitious roots, and rooting media for ferns and orchids. They retain water, and store nutrients that can be released in pulses. Numerous invertebrate and amphibian species live among them.

Acknowledgments

My appreciation goes to Noris Salazar Allen for her efforts to make this chapter reliable and up-to-date. Her helpful discussions kept me going on this part of the world I know so little about.

Literature Cited

Kürschner, H. 2004a. Life strategies and adaptations in bryophytes from the Near and Middle East. Turkish J. Bot. 28: 73-84.

Common Species. Published by authors in electronic format, 66 pp.

CHAPTER 8-5
TROPICS: EPIPHYTE GEOGRAPHIC DIVERSITY

TABLE OF CONTENTS

Diversity .. 8-5-2
Asia ... 8-5-5
African Region ... 8-5-11
Neotropics .. 8-5-17
Summary ... 8-5-23
Acknowledgments ... 8-5-23
Literature Cited ... 8-5-23
CHAPTER 8-5
TROPICS: EPIPHYTE GEOGRAPHIC DIVERSITY

Figure 1. Wet forest of Kohala Mountain, Hawaii, with abundant epiphytes. Photo by Melora Purell, through Creative Commons.

Diversity

As is generally true in the tropics, many species have been named multiple times under different names in different countries (Pócs 1984). Hence, understanding the diversity is difficult, as is understanding the bryogeography. As herbaria have become established in more tropical locations, comprehensive studies of various genera and families is untangling some of these taxonomic problems (see, for example, the revision of African Lepidoziaceae (Figure 2) by Pócs 1984).

Figure 2. Bazzania hookeri (Lepidoziaceae) from the Neotropics. Photo by Michael Lüth, with permission.
Ramsay et al. (1987) found seven genera of mosses that occur in all the major rainforest types in Australia: *Macromitrium* (Figure 3), *Racopilum* (Figure 4), *Hymenodon* (Figure 5), *Pyrrhobryum* (Figure 6), *Rhizogonium* (Figure 7), *Sematophyllum* (Figure 8), and *Thuidium* (*Pelekium*?; Figure 9). Epiphyte succession can occur rapidly in the right microclimate. In the crown, species change from prostrate or small upright plants to large cushion mosses such as *Leptostomum inclinans* (Figure 10). These large mosses occur only on the upper surfaces of branches. But large cushions become unstable, falling to create new habitats. Bark furrows create niches where mosses can become established.

Figure 3. *Macromitrium archeri*, member of a genus of mosses that is in all major rainforests in Australia, forming mats. Photo by David Tng, with permission.

Figure 4. *Racopilum* cf. *cuspidigerum*; *Racopilum* is a genus of mosses that is in all major rainforests in Australia. Photo by Peter Woodard, through Creative Commons.

Figure 5. *Hymenodon pilifer*, member of a genus of mosses that is in all major rainforests in Australia. Photo by Niels Klazenga, with permission.

Figure 6. *Pyrrhobryum paramattense*, member of a genus of mosses that is in all major rainforests in Australia. Photo by David Tng, with permission.
Figure 7. *Rhizogonium* sp., member of a genus of mosses that is in all major rainforests in Australia. Photo by Andras Keszei, with permission.

Figure 8. *Sematophyllum substrumulosum*, member of a genus of mosses that is in all major rainforests in Australia. Photo by J. K. Lindsey, with permission.

Figure 9. *Pelekium cf. gratum*, member of a genus of mosses that is in all major rainforests in Australia, forming *wefts*. Photo by Shyamma L., through Creative Commons.

Figure 10. *Leptostomum inclinens* with capsules, a species that forms cushions in the crowns of Australian rainforests. Photo by Clive Shirley, Hidden Forest, with permission.

The *Pterobryaceae* (Figure 21), a family restricted to the tropics, is almost exclusively epiphytic and mostly large, including *dendroid* and *pendent* forms (Churchill & Salazar Allen 2001). Consequently, that family, along with *Neckeraceae* (Figure 11), *Sematophyllum* (Figure 8), and *Taxithelium* (Figure 12), indicates very shady, wet habitats (Pócs 1982). Typically, mosses dominate the base of the trunk, but leafy liverworts, especially the ever-present *Frullania* (Figure 48-Figure 49) and *Lejeuneaceae* (Figure 14), dominate the branches (Pócs 1982; Gradstein 1992).

Figure 11. *Neckeraceae* (*Neckera cephalonica*), a family that indicates very shady, wet habitats in the tropics. Photo by Jan-Peter Frahm, with permission.
Asia

The Lejeuneaceae (Figure 14, Figure 51) is the most abundant and diverse tropical family. In Asia, Gradstein (1991) found 88 species in 17 genera of Lejeuneaceae, subfamily Ptychanthoideae. This subfamily has more species but fewer genera in Asia than in the Neotropics, and the species in these two floras are very different. Asia is the center of diversity for the tribe Ptychantheae (Figure 13); the Neotropics, on the other hand, has its greatest number of species of Ptychanthoideae in the tribe Brachiolejeuneae (Figure 14). The two floras (Asia vs Neotropics) are distinctly different taxonomically. Gradstein considered the higher species diversity in Asia to be related to the greater latitudinal extension of the rainforest in the Far East. In the Far East, 22% of the Ptychanthoideae are non-tropical species, whereas in the Neotropics the non-tropical species are less than 2%. Gradstein and Culmsee (2010) reported 150 bryophyte species on tree bases of only eight canopy trees in montane Sulawesi (Figure 15), Indonesia. Using only tree bases, they compared bryophyte communities based on tree diameter and bark roughness at a series of elevations. Low elevation bryophytes were characterized by the mosses in Calymperaceae (Figure 52-Figure 53), Fissidentaceae (Figure 16), Hypopterygiaceae (Figure 17-Figure 18), Leucobryaceae (Figure 19), Meteoriaceae (Figure 20), Neckeraeae (Figure 11), Pterobryaceae (Figure 21), and Thuidiaceae (Figure 9), and the leafy liverworts in Lejeuneaceae (Figure 14, Figure 51), Lophocoleaceae (Figure 22), Porellaceae (Figure 23), and Radulaceae (Figure 24).
Figure 16. *Fissidens pacificus* (*Fissidentaceae*), in a family that characterizes low-elevation bryophytes. Photo by Jan-Peter Frahm, with permission.

Figure 17. *Hypopterygium didictyon* (*Hypopterygiaceae*), a dendroid moss, in a family that characterizes low-elevation bryophytes. Photo by Juan Larrain, with permission.

Figure 18. *Hypopterygium didictyon* (*Hypopterygiaceae*), a dendroid moss, in a family that characterizes low-elevation bryophytes. Photo by Felipe Osorio-Zúñiga, with permission.

Figure 19. *Leucobryum boninense* (*Leucobryaceae*), an epiphytic species in Asia, in a family that characterizes low-elevation bryophytes. Photo by Tomio Yamaguchi, through Creative Commons.

Figure 20. *Floribundaria plumaria* (*Meteoriaceae*), in a family that characterizes low-elevation bryophytes. Photo by Michael Lüth, with permission.
By contrast, bryophytes at higher elevations in Sulawesi (Figure 25) were predominately in the leafy liverwort families Herbertaceae (Figure 26), Lepidoziaceae (Figure 2), Mastigophoraceae (Figure 27-Figure 28), Scapaniaceae (Figure 29), Schistochilaceae (Figure 30), and Trichocoleaceae (Figure 31-Figure 32) (Gradstein & Culmsee 2010). In the submontane and lower montane, Lejeuneaceae (Figure 14, Figure 51) has the most species; Plagiochilaceae (Figure 33) is also important in the lower montane forest. In the upper montane forest that high diversity is found in the Lepidoziaceae (Figure 2). Rough bark is preferred by some species, but none prefer smooth bark. A few species correlate with trunk diameter, but species composition and richness do not. As elevation increases, liverwort species richness generally increases and moss richness decreases. This is a common trend in the tropics. Differences between communities on tree trunks increase with distance, reaching only about 25% similarity between Sulawesi and Borneo. At continental distances, similarity is nearly zero.
Figure 26. *Herbertus aduncus* (Herbertaceae), member of a family that predominates at high elevations in Sulawesi. Photo from Botany Website, UBC, with permission.

Figure 27. *Mastigophora diclados* (Mastigophoraceae), member of a family that predominates at high elevations in Sulawesi. Photo by Jan-Peter Frahm, with permission.

Figure 28. *Mastigophora flagellifera* (Mastigophoraceae), member of a family that predominates at high elevations in Sulawesi. Photo by Jan-Peter Frahm, with permission.

Figure 29. *Scapania cuspiduligera* (Scapaniaceae) with gemmae, member of a family that predominates at high elevations in Sulawesi. Photo by Michael Lüth, with permission.

Figure 30. *Schistochila* sp. (Schistochilaceae) in China, member of a family that predominates at high elevations in Sulawesi. Photo by Li Zhang, with permission.

Figure 31. *Trichocolea* sp. from the Neotropics, member of a family that predominates at high elevations in Sulawesi. Photo by Michael Lüth, with permission.
Kürshner (2008) identified six floral elements in southwest Asia, creating a heterogeneous flora. This included endemics with various origins. There is a very strong tropical influence on the bryophyte flora, particularly of the palaeotropical and Afromontane elements. Nevertheless, nearly 10% (>95 taxa) are of xerotropical origin. Many are unique relicts of a formerly more widely distributed flora and are concentrated primarily in the escarpment mountains of the Arabian Peninsula and Socotra Island.

Magdum et al. (2017) collected nine species of corticolous mosses in Panhalgad in the Western Ghats, India, in different seasons, providing the first record of the mosses from the Kolhapur District. These mosses were *Pogonatum microstomum, Campylopus flexuosus* (Figure 35), *Leucobryum bowringii* (Figure 36), *Fissidens bryoides* (Figure 37), *Fissidens macrosporoides*, *Loiseaubryum nutans*, *Anomobryum auratum* (Figure 38), *Bryum capillare* (Figure 39), and *Bryum uliginosum* (Figure 40).

Ariyanti et al. (2008) considered that forest disturbance and land use altered for agriculture was changing the landscape in Central Sulawesi, Indonesia (Figure 34), at a drastic rate. Nevertheless, total bryophyte richness did not differ among forest types. But mosses and liverworts reacted differently. Moss richness was lowest in the cacao agroforests (Figure 34); liverwort richness was equal in all forest types. But in contrast, moss cover was unaffected, whereas liverwort cover decreased significantly in the agroforest. These differences resulted because species composition changed in the cacao agroforests. The more open agroforests were populated by drought-tolerant species. The species composition also differed markedly between large and small trees in the agroforests, but not in the natural forests. The authors suggested that these effects of tree size were due to changes in stemflow of precipitation water.
Kürschner (2003) conducted a phytosociological analysis in southwestern Arabia in the Asir Mountains. The characteristic species are drought-tolerant Afromontane mosses, with Orthotrichum diaphanum (Figure 41) and Syntrichia laevipila (Figure 42) being most prominent. Life forms and life strategies correlate with the environment. The Orthotricho-Fabronietum socotranae (see Figure 43) is a drought-tolerant association that is both xerophytic and tolerant of high light. This formation is dominated by cushion, short-turf, and mat-forming perennial stayers that have regular sporophyte production. The Leptodonto (Figure 44)-Leucodontetum schweinfurthii (see Figure 45) association is typical of sub-humid areas with sciophytic (shade-loving) vegetation. Its bryophytes are liverworts in addition to the mosses that are predominantly tails or fan-forming pleurocarpous perennial
shuttle species. The mosses typically have large spores, adapting them for short-range dispersal that is either passive (with moderately low reproduction) or generative reproduction. This sciophytic group has a much higher diversity of life forms and life strategies than the xerophytic group.

Figure 41. Orthotrichum diaphanum, a species of dry locations in the Asir Mountains of southwestern Arabia. Photo by Michael Lüth, with permission.

Figure 42. Syntrichia laevipila with capsules, a prominent species in the Asir Mountains in southwestern Arabia. Photo by Michael Lüth, with permission.

Figure 43. Fabronia sp.; Fabronia socotrana is a prominent epiphytic species in the Asir Mountains in southwestern Arabia. Photo by Michael Lüth, with permission.

Figure 44. Leptodon smithii; the Leptodon community is typical of the sub-humid area in the Asir Mountains in southwestern Arabia. Photo courtesy of Jeff Duckett and Silvia Pressel.

Figure 45. Leucodon treleasei; the Leptodonton-Leucodontetum schweinfurthii community is typical of the sub-humid area of the Asir Mountains in southwestern Arabia. Photo by Jan-Peter Frahm, with permission.

Additional references that may be useful regarding tropical epiphyte diversity in the Asian region include Frahm (1990 – Malaysia), Tixier (1966 – Indonesia), Osada & Amakawa (1956 – Tsushima Islands, Japan).

African Region

Exploration of tropical African bryophytes is relatively new. Augier (1974) listed corticolous (growing on bark) bryophytes in the submontane forest of western Cameroon (Figure 46). Akande et al. (1982) examined corticolous bryophytes in Ibadan, Nigeria. On the 8 phorophytes on two sites they examined, they identified 20 bryophyte species. Entodontopsis nitens (Figure 47) is common and present on both sites. They considered Frullania dilatata (Figure 48-Figure 49) and Entodontopsis tenuinervis to be accidental species. They found the pH of the bryophytes to be similar to that of their bark substrate. In 28 comparisons, 11 bryophyte species combinations have a similarity of 50% or more. Entodontopsis nitens and Pelekium gratum (Figure 50) have a high degree of association, as do E. nitens and Mastigolejeunea florea (see Figure 51). Entodontopsis nitens and Erythrodontium barteri, Entodontopsis nitens and Calymperes palisotii (Figure 52-Figure 53), and Erythrodontium barteri and M.
florea. Light is important in determining the height of the bryophytes on the trees. There seems to be no indication of preference for tree species, but the number of trees sampled was limited.

Figure 46. Menchum Falls, NW Province, Cameroon. Photo by Nick Annejohn and family, through public domain.

Figure 47. Entodontopsis nitens, a common epiphytic species in Ibadan, Nigeria. Photo from Wilding et al. 2016, with permission.

Figure 48. Frullania dilatata on smooth bark, a species considered to be accidental in this habitat in Ibadan, Nigeria. Photo by Bernd Haynold, through Creative Commons.

Figure 49. Frullania dilatata lobules. Photo by Hermann Schachner, through Creative Commons.

Figure 50. Pelekium cf. gratum, a species that shares a 50% similarity index with Entodontopsis nitens. Photo by Shyamma L., through Creative Commons.
Odu (1985) found a greater species richness of epiphytic bryophytes in lowland and freshwater forests than in the mangrove forests of the Niger Delta in Nigeria (Figure 54). He suggested that atmospheric humidity and air impurities may be influencing the bryophytes found. *Calymperes* (Figure 52-Figure 53, Figure 55) and *Octoblepharum* (Figure 56) occur all over the Niger Delta, whereas others are restricted to the lowland freshwater forests. Those in the mangrove forests require adaptations that permit their tolerance of salt water. Further discussion of the mangrove forest is in the subchapter Hydric and Xeric Habitats.
Akinsoji (1991) reported 26 tracheophytic epiphytes from a tropical rainforest in southwestern Nigeria. As noted elsewhere regarding bryophytes, bark texture makes a difference. Akinsoji found that rough bark is able to collect soil, nutrients, and moisture for epiphytic growth, all features that could benefit bryophytes as well. Trees with smooth bark lacked debris and dust accumulation or moisture retention and had only one or two epiphytes.

More recently, Ezukanma et al. (2019a, in review) examined corticolous bryophytes in agroforests of southwestern Nigeria. Only 14 bryophytes were identified. Seven leafy liverwort species were present, but they were distributed in five families — Lejeuneaceae (Figure 14, Figure 51) and Radulaceae (Figure 24). Similarly, seven moss species were found, but they were distributed in five families — Calymperaceae (Figure 52-Figure 53), Entodontaceae (Figure 57), Fissidentaceae (Figure 16), Hypnaceae (Figure 58), and Leucomiaceae (Figure 59) with one species each, and Plagiotheciaceae (Figure 60) with two species. Cashew forests (Figure 61) had eight species, kola (Figure 62) had seven, and cocoa (Figure 63) had six. Only the liverworts Thysananthus nigrus (see Figure 64) and Mastigolejeunea auriculata (Figure 65) were found in all three forest types. Entodontopsis nitens (Figure 47) was the most frequent species, occurring in the kola forest and having a frequency of 27.6%. Next in frequency were Mastigolejeunea auriculata (23.65%) and Entodontopsis nitens (18.92%) in the cocoa agroforest.

Figure 57. Entodon sp. (Entodontaceae); this family is frequent on trees in the agroforests of Nigeria. Photo by Cindy Hough, through Creative Commons.

Figure 58. Chryso-hypnum diminutivum (Hypnaceae) from the Neotropics; this family is frequent on trees in the agroforests of Nigeria. Photo by Michael Lüth, with permission.

Figure 59. Leucomium strumosum (Leucomiaceae), a family that occurs on trees in agroforests in Nigeria. Photo by Claudio Delgadillo Moya, with permission.

Figure 60. Plagiothecium undulatum (Plagiotheciaceae), a family that occurs on trees in agroforests in Nigeria. Photo from Proyecto Musgo, through Creative Commons.

Figure 61. Cashew tree in Brazil. Photo by Ben Tavener, through Creative Commons.
Ezukanma et al. (2019b, in press) also assessed the epiphytic bryophytes in the urban agroforests of Ibadan, Nigeria. They studied the corticolous bryophytes up to 2 m on the phorophytes of 30 trees in *Citrus* (Figure 66) and *Mangifera* (Figure 67) plantations. Here they identified 19 species, 13 leafy liverworts and 6 mosses. Five species were in both forest types. The mango forests had higher bryophyte diversity and more even distribution of species. The researchers suggested that this might relate to the frequent pruning of the crowns in the mango agroforest. The moss *Calymperes palisotii* (Figure 52-Figure 53) was the most abundant species, especially in the *Citrus* plantations. Corticolous species were generally absent at the base of the phorophyte, occurring with a mean height of 1.39 m (range of 1.17-1.60) on *Mangifera* and 1.11 m (range of 0.48-1.8) on *Citrus*. The moss *Rhacopilopsis trinitensis* (Figure 68) had the highest mean height, extending up to 1.8 m. *Ceratolejeunea beninensis* (see Figure 80-Figure 81) was second in abundance, likewise in the *Citrus* forest. As in the cashew, kola, and cacao forests, *Mastigolejeunea auriculata* (Figure 65; in the *Mangifera* forests) and *Entodontopsis nitens* (in the *Citrus* forests; Figure 47) were species with high frequencies. There were 13 liverwort species, 12 in *Lejeuneaceae* (Figure 14, Figure 51) and 1 in *Jubulaceae* (Figure 69). The six moss species were in four families, with 3 in *Stereophyllaceae* (Figure 47) and 1 each in *Calymperaceae* (Figure 52-Figure 55, Figure 82), *Hypnaceae* (Figure 58), and *Leucomiaceae* (Figure 59). Twelve species occurred in both forest types.
Biedinger and Fischer (1996) compared the diversity of epiphytic tracheophytes, bryophytes, and lichens in the montane rainforests and dry forests of Rwanda and Zaïre. They identified 167 species of tracheophytes, 45 of mosses, 82 of liverworts, 78 corticolous lichens, and 57 epiphyllous lichens. While the numbers may be replaced with more recent studies, the proportions are likely to be more accurate.

In South Africa, Dilg and Frahm (1997) explored the epiphytic flora in southern Drakensberg. They found only 38 species, 12 of which were liverworts and 26 were mosses. The Podocarpus (Figure 70) forest provides a habitat with high humidity and fire protection; it has the highest number of bryophyte species.
In addition to these studies, Frahm (1994) reported on ecology of epiphytic bryophytes on Mt. Kahuzi in Zaire. Additional references that may be useful regarding epiphytic diversity in the African tropics include Kürschner (1984 – Saudi Arabia; 1990a – moss societies on Mt. Kinabalu, North Borneo; 1995 – Eastern Congo), Pócs & Szabo (1993 – Mt Elgon, Kenya), Gill & Onyibe (1986 – phytosociology of epiphytes on oil palm in Benin City, Nigeria), Ezukanma (2012 – agroecological corticolous species in southwestern Nigeria). A number of references by Ah-Peng and coworkers will be addressed in other appropriate subchapters of this chapter.

Neotropics

The Neotropics are rich in bryophyte species. In a six-hectare upper montane *Quercus* forest (Figure 71) in Costa Rica, Holz et al. (2002) found 206 species, comprised of 100 moss species, 105 liverwort species, and 1 hornwort. They found three main groups of microhabitats in the forest: forest floor, including the tree base; the phyllosphere (space surrounding the leaf); other epiphytic habitats. Life forms differ with the humidity and light levels, as discussed in earlier subchapters. Van Reenen (1987) noted that the epiphytic cover of bryophytes in the Andes of Colombia increases with altitude. Wolf (2003) found that the greatest liverwort diversity occurs in the transition zone where two distinct floras are in contact.

![Figure 71. *Quercus copeyensis*; in Costa Rica the *Quercus* forest is home to more than 200 bryophyte species. Photo through Creative Commons.](image)

Delia et al. (2015) reported 34 epiphytic moss species from El Zancudo, Honduras. They concluded that the montane rainforest that borders Honduras and El Salvador is bryologically diverse, but is largely unexplored.

Richards (1954) considered the Moraballi Creek in Co-operative Republic of Guyana to have four main bryophyte synusiae (structural units of major ecological community characterized by relative uniformity of life form or height): high epiphytes, shade epiphytes, epiphylls, dead wood communities. Although these communities are very distinct in both structure and composition, several species, such as *Calymperes lonchophyllum* (see Figure 52-Figure 55) and *Octoblepharum albidum* (Figure 56), occur in all but the epiphyllous synusiae. The epiphyllous species are highly specialized, as will be discussed in a later subchapter. Korpelainen and Salazar Allen (1999) demonstrated genetic variation in three species of *Octoblepharum*, perhaps explaining their ability to occur in multiple community types. Richards (1954) found that Moraballi Creek synusiae differ in their growth (and life) forms of the species, creating differences in community structure. This results in differences between the very dry habitat of the high epiphyte synusiae and the more a Costa Rican lower montane wet forest. They found 109 species on the three intact forest trees and only 76 on the three isolated trees. Of these, 52 species occurred only on the intact forest trees; 18 were only on the isolated trees. Species richness, cover, and frequency of pendants, tall turfs, tails, and fans were significantly higher on the trees in the intact forest. Isolated trees had higher rates of evaporation from the inner crowns, more macrolichen cover, and higher levels of sunlight compared to the intact forest trees. Ordination analysis revealed a desiccation gradient ranging from the sheltered intact forest trees to the exposed isolated trees.

![Figure 72. *Ficus tuerckheimii*, Costa Rica. Photo by Dick Culbert, with online permission.](image)

Sillett et al. (1995) examined the bryophyte communities of six *Ficus tuerckheimii* (Figure 72) trees in
8-5-18 Chapter 8-5: Tropics: Epiphyte Geographic Diversity

moderated shade epiphyte synusiae. The latter is characterized by freely projecting or dangling shoots and large thin-walled cells. The Moraballi Creek rainforest bryophyte synusiae differ markedly from those of temperate forests by the absence of ground-dwelling bryophyte synusiae, the presence of epiphyllous bryophytes, and the preponderance of liverworts, especially **Lejeuneaceae** (Figure 14, Figure 51).

In a semi-deciduous tropical forest of southern Guyana (Figure 73), Sipman (1997) found 100 species of lichens, with 8 out of 14 trees lacking lichens on leaves completely, whereas 3 had 34-46 taxa! Instead, the foliicolous lichens are most likely to grow close to the ground. In contrast to the 34-46 species of lichens on a single tree, they were able to find only 18 bryophyte taxa on canopy leaves.

Figure 73. Guyana waterfall and forest near Paramakatoi. Photo by Kevin Gabbert, through public domain.

Large trees support more species than small ones, with a typical logistic curve of increasing numbers of species related to both plot size and tree DBH (diameter at breast height) (Figure 74) (Gradstein *et al.* 1996).

Figure 74. Relationship between number of epiphyte species and plot size and tree DBH in Mexico. Species-area curves are **solid** symbols, cumulative number of species vs cumulative diameter of all trees sampled are **open** symbols. **Squares** represent humid montane cloud forest; **circles** represent humid lowland forest. Modified from Gradstein *et al.* 1996.

Gradstein *et al.* (1990) investigated the epiphytic bryophytes in the dry evergreen forest and mixed forest of the Guianas (Figure 73) using mountaineering techniques. They discovered that the lowland rainforest is not as poor in species as had been thought, once the bryophytes of the canopy are included in the exploration. More than 50% of the local species may occur in the canopy. The mixed forest has the most species. A single tree can support up to 67 species, with 50 species being an average number. The 28 trees sampled supported 154 species of bryophytes. Only a few trees are needed to find most of the species of the local area. Most of the species in this area are rather common, with 80% being widespread in the Neotropics.

In the Colombian Amazon (Figure 75), Campos *et al.* (2015) established 384 plots on 64 trees in four localities. These exhibited 160 species of epiphytic bryophytes, with a preponderance of liverworts (116 species; 44 species of mosses). These included collections from the base to the outer canopy, including 16 trees at each locality. The highest representation of families (Figure 76) included the leafy liverworts **Lejeuneaceae** (Figure 14, Figure 51) (55%) and **Lepidoziaceae** (Figure 2) (8%), and the mosses **Calyptogeneraceae** (Figure 52-Figure 55) (10%), **Octoblepharaceae** (Figure 56) (6%), and **Sematophyllaceae** (Figure 8) (5%). The most common genera were members of **Lejeuneaceae** – **Cheilolejeunea** (Figure 77) (11%), **Pycnolejeunea** (Figure 78) (8%), **Archilejeunea** (Figure 79) (8%), and **Ceratolejeunea** (Figure 80-Figure 81) (8%) – and the moss **Syrhophon** (Calyptogeneraceae; Figure 82) (7%).

Figure 75. Lowland rainforest in Colombian Amazon. Photo by Laura Campos, courtesy of Robbert Gradstein.

Figure 76. Species richness per family in 4 locations of Colombian Amazon. Modified from Campos *et al.* 2015.
Chapter 8-5: Tropics: Epiphyte Geographic Diversity

Figure 77. *Cheilolejeunea frangrantissima*, in one of the most common genera of *Lejeuneaceae* in the Colombian Amazon. Photo by Scott Zona, with permission.

Figure 78. *Pycnolejeunea pilifera*, member of a common leafy liverwort genus in the mangrove forests of Thailand. Photo by MNHN – Paris, Museum National d'Histoire Naturelle, MB, through Creative Commons.

Figure 79. *Archilejeunea japonica*, in one of the most common genera of *Lejeuneaceae* in the Colombian Amazon. Photo from Digital Museum, Hiroshima University, with permission.

Figure 80. *Ceratolejeunea cubensis*, in one of the most common genera of *Lejeuneaceae* in the Colombian Amazon. Photo by Scott Zona, with permission.

Figure 81. *Ceratolejeunea cubensis*, showing lobules at leaf insertions. Photo by Scott Zona, with permission.

Figure 82. *Syrrhopodon gaudichaudii*, in one of the most common genera in the Colombian Amazon. Photo from Michael Lüth, with permission.

Wolf et al. (2003) found that the richness per surface area decreases significantly with branch diameter (Figure
83) in the upper montane rainforest of the Cordillera in Colombia. Diversity is highest when the standing crop is at intermediate levels and is negatively correlated with the area of the largest species. On the other hand, **evenness** (similarity of frequencies of different units making up population or sample) is less on older branches. The inner canopy species have the smallest niche widths. When only branch segments are sampled, the vegetation is highly variable, whereas that on whole trees is more uniform. The species follow a species area curve that approaches a flat line after sampling only four trees. The liverworts have the greatest richness in the contact transition zone between two distinct floras. Wolf and coworkers suggested that the arrival time of aggressive competitors such as those that form large patches may be "crucial." Many accidental species maintain a high richness and suggest that dispersal of propagules is important in creating richness.

In flooded (Figure 84) and "tierra firme" (Figure 85) forests of the Colombian Amazon, Benavides et al. (2004) found 109 bryophyte species on 14 0.2-ha plots. Mosses and liverworts had opposite responses to moisture, with many more liverworts than moss species in the tierra firme, but total richness (mosses + liverworts) differed little between the flooded and non-flooded habitats (Figure 86). The use of the habitat differed between the two forest types, with differences in humidity being the major factor in determining bryophyte communities. Nevertheless, soil was a little-used substrate for both groups in both habitats (Figure 86). Epiphyll species assemblages (e.g. Figure 87) were not strongly affected by floodplain vs tierra firme. Life forms differed between the two habitat types, with more **fan** and **mat** bryophyte species in the floodplains, and more epiphytic liverworts (hence, almost no **wefts**) in the tierra firme forest (Figure 88).

![Figure 83](image1.jpg)

Figure 83. Branch or trunk diameter in the canopy of the upper montane rainforest and Simpson's index of diversity. **Open circles** indicate a group of seven samples that do not adhere to increasing dominance with diameter. Modified from Wolf et al. 2003.

![Figure 84](image2.jpg)

Figure 84. Várzea forest with açaí palms, the flooded forest of the Amazon. Photo by Frank Krämer through Creative Commons.

![Figure 85](image3.jpg)

Figure 85. Amazon rainforest, Brazil. Photo by Phil P. Harris, through Creative Commons.

![Figure 86](image4.jpg)

Figure 86. Distribution of bryophyte substrates in tierra firme and floodplain in the Aracuara region of Colombia. Modified from Benavides et al. 2004.
Oliveira and ter Steege (2013) determined that epiphytic bryophytes in the tierra firme forests of the Amazon Basin exhibited a typical species abundance distribution (Figure 89).

Kelly et al. (2004) described the epiphytic communities of a montane rainforest in the Venezuelan Andes (Figure 90). They surveyed 20 trees, all in a site of only 1.5 ha at 2600 m asl. The non-tracheophyte epiphytes were recorded in 95 sample plots and yielded 22 moss and 66 liverwort species, as well as 46 species of macrolichens. Few of the bryophytes in these communities are endemic (native distribution restricted to a certain country or area), although they are mostly restricted to the Neotropics. The dominant bryophyte on the lower trunks is *Syrrhopodon gaudichaudii* (Figure 91), along with the fern *Elaphoglossum hoffmannii* (Figure 92). The intermediate levels are dominated by the leafy liverwort *Omphalanthus filiformis* (Lejeuneaceae; Figure 93) and the orchid *Maxillaria miniata* (see Figure 94). The upper crowns are dominated by the lichens *Usnea* (Figure 95) and *Parmotrema* (Figure 96). Diversity of non-tracheophytes is greatest in the upper crowns; tracheophyte diversity is greatest at the intermediate levels. As noted in a number of other studies cited herein, similarity is low among plots of the same community, but between-tree and between-stand similarities are relatively high.
Figure 92. Elaphoglossum hoffmannii, a fern that typically accompanies Syrrhopodon gaudichaudi on lower trunks in montane rainforests in the Venezuelan Andes. Photo by Robbin Moran, with permission.

Figure 93. Omphalanthus filiformis, a dominant leafy liverwort at intermediate levels of tree trunks in a montane rainforest in the Venezuelan Andes. Photo by Michael Lüth, with permission.

Figure 94. Maxillaria molitor, Maxillaria miniata is the dominant flowering plant species, along with the leafy liverwort Omphalanthus filiformis, at intermediate levels in the montane rainforest of the Venezuelan Andes. Photo from Megadiverso, through Creative Commons.

Figure 95. Usnea from Cumbre Vieja, Canary Islands. Members of this genus dominate the crowns of the montane rainforest in the Venezuelan Andes. Photo by Fährtenleser, through Creative Commons.

Figure 96. Parmotrema perlatum. Members of this lichen genus dominate the crowns of the montane rainforest in the Venezuelan Andes. Photo by Alan J. Silverside, with permission.

By comparison, Costa (1999) studied the epiphytic bryophyte diversity of both primary and secondary lowland rainforests in southeastern Brazil, a subtropical region. Unlike many earlier studies, hers included the forest canopy. She found 75 bryophyte species, 39 mosses and 36 liverworts. The highest species richness is exhibited by the mature secondary hillside rainforest, with 43 species. The highly degraded hillside rainforest has the lowest diversity, with only 6 species, and the hillside secondary rainforest with only 5 species. As in so many other studies, the leafy liverwort family Lejeuneaceae (Figure 14, Figure 51) is the "most important" with 23 species (30 %) and the moss family Sematophyllaceae (Figure 8) with 7 species (10%). Demonstrating the importance of the canopy species in understanding species diversity, Costa found that 45% of the bryophyte species occurred exclusively in the canopy. The most common life form is the mat, describing 45% of the species. Forest destruction is more detrimental to shade species than to sun species. Even after 20-45 years, many bryophytes had not returned, but after 80 years the communities were similar to those of primary forest.
In 2017, Gradstein and Benitez added 15 liverwort species to the known flora of Ecuador. They furthermore described two species new to science.

One might not think of looking in a savannah for epiphytes because of the high exposure to sunlight and low moisture. Nevertheless, bryophytic epiphytes do grow there in an Amazonian savanna in Brazil (Figure 97). Gottsberger and Morawetz (1993) found that lichens dominate on the young trees, typically becoming less abundant as the tree ages. Bryophytes are most abundant on older trees and seem to suppress the lichen growth.

Figure 97. Amazonian savannah (Cerrado) in Brazil. Photo by Paulo Q Maio, through Creative Commons.

Additional references that may be useful regarding tropical diversity in the Neotropical epiphytes include Chung (1996 – Panama), Wolf (1993 – Colombia); Jovet-Ast (1949 – groupings of epiphytic mosses in the French West Indies); Frahm (1987a, b – composition of moss vegetation in Peruvian rainforests); Frahm (1987a, c – composition of moss vegetation in Peruvian rainforests).

Acknowledgments

My appreciation goes to Noris Salazar Allen for her efforts to make this chapter reliable and up-to-date. Her helpful discussions kept me going on this part of the world I know so little about.

Summary

Full understanding of the bryogeography of epiphytes is still hampered by our need for comprehensive systematic studies that identify synonyms and demonstrated genetic relatedness.

In Australian tropical rainforests, epiphyte succession is usually rapid, with seven genera occurring in all the major rainforest types: Macromitrium, Racopilum, Hymenodon, Pyrrhobryum, Rhizogonium, Sematophyllum, and Thuidium (Pelekium?).

In general, the mosses in Pterobryaceae and Neckeraeae occur as epiphytes throughout the tropics, along with Sematophyllum and Taxithelium. The liverworts Frullania and Lejeuneaeae dominate the branches. The tribe Ptychantheae is predominant among Asian Lejeuneaeae, whereas the tribe Brachiolejeuneae predominates in the Neotropics. In Indonesia, the characteristic low-elevation tree-base moss families are Calymperaceae, Fissidentaceae, Hypopterygiaceae, Leucobryaceae, Metzgeriaceae, Neckeraeae, Pterobryaceae, and Thuidiaceae, and the leafy liverwort families Lejeuneaeae, Lophocoleaceae, Porellaceae, and Radulaceae. By contrast the higher elevations have mostly leafy liverworts in Herbertaceae, Lepidoziaceae, Mastigophoraceae, Scapaniaceae, Schistochilaceae, and Trichocoleaceae. In Africa, Calymperes and Octoblepharum species occur all over the Niger Delta, whereas in agroforests Ezukanma et al. (2019 in review) found only Lejeuneaeae and Radulaceae among the liverworts, but found five families of mosses. African studies are limited and promise many more species on future expeditions. Bryophyte diversity in the Neotropics is particularly rich and increases with altitude. Intact forests typically have pendants, tall turfs, tails, and fans. Calymperes lonchophyllum and Octoblepharum albidum are common in all communities except as epiphylls. Larger trees support more species than do small ones by providing more niches. For the Neotropics in general, the Lejeuneaeae are again the most species-rich family; the most highly represented moss families are Calymperaceae, Octoblepharaceae, and Sematophyllaceae. Fewer endemics occur here compared to those of the flowering plants, and as more systematic studies occur, the number is diminishing.

Literature Cited

CHAPTER 8-7
TROPICS: LOWLAND RAINFORESTS

TABLE OF CONTENTS

Lowland Rainforests ... 8-7-2
Amazonia Lowlands .. 8-7-7
Terra Firme .. 8-7-11
Dense Forest .. 8-7-14
Open Forest without Palms .. 8-7-14
Open Forest with Palms .. 8-7-14
Liana Forest ... 8-7-16
Dry Forest ... 8-7-16
Restinga .. 8-7-16
Caatinga .. 8-7-20
Savannah Vegetation .. 8-7-22
South Atlantic Islands .. 8-7-23
Summary .. 8-7-25
Acknowledgments .. 8-7-25
Literature Cited .. 8-7-25
CHAPTER 8-7
TROPICS: LOWLAND RAINFORESTS

Figure 1. Amazon rainforest near Manaus, Brazil aerial view. Photo by Neil Palmer, through Creative Commons.

Lowland Rainforests

Undeveloped areas of the humid tropics are characterized by tropical rainforest. As shown by Frahm and Gradstein (1991) there are five tropical rainforest belts and their elevational limits are higher on continents than on islands due to the "mass elevation effect." On the continent the forest line is normally ca. 4,000 m asl but has been lowered to ca. 3,200 m in many places due to human impact, reaching as high as 1,500 m asl near the Equator and up to 700 m at the upper and lower tropical borders (Pócs 1982). The area covered, originally at 12% of Earth's surface, is estimated at only about 5% of Earth's surface now (Butler 2006), and it is still rapidly diminishing.

The lowland tropical rainforests (up to 500 m asl) are characterized by their great height, up to 60 m tall (Pócs 1982), with many evergreen species, particularly in areas that have a dry season. With annual rainfall greater than 1500 mm and an average temperature of 20-27°C (Pócs 1982), with little seasonal change, the trees flourish and the canopy is dense. Thus, the forest floor is characterized by limited light, even for a bryophyte. This unfavorable light level, in particular in the lowland rainforest, is made more unfavorable to bryophytes by the heavy leaf litter (Gradstein 1992; Delgadillo & Cardenas 2002). The result is that the tropical rainforest floor has lower moss species diversity than in temperate regions (Hallingbäck 1992).

Richards (1954) was among the first to attempt a description of these lowland forests. He recognized four main bryophyte synusiae in the Moraballi Creek rainforest of British Guiana: high epiphytes, shade epiphytes, epiphyllae, dead wood, noting their distinctness in both structure and floristic composition. Nevertheless, few species are very frequent. Exceptions to this are *Calymperes lonchophyllum* (see Figure 2) and *Octoblepharum albidum* (Figure 3); with the exception of the epiphyllous habitat, these two species occur in all the other synusiae. The epiphylls are almost entirely highly specialized species exclusive to the phyllosphere. Richards noted that growth/life forms differ among the synusiae. He further remarked on the absence of bryophyte synusiae on the ground at Moraballi Creek, the presence of an epiphyllous community, and the distinct dominance of liverworts, especially *Lejeuneaceae* (Figure 62-Figure 64). Although he noted that the forest was probably poorer in species than many temperate forests, his basis for this statement did not include knowledge of the diverse canopy bryophytes. Richards further claimed that these
comparisons would likewise apply to the lowland rainforests in Africa or the Indo-Malayan region. They would not, however, apply to the montane forests.

Figure 2. *Calymperes* sp.; *C. lonchophyllum* is a species found in all synusiae except epiphyllous at Moraballi Creek rainforest of British Guiana. Photo by Niels Klazenga, with permission.

In lower elevations, below 1500 m, the forest typically has a complex canopy. Trees have a variety of heights, some of which may reach 50-60 m tall. Levels in these forests can be classified as emergent, canopy, understory, and forest floor. This provides a variety of conditions for bryophytes, and often the within-tree diversity is greater than that between trees.

The canopy buffers and protects the lower strata of the forest. It reduces turbulence by absorbing wind energy; in one Costa Rican study, canopy (10 m) wind speeds were 11.3 m sec\(^{-1}\) while those on the forest floor (2 m) were 4.0 m sec\(^{-1}\) (Lawton 1980). The canopy modifies the temperature by absorbing heat and radiation (Nadkarni 1994). Its leaf surfaces absorb CO\(_2\) and emit water vapor. It modifies the light quality by absorbing red and transmitting green, and it can reduce light intensity by as much as 98% before it reaches the forest floor (Cachan 1963). But for the canopy dwellers, being near the upper surface means intense sunlight, more temperature and humidity extremes, higher water stress, and a nutrient supply dependent on that in rainfall (Nadkarni 1994).

Although irradiation and desiccation are high in the canopy, the inner canopy affords some protection (Gradstein & Pócs 1989). Hence, dense mats or cushions are able to develop here, including the liverwort *Frullania* (Figure 4) and the moss *Macromitrium* (Figure 5). When it is very humid, pendent bryophytes and epiphyllous lichens and liverworts become established. In Bolivia (Figure 6), Acebey *et al.* (2003) found that rough mats appeared almost exclusively in the canopy, apparently requiring the high light intensity. This same restriction of rough mats to the high light zone of the upper canopy occurs in Guyana (Cornelissen & ter Steege 1989), and undoubtedly other areas of the tropics.

Figure 4. *Frullania* sp. in the Neotropics, where it can form dense cushions in the lowland rainforest inner canopy. Photo by Michael Lüth, with permission.

Figure 5. *Macromitrium* sp. (*Orthotrichaceae*) in the Neotropics, where it can form dense cushions in the lowland rainforest inner canopy. Photo by Michael Lüth, with permission.
Costa (1999) studied the rainforest epiphytes in six forest types in the lowland rainforest of Rio de Janeiro, southeastern Brazil (Figure 7). She found 39 moss species and 36 liverwort species. The highest species richness occurred in the mature secondary hillside rainforest (43 species) whereas the lowest diversity was in the highly degraded hillside rainforest (6 species) and hillside secondary rainforest (5 species). As in Guyana (Cornelissen & Gradstein 1990), Costa found that the Lejeuneaceae (Figure 62-Figure 64) was one of the most important families (30% of species), with the moss family Sematophyllaceae (Figure 41) being second with 7 species (10%). In this case, 45% of the species were exclusively in the canopy. Mats were the most common life form of the six found there. Shade epiphytes are more susceptible to deforestation damage than are sun epiphytes, with many species not returning after 20-45 years. However, after 80 years, the bryophyte flora has recovered to that of the primary forest.

As expected, the lowest diversity was in the Lowland Atlantic Rainforest; the highest was in the Montane Atlantic Rainforest. The moss family Sematophyllaceae (Figure 41) had 19% of the taxa in the lowland forest, Meteoriaceae (Figure 8) had 10% in the montane forests, and Dicranaceae (Figure 9) had 18% in the upper montane forests. Taxa with wide distributions in the Neotropics accounted for 40% of the total taxa and were important in all the forests. The taxa restricted to Brazil were second most important in the upper montane and montane forests.

The Tropical Atlantic Rainforest in southeastern Brazil (Figure 7) has the high diversity of 338 taxa, with 49 families and 129 genera represented, with the altitudinal zones accounting for the richness (Costa & Lima 2005).

In Australian rainforests (Figure 10), liverworts usually dominate the bryophytes in lowland vine forests (Ramsay et al. 1987). Mosses are the more common bryophytes in wet higher altitudes or valley forests. Such bryophytes as Chandonanthus (Figure 11), Dicnemon (Figure 12), and Leptostomum (Figure 13) can be so heavy when they are wet that they become important in pruning the upper and dead branches.
Figure 10. Rainforest at Daintree, Australia. Photo by Thomas Schoch, through Creative Commons.

Figure 11. *Chandonanthus squarrosus*, representative of a genus that gets so heavy from collected water in the tropics that it contributes to loss of canopy and dead branches. Photo by Tom Thekathyil, with permission.

Figure 12. *Dicnemon* sp. from NZ, representative of a genus that gets so heavy from collected water in the tropics that it contributes to loss of canopy and dead branches. Photo by Jan-Peter Frahm, with permission.

Figure 13. *Leptostomum* sp. Seno Courtenay Cape Horn, representative of a genus that gets so heavy from collected water in the tropics that it contributes to loss of canopy and dead branches. Photo by Blanka Shaw, with permission.

In Australia, members of the epiphytic and saxicolous (growing on or among rocks) moss genus *Macromitrium* (Figure 5) are found primarily in the rainforest (Figure 10) (Ramsay *et al.* 1987). These reach their greatest diversity in the lower elevation ravine rainforests. These habitats form an archipelago of refugia where the remnant patches of forest occur along the eastern and northern coast of the continent.

Streams often create a habitat suitable for a rich bryophyte flora (Dixon 1935; Shevock *et al.* 2017). At Tenompok in Borneo, smaller shrub and tree vegetation is adorned with thin pendulous mosses and liverworts. Tree trunks are thinly covered, but cushions are nearly absent. However, on the more exposed steeper slopes the small trees have moss and liverwort cushions. At higher elevations, these cushions are dominated by liverworts. Above ~2,000 m, up to ~3,000 m asl, the liverwort *Mastigophora* (Figure 14) and other liverworts provide most of the ground cover in the open ridge forest. In more sheltered places, different liverworts occur. Mosses, while present, are not abundant in the ridge forest. *Sphagnum* (Figure 15) cushions can be found, but not abundantly.
speciation richness. This diversity is facilitated by frequent early morning fog in valley locations. Lowland cloud forests and lowland rainforests differed in the functional composition of bryophytes in the canopy, especially the mid and outer canopy. The cloud forest reached a higher biomass and cover of both bryophytic and tracheophytic epiphytes. It similarly had a greater diversity of bryophyte life forms. The typical cloud forest life forms of tail, weft and pendants were almost completely absent in the lowland rainforests, making life forms an easy way to characterize differences in these two forest types.

Obregón et al. (2011) studied the fog frequency in tropical lowland forests. Its occurrence is frequent in the lowland valleys of central French Guiana (Figure 17). It reaches its maximum before sunrise, with a duration of about 4.6 hours. This fog forms when rain saturates the soil, creating greater evapotranspiration. This morning fog follows an increase in temperature differences between the valleys and hill sites after the sun sets. This increase in fog provides an early morning moisture that provides suitable conditions for photosynthesis while the day is still somewhat cooler, supporting a higher epiphyte diversity in the lowland cloud forest compared to the hills. This fog even makes photosynthesis possible in the early mornings of the dry season.
In 1985, Amazonia occupied nearly 6,000,000 km² of South America (Pires & Prance 1985). Since then, deforestation for agriculture, cattle ranching, and logging has greatly reduced its size (Fearnside 2005; Heckenberger et al. 2007; Nepstad et al. 2008; Clement et al. 2015; Butler 2017). Some of the sub-basins have lost up to 33% since 1970 (RAISG 2015). In 2018, the Amazon Basin of 7,000,000 km² had only 5,500,000 km² covered by the rainforest (Wikipedia 2018). Although these numbers do not seem to agree, they nevertheless indicate that considerable loss of Amazonian lowland rainforest is disappearing.

The Amazonian lowland occurs mostly below 100 m asl and rarely rises above 200 m asl. Classification of the vegetation is based primarily on the topography. Two main types of forest vegetation occur: the terra firme (dry land) and the inundated formations [igapó (Figure 20) and várzea (Figure 21)], terms exclusive to Amazonia and all of which are primarily forest land. In addition, some areas have savannah vegetation, but this is a much smaller percentage of the land. Additional more specialized wetland vegetation types are mangrove swamps, restinga (spit and distinct type of coastal tropical and subtropical moist broadleaf forest in eastern Brazil), buritizal (periodically inundated palm thicket characterized by buriti – the palm Mauritia flexuosa), and pirizal (cariazal – extensive, emergent vegetation of small, stagnant lakes and puddles). The terra firme forest occupies the largest percentage of the area in Amazonia.
The lowland forests typically have a strong gradient of humidity and light, with humidity decreasing and light intensity increasing from the ground to the upper canopy (Figure 22-Figure 23) (Leon-Vargas 2001).

Amorim *et al.* (2017) compared bryophyte distribution in southeastern Brazil. They considered two distinct groupings, the inland areas and the coastal areas, with annual precipitation and temperature influencing the floristic similarity among the coastal areas. Distance from the ocean and altitude were the dominant factors influencing the bryophyte composition of the inland areas.

Lisboa (1976) characterized the Amazonian plain as having poor soil nutrients. Unlike many rainforests, the light intensity can in some areas be very high, resulting in high air (38°C) and soil (42.3°C) temperatures. This combination of high light and high temperatures restricts the bryophyte community. Nevertheless, they found 34 bryophyte species, representing the moss families Calymperaceae (Figure 2), Leucobryaceae (Figure 40), Leucodontaceae (Figure 24), Plagiophyceae (Figure 25), Sematophyllaceae (Figure 41), and liverwort families Frullaniaceae (Figure 4, Figure 26), Lepidoziaceae (Figure 53), Lejeuneaceae (Figure 62-Figure 64), Odontoschismaceae (currently included in Cephaloziaceae; Figure 27), Plagiochilaceae (Figure 28), Radulaceae (Figure 73), and Zoopsidaceae (currently included in Lepidoziaceae; Figure 29). The liverwort *Frullania nodulosa* (Figure 26) stood out as the most frequent species, a species with wide ecological amplitude. Bark of the tree *Aldina heterophylla* (*Rubiaceae*) proved to be a preferred substrate, providing old age, thick bark, and otherwise good conditions for bryophyte community development.
Figure 26. *Frullania nodulosa* underside, the most frequent species in the Amazonian plain. Photo by Matt von Konrat, with permission.

Figure 27. *Odontoschisma longiflorum* (*Cephaloziaceae*) from the Neotropics. Photo by Michael Lüth, with permission.

Figure 28. *Plagiochila adianthoides* (*Plagiochilaceae*) from the Neotropics. Photo by Michael Lüth, with permission.

Figure 29. *Zoopsis liukuensis* (*Lepidoziaceae*, formerly *Zoopsidaceae*). Members of the *Zoopsidaceae* are common in the Amazonian lowland rainforests. Photo by Rui-Liang Zhu, with permission.

Benavides *et al.* (2006) claimed the first bryophyte surveys from the Colombian Amazon. They divided the bryophytes into mosses and liverworts and into four life-form classes to describe floodplains, swamps, terra firme forests, and white-sand areas. They identified 50, 45, 45, and 32 species respectively. The higher number of species in the floodplains and swamps suggested the importance of moisture in delimiting communities. Fan life forms in the floodplains (Figure 30) further attested to the higher humidity there. Liverworts were more likely to form mats in both floodplain and terra firme habitats. And liverworts had greater species richness in the white-sand plots, suggesting a greater importance of light intensity than humidity for these species. Tree bark was the most important substrate for both bryophytes and liverworts in both floodplain and terra firme (Figure 31) (Benavides *et al.* 2004). The floodplain (várzea – Figure 21) differed markedly in species from the other three habitats.

Figure 29. *Zoopsis liukuensis* (*Lepidoziaceae*, formerly *Zoopsidaceae*). Members of the *Zoopsidaceae* are common in the Amazonian lowland rainforests. Photo by Rui-Liang Zhu, with permission.

Benavides *et al.* (2006) claimed the first bryophyte surveys from the Colombian Amazon. They divided the bryophytes into mosses and liverworts and into four life-form classes to describe floodplains, swamps, terra firme forests, and white-sand areas. They identified 50, 45, 45, and 32 species respectively. The higher number of species in the floodplains and swamps suggested the importance of moisture in delimiting communities. Fan life forms in the floodplains (Figure 30) further attested to the higher humidity there. Liverworts were more likely to form mats in both floodplain and terra firme habitats. And liverworts had greater species richness in the white-sand plots, suggesting a greater importance of light intensity than humidity for these species. Tree bark was the most important substrate for both bryophytes and liverworts in both floodplain and terra firme (Figure 31) (Benavides *et al.* 2004). The floodplain (várzea – Figure 21) differed markedly in species from the other three habitats.

Figure 30. Bryophyte life forms in Tierra Firme vs Floodplain. Modified from Benavides *et al.* 2004.
Leal et al. (2010) considered the possibility of using bryophytes (and other taxa groups) as surrogate taxa to indicate species richness in the Brazilian Atlantic forest and caatinga. But they did not include the bryophytes in their sampling of the caatinga. They found that the species richness of the various taxa groups (bryophytes, pteridophytes, trees, ants, euglossine bees, birds, and mammals; total of 768 species) were significantly correlated with each other. Only two taxa (trees and ants) were required to have excellent surrogacy for species richness of all groups. Bryophytes did not seem to be good surrogates for the richness of the other taxa groupings.

Valente et al. (2009) described the mosses in a segment of the Atlantic forest in Bahia State, Brazil. They found 61 moss species, distributed in 23 families. The most species-rich family was Sematophyllaceae (7 spp.; Figure 41), followed by Orthotrichaceae (6 spp.; Figure 5), Pilotorichaceae (5 spp.; Figure 32), Calymperaceae (5 spp.; e.g. Figure 2), Leucobryaceae (5 spp.; e.g. Figure 40), and Meteoriaceae (4 spp.; Figure 8). Corticolous species predominated, with 70% of the species, followed by epixylos (on wood with no bark) having 23% of the species. The area was species-rich, with 24% of the bryophytes in the Bahia State represented there.

Epixylic bryophytes (living on logs with no bark) in the Atlantic forest of Brazil supported 35 species of bryophytes, not counting the Lejeuneaceae (Figure 62-Figure 64) (Germano & Pôrto 1996, 1997). These comprise 11 families of mosses: Calymperaceae (Figure 2), Pilotorichaceae (Figure 32), Fissidentaceae (Figure 71, Figure 90-Figure 92), Hookeriaceae (Figure 33), Hypnaceae (Figure 34), Leucobryaceae (Figure 40), Leucomiaceae (Figure 35), Orthotrichaceae (Figure 5), Plagiotheciaceae (Figure 28), Sematophyllaceae (Figure 41), and Thuidiaceae (Figure 36), and 5 families of liverworts: Aneuraceae (Figure 55), Frullaniaceae (Figure 4), Geocalycaceae (Figure 37), Plagiochilaceae (Figure 28), and Radulaceae (Figure 73). These included 8 species new for northeastern Brazil.
Pires and Prance (1985) considered the dense tropical forests of the Amazon to be fireproof. These dense forests create many niches, permitting the occurrence of many species. Costa (2003) reported 514 species in the Amazonian rainforest. Nevertheless, only 106 species are known from the state of Acre, Brazil, suggesting that the area has been understudied. After only two field trips, Costa was able to increase the known flora by 50%. These trips yielded 50 species that were new for the state and 10 more that were "interesting." In an earlier study, Vital and Visnadi (1994) reported only 76 species, and at that time 66 were new records for the state of Acre. This report included one hornwort, *Notothylas vitalii* (see Figure 38).

New species most likely await us in these forests. Moura *et al.* (2012) noted the abundance of *Lejeunea* (Figure 39) species in the low várzea (Figure 21) forest in lower Amazon, Pará, Brazil, and reported the new species *Lejeunea combuensis*.

Terra Firme

Oliveira and ter Steege (2013) used standardized sampling methods for epiphytic bryophytes in nine localities in the Amazon basin terra firme forests. They sampled five height zones from forest floor to canopy on
eight canopy trees at each locality, generating 3,014 records and 222 species plus 39 morphospecies. As is typical in the tropics, the most common family was **Lejeuneaceae** (Figure 62-Figure 64) (55% frequency), along with the mosses **Calymperaceae** (Figure 2) (8%), **Leucobryaceae** (Figure 40) (4%), and **Sematophyllaceae** (Figure 41) (4%). No geographical gradient was evident in species richness or composition. Nevertheless, richness differences were evident, with the greatest richness in Saül of French Guiana and Tiputini of Ecuador, compared to other localities. Of the 155 species occurring in more than one locality, 57 were specialists. A total of 29 species were found only in the canopy.

Alvarenga and Lisboa (2009) reported 120 species of bryophytes from the Amazon lowlands. Among these, the **Lejeuneaceae** (Figure 62-Figure 64) species are by far the most abundant with 58 species, followed by **Calymperaceae** (Figure 2) (13 spp.), **Sematophyllaceae** (Figure 41) (9 spp.), and **Plagiochilaceae** (Figure 42). Of these 120 species, 97 are epiphytic; 65 are epixylic (growing on wood that has lost its bark). Only 27 species are epiphyllous and only 15 occur on the ground. The most diverse ecosystem is the terra firme forest. The liverworts are strong dominants on leaves, with dominance gradually shifting among the habitats. Liverworts are only slightly dominant on live and dead trunks, and mosses are dominant on the other substrates.

Figure 40. *Leucobryum martianum*. Members of its family, **Leucobryaceae**, are common on trees in the Amazon basin. Photo by Jan-Peter Frahm, with permission.

Figure 41. *Sematophyllum* sp. (*Sematophyllaceae*), a well-represented family from the Amazon lowlands. Photo by Michael Lüth, with permission.

Figure 42. *Plagiochila* sp. from the Neotropics; **Plagiochilaceae** is a common family in the Amazon lowlands. Photo by Michael Lüth, with permission.

Sierra *et al.* (2018) provided a more comprehensive study on the Amazon lowlands, listing 150 species from 712 collections. These were comprised of 109 liverworts and 41 mosses. Of these 104 species lived as epiphytes and 38 as epiphylls (species living on leaves). Another 31 species occurred on decaying logs, 16 on rocks, and 24 on soil. But of these species, 68 occurred in only one or two samples. As is obvious from the numbers in each habitat, many were not exclusive to one habitat.

As in many other communities, the most species-rich liverwort families in the studied Amazon lowlands were **Lejeuneaceae** (81 species) and **Lepidoziaceae** (11 species) (Sierra *et al.* 2018). The three most species-rich genera were *Cheilolejeunea* (15 spp.; Figure 43), *Cololejeunea* (12 spp.; Figure 60-Figure 61), and *Ceratolejeunea* (6 spp.; Figure 63), all in the **Lejeuneaceae**. The most common liverwort species were *Cheilolejeunea aneogyna* (see Figure 43), *Pycnolejeunea contigua* (see Figure 44), *Cheilolejeunea neblinensis*, *Cololejeunea surinamensis* (see Figure 60-Figure 61), *Archilejeunea fusescens* (see Figure 45), *Acrolejeunea turulosa* (see Figure 46), and *Vitallanthus aphanellus*, all in the **Lejeuneaceae**.
Figure 43. *Cheilolejeunea* sp., a species-rich genus in the Amazon lowlands. Photo by Michael Lüth, with permission.

Figure 44. *Pycnolejeunea pilifera; Pycnolejeunea contigua* is one of the common species in Amazonian lowlands. Photo from the Paris, Muséum National d'Histoire Naturelle, MB, through Creative Commons.

Figure 45. *Archilejeunea olivacea; Archilejeunea fuscescens* is one of the common species in Amazonian lowlands. Photo by John Braggins, through Creative Commons.

Figure 46. *Acrolejeunea* sp.; *Acrolejeunea torulosa* is one of the common species in Amazonian lowlands. Photo by Peter de Lange, through Creative Commons.

Figure 47. *Syrrhopodon lycopodioides* from the Neotropics; *Syrrhopodon xanthophyllus* is one of the two most common moss species in the Amazon lowlands. Photo by Michael Lüth, with permission.

The most species-rich moss families in the studied Amazon lowlands were *Calymperaceae* (16 species), and *Sematophyllaceae* (9 species), again being common families throughout the Neotropics (Sierra *et al.* 2018). The most species-rich genus of mosses was *Syrrhopodon* (12 spp.) in the *Calymperaceae*. The most common moss species were *Leucobryum martianum* (*Leucobryaceae*; Figure 40) and *Syrrhopodon xanthophyllus* (see Figure 47).
Benavides et al. (2006) suggested that the periodic flooding added nutrients to the tree trunks, possibly contributing to the high diversity of bryophytes there compared to the swamps, terra firme forests, and white-sand habitats.

Most of the studies in the Amazon lowlands seem to be floristic with little ecological information on bryophytes. The following habitats can be identified, but few seem to have been described bryophytically, giving us little or no information on dominant species.

Dense Forest

This forest has the greatest biomass of the terra firme forests (Pires & Prance 1985). The understory is distinct, occurring where environmental conditions are optimal. Water is not limiting, having neither too much nor too little.

Open Forest without Palms

This forest has considerably less biomass and trees typically have a basal area of only slightly more than 20 m² per hectare (Pires & Prance 1985). The trees are lower, permitting a greater penetration of light. This allows shrubs and lianas to develop well. Large trees are only occasional. This vegetation type may be limited by a lower water table, impermeability of the soil, poor drainage, poor root penetration, somewhat long dry seasons, or lower relative humidity. Epiphytes are fewer due to the drier habitat. This forest type is not affected by fire and is predominantly not deciduous.

Open Forest with Palms

This forest has a similar physiognomy to that of the open forest without palms, but it has palm trees, especially *Attalea maripa* (Figure 48), *Attalea speciosa* (Figure 49), *Euterpe precatoria* (Figure 50), *Jessenia bataua* (Figure 51), and *Oenocarpus distichus* (Figure 52) (Pires & Prance 1985).
The biomass ratio of mosses to liverworts increased with height on the tree, but total bryophyte biomass showed no significant differences with height. The number of species increased with height sampled. They concluded that short-distance dispersal was less important than long-distance dispersal in determining the species composition. The most abundant families in this palm tree trunk habitat were Lejeuneaceae (Figure 62-Figure 64) (13 spp.) and Lepidoziaceae (Figure 53) (9 spp.), both leafy liverwort families. The moss family Leucobryaceae (Figure 40) was represented by 6 species. The lower and middle tiers of the trunk had mosses in addition to the leafy liverwort families Calypogeiaceae (Figure 54) and Lepidoziaceae. Only the family Lejeuneaceae was typically higher in the higher tiers. In addition, the only other families represented on this palm species were the mosses Calymperaceae (Figure 2) and Sematophyllaceae (Figure 41) and the thallose liverworts Aneuraceae (Figure 55) and Pallaviciniaceae (Figure 56).

Van Dunne et al. (2001) sampled the epiphytes on the palm Jessenia bataua (Figure 51) at 1, 3, and 5 m heights. They found greater similarity among species of bryophytes on the same trunks than they did between palms. Of the 42 species identified, only 3 showed a spatial dependence.
Figure 55. *Riccardia fucoidea* (*Aneuraceae*) from the Neotropics; some members of this family occur on the palm *Jessenia bataua* (Figure 51). Photo by Michael Lüth, with permission.

Figure 56. *Symphyogyna podophylla* (*Pallaviciniaceae*) with sporophytes; some members of this family occur on the palm *Jessenia bataua* (Figure 51). Photo by Andras Keszei, with permission.

Liana Forest

Lianas occur in the open forest where one might typically find Brazil nut trees (*Bertholletia excelsa*; Figure 57) and *Attalea speciosa* (Figure 49) (Pires & Prance 1985). These forests are usually discontinuous, intermeshed with dense forests lacking lianas. These forests usually are somewhat elevated and have rich deposits of such minerals as iron, aluminium, manganese, nickel, gold, and others. Some bryophytes are able to live on these woody lianas.

Figure 57. *Bertholletia excelsa*, a dominant tree in the liana forest of Amazonian lowlands. Photo by Vihelik, through public domain.

Dry Forest

The *dry forests* (Figure 58) are transitional forests and are seasonal and drier than rainforests (Pires & Prance 1985). The trees are at least partially deciduous except along the rivers and streams where flooding occurs. These forests do not occupy large areas.

Figure 58. Caatinga rich dry forest. Photo by Duarte, through Creative Commons.

Restinga

The *restinga* is the vegetation of coastal sand dunes. This vegetation type has few species in Amazonia.
The restinga has received at least some attention regarding its bryophytes. Working in the Setiba State Park, Espírito Santo, Brazil, Visnadi and Vital (1995) found 25 liverwort and 9 moss species, reporting the fewest species in the low and sparse restinga, with the most in the high and sandy restinga. Some of the bryophytes are specific, with the liverworts *Cololejeunea* (syn.=*Aphanolejeunea*) *subdiaphana* (see Figure 60), *Choncolea doellingeri*, and *Cololejeunea cardiocarpa* (Figure 61) occurring only in the low and sparse restinga. *Leucolejeunea conchifolia* (Figure 62) occurs only in the medium restinga. *Ceratolejeunea laete-fusca* (see Figure 63) was only found in the high restinga; *Taxilejeunea pterigonia* (see Figure 64) only appeared in the high and sandy restinga. The mosses *Bryum capillare* (Figure 65) and *Campylopus pilifer* (Figure 67) only occur in low and sparse restinga; *Groutiella apiculata* (Figure 66) and *Schlotheimia rugifolia* (Figure 67) occur only in the high restinga. In other areas, the restinga bryophyte vegetation can be very different, with few species in common with this one. This is especially true when comparing the northwestern Amazonian restinga bryophyte vegetation with that in the southern Amazonian lowlands.
Chapter 8-7: Tropics: Lowland Rainforests

In the Parque Nacional da Restinga de Jurubatiba, RJ, Brazil, Imbassahy et al. (2009) reported 61 taxa. As is typical in the tropics, the Lejeuneaceae (Figure 62-Figure 64) had the most species (25), greatly exceeding other high-species families of Jubulaceae (Figure 68-Figure 69) (7), Calymperaceae (Figure 2) (4), and Sphagnaceae (Figure 70) (4). Most of the taxa are corticolous (on bark) and most are of Neotropical distribution (35%). The most common life form is the mat.
In the restingas of Northeastern Brazil, the soils have a low capacity to retain water, a low nutrient content, and a high salt concentration, coupled with occasions of high temperatures (Silva et al. 2016). In the seven areas studied, 55 species were identified. These exhibit intermediate desiccation tolerance and occupy corticolous and ground habitats. This number of species is low compared to other Brazilian restingas. The dominant families are Lejeuneaceae (Figure 62-Figure 64) (24 spp.), Fissidentaceae (Figure 71) (8 spp.), and Calymperaceae (Figure 2) (6 spp.). The families Metzgeriaceae (Figure 72), Plagiochilaceae (Figure 42), and Radulaceae (Figure 73) are absent, whereas they are common in the southeastern restingas. Life forms facilitate their success, with high (tuft and cushion) or intermediate (mat and carpet) tolerance to desiccation; the former colonize soil or live trunks, and the latter colonize live trunks and/or, more rarely, decaying trunks. Sun-tolerant species are mostly those with intermediate desiccation that colonize live trunks and decayed logs. There are fewer shade-tolerant species and these are represented by Fissidens spp. (Figure 71), which form tufts and have a terrestrial habitat, and by the pendent and corticolous Squamidium nigricans (Figure 74).
Figure 74. *Squamidium* sp.; *S. nigricans* is a pendent moss on bark in the restingas of northeastern Brazil.

Caatinga

This vegetation type of *caatinga* (shrubland; Figure 75) is also known as *campina, campinarana, chavascal,* and *charravascal* (Pires & Prance 1985). The vegetation grouping grows over leached white sand. This habitat is suitable for forest vegetation, but is limited by the nutrient-poor soil and seasonality of flooding and extreme drought due to the soil (sand) porosity. Diversity is low in a given area, but great variability exists between areas, making the caatingas overall rich in diversity. The caatinga vegetation is *xeromorphic* (having forms adapted to dry habitats). This is exhibited in thick leaves and thick bark. Nevertheless, lichens and mosses are abundant on the branches and soil surface.

Figure 75. Caatinga Biosphere Reserve, Brazil. Photo by Diego Rego Monteiro, through Creative Commons.

When comparing the elevational zones of the *caatinga* (Figure 75) biome in Brazil, Valente *et al.* (2013) found the highest numbers of exclusive bryophyte taxa in the forests and *campos rupestres* (dry, rocky grasslands; Figure 76), accounting for 51% and 40% of the taxa, respectively. The caatinga and cerrado (savanna) had only 5% and 4% respectively. The lower and upper montane zones had the highest species richness and numbers of exclusive taxa. The number of disjunct species was significant between Brazil and the Andes.

Figure 76. *Campos rupestres,* Brazil, showing dry, rocky grassland. Photo by Antonio José Maia Guimarães, through Creative Commons.

The low elevation Amazon caatinga forest (Figure 77) is an evergreen sclerophyllous forest (Klinge & Herrera 1983). It forms small "islands" in the tall Amazon caatinga. These "islands" are surrounded by a 20-m wide band of vegetation with trees over 10 m tall (*tall bana*). This band resembles the vegetation of the *tall Amazon caatinga.* The low Amazon caatinga is known as *bana.* Klinge and Herrera describe it as an evergreen sclerophyllous woodland with bleached quartz sands in the lowlands of southwestern Venezuela. It occurs as small islands within the tall Amazon caatinga. The outer vegetation belt is about 20 m wide with trees over 10 m tall and this is known as the *tall bana.* Its floristic composition is similar to that of the tall Amazon caatinga. The *low bana* has a maximum tree height that is typically less than 5 m. The central part is occupied by *open bana* where trees are even shorter and very widely spaced.

Figure 77. Caatinga in Brazil. Photo by Glauco Umbelino, through Creative Commons.

Bastos *et al.* (2000) found 65 taxa in the *campos rupestres* at Estado da Bahia, Brazil. Of these, 41 were mosses and 24 genera were liverworts. Six of the moss species were *Sphagnum* (Figure 70). Consistent with the argument for the need of more studies, 23 of these species are new records for this state.
The first study of bryophytes in Bahia, Brazil, was as recent as 1998 (Bastos et al. 1998). In this initial study in the state of Bahia, only 18 species were discovered, 15 mosses and 3 liverworts. These are mainly generalists and xerophilous (preferring dry habitat conditions). However, some hygrophilous (preferring moist habitats) species occur here. The generalists are represented by *Hyophiladelphus agrarius* (Figure 78-Figure 79), *Hyophila involuta* (Figure 80-Figure 81), *Calymperes palisotii* subsp. *richardii* (Figure 82), *Bryum argenteum* (Figure 83), *Entodontopsis leucostega* (see Figure 84), *Octoblepharum albidum* (Figure 3), *Frullania ericoides* (Figure 85). *Helicophyllum torquatatum* (Figure 86) and *Riccia vitalii* (Figure 87) and others are restricted to this type of vegetation. Unlike most of the epiphytic flora, most of these species are erect, acrocarpous species with short turf life forms. The leafy liverworts present are incubous (leaves overlap from base of stem to tip like shingles of a roof from peak to edge).
Figure 83. *Bryum argenteum*, a xerophilous generalist that occurs in Bahia, Brazil. Photo by Michael Lüth, with permission.

Figure 84. *Entodontopsis nitens; Entodontopsis leucostega* is a generalist in Brazil. Photo from Wilding *et al.* 2016, with permission.

Figure 85. *Frullania ericoides*, a xerophilous generalist that occurs in Bahia, Brazil. Photo by Blanka Aguero, with permission.

Figure 86. *Helicophyllum torquatum*, a xerophilous generalist that occurs in Bahia, Brazil. Photo by George Shepherd, through Creative Commons.

Figure 87. *Riccia vitalii*, a xerophilous generalist that occurs in Bahia, Brazil. Photo courtesy of Tatiany Oliveira da Silva.

Silva and Pôrto (2016) used mosses to determine if stem growth can be used to indicate changes in local climate change in the caatinga. But the gametophyte length is highly variable in the test moss, *Campylopus pilifer*. They concluded that stem length in this species is a poor indicator of local conditions in harsh environments. On the other hand, soil islands seemed to account for longer stems than typical values for this species.

Savannah Vegetation

Non-forested vegetation in Amazonian Brazil is also known as *campo* (Pires & Prance 1985). These savannas may have trees or be treeless and are dominated by grasses. The savannas on terra firme occupy 3-4% of Brazilian Amazonia. The littoral savannas occur on coastal areas and have frequent lakes. The most common grass is *Paratheria prostrata* (Figure 88). *Roraima savannahs* (Figure 89) are usually open with few trees. *Campos rupestres* (Figure 76) are open formations on rocks and are often confused with open savannas. These formations suffer drought and are unable to retain water. Lichens are common on the rocks.
Some savannas are inundated. These are created where sediments are deposited by muddy rivers. Grasses colonize these areas as the rivers recede.

![Figure 88. Paratheria prostrata, the most common grass in the littoral savannahs. Photo by Ehoarn Bidault, through Creative Commons.](image)

Figure 88. *Paratheria prostrata*, the most common grass in the littoral savannahs. Photo by Ehoarn Bidault, through Creative Commons.

Figure 89. Roraima savannah in Gran Sabana, Venezuela. Photo by Paolo Costa Baldi, through Creative Commons.

South Atlantic Islands

The most recent studies describe the small Brazilian islands in the South Atlantic, Fernando de Noronha and Trinidade (Câmara & Carvalho-Silva 2018; Costa *et al.* 2018). Noronha is primarily a caatinga vegetation, but presents some interesting differences in species composition (Costa *et al.* 2018). Like the island of Trinidade, there is a lack of endemism on Fernando de Noronha, compared to St. Helena (29 of 110 species), Tristan da Cunha (18 of 160 species), and Ascension (16 of 87 species). Nevertheless, *Riccia ridleyi*, which occurred at just one location, is critically endangered, but during the rainy season, extensive populations can appear (Pereira & Câmara 2015). *Fissidens* (Figure 90-Figure 92) is the most species-rich genus with 12 species. On the other hand, the only member of the *Lejeuneaceae* present is *Lejeunea laetevirens* (Figure 93)! On Trinidade, there are 11 species of *Lejeuneaceae*, with a total of 33 bryophyte species. Fernando de Noronha also has more species of mosses (23) compared to liverworts (3) (Costa *et al.* 2018), whereas Trinidade has more liverworts (20) compared to mosses (12). Fernando de Noronha island has *Notothyladaceae* (Figure 94), *Ricciaceae* (Figure 87), *Bryaceae* (Figure 95), *Dicranaceae* (*Dicranella varia*; Figure 96), *Fissidentaceae* (Figure 90-Figure 92), *Pottiaceae* (Figure 79), *Splachnobryaceae* (*Splachnobryum obtusum*; Figure 97), with very low numbers of corticolous species [*Calymeres palisoti* (Figure 82), *Frullania ericoides* (Figure 85), and *Lejeunea laetevirens*]. Many (39%) of the species on this island have worldwide distribution, including *Bryum coronatum* (Figure 95), *Entodontopsis leucostega* (see Figure 84; the only pleurocarpous moss on the island), and *Hyophiladelphus agrarius* (Figure 79). But be careful what you do to preserve species. It is only on a disturbed site with engineering activity that one can find new populations of *Notothylas* (Figure 94), *Fissidens* spp. (*e.g.* Figure 90-Figure 92), and *Philonotis cernua* (see Figure 98), with the most extensive populations of *Notothylas* occurring there.

![Figure 90. Fissidens bryoides, a widespread species and one of the 12 species in this genus on Fernando de Noronha. Photo by Dick Haaksma, with permission.](image)

Figure 90. *Fissidens bryoides*, a widespread species and one of the 12 species in this genus on Fernando de Noronha. Photo by Dick Haaksma, with permission.
Figure 92. *Fissidens curvatus*, a Neotropical species and one of the 12 species in this genus on Fernando de Noronha. Photo by Des Callaghan, with permission.

Figure 93. *Lejeunea laetivirens*, the only member of *Lejeuneaceae* present on Fernando de Noronha in the South Atlantic. Photo by Scott Zona, through Creative Commons.

Figure 94. *Notothylas orbicularis*, a species that does well on disturbed habitats on Fernando de Noronha. Photo by Štěpán Koval, with permission.

Figure 95. *Bryum coronatum*, a widespread species that occurs on Fernando de Noronha. Photo by Paul Siri Wilson, with permission.

Figure 96. *Dicranella varia* with capsules, a widespread species that occurs on Fernando de Noronha. Photo by Hermann Schachner, through Creative Commons.

Figure 97. *Splachnobryum obtusum*, a widespread species in the *Splachnobryaceae* and present on Fernando de Noronha. Photo from BBS website, with permission from Barry Stewart.
Figure 98. *Philonotis* sp. from the Neotropics; *Philonotis cernua* occurs on disturbed sites in Fernando de Noronha. Photo by Michael Lüth, with permission.

Summary
Many names are used for lowland rainforests and Amazon rainforests. Some are local names, whereas others are general. Terra (terra) firme refers to the dryland habitats, thus not including mangroves and other wetlands. It includes dense forest, open forest without palms, open forest with palms, liana forest, dry forest, restinga, caatinga, and savannah, with classification based primarily on topography. High light intensity and high temperatures limit the bryophyte vegetation in parts of terra firme, but it includes some members of the moss families *Calypogeiaceae*, *Leucobryaceae*, *Leucodontaceae*, *Plagiotheciaceae*, and liverwort families *Frullaniaceae*, *Lepidoziaceae*, *Lejeuneaceae*, *Odontoschismaceae*, and liverwort families *Frullaniaceae*, *Lepidoziaceae*, *Lejeuneaceae*, *Odontoschismaceae* (currently included in *Cephalozia*), *Plagiochilaceae*, *Radulaceae*, and *Zoopsidaceae* (currently included in *Lepidoziaceae*). Logs are an important substrate on terra firme. Otherwise, the most common bryophyte families on terra firme are *Lejeuneaceae*, along with mosses *Calypogeiaceae*, *Leucobryaceae*, and *Sematophyllaceae*. Other important families are *Calypogeiaceae* and *Lepidoziaceae*, both leafy liverworts. In the drier restinga, the *Lejeuneaceae* predominates among the liverworts, with *Bryum argenteum* and *Campylopus pilifer* among the mosses. In the caatinga, erect generalist, acrocarpous species forming *short turf* are the most common.

In places with a protracted dry season, like the South Atlantic Islands, *Ricciaceae* are common, going dormant and all but disappearing in the dry season.

Acknowledgments
My appreciation goes to Noris Salazar Allen for her efforts to make this chapter reliable and up-to-date. Her helpful discussions kept me going on this part of the world I know so little about. Tatiany Oliveira da Silva was a tremendous help on this subchapter, providing me with references and constructive feedback and helping me to understand the various habitats. S. Robbert Gradstein was invaluable in providing me with papers, images, and constructive criticism.

Literature Cited

CHAPTER 8-8
TROPICS: ALTITUDE

TABLE OF CONTENTS

Altitude.. 8-8-2
Defining Zones.. 8-8-9
Zone Limitations .. 8-8-9
 Transplant Studies... 8-8-11
 Latitude vs Altitude... 8-8-11
 Records of Altitude ... 8-8-14
Diversity-Richness Changes ... 8-8-17
Dominance Changes ... 8-8-27
Productivity ... 8-8-31
Adaptations .. 8-8-32
 Life Strategies ... 8-8-34
Summary .. 8-8-36
Acknowledgments .. 8-8-36
Literature Cited .. 8-8-36
Altitude

The changes with elevation are multifold (Figure 1, leading to various hypotheses on the identity of the controlling factors for vegetation. These differences include distinct altitudinal thermal zones, differences in floristic composition and functional forms with both elevation and windward versus leeward slopes, differences in seasonal monsoon wind systems, and isolation of montane forests that cause them to behave like islands (Ohsawa 1995). In addition to these, we will soon see that available moisture is a significant factor. Troll (1948) diagrammed the vegetation zones as they relate to latitude and altitude (Figure 2).
Santos et al. (2014) considered the possibility of using liverworts to indicate altitudinal zonation in the Brazilian Atlantic Forest. Among those species found, 34 appeared to be good indicators of the Atlantic Forest groups. Among the 26 localities in the study, the beta diversity [ratio between gamma (regional) and alpha (local) diversities, i.e. effective number of distinct compositional units in the region] shows a deterministic distribution along the Atlantic coast in southeastern Brazil. Altitude has a significant role in determining the species, with five floristic groups emerging. The important variables are altitude, temperature, and precipitation. But in regions such as oceanic islands and coastal mountains, geographic distance is important.

Santos et al. (2017) used a short elevational gradient from 10 m to 1170 m asl in southeastern Brazil to assess changes in bryophyte communities. Using six elevational belts, they sampled ten 10 x 10 m subplots located randomly in a 1-ha forest plot at each elevation in the survey. This revealed 253 species. Richness did not vary significantly with elevation and floristic similarities among the elevations were all greater than 50% except the mountaintop forest, which had a similarity of less than 35%. Endemism (ecological state of species being unique to defined geographic location) increased with elevation and amplitudes of the phytogeographical patterns of species decreased as the elevation increased. It is interesting that dioicus (sexes on separate plants) species predominated in all elevations sampled and that the smallest dioicus:monoicus ratio was at mid elevations.

At an early date, Seifriz (1924) showed differences in altitudinal distributions of mosses on Mt. Gedeh, Java (Figure 3). Frahm et al. (2003) contended that bryophytes were good indicators of altitudinal zones in rainforests. Based on the reaction of bryophytes to climatic factors, Frahm and coworkers considered the bryophytes to be especially good as indicators of climatic changes. In the tropical rainforests, they have several advantages over flowering plants. The bryophytes are less numerous, have considerably fewer species worldwide, with no more than 5000 species in the Neotropics. Many of the species occur throughout the Neotropics. Recent studies verify the latitudinal diversity gradient in liverworts and hornworts (Figure 4) (Wang et al. 2016).

We find that at greater latitudes the bryophyte communities become more like those at greater elevations near the Equator (Gradstein & Pócs 1989). Comparing high mountains in Colombia, Peru, Borneo, and Papua New Guinea, Gradstein and Frahm (Gradstein & Frahm 1987; Frahm 1990c, d; Frahm & Gradstein 1991) identified similar altitudinal zonations of bryophytes indicating lowland forest (Figure 5), submontane forest, upper lower montane forest, montane forest (Figure 6), and subalpine forest. These zones seem to be correlated primarily with climate (precipitation, air temperature), rather than with substrate (van Reenen & Gradstein 1983). Bryophyte diversity and abundance both increase from lowlands to montane regions (Figure 7) (van Reenen & Gradstein 1983; Gradstein & Pócs 1989; Frahm 1990b). A similar pattern occurs in Madagascar (Figure 8) (Lewis et al. 1996) and Brazil (Pórto 1992), with an increase in bryophyte and lichen cover and diversity as elevation increases. The distribution patterns of bryophytes through the elevational zones of the humid tropics mimics that of the ferns, which similarly have their highest species numbers in the lower montane forests (Kessler 2000 – Andes, Bolivia & Colombia; Hemp 2002 – Mt. Kilimanjaro, Tanzania).
Another important observation for the tropical distributions of species with altitude is that for most species the habitat preferences are comparable to those at higher latitudes (Gradstein & Vána 1987). Nevertheless, some occupy quite different habitats in the tropics, such as *Diplophyllum obtusatum* (Figure 9), *Solenostoma sphaerocarpum* (Figure 10), and *Schistochilopsis incisa* (Figure 11). Whereas these may be found in pristine habitats at higher latitudes, they are colonizers of man-made habitats in the tropics. Some species that are especially common (and typically have relatively wide niches and/or distributions) extend from tropical altitudes to northern habitats. From peat bogs, *Sphagnum magellanicum* (Figure 12) and *S. cuspidatum* (Figure 13) fit this description. Rock outcrops in both latitudinal and altitudinal extremes can have *Racomitrium lanuginosum* (Figure 14) and *Andreaea rupestris* (Figure 15) as well as *Racomitrium crispulum* (Figure 16) and *Rhacocarpus purpurascens* (Figure 17) from southern latitudes. Mires typically have *Calliergonella cuspidata* (Figure 18), and *Scorpidium scorpioides* (Figure 19), whereas less boggy ground may have *Pleurozium schreberi* (Figure 20). Tropical roadsides often have *Schistochilopsis incisa* and *Solenostoma sphaerocarpum*. On periodically submerged rocks one can find the ubiquitous *Platyhypnidium riparioides* (Figure 21), *Brachythecium plumosum* (Figure 22), and *Schistidi um rivulare* (Figure 23), along with the southern latitude *Clasmatocolea vermicularis* (Figure 24) and *Cryptochila grandiflora* (Figure 25).
Figure 11. *Schistochilopsis incisa*, a species that occurs in the tropics as well as at higher latitudes, but with a different habitat. Photo by Michael Lüth, with permission.

Figure 12. *Sphagnum magellanicum*, a species that occurs in the tropics as well as at higher latitudes, in bogs and poor fens. Photo by Michael Lüth, with permission.

Figure 13. *Sphagnum cuspidatum*, a species that occurs in the tropics as well as at higher latitudes, in bogs and poor fens. Photo by Michael Lüth, with permission.

Figure 14. *Racomitrium lanuginosum*, a species that occurs on rock outcrops in both latitudinal extremes, as well as the tropics. Photo by Janice Glime.

Figure 15. *Andreacea rupestris*, a species that occurs on rock outcrops in both latitudinal extremes, as well as the tropics. Photo by Michael Lüth, with permission.

Figure 16. *Racomitrium crispulum*, a species that occurs on rock outcrops in both latitudinal extremes, as well as the tropics. Photo by Jan-Peter Frahm, with permission.
Figure 17. *Rhacocarpus purpurascens*, a species that occurs on rock outcrops in both latitudinal extremes, as well as the tropics. Photo by Michael Lüth, with permission.

Figure 18. *Calliergonella cuspidata*, a typical mire species that occurs at high latitudes as well as the tropics. Photo by Des Callaghan, with permission.

Figure 19. *Scorpidium scorpioides*, a typical mire species that occurs at high latitudes as well as the tropics. Photo by Janice Glime.

Figure 20. *Pleurozium schreberi*, a typical mire species that occurs at high latitudes as well as the tropics and elsewhere. Photo by Janice Glime.

Figure 21. *Platyhypnidium riparioides*, a rock-dwelling species that is periodically submerged in both high latitudes and the tropics. Photo by Michael Lüth, with permission.

Figure 22. *Brachythecium plumosum*, a rock-dwelling species that is periodically submerged in both high latitudes and the tropics. Photo by Michael Lüth, with permission.
Ah-Peng et al. (2007) demonstrated altitudinal gradients in bryophyte diversity on a 19-year-old lava flow in La Réunion. Because the lava flow is a uniform substrate, it provides an ideal opportunity for studying altitudinal effects without interference by substrate differences. Using quadrats in the range of 250-850 m asl, they determined that diversity increases with altitude, a pattern that occurs in many studies cited in this chapter. Nevertheless, a variety of available host plants seems to be important in fostering diversity (70 species) of epiphytic bryophytes on the lava flow.

In the Andes of Peru and Colombia, Kessler (2000) found floristically discrete communities that corresponded with altitudinal belts. He found that the floristic boundaries related to strong changes in orography (topographic relief of hills and mountains). These included the transition from the hilly lowland to the steep mountains, a co-occurring change in geological substrate at 400 m, a strong humidity gradient at 1,000 m on the Bolivian transect and at 1,250-1,980 on the Colombian transect, and the transition from mixed cloud forests to forests dominated by *Polylepis* (Rosaceae; Figure 26) or *Podocarpus* (a broad-leaved evergreen conifer; Figure 27). In relatively species-poor forest communities, the presence or absence of a few tree species influences the whole ecosystem. By contrast, in species-rich communities such as the forests at low to mid elevations, the elevational belts are ill-defined.
In 2017, von Konrat stated that his study of elevational bryophyte communities in the Fiji Islands was the first of its kind for Fiji. Von Konrat assessed presence/absence on the lower stems of the *Calophyllum* spp. (Figure 28) trees and on tree ferns at three elevations (~160 m, 590 m, and 1,260 m). Unlike the Uganda study of Tusiime *et al.* (2007 – see below), this one revealed a hump-shaped diversity distribution (Figure 7), with the greatest species richness in the mid elevation or upland forest. Liverworts dominated at all three elevations. The bryophyte communities were distinctly different at both the host tree level and among the three elevations.

Figure 28. *Calophyllum brasiliense*, a bryophyte host in the Fiji Islands. Photo by Mauro Halpern, through public domain.

Churchill *et al.* (1995) reported a moss diversity for the tropical Andes of 2,058 species comprised of 343 genera and 75 families. However, they considered that once the systematics are understood, and superfluous species are reduced to synonymy, this number is likely to drop to 1,500-1,700. The tropical Andes have a moss flora that is approximately eight times as rich in species as that of the Amazon basin. While α diversity (site diversity) may be similar, β diversity (differences in species composition among sites) and γ diversity (landscape diversity) in the Andes are much greater. These differences are largely due to orographic factors (relating to mountains, especially regarding position and form) (see also Pócs 1976). Nevertheless, the mosses do not seem to follow the latitudinal species gradient shown by other species groups. That is, there is no increase in number of species from the poles to the equator.

Despite these high numbers, one habitat had typically been overlooked in the early studies: the canopy. Particularly in the lowland rainforest, the canopy (Figure 29) houses a rich diversity with many species that are unique to the high canopy (Gradstein *et al.* 1990). In fact, these canopies can house more than 50% of the local species, as discussed in the sub-chapter on epiphytes.

Figure 29. Lowland rainforest tree, Colombian Amazon. Photo by Laura Campos, through Robbert Gradstein.

Campylopus pilifer (Figure 30) is broadly distributed and drought-tolerant and is found at high elevations in the tropics (Gradstein & Sipman 1978; Stech & Wagner 2005).

Figure 30. *Campylopus pilifer* (*Dicranaceae*), a broadly distributed species that occurs at high elevations in the tropics. Photo by Michael Lüth, with permission.

Westerners tend to think of Africa as the land of elephants and camels. But Africa has a remarkable topography and wide diversity of habitats. Tusiime *et al.* (2007) compared species richness among the habitats along an altitudinal range as well as along stream sides and trails in the forests of Bwindi Impenetrable National Park,
Uganda, using 1000-m transects with 1x1 m quadrats at 50 m intervals. In contrast with some of the Neotropical studies, richness of bryophyte species was negatively correlated with altitude. The exception to this was the thallloid liverworts, which increased with altitude. Streamside diversity was the highest, compared to that along trails. The evergreen forest had the greatest bryophyte richness, followed by the mature mixed and bamboo forests.

In some cases, soils may play a role in determining differences in bryophyte communities. Grieve et al. (1990) compared soils in six primary forest plots at 100 m, 500 m, 1,000 m, 1,500 m, 2,000 m, and 2,600 m asl on Volcán Barva, Costa Rica. As altitude increased, there was less evidence of intensity of weathering and organic matter decomposition. Simultaneously, subsoil clay content decreased from 80% at 100 m to less than 10% at 2000 m. Other soil factors likewise changed, with the ratio of free to total iron decreasing while surface organic matter increased. In fact, most nutrients at high elevations did not seem to be less than at low elevations.

On Mt. Kinabalu and the Himalaya of Bhutan, Ashton (2003) considered the floristic relationships to be complicated. He observed that the altitudinal level at which changes occur has only minor differences between the Equator and the tropical area. Rather, Ashton concluded that soil changes may play a more direct and important role than previously considered. The important soil factors are the increase in organic content in lower montane soils when compared to those of the lowland. This is accompanied by a change from termite-dominance to earthworm-dominance and frequency of dense moss layers and mor humus in the upper montane soils. But the question remains, do these soil differences make any differences in the composition of bryophyte communities?

Defining Zones

Enroth (1990) recognized five altitudinal zones in Papua New Guinea: 0-300 m, 300-1,200 m, 1,200-2,200(-2,300) m, 2,200(-2,300)-2,800(-2,900) m, and 2,800(-2,900)-3400 m asl. These zones are recognized by their distinct changes in the bryophyte flora. These zones also correspond well with previous studies on seed-plant flora. At the highest altitudes, species from the Northern Hemisphere occur. The high altitudes generally have New Guinean or Western Melanesian and Malesian endemics. At low to moderate altitudes, the flora is representative of Asian-Oceanian and Asian-Oceanian-Australian taxa, particularly among the mosses. Cosmopolitan species have either wide vertical ranges or occur only at high altitudes.

Van Reenen and Gradstein (1983) recognized five altitudinal bryophyte zones in the Sierra Nevadas of Colombia in the range of 500-4,100 m asl. Four zones are forest zones and one is páramo (high treeless plateau). They based their classification of these zones on relevés that included species presence, substrate preference, and percentage cover of bryophytes. The zones are correlated with precipitation and air temperature. Species presence and percent cover seem to be of equal importance in distinguishing the bryophyte zones in the forests. These are highest in the condensation zones (zones where water vapor in atmosphere condenses and becomes liquid).

Frahm and Gradstein (1991) examined the cover, biomass, and turnover rates of bryophytes in rainforests of Colombia, Peru, Borneo, and Papua New Guinea. From these, they concluded that altitudinal zonation is similar in different parts of the humid tropics.

In Hawaii, Kitayama and Mueller-Dombois (1992) studied the community organization on the windward slope of Haleakala. On a transect from 350 m asl to the summit at 3,055 m asl they used a Braun-Blanquet approach to record species. They found hierarchical arrangements that were correlated with altitude. The low to mid-altitudinal climate is wet, changing abruptly to an arid high-altitude climate. This climatic distinction created three broad zones with altitude: lowland, montane, and high-altitude zones. Further distinctions partitioned these into seven plant communities, six based on altitude and one dieback zone.

Zone Limitations

In Ecuador, the montane and lowland rainforests both have a cooler, wetter season from April to July (Grubb & Whitmore 1966). The montane site has fog-bound and fog-free days. On the fog-free days, sunshine may be present for a prolonged period. These sunny periods are longest in the dry season, lasting 1-2 weeks. On fog-bound days, there is little diel (within a period of 24 hours) temperature change and the relative humidity typically remains at 95% or higher. On fog-free days, the temperature range and minimum relative humidity are similar to those on an average day in the lowland forest. These fog conditions are absent in the lowland rainforest. Nevertheless, on the fog-bound days in the montane forests, the conditions are similar to those of the lowland forests in the wet season. The forest types correlate with the frequency of fog, not the temperature regime. The success and greater abundance of epiphytes in the montane forest compared to the lowland forest seems to result from the frequency of wetting by fog, not to a constantly higher humidity.

On a worldwide basis, Ashton (2003) is right; the causes of zonation with altitude are complicated. In Costa Rica, Kluge et al. (2006) studied the pteridophyte richness at 10-2800 m asl and at 2,700-3,400 m on the Atlantic slope of Costa Rica. They analyzed species richness in 156 plots of 20x20 m. They regressed species richness against temperature, humidity, precipitation, and actual evapotranspiration. As in many other studies, the species richness distribution of the 484 species was a hump-shaped one (Figure 7) typical of many elevational distributions in the tropics. And as is typical, it peaked at the mid-elevations. Nonetheless, the distribution correlated with the climatic variables of humidity and temperature. The mid-altitudes have the highest humidity and offer moderate...
temperatures; high elevations have a reduced richness that the researchers attribute to the low temperatures. At low elevations, reduced water availability, coupled with high temperatures, reduce the species richness.

Low altitude bryophytes are limited by high temperatures and low light intensity (Richards 1984a; Frahm 1990a). In fact, the light intensity barely exceeds the light compensation point (intensity at which CO₂ lost by respiration = that fixed by photosynthesis). By contrast, montane bryophytes experience low temperatures and higher light intensities, with nearly horizontal rainfall and constant humidity, providing "suitable" conditions for a rich bryophyte flora (Pócs 1982; Richards 1984a; Stadtmüller 1987). The characteristics of the host plant for the predominantly epiphytic flora seem to be of minor importance.

Traditional assumptions have been that temperature, light intensity, and water availability determine the distribution of tropical bryophytes. Chantanaorrapint (2010) determined that in a slightly disturbed tropical forest in Thailand (Figure 31), it was a complex set of factors that affected the distributions of the epiphytic bryophytes. These related to these same altitudinal gradient factors of light intensity, air temperatures, and relative humidity working together.

Kürschner (1995) demonstrated a strong correlation between known altitudinal zonation, forest zones, and plant sociological units in the tropics of the Democratic Republic of Congo and Rwanda (Figure 32). Because of their broad geographic distribution, relatively small number of species (compared to seed plants), sensitivity to climate, and prominence in tropical rainforests, bryophytes are good indicators of the altitudinal zonation pattern that is characteristic of the humid tropics.

There are a number of changes in the environment from lowland to montane, and these may work in consort, as noted by Chantanaorrapint (2010), to provide more favorable habitats in the mountains. Richards (1984b) suggested that lowland temperatures are too hot for most bryophytes. We can expect that these C₃ plants generally have their photosynthetic optimum around 20°C; mean annual temperatures in the montane rainforests are generally 10-20°C (Gradstein & Pócs 1989). As already noted, Frahm (1990b) found that the rate of net assimilation of tropical montane bryophytes decreases radically above 25°C. Biebl (1964) showed that most of the bryophytes of the montane forest at El Yunque, Puerto Rico, could not survive at temperatures above 35°C. Light intensity in the lowlands is low, respiration (including photorespiration) is high, and moisture is often limiting, making it difficult for lowland bryophytes to assimilate more by photosynthesis than they lose to respiration. In fact, Frahm (1987) experimented in the laboratory with montane rainforest bryophytes from Peru and demonstrated just that – they cannot photosynthesize enough under the conditions of the tropical lowland rainforest. In such lowlands, one is most likely to find pantropical families such as Calymperaceae (Figure 134), Hookeriaceae (Figure 33), and Lejeuneaceae (Figure 76-Figure 94) (Gradstein & Pócs 1989).

These dry conditions of the lowlands, however, do not persist throughout the other climatic zones of the tropics. In the lower montane rainforest in Panama (Figure 34), the daily water content of liverwort thalli is pronounced, and both the low and the high water content place considerable
limitation on the CO₂ exchange (Zotz *et al.* 1997). However, between those values is a range where a net carbon gain is possible. Even so, half of the mean daytime carbon gain is lost during the night due to respiration at the relatively high temperatures. Enough carbon is stored and not subsequently released to account for a net annual gain of approximately 45% of the initial carbon content of the thallus.

Transplant Studies

Experimental studies are few, but can provide a clearer picture of altitudinal relationships. Stam *et al.* (2017) transplanted 558 pendent epiphytes in the Afromontane forests of Taita Hills, Kenya (Figure 35). Several of the four pendent mosses grew very well in the upper montane forest where it was cool and humid, more than doubling their biomass in the year of study. By contrast, all of the transplanted mosses performed poorly in the humidity, heat, and low light of the lower canopy in the dense lower montane forests.

Latitude vs Altitude

Delgadillo and Cardenas (1989) found that the highlands in the Chiapas of Mexico have moss floras similar to those of temperate regions. Truly tropical taxa are mostly confined to the lowland moist sites. The Meso-American species and species with wide distributions are the most numerous in species.

Churchill (1991) suggested that latitude does not play a major role in distinguishing moss diversity from high to low latitudes in the temperate and tropical regions. Rather, in Colombia (Figure 36), bryophyte species richness increases with altitude up to treeline (Figure 37). It is on the high mountains that the tropical bryophytes reach their zenith in diversity. A similar curve is seen for Yunnan, China (Figure 38) (Song *et al.* 2015). The hump shape (Figure 37-Figure 38) is typical of the diversity distribution.
Churchill (1991) reported that ~93% of total species richness for mosses (900 spp.) in Colombia occurs within the 20-25% of land surface occupied by the Andes. Within that area, ~50% of diversity occurs at 2,600-3,300 m asl, the high montane zone. Among tropical bryophyte families, 60% are primarily montane while less than 5% are primarily lowland taxa. Freiberg and Freiberg (2000) also found higher bryophyte biomass in the montane zone of Ecuador (Figure 39) compared to the lowland forests, with a corresponding increase in dead organic matter. Similarly, in the Andes of Colombia (Figure 40), montane areas may produce at least ten times the epiphytic bryophyte biomass of lowland forests (van Reenen & Gradstein 1983). Frahm (1987) obtained similar biomass relationships in Peru (Figure 41). Lowlands and submontane regions also are deprived of endemics, sporting a number of transoceanic and pantropical taxa, especially liverworts in Lejeuneaceae (Figure 76-Figure 94) and mosses Fissidens asplenioides (Figure 42), Floribundaria floribunda (Figure 43), and Neckerospis disticha (Figure 44), whereas endemics increase in number in alpine areas, causing the tropics to have a high number of endemic bryophytes (Gradstein et al. 2001a). Nöske et al. (2003) reported that in Ecuadorian Andes species range sizes decrease toward higher elevations, refuting Rapoport’s elevational rule (prediction of trends of increased elevational ranges of plants with increase in elevation). It does suggest that more endemics might be expected at higher elevations. Nevertheless, endemism overall was very low (1%).
Chapter 8-8: Tropics: Altitude

al. (2015) compared bole bryophytes in three protected forest areas in tropical sub-montane (800-1400 m asl), montane (2000-2600 m asl) and sub-alpine (3200-3800 m asl) in Yunnan, SW China (Figure 45). They used 60 20x20 sampling plots, with five plots at each of 12 elevations with 200 m altitudinal intervals. They used 540 subplots, each with an area of 400 cm². These revealed 226 epiphytic bryophyte species. Life forms included smooth mat, fan, and turf as dominants in the sub-montane, montane, and sub-alpine forests, respectively (Figure 46). The sub-montane forest had significantly lower bryophyte species richness, a response they attributed to higher temperature, limited water availability, and more frequent human disturbance. As in many other studies cited here, the distribution of species richness was a hump-shaped curve with altitude (Figure 7), reaching its highest richness where the moisture levels were highest at ~2,600 m asl. Liverworts had the greatest species richness at all three sites (Figure 47).

Using only bole bryophytes to assess elevational differences eliminates most of the soil influences. Song et
Using data on more than 840 mosses and liverworts from the Himalayas in Nepal (actually subtropics; Figure 48), Grau et al. (2007) determined the known maximum and minimum elevations of the species. They found strong correlations in species richness among the ferns, flowering plants, mosses, and liverworts and elevational relationships. Maximum richness of liverworts occurred at 2,800 m, for mosses at 2,500 m asl. The endemic liverworts reached maximum richness at 3300 m; non-endemic liverworts at 2,700 m. Nevertheless, the mosses again did not support Rapoport’s elevational rule (prediction of trends of increased elevational ranges of plants with increase in elevation). For liverworts, the relationship is not clear. Grau and coworkers (2007) suggest that differences in importance of climatic variables such as available energy and water might explain the differences among the four plant groups.

Records of Altitude

One might expect the highest known elevation for bryophytes to be in the tropics, where the climate will be the warmest at high elevations compared to the same elevation elsewhere. Grolle (1966) reported records up to 5100-5200 m asl in Nepal (subtropics). Alexey Potemkin (Bryonet 11 February 2016) noted that these were liverworts from a wide variety of genera: *Scapania ornithopodioides* (Figure 49), *Lophozia incisa* (Figure 50), *Chandonanthus filiformis* (see Figure 51), *Gymnomitrion sinense* (see Figure 52), *Marsupella commutata* (Figure 53), *M. revoluta* (Figure 54), *Plagiochila carringtonii* subsp. *lobuchensis* (Figure 55), *Herbertus sendtneri* (Figure 56), *Anthelia julacea* (Figure 57), *Bazzania tricrenata* (Figure 58), *Metaclaypegia alternifolia* (Figure 59).

Figure 47. Species richness of mosses vs liverworts on three altitudinal transects in Yunnan, China. Species richness represents twenty 20 x 20 m plots on each mountain. Modified from Song et al. 2015.

Figure 48. Himalaya Mountains at sunset, Nepal. Photo by Jules Air, through Creative Commons.

Figure 49. *Scapania ornithopodioides*, a leafy liverwort that is among those at the highest elevations on the planet. Photo by Michael Lüth, with permission.

Figure 50. *Lophozia incisa*, a leafy liverwort that is among those at the highest elevations on the planet. Photo by Michael Lüth, with permission.

Figure 51. *Chandonanthus*, a leafy liverwort that is among those at the highest elevations on the planet. Photo by Blanka Aguero, with permission.
Figure 52. *Gymnomitrion concinnatum*, a leafy liverwort that is among those at the highest elevations on the planet. Photo by Hermann Schachner, through Creative Commons.

Figure 53. *Marsupella commutata*, a leafy liverwort that is among those at the highest elevations on the planet. Photo by Michael Lüth, with permission.

Figure 54. *Marsupella revoluta*, a leafy liverwort that is among those at the highest elevations on the planet. Photo by Michael Lüth, with permission.

Figure 55. *Plagiochila carringtonii*, Scotland, a leafy liverwort that is among those at the highest elevations on the planet. Photo by Michael Lüth, with permission.

Figure 56. *Herbertus sendtneri*, a leafy liverwort that is among those at the highest elevations on the planet. Photo by Michael Lüth, with permission.

Figure 57. *Anthelia julacea*, a leafy liverwort that is among those at the highest elevations on the planet. Photo by Michael Lüth, with permission.
Figure 58. *Bazzania tricrenata*, a leafy liverwort that is among those at the highest elevations on the planet. Photo by Michael Lüth, with permission.

Figure 59. *Metacalypogeia alternifolia*, a leafy liverwort that is among those at the highest elevations on the planet. Photo through Creative Commons.

Schiavone and Suárez (2009) reported the moss *Globulinella halloyi* (*Pottiaceae*; see Figure 60) as a new species from Volcán Socompa, Argentina. It has the distinction of occurring at 6,000 m asl, 280-590 m higher than any known record for a bryophyte. It forms large, dense patches in communities with dense clumps of *Pohlia papillosa* (see Figure 63-Figure 64) on warm soil with moist conditions.

Figure 60. *Globulinella globulifera*. *G. halloyi* is a new species that occurs at 6000 m asl in Volcán Socompa, Argentina, making it the bryophyte at the highest elevation on the planet. Photo by Claudio Delgadillo Moya, with permission.

Volcanoes are particularly likely to have high-elevation bryophytes. Areas near geothermal vents have heated soil and sufficient moisture to maintain a suitable bryophyte habitat. Potemkin et al. (2018) reported two liverwort and two moss species from the top of Elbrus (5,590 m asl) in the Caucasus. They occupied an area free of snow and ice. The liverworts are *Marsupella boeckii* (see Figure 61) and *M. cf. funckii* (Figure 61). The mosses are *Atrichum cf. angustatum* (Figure 62) and *Pohlia nutans* (Figure 63-Figure 64), both widespread species. These are not tropical locations, and thus the high elevation is more remarkable, but the heat and moisture from the geothermal vent makes this habitat livable for these species. *Pohlia nutans* is also recorded from 3,000-4,000 m asl in China (Zhang et al. 2007). *Atrichum angustatum* is reported in Europe, Macaronesia, Turkey, Iran, eastern and central North America, and China. *Marsupella boeckii* is an infrequent Holarctic species; *M. funckii* is a European species.

Figure 61. *Marsupella funckii*, a species that occurs at 5,590 m asl in the Caucasus. Photo by Hermann Schachner, through Creative Commons.

Figure 62. *Atrichum angustatum* with ice crystals, a widespread species that occurs at 5,590 m asl in the Caucasus. Photo by Bob Klips, with permission.
Figure 63. *Pohlia nutans* below old mine on Svalbard. Photo by Michael Lüth, with permission.

Figure 64. *Pohlia nutans* in Khibiny Mountains, Apatity, Murmansk, a species that occurs at 5,590 m asl in the Caucasus. Photo by Michael Lüth, with permission.

Rodriguez (2015) reports the first known symbiosis in a high elevation (6480 m asl, Mt. Everest) population of mosses. The moss *Gymnostomum aeruginosum* (Figure 65) has a symbiotic fungus living completely within the tissues, making it the first documentation of a high elevation symbiosis. Rodriguez has continued testing to see if fungi confer any low temperature or high UV tolerance on the moss. Potemkin *et al.* (2018) have reported the Mt. Everest location of this species, based on a photograph, as hidden in a crevice in cold snow.

Figure 65. *Gymnostomum aeruginosum*, a moss with a symbiotic fungus at 6,480 m on Mt. Everest, possibly the highest elevation for a bryophyte. Photo by Hermann Schachner, through Wikipedia Commons.

Frey *et al.* (2012) listed the highest records for bryophytes in the Cordillera Real in Bolivia. The liverworts *Stephaniella paraphyllina* (Figure 66) and *Gymnocoleopsis multiflora* occur at 5,000 m asl. The moss *Grimmia longirostris* (Figure 67) occurs at 5,800 m asl. Thus it appears that the highest elevation record thus far goes to *Gymnostomum aeruginosum* on Mt. Everest.

Figure 66. *Stephaniella paraphyllina*, a leafy liverwort species that occurs at 5,000 m asl in Bolivia. Photo by Jan-Peter Frahm, with permission.

Figure 67. *Grimmia longirostris* with capsules, a moss species that occurs at 5,800 m asl in Bolivia. Photo by Hermann Schachner, through Creative Commons.

Diversity-Richness Changes

Early studies recognized differences in the bands of vegetation as altitude increased. Bryologists naturally became curious about the co-occurring changes in the bryophyte vegetation.

Pócs (1984) used four transects on the SSW slope of Mt. Kilimanjaro to show bryophyte species changes in each 100-m altitudinal section. On this mountain they found that the number of species increased "rapidly" from 1,800 m asl upward. They found two peaks in species diversity, one at 2,200 m, where the structure of the montane rainforest is most complex, and one at 2,700 m in the cloud belt, where the precipitation is greatest. At timberline (3,000 m), there is a rapid decrease in species diversity, but this remains relatively constant until 3,800 m, where the vegetation is subalpine heath and it is more open and dry.
with less rainfall. Above this level, the number of bryophyte species reach their minimum level on the mountain. The uppermost known species occurs at 5,050 m asl. These conditions created six bryophyte zones, each with characteristic species combinations, and these parallel the established zones of tracheophyte vegetation.

In Southwest Nigeria, Oyesiku (2013) conducted one of the rare ecological studies in a tropical rainforest biome in Africa. He found 138 bryophyte species, with 70% mosses and 30% liverworts. Unlike other studies, this one found the species distribution to be relatively homogeneous along the altitudinal trail (Gini coefficient = 2.54%). A Gini coefficient of zero expresses perfect equality, where all values (species) are the same; 100% indicates that all values (species) are different. Nevertheless, there was a significant correlation between number of bryophyte species (for both mosses and liverworts separately) and elevation.

Frahm (1990c) investigated the altitudinal zonation of Bryophytes on Mt. Kinabalu in Borneo. Later, Frahm (1994a) summarized the results of the BRYOTROP Expedition to the Democratic Republic of Congo (previously Zaire) and Rwanda, which examined the altitudinal zonation of bryophytes on Mt. Kahuzi in the Democratic Republic of Congo. Based on bryophyte parameters such as species per hectare plot and altitudinal ranges of species, they identified four bryophyte vegetation zones: submontane forest (<1,500 m), lower tropical montane forest (1,500-2,000 m), upper tropical montane forest (2,100-2,800 m), and subalpine forest (2,900-3,200 m). These zones correlate with those previously named for the general tracheophyte vegetation.

Gradstein et al. (1983) compared liverworts between the Neotropics and Africa to determine the level of disjunction. Early researchers tended to name species on a new continent as new, but as more in-depth studies occur, many of these emerge as synonyms. Among 35 known Afro-American species, there are three distribution types one can recognize. These are Tropical Afro-American (lowland, montane, and the alpine element), Subtropical-Mediterranean (southern, wide element) and Temperate-SubAntarctic (southern, wide element). Most of these disjuncts occur in the leafy liverwort order Jungermanniales (Figure 10). The subtropical disjuncts are an exception, being thallose liverworts. The researchers suggest that the species disjunctions are due to long-distance dispersal, but experimental evidence to support this is totally lacking. On the other hand, it is possible that generic disjunctions and species vicariance might be the result of ancient land connections through Gondwanaland.

Although the bamboo forest (Figure 68) is low in bryophyte species diversity, it nevertheless exclusively hosted 17.6% of the collected bryophytes in the Bwindi Impenetrable National Park, Uganda (Tusiime et al. 2007).

Nekesa (2015) used a transect from 2,400 m to 4,800 m asl, sampling at 200-m intervals to examine the distribution of both bryophytes and tracheophytes on Mt. Kenya. Tracheophytes were sampled in 10 x 10 m quadrats with 10 x 5 cm bryophyte quadrats nested within them. Bryophytes had the highest diversity, followed by flowering plants. Diversity overall decreased from 2400 m asl to 460 m asl, with the optimum occurring at 2400 and 3000 m asl (over 350 species each). The most diverse bryophytes were humicolous and corticolous (80%) with only 0.001% in the aquatic habitat. Nekesa concluded that altitude is the major factor affecting the distribution of both groups, with microhabitats of bogs, rocks, and tracheophytes themselves being the secondary factors.

Glime et al. (1990) demonstrated a change in associations among Frullania (Figure 72) species with altitude on Mount Albert Edward, Papua New Guinea (Figure 69). The species diversity of this genus is greatest in the middle altitudes, least in the dry lowlands. Sibling taxa show elevational differences within pairs, thus occupying different niches. It is likely that we will find multiple environmental races among at least some species when we compare them among altitudes.
On Mount Albert Edward, Papua New Guinea (Figure 69), there are more than 50 taxa of the leafy liverwort genus *Frullania* (Figure 72) (Glime et al. 1990). These taxa form many associations, often with other members of the same genus. The associations and the major taxa differ with elevation, and the species richness likewise differs. The most taxa occur at the middle altitudes, especially the cloud forests, and the least in the dry lowlands and high alpine areas. Furthermore, many clumps of single *Frullania* species occur in the latter two regions, whereas at the other elevations collections are rarely pure. In fact, at 2,000-2,500 m asl associations between *Frullania* taxa are so common between repeating species pairs or groups (i.e. high fidelity) that we (Glime et al. 1990) suggested that some benefit might be derived from the association. We suggested that these untested benefits might include:

1. high light intensity protection for small liverworts that live among larger ones in the forest canopy or in exposed alpine areas
2. protection from drying out by reducing the amount of free space among the branches and leaves
3. gain in water availability by species that have a poor ability to move water from the substrate or surface of the clump to their own branches but that can take advantage of the water moved by an associated species.

Although few authors describe such commensal water relationships in plants, except by use of mycorrhizae, Rydin (1985) has suggested that they exist among *Sphagnum* (Figure 70) species with differential abilities to absorb water in one circumstance and to retain it in another. His conclusions are further supported by the experimental studies of Li et al. (1992) on two additional species of *Sphagnum*.

Figure 70. *Sphagnum capillifolium* with capsules, in Chile. Photo by Juan Larrain, with permission.

Ah-Peng et al. (2012) compared altitudinal bryophyte species variation on the Reunion Island (summit 2,069 m asl) to that of the Colombia high volcano (5,321 m asl) on the South American continent. Species richness was similar between the two locations, with 265 on Reunion Island and 295 on the Colombian volcano. On Reunion Island, species with small range sizes dominated, with mean altitudinal range increasing with altitude (perhaps Rapoport’s elevational rule is right for bryophytes sometimes), and with species richness decreasing with altitude. The island’s cloud forest has a high bryophyte species richness as well as a large number of rare species. The continental elevational gradient, by contrast, was dominated by large-ranged species.

The altitudinal gradient seems also to be reflected in the niche width (Figure 71) of the *Frullania* (Figure 72) taxa (Glime et al. 1990). At both the low and the high elevations, the niche widths are narrower (not supporting Rapoport’s elevation rule), at least for the parameters tested, further restricting the taxa that are there to well-defined habitats. For example, *Frullania papillata* has 95% of its observations expected between 2,368 and 2,575 m asl and occurs only between 2,500 and 3,500 m. Similarly restricted taxa, altitudinally, include *F. apiculata*, *F. attenuata*, *F. gracilis* (Figure 72), *F. ornithocephala*, and *F. ornithocephala var. intermedia*. On the other hand, the middle altitudes have the highest number of species pairs with non-overlapping distributions (Figure 73).

Figure 71. Leivns and Freeman-Tukey niche width and elevational range of sibling pairs of *Frullania* on Mount Albert Edward, Papua New Guinea. Redrawn from Glime et al. 1990.

Figure 72. *Frullania gracilis*. Photo from Bryophyte Flora of Doi Suthep-Pui National Park, Chiang Mai, Thailand, through Creative Commons.
Four sibling taxa pairs of *Frullania* occur (Figure 71, but among the ones examined, each member of the pair exhibits distinct altitudinal niches, suggesting that while they may have remained morphologically similar, they may have diverged physiologically (Glime *et al.* 1990).

The canopy typically has more species than the ground in a lowland rainforest. Cornelissen and Gradstein (1990), working in Guyana, reported that 50% of the species were restricted to the canopy; only 14% corticolous species were restricted to the understory. However, in Monteverde, Costa Rica (Figure 74), when rotten logs and living leaves are added to the understory percentage, about 20% of the species are exclusive to the understory (Figure 75) (Gradstein *et al.* 2001b). Gradstein and coworkers suggested that the percentage of species restricted to the canopy may be the same in lowland and montane rainforests, despite large differences in both species abundance and composition (see also Gradstein 1995).

Eggers (2001) described the groupings of epiphyllous Lejeuneaceae (Figure 76-Figure 94) in Costa Rica based on their altitudinal distribution:

only <500 m:
Cololejeunea setiloba (see Figure 77)

1-1,600 m:
Cololejeunea (*syn.* Aphanolejeunea) *costaricensis* (see Figure 76), *Cololejeunea moralesiae* (see Figure 76), *Cololejeunea cardiocarpa* (Figure 77), *C. guadeloupensis* (see Figure 77), *C. linopteroides* (see Figure 77), *C. obliqua* (see Figure 77), *C. minutilobula* (see Figure 77), *C. standleyi* (see Figure 77), *Colura verdoornii* (see Figure 78), *Cyclolejeunea chitonii* (see Figure 79), *C. peruviana* (Figure 79), *Diplasiolejeunea brunnea* (Figure 80), *Microlejeunea epiphylla* (see Figure 81), *Rectolejeunea berteroana* (Figure 82), *R. cf. emarginuliflora* (see Figure 82), *Stictolejeunea squamata*.

![Figure 73. Elevational distribution of species richness of Frullania on Mount Albert Edward, Papua New Guinea. Redrawn from Glime *et al.* 1990.](image)

![Figure 75. Diversity of canopy vs understory in the cloud forest at Monteverde, Costa Rica. Modified from Gradstein *et al.* 2001b.](image)

![Figure 74. Monteverde, Costa Rica, canopy. Photo by Cephas, through Creative Commons.](image)

![Figure 76. Cololejeunea microscopica; Cololejeunea costaricensis and C. moralesiae occur from 1 to 1,600 m asl in Costa Rica. Photo by Stan Phillips, through public domain.](image)
Figure 77. **Cololejeunea cardiocarpa**, a leafy liverwort species that occurs from 1 to 1,600 m asl in Costa Rica. Photo by Paul Davison, with permission.

Figure 78. **Colura tenuicornis; C. verdoornii** is a leafy liverwort species that occurs from 1 to 1,600 m asl in Costa Rica. Photo by Jan-Peter Frahm, with permission.

Figure 79. **Cyclolejeunea peruviana**, a leafy liverwort species (as well as **C. chitonia**) that occurs from 1 to 1,600 m asl in Costa Rica. Photo by Jan-Peter Frahm, with permission.

Figure 80. **Diplasiolejeunea brunnea** in Ecuador on leaf, a leafy liverwort species that occurs from 1 to 1,600 m asl in Costa Rica. Photo by Tamás Pócs, with permission.

Figure 81. **Microlejeunea** sp.; **M. epiphylla** is a leafy liverwort species that occurs from 1 to 1,600 m asl in Costa Rica. Photo by Tangatawhenua, through Creative Commons.

Figure 82. **Rectolejeunea berteroana**, a leafy liverwort species (as well as **R. cf. emarginuliflora**) that occurs from 1 to 1,600 m asl in Costa Rica. Photo by Michaela Sonnleitner, with permission.
1-3,000 m:
Cololejeunea (syn.=*Aphanolejeunea* angustissima) (see Figure 76), *Colura tortifolia* (Figure 83), *Diplasiolejeunea cavitifolia* (Figure 80, Figure 84), *D. pellucida* (Figure 84), *Drepanolejeunea inchoata* (Figure 85), *Dr. lichenicola* (see Figure 85), *Lejeunea laetevirens* (Figure 86), *Odontolejeunea lunulata* (Figure 87).

![Figure 83. *Colura tortifolia*, a leafy liverwort species that occurs from 1 to 3,000 m asl in Costa Rica. Photo by Michaela Sonnleitner, with permission.](image)

![Figure 84. *Diplasiolejeunea pellucida*, a leafy liverwort species that occurs from 1 to 3,000 m asl in Costa Rica. Photo by Michaela Sonnleitner, with permission.](image)

![Figure 85. *Drepanolejeunea inchoata* (as well as *Dr. lichenicola*), a leafy liverwort species that occurs from 1 to 3,000 m asl in Costa Rica. Photo by Michaela Sonnleitner, with permission.](image)

only 500-1,600 m:
Cololejeunea (syn.=*Aphanolejeunea* cingens) (see Figure 76), *Cololejeunea* (syn.=*Aphanolejeunea* longifolia) (Figure 88), *Cololejeunea* (syn.=*Aphanolejeunea* pustulosa) (see Figure 76), *Cyclolejeunea accedens* (see Figure 79), *C. convexistipa* (see Figure 79), *Diplasiolejeunea grolleana* (see Figure 80, Figure 84), *D. unidentata* (see Figure 80, Figure 84), *Harpalejeunea uncinata* (see Figure 89), *Lejeunea filipes* (Figure 90), *Odontolejeunea decemdentata* (Figure 91).
Figure 88. *Cololejeunea longifolia*, a species that occurs only from 500 to 1,600 m asl in Costa Rica. Photo by Yang Jia-dong, through Creative Commons.

Figure 89. *Harpalejeunea latitran*, *H. uncinata* occurs only from 500 to 1,600 m asl in Costa Rica. Photo by Jeremy Rolfe, through Creative Commons.

Figure 90. *Lejeunea filipes*, a leafy liverwort species that occurs only from 500 to 1,600 m asl in Costa Rica. Photo by Michaela Sonnleitner, with permission.

Figure 91. *Odontolejeunea decemdentata*, a leafy liverwort species that occurs only from 500 to 1,600 m asl in Costa Rica. Photo by Michaela Sonnleitner, with permission.

500-3,000 m:

Anoprolejeunea conferta, *Cololejeunea* (syn. *Aphanolejeunea* crenata (see Figure 76), *Cololejeunea* (syn. *Aphanolejeunea* ephemeroïdes (see Figure 76), *Colura tenuicornis* (Figure 78), *Diplasiolejeunea alata* (see Figure 80, Figure 84), *Drepanolejeunea infundibulata* (see Figure 85), *Dr. mosenii* (see Figure 85), *Lejeunea flava* (Figure 92-Figure 93), *Omphalanthus filiformis* (Figure 94).
only >1,600-3,000 m:

Cololejeunea (syn. =*Aphanolejeunea*) *camillii* (see Figure 76), *Cololejeunea fefeana* (see Figure 77), *Diplasiolejeunea costaricensis* sp. nov. (see Figure 80, Figure 84), *D. involuta* (see Figure 80, Figure 84).

In Panama, Gradstein and Salazar Allen (1992) assessed the bryophytes along an altitudinal gradient on Cerro Pirre (1,200 m asl). As shown in the other studies above, they found very different species assemblages along the gradient from inundated lowland, to hillside lowland, to submontane, to montane elfin forest. Among these, they found the greatest species richness in the submontane forest. The greatest number of exclusive species, however, occurred in the montane elfin (cloud) forest, along with the greatest bryophyte biomass. The mountain proved to have a number of rare liverworts, and this one study produced 40 liverwort species new for Panama.

Wolf (1989, 1992) elaborated on the species richness of epiphytic bryophytes on an altitudinal gradient in the northern Andes (Figure 95). This study included 187 liverworts and 108 mosses. Wolf (1993a, b) also examined the diversity patterns and biomass of epiphytic bryophytes along this gradient in the Central Cordillera of Colombia (Figure 96) from 1,000 to 4,130 m asl. Altitude emerged as a complex factor in explaining the variation in species composition. Species area curves for each sampling site indicated that sampling was adequate. α and β diversity patterns along the altitudinal gradient differed between mosses and liverworts. Liverwort richness was maximum (~100 taxa) in the range of 2,550-3,100 m. This high level corresponds with the contact transition zone between vegetation zones. This supports the prediction that the highest species diversity will occur in a transition zone, indicating that between community interactions are more important in determining diversity than within community relationships (i.e. niche relationships). This is further supported by the fact that only 20.5% of the liverwort taxa are exclusive to this belt of greatest richness. Humidity appears to be an important limiting factor, with biomass increase of bryophytes corresponding with a humidity increase with altitude. Bryophyte species turnover also appears to be greater in this mountain system than that known for the temperate mountains in North America.

The ECOANDES project has contributed greatly to our understanding of Neotropical altitudinal effects on bryophytes (Gradstein et al. 1989). Gradstein and coworkers compared the wet, foggy western slope (1,000-4,500 m) with the drier eastern slope (500-4,500 m) of the Colombian Central Cordillera at the Parque de los
Nevados. Again, the species richness increases with altitude to the upper montane forest, where the greatest bryophyte diversity occurs. Liverworts demonstrate their greater preference for moisture by outnumbering mosses in the upper submontane and montane forests on the wet western slope, but in the drier environments they are less diverse than the mosses. At lower altitudes (<3000 m), the species are wide-ranging tropical species, whereas in the higher altitudes the species are those with narrow ranges (Andean and endemics). Few temperate species occur, with less than 10% in the upper montane forest and ~20% in the páramo. We can assume they have arrived in Colombia relatively recently (last 5 million years) after the Cordilleras arose.

Germano and Pôrto (2006) reported on bryophyte communities in the remnant Atlantic forests in Pernambuco, Brazil. In the Atlantic Forest of Rio de Janeiro, southeastern Brazil, Santos and Costa (2010) reported 360 liverwort taxa. In addition to having floristic differences among the different formations, there were altitudinal differences. The montane forest has the highest species richness (238) with 63 exclusive taxa and 27 endemics, as of the year 2010. The upper montane is next with 173 species, 58 exclusive taxa, and 21 endemics. The leafy liverwort family Lejeuneaceae (Figure 76-Figure 94) is the most species-rich family in all formations, whereas other families may be restricted to certain formations.

In the Itatiana National Park (Figure 6) of Brazil, three vegetation zones are clearly defined: montane forest (Figure 97), upper montane forest (Figure 97), and high-altitude fields (Figure 98) (Costa et al. 2015). Sampling at 10 representative elevations revealed 519 taxa, 57% of the total known bryophyte flora in the Rio de Janeiro State and 34% of that of Brazil. The montane forest had the highest species richness (296). The most endemic species (47) occurred in the upper montane zone. The researchers attributed the richness in these locations to their diversity of climate, soil, and physiographic parameters. As is typical in the tropics, especially the Neotropics, the highest diversity occurs at the mid-altitudinal range of 2,100-2,200 m asl. As the altitude increases, so does the number of threatened species.

On Mt. Kitanglad (up to 2,938 m asl) in the Philippines (Figure 99), Azuelo et al. (2010) examined the diversity and ecology of bryophytes. They report 428 species, with mosses predominating. Of these, 326 species are mosses; only 98 of these species are liverworts and 4 are hornworts. The mosses occur in 70 genera and 29 families. The highest diversity occurs in the lower montane forest (112 species), followed by the mossy (cloud) forest (108 species) and upper montane forest (87 species). Nevertheless, the highest bryophyte cover occurs in the mossy forest. A major substrate choice is epiphytic (40% of mosses, 15% of liverworts, and 1 hornwort). But, the highest richness is on the rotten logs and decaying litter, with 43% of the mosses and 42% of the liverwort species occurring there, including Lepidoziaceae (Figure 100), Plagiochilaceae (Figure 55), Schistochilaceae (Figure 11), and Trichocoleaceae (Figure 101). The moss families Meteoriaceae (44 species; Figure 43) and Dicranaceae (43 species; Figure 30) are the most species-rich families, contrasting with the prominence of the liverwort family Lejeuneaceae (Figure 76-Figure 94) in most areas of the tropics. Rather, the Plagiochilaceae (26 species) and Lepidioziaceae (20 species) are the most species-rich liverwort families. Among the species on the mountain, 11 moss and 6 liverwort species are considered to be medicinal.
Santos et al. (2017) compared the numbers of species in families at six altitudes at the Serra do Mar State Park, Brazil (Figure 102). In an attempt to determine the usefulness of liverworts as bioindicators, Santos et al. (2014) sampled 26 localities to determine β diversity relationships. They found a significant association of the first CCA axis with a floristic gradient from lowland forests to high montane forests. They found 34 species that could serve as bioindicators. The species groupings could be explained by altitude, temperature, and precipitation.

Churchill (pers. comm. 29 November 2011) has observed that diversity relationships with altitude are basically true throughout the tropical Andes.
Dominance Changes

As the elevation increases, the dominant species change. Santos et al. (2017) illustrated this clearly in the Atlantic Forest in Serra do Mar State Park, Brazil (Table 1).

Table 1. Indicator species of bryophytes with a p value <0.03 from five vegetation types in the Atlantic Forest in Serra do Mar State Park, Brazil, demonstrating the change in dominance with elevation.

<table>
<thead>
<tr>
<th>RESTINGA FOREST</th>
<th>Figure 103</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bazzania phyllobola</td>
<td>Figure 103</td>
</tr>
<tr>
<td>Leptolejeunea elliptica</td>
<td>Figure 104</td>
</tr>
<tr>
<td>Cololejeunea obliqua</td>
<td>Figure 105</td>
</tr>
<tr>
<td>Syrrhopodon incompletus</td>
<td>Figure 106</td>
</tr>
<tr>
<td>Plagiochila disticha</td>
<td>Figure 106</td>
</tr>
<tr>
<td>Harpalejeunea oxyphylla</td>
<td>Figure 106</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LOWLAND FOREST</th>
<th>Figure 107</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crossomitrium patrisiae</td>
<td>Figure 107</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SUBMONTANE FOREST</th>
<th>Figure 108</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bryopteris filicina</td>
<td>Figure 108</td>
</tr>
<tr>
<td>Homalia glabella</td>
<td>Figure 109</td>
</tr>
<tr>
<td>Cerolejeunea rubiginosa</td>
<td>Figure 110</td>
</tr>
<tr>
<td>Tortella sp.</td>
<td>Figure 110</td>
</tr>
<tr>
<td>Homaliodendron piniforme</td>
<td>Figure 110</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MONTANE FOREST</th>
<th>Figure 111</th>
</tr>
</thead>
<tbody>
<tr>
<td>Porotrichum longirostre</td>
<td>Figure 111</td>
</tr>
<tr>
<td>Radula nudicaulis</td>
<td>Figure 111</td>
</tr>
<tr>
<td>Racopilum tomentosum</td>
<td>Figure 112</td>
</tr>
<tr>
<td>Thamniopsis langsdorffii</td>
<td>Figure 112</td>
</tr>
<tr>
<td>Bazzania stolonfera</td>
<td>Figure 113</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MOUNTAINTOP FOREST</th>
<th>Figure 114</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jamesoniella rubricaulis</td>
<td>Figure 114</td>
</tr>
<tr>
<td>Schlotheimia tecta</td>
<td>Figure 115</td>
</tr>
<tr>
<td>Cheileolejeunea xanthocarpa</td>
<td>Figure 116</td>
</tr>
<tr>
<td>Frullania atrata</td>
<td>Figure 117</td>
</tr>
<tr>
<td>Frullania kunzei</td>
<td>Figure 118</td>
</tr>
<tr>
<td>Campylopus heterostachys</td>
<td>Figure 119</td>
</tr>
<tr>
<td>Frullania apiculata</td>
<td>Figure 119</td>
</tr>
<tr>
<td>Herbertus juniperoideus subsp. bivittatus</td>
<td>Figure 120</td>
</tr>
<tr>
<td>Macromitrium cirrosom</td>
<td>Figure 121</td>
</tr>
<tr>
<td>Plagiochila bifaria</td>
<td>Figure 122</td>
</tr>
<tr>
<td>Campylopus griseus</td>
<td>Figure 123</td>
</tr>
<tr>
<td>Campylopus pilifer</td>
<td>Figure 30</td>
</tr>
<tr>
<td>Polytrichum juniperinum</td>
<td>Figure 124</td>
</tr>
<tr>
<td>Schlotheimia jamesonii</td>
<td>Figure 124</td>
</tr>
</tbody>
</table>
Figure 106. *Plagiochila disticha*, an indicator species of the Restinga Forest. Photo by Michael Lüth, with permission.

Figure 107. *Crossomitrium patrisiae*, an indicator species of the Lowland Forest. Photo by Michael Lüth, with permission.

Figure 108. *Bryopteris filicina*, an indicator species of the Submontane Forest. Photo by Michael Lüth, with permission.

Figure 109. *Homalia glabella*, an indicator species of the Submontane Forest. Photo by Claudio Delgadillo Moya, with permission.

Figure 110. *Tortella humilis*, an indicator species of the Submontane Forest. Photo by Michael Lüth, with permission.

Figure 111. *Racopilum tomentosum*, an indicator species of the Montane Forest. Photo by Michael Lüth, with permission.
Figure 112. *Thamniopsis langsdorffii*, an indicator species of the Montane Forest. Photo by Michael Lüth, with permission.

Figure 113. *Bazzania stolonifera*, an indicator species of the Montane Forest. Photo by Michael Lüth, with permission.

Figure 114. *Jamesoniella rubricaulis*, an indicator species of the Mountaintop Forest. Photo by Jan-Peter Frahm, with permission.

Figure 115. *Schlotheimia tecta*, an indicator species of the Mountaintop Forest. Photo by Michael Lüth, with permission.

Figure 116. *Cheilolejeunea xanthocarpa*, an indicator species of the Mountaintop Forest. Photo by Michael Lüth, with permission.

Figure 117. *Frullania atrata*, an indicator species of the Mountaintop Forest. Photo by Jan-Peter Frahm, with permission.
Figure 118. *Frullania kunzei*, an indicator species of the Mountaintop Forest. Photo by Blanka Aguero, with permission.

Figure 119. *Campylopus heterostachys*, an indicator species of the Mountaintop Forest. Photo by Germaine Parada, through Creative Commons.

Figure 120. *Herbertus juniperoides*, an indicator species of the Mountaintop Forest. Photo by Jan-Peter Frahm, with permission.

Figure 121. *Macromitrium cirrosum*, an indicator species of the Mountaintop Forest. Photo by Michael Lüth, with permission.

Figure 122. *Plagiochila bifaria*, an indicator species of the Mountaintop Forest. Photo by Jan-Peter Frahm, with permission.

Figure 123. *Campylopus griseus*, an indicator species of the Mountaintop Forest. Photo by Michael Lüth, with permission.
Chapter 8-8: Tropics: Altitude

Productivity

Zotz (1999) found a distinct increase in abundance of mosses and liverworts with altitude. They are especially important in tree crowns in montane regions and are inconspicuous in the lowlands. This study demonstrates that drying in the daytime in the lowlands limits photosynthesis, whereas hot, moist nights cause excessive respiration that exceeds photosynthetic gain.

Based on studies in Borneo, Tanzania, Transvaal, Venezuela, and Peru, Frahm (1990b) concluded that the biomass of epiphytic bryophytes in the tropics increases from the lowlands to the treeline (altitude above which trees cannot grow). Like the conclusions of Zotz (1999), he attributed this gradient to combinations of precipitation, humidity, temperature, and desiccation. This was supported by experiments showing that net assimilation decreases rapidly above 25°C. The high temperatures and low light result in higher respiratory losses compared to photosynthetic gains. This problem is further exacerbated by problems of desiccation in lowlands. At higher altitudes, on the other hand, the abundant precipitation carrying a relatively high nutrient supply enhances growth in the tropical montane forests.

In this study, Frahm (1990b) compared the monthly and yearly production and chlorophyll content of the perennial moss *Hydrogonium* (Figure 125) and the seasonal moss *Physcomitrium* (Figure 126) and their associated communities in 10 x 10 cm quadrats. For *Hydrogonium*, the mean biomass was 95 g m⁻² and for *Physcomitrium* 11 g m⁻². These values are both lower than many measures of bryophytic biomass in temperate forests.

Badet *et al.* (2013) found a similar increase in biomass from lowlands to highlands in Panama, with increases to "extreme richness" in some montane cloud forests. Using gas-exchange measurements before and after transplanting bryophytes to lower altitudes, these researchers determined that temperature alone could not explain the lack of success of high altitude species in the lowlands. Nevertheless, a few samples of nearly every species survived for at least 20 months. Hydration patterns proved to be important in the survival. Sunny mornings cause rapid desiccation, a regime that can be deadly to many species. This is further complicated by afternoon rains that hydrate the mosses, renewing their activity and causing high respiratory losses at night.

Wagner *et al.* (2012) noted that poikilohydric organisms (those with predominantly external control over water content, including bryophytes) increase with altitude in the tropics. In the lowlands, low light and high temperatures cause a high respiration to photosynthesis ratio, often causing bryophytes to have negative net productivity. Among 18 tropical bryophytes in the study, from three altitudes (sea level, 500 m, 1,200 m) in Panama, the optimum temperatures of net photosynthesis closely matched the mean temperatures of the habitats where the species grew. This adaptation resulted in a lack of differences in the ratio of dark respiration to net photosynthesis with altitude. As one might surmise from this, responses of individual species to water, light, and CO₂ did differ, but not systematically with altitude. Water relations seemed to be important, with higher temperatures increasing the evaporation rates. This, in turn, decreased the time available for photosynthesis each day, while nighttime respiration rates did not necessarily increase.

Chantanaorrapint (2010) compared biomass of epiphytes along three altitudinal transects in southern
Thailand, ranging from 25 m asl to 1,500 m asl. The dry weight of epiphytic bryophytes increased with altitude, with 1.15 g m\(^{-2}\) in the lowland to 199 g m\(^{-2}\) in the montane forests. The dry weight increased with altitude from 2.4 kg per hectare to 620 kg per hectare. These bryophytes were important in water storage, holding 1.2 to 2.4 times their dry weight. This storage was typically higher in the montane region (up to 1,500 L ha\(^{-1}\)) than in the lowland forests. Bark pH also varies with altitude, ranging from 3.19 to 6.84, decreasing with altitude. Air temperature decreases about 0.6ºC per 100 m increase in elevation.

Zotz et al. (1997) measured CO\(_2\) exchange in six tropical bryophytes in a lower montane forest in Panama. The diel water content varied greatly. Both low and high water content were severely limiting for photosynthesis. Low photon flux density (a measure of light intensity), as occurs during rain storms, was less limiting for CO\(_2\) exchange than water availability. More than half of the daily carbon gain of 2.9 mg C g\(^{-1}\) was lost at night to respiration. This suggests an estimate of 45% carbon gain for the bryophytes per year.

Adaptations

There appear to be distinct adaptations that characterize forest epiphytes in altitudinal zones throughout the tropical regions of Southeast Asia, Africa, and South America (Kürschner et al. 1999). In the tropical lowlands and submontane regions, **perennial stayer and perennial shuttle species** dominate the life forms. In the cooler and more humid montane rainforests, **fan and weft forms** of **perennial stayers** and **perennial shuttle species** are prominent, relying on propagules and clonal growth to achieve the large biomass found there. These **fan-forms** and other structures such as ciliate leaves are effective at trapping fog water through rapid condensation and facilitating conduction and storage. In the upper montane forests, conditions are more open and xeric and the diurnal fluctuations are more extreme. Here the bryophytes tend to form **cushions** or **short** and **tall turfs** of **perennial stayers** and **perennial shuttle species**. They often conserve water through an abundant rhizoid tomentum and a more developed central strand in the stem.

Frahm (1994b), as part of the BRYOTROP Expedition, reported on life forms from various elevations on Mt. Kahuzi (Democratic Republic of the Congo), using a transect from 900 to 3,300 m asl. From 900 to 2,300 m elevation, the **dendroid** life form is characteristic. He interprets this as an adaptation for better gas exchange in conditions of low light and high air humidity. **Cushions** predominate above 2,500 m asl. These are typically 2-5 cm high, but some reach 50 cm at treeline. **Moss balls** can form, reaching up to 1 m in diameter. Bryophyte cover on soil is less than 5% below 2,700 m asl, but in the subalpine ericaceous belt it is 90%. Similarly, cover on bark is as low as 5% or less in the low elevations, increasing to 80% at high elevations. This gradation corresponds with light intensities from <1% to up to 50%. Temperature, on the other hand, decreases from 10.6ºC at 900 m to 1.5ºC at 4,500 m. The bark pH is in a relatively narrow range of 4.1-6.2.

In the Amazonian Andes in northern Peru (Figure 127), Kürschner and Parolly (1998a, b) were able to define apparent adaptations based on relative biomass of morphological types. They found three dominant life strategy categories: **colonists**, **perennial shuttle species**, and **perennial stayers**. However, the **colonists** were confined to disturbed sites and were not typical of the elevational zones. Lowland bryophytes exhibit **mat** forms with water lobules, water sacs, and rhizoid discs. The balance of high temperatures with the humidity of both the lowlands and submontane belt seem to favor the passive reproduction (having low or moderately low sexual and asexual reproduction) of **perennial shuttle** and **perennial stayer species**. In the more humid and often foggy montane zone, the **mat** forms of the lowlands disappear and **dendroid** and **pendent** forms join the more universal **fan** and **weft** forms – all forms that are able to condense water from the fog and mist (**fog-stripping**). The leaves are often ciliate or deeply fissured and frequently have a **rill-like** arrangement (like series of small, narrow valleys), all characteristics that facilitate water uptake, conduction, and storage. High vegetative reproduction through propagules and clonal growth predominates here. In the upper montane zone near timberline, the bryophytes of the Peruvian Andes likewise exhibit **short** and **tall turfs** of other upper montane forests but also "tails." They retain the rill-like leaf arrangement seen in the humid montane zone and commonly have a central strand, as seen in bryophytes of other upper montane forests. These bryophytes put forth a high sexual reproductive effort, producing numerous sporophytes on a regular basis, a pattern of change toward timberline also seen in Southeast Asia and Central Africa.

Figure 127. Andes at Huandoy, Peru. Photo by Clarquefecto, through Creative Commons.

It is noteworthy that the development of **anisospory** (in bryophytes refers to a bimodal size difference between spores produced in the same sporangium) and **heterospory** (having spores of two sizes) occurs within the tropical Andean forests (Figure 128) (Kürschner & Parolly 1998a), although it can be argued that bryophytes lack true heterospory (see Volume 1, Chapter 3-3 on Sexuality: Size and Sex Differences). Anisosporous bryophytes in the **perennial shuttle** category exhibit the development of **dwarf males** (males epiphytic on females) with no size differentiation visible among the spores. In other cases, true size differences occur, where small male spores and large female spores occur in the same capsule, for example, in **Macromitrium** spp. (Figure 129) and **Phyllogonium fulgens** (Figure 130). **Leptodontium viticulosoides** (Figure...
exhibits a functional heterospory in which small spores are able to travel long distances, whereas the larger spores are more adaptive for short distances and a quick start for the protonema upon germination – an ideal shuttle strategy.

Figure 128. Tropical Andean forest. Photo by Samuel Rengifo, through Creative Commons.

Figure 129. *Macromitrium sulcatum*, in a genus with two spore sizes, on *Careya arborea*. Photo by Shyamal L., through Creative Commons.

Figure 130. *Phyllogonium fulgens*, a species that has two spore sizes and genders. Photo by Michael Lüth, with permission.

Physiological adaptations necessarily include tolerance to desiccation and in some cases resistance to drying. Akande (1985) found that the corticolous liverworts *Frullania spongiosa* (see Figure 72) and *Mastigolejeunea florea* (see Figure 132) had higher osmotic potentials than the mosses *Stereophyllum nitens* (see Figure 133) and *Calymeres palisotii* (Figure 134) in his Nigerian study. This potential increased from wet to dry season, presumably making it easier for them to extract water from dew and fog.

Figure 131. *Leptodontium viticulosoides*, a species with small and large spores that are not separated by gender. Photo by Claudio Delgadillo Moya, with permission.

Figure 132. *Mastigolejeunea auriculata*. *M. florea* is a leafy liverwort that uses high osmotic potentials to maintain hydration. Photo by Blanka Aguero, with permission.

Figure 133. *Stereophyllum wightii*. *S. nitens* has a low osmotic potential when compared with *Mastigolejeunea florea*. Photo by Michael Lüth, with permission.
Life Cycle Strategies

Understanding the climate and soil parameters that define the bryophyte distributions is just a beginning of our understanding of the limitations of distribution. The physiology and reproductive biology of the bryophytes are likely to be major factors in their distribution. Maciel-Silva et al. (2012) examined reproductive performance as influenced by altitude in both monoicous and dioicous bryophytes in the Brazilian Atlantic rainforest. They sought to separate effects of reproductive strategy from effects of habitat. Using 11 species of bryophytes, they measured reproductive performance of sexual branches, sex organs, fertilization, and sporophyte production at sites from sea level to the montane region during 15 months. As is typical, monoicous bryophytes had the highest reproductive performance, with more sexual branches, fertilized eggs, and capsule production. At sea level, bryophytes produced more sexual branches and had more female-biased sex ratios than did those in the montane site. Nevertheless, the sporophyte frequency was similar between sea level and montane zones. Fertilization occurred mostly during periods of heavy rains (October to December). But habitat is also important in influencing life-history differences. The high production of reproductive structures early in the reproductive phase seems to compensate for the female-biased sex ratios and low fertilization rates. Maciel-Silva and Valio (2011) found similar phenological characteristics in the reproduction of bryophytes from sea level and the montane region of Brazil.

Santos et al. compared monoicous vs dioicous species numbers at five altitudes at Serra do Mar State Park, Brazil. The pattern is interesting because the ratio of dioicous to monoicous is highest at sea level, then drops, and again rises at 1200 m. This ratio is even more pronounced for liverworts than for mosses. The monoicous condition increased with altitude except on the mountaintop (1200 m). The researchers suggested that asexual reproduction may permit species to live in conditions that are unfavorable to fertilization, particularly for dioicous taxa.

Frey et al. (1995) examined the life strategies of epiphytic bryophytes on an altitudinal gradient from tropical lowland and montane forest, ericaceous woodlands, and the Dendrosenecio (Figure 136-Figure 137) subpáramo of the eastern Congo basin and adjacent mountains as part of the BRYOTROP expedition. They identified three strategies: colonists, perennial shuttle species, and perennial stayers. But only the perennial stayers seem to be important, an indication of the more constant ecological conditions and long-lasting microsites for epiphytes. These conclusions were based on both sociological investigations and determination of mean percentage cover values in each of the life strategy categories. In the tropical lowland and lower montane zone forests the perennial shuttle species and perennial stayers with moderately low or low sexual and asexual reproductive activity are most common. This strategy is suitable for the high temperatures and humidity levels in these zones. In the montane rainforests and cloud forests of the upper montane zone, the perennial shuttle species is still dominant, but has high asexual reproductive activity using propagules and clonal growth. In the secondary forests of this zone and in the ericaceous woodlands and subpáramo of African volcanoes (Figure 138), the perennial shuttle and perennial stayers are dominant, using high levels of sexual reproduction and producing sporophytes regularly here and in the subalpine-alpine zone. Such a strategy is typical for epiphytes under xeric conditions. Thus, life cycle strategy seems to be important as an adaptation to the changing conditions that arise with elevational change.
In the Neotropics, Batista et al. (2018) studied life forms in the humid forest of Chapada do Araripe, Ceará State, Brazil. This region experiences seasonal rainfall. The predominant life forms are the desiccation-tolerant **turf**s and intermediate **mat** and **weft** (67%) life forms (Figure 139). Few low-tolerance species (3%) were present. Turfs were further divided into **turf** and **sparse turf**. **Mats** also included **thallose mats**. The monoicous life strategy predominated (67%), with 75% of those with asexual reproductive means (gemmae, regenerating fragments, and caducous leaves) being dioicous species (Figure 140).

Figure 136. *Dendrosenecio*, a genus typical of the subpáramo of the eastern Congo basin, Rwenzori Mountains National Park, Africa. Photo by Agripio, through Creative Commons.

Figure 137. *Dendrosenecio*, a genus in the subpáramo of the eastern Congo basin. Photo through Creative Commons.

Figure 138. Páramo on Mt. Cameroon old lava flows. Photo by Amcaja, through Creative Commons.

Figure 139. Number of species in the represented life forms in the humid portion of northeastern Brazil. Modified from Batista et al. 2018.

Figure 140. Sexual vs asexual reproductive strategies in the humid portion of northeastern Brazil. Modified from Batista et al. 2018.

Batista et al. (2018) also examined substrate preferences. Bark epiphytes were by far the most species rich (Figure 141). Some preferred rocks or soil, but the number without any substrate preference was large, exceeded only by bark species.
that genetic races will emerge as we examine molecular data for the species that occur in multiple zones.

Both abundance and biomass of epiphytic bryophytes increase from the lowlands to the treeline. Both low and high water content severely limit photosynthesis. **Perennial stayers** and **perennial shuttle species** predominate throughout the elevations, but life forms change from **mat** forms of the lowlands to **dendroid**, **pendent**, **fan**, and **weft** forms that can extract moisture from fog in higher elevations of the montane. **Cushions** become common in the alpine zone. Sea level bryophytes may produce more sexual branches and have more female-biased sex ratios than do those in the montane zone. The **perennial shuttle** species is still dominant in the montane zone, but has high asexual reproductive activity using propagules and clonal growth.

Acknowledgments

S. Robbert Gradstein was invaluable in providing me with papers, images, and constructive criticism on this subchapter.

Literature Cited

Summary

High elevations near the equator have similar bryophytes to those at lower elevations farther from the equator. Tropical bryophyte diversity and abundance both increase from lowlands to montane regions. Bryophytes throughout most of the humid tropics have the same altitudinal zonation patterns: lowland forest, submontane forest, upper lower montane forest, montane forest, and subalpine forest, mimicking the zonation patterns of tracheophytes and correlating with temperature and available moisture. Bryophytes, therefore, serve as good indicators of the zones.

In southeastern Brazil, **dioicous** species predominate in all elevations, with the smallest dioicous:monoicous ratio at mid elevations. **Endemism** increases with elevation, but in some locations, endemism can be very low. The highest elevation records of bryophytes are mostly in the tropics. The greatest species richness typically occurs below the alpine zone. The **α diversity** in the Andes is typically similar, but **β diversity** and **γ diversity** in the Andes are much greater.

Species presence and percent cover seem to be of equal importance in distinguishing bryophyte zones. These are highest in the **condensation zones**. Higher elevations tend to have more moisture and greater species richness. At low elevations, light intensity barely exceeds the **light compensation point**, greatly limiting productivity. This problem is exacerbated by the high temperatures, as supported by transplant studies. Mosses do not support **Rapoport’s elevational rule** (prediction of trends of increased elevational ranges of plants with increase in elevation). It is likely

Figure 141. Numbers of species with substrate preferences, on tree bark, rocks, soil, leaves, and on decaying tree trunks in the humid portion of northeastern Brazil. Species that colonize more than one type of substrate (two types) and those that do not demonstrate any preference (without). Modified from Batista et al. 2018.

Silva et al. (2014) found that mean diurnal temperature range explained habitat suitability for 9 of the 10 indicator species they used from the Brazilian Atlantic Forest. This can explain the altitudinal distribution of bryophytes.

CHAPTER 8-9
TROPICS: SUBMONTANE AND MONTANE

TABLE OF CONTENTS

Submontane... 8-9-2
Montane Forests.. 8-9-5
 Lower Montane .. 8-9-13
 Upper Montane ... 8-9-18
Summary ... 8-9-30
Acknowledgments ... 8-9-30
Literature Cited ... 8-9-30
CHAPTER 8-9
TROPICS: SUBMONTANE AND MONTANE

Figure 1. Ecuadorian mountains and cloud forest. Photo by Arthur Anker, with permission.

Altitudinal zonation of bryophytes in the humid tropics are similar throughout the world (Frahm & Gradstein 1991). This subchapter will discuss zonation of the submontane and montane zones.

Submontane

The submontane region in Dominica are influenced primarily by the presence or absence of the canopy tree Amanoa caribaea (DeWalt et al. 2016). But in addition to that, hurricane disturbance is a major factor.

Aceby et al. (2003) compared bryophyte species richness in the submontane rainforest and fallows of Bolivia. The fallows exhibited a significantly decreased diversity of moss species, but the liverwort diversity showed little reduction in species except in the very young fallows. Smooth mats were significantly greater in presence in the fallows (72%), probably due to the warmer, drier climate there. Generalists and sun species were the more common members of the fallow communities, with about half of the submontane species occurring there. The specialists are slower to become re-established. The submontane exhibits the highest species richness in the canopy, whereas the fallows reaches its highest diversity in the understory. This was in part due to the shifting of typical rough mats, fans, and tails to the lower heights in the fallows where the air temperature and humidity were more similar to those of the montane forest.

In central Sulawesi (Figure 2), Sporn et al. (2010) found 146 epiphytic species. They noted that this was among the highest number of epiphytic bryophyte species reported for any tropical forests, suggesting that the Malesian region is a global biodiversity hotspot. Among these bryophytes, 45% of the species were restricted to the tree crowns. The dendroid and fan-like species were in the understory; tufts dominated in the tree crowns.

Valdevino et al. (2002) reported on the pleurocarpous mosses (e.g. Figure 21-Figure 22) from a submontane rainforest in Pernambuco State, Brazil. They found only 23 pleurocarpous moss species in the 700 ha of their study of valleys and hills at 900-1,120 m asl.

Sonnleitner et al. (2009) found that even the smallest disturbance of the forest canopy could alter the microclimate and have a negative impact on the epiphyll community in the tropical lowland rainforest in Costa Rica (Figure 3).
The strong response of epiphyllous (Figure 4) bryophytes to even subtle microclimatic variations suggests that undisturbed forest canopies and their control on microclimate may be essential for the development of epiphyll communities.

In a submontane tropical rainforest in Panama (Figure 5), Zotz et al. (1997) found that water relations were important. Both low and high water contents reduced carbon gain. Low light levels such as those found during a rainstorm were less important. They found a net carbon gain for the year for the mosses and liverworts to be 45%.

One of the factors that can affect productivity is nitrogen availability. Bryophytes can't use atmospheric nitrogen, but nitrogen fixation by associated organisms contributes to their nitrogen supply. Matzek and Vitousek (2003) found that when leaves had low N:P ratios, the N fixation was greater.

In the Colombian Andes (Figure 6), Gradstein et al. (1989) found that liverworts outnumber the mosses in both upper submontane and montane forests on the western slopes, but in drier environments their species numbers are lower than those of mosses. Species richness increases with altitude to the upper montane forest. Furthermore, at the lower altitudes, the wide-ranging tropical species are most prevalent.
Kürschner et al. (1999) described, for the first time, the pantropical patterns of life forms, life strategies, and ecomorphological structures of bryophytes inhabiting tree trunks. These represented altitudinal variations in transects in Southeast Asia, Africa, and South America. They considered the mat-forming perennial stayers and perennial shuttle species to characterize the tropical lowlands and submontane belt. In Ecuador, Kürschner and Parolly (2005) compared life forms in submontane and montane epiphytic bryophyte communities. The life forms are actually functional types and can provide considerable information (humidity, water supply, desiccation risk, light climate) about an ecosystem without necessitating species identification. In the submontane region, mat-forming perennial stayers and perennial shuttle species are the dominant forms, forming the *Symbiezidio transversalis* (Figure 7)-*Ceratolejeuneia cubensis* (Figure 8) alliance. These are replaced by fan and weft life forms of perennial stayers and perennial shuttle species in the more montane regions, where they can take advantage of the cooler, more humid climate.

Parolly and Kürschner (2004) found that bryophytes in the submontane and montane regions of southern Ecuador fall into two zonal groups. The submontane *Symbiezidio transversalis* (Figure 7)-*Ceratolejeuneia cubensis* (Figure 8) has two communities, whereas the montane *Omphalantho filiformis* (*Cheilolejeunea filiformis*; see

Figure 6. Ritacuba Blanco, in the Andes of Colombia. Photo by 2005biggar, through Creative Commons.

Figure 7. *Symbiezidium* sp.; *S. transversalis* is a species indicative of the submontane zone. Photo by Hermann Schachner, through Creative Commons.

Figure 8. *Ceratolejeunea cubensis*, a species indicative of the submontane zone. Photo by Scott Zona, with permission.

Figure 9. *Cheilolejeunea* (*Lejeuneaceae*) from the Neotropics; *Cheilolejeunea filiformis* forms an association with *Plagiochila longiramea* in the Neotropical montane zone. Photo by Michael Lüth, with permission.

Figure 10. *Plagiochila adianthoides* from the Neotropics; *Plagiochila longiramea* forms an association with *Cheilolejeunea filiformis* in the Neotropical montane zone. Photo by Michael Lüth, with permission.
Montane Forests

Even countries like Ethiopia (Figure 12) and Kenya (Figure 13) that we picture as dry can have distinctive montane bryophyte communities (Hylander et al. 2010). In their first collecting trip to the southwestern Ethiopian montane forests (Figure 12), Hylander and coworkers recorded 89 species of liverworts, with 51 of these species new for Ethiopia.

These forests not only have a higher altitude, but also have rocky soil types (Pires & Prance 1985). The rocky substrate can create extreme drought, particularly during the short dry periods. At higher elevations there is greater humidity. The air can be saturated, providing a constant mist that is available to the bryophytes. Mosses, lichens, and small ferns form carpets over the rocks, tree trunks, and branches. Where the slopes are not steep, the forest is dense. Trees become smaller with altitude, with the treeline at Serra Neblina, Brazil (Figure 14), at about 2,600 m asl. The flowering plant family Theaceae (Figure 15) becomes prominent at higher altitudes and insectivorous Sarraceniaceae (*Heliamphora*; Figure 16) occur here. Fire is more likely here, but in Guayana the humidity is high and fires are uncommon.
Figure 15. *Gordonia fruticosa* (*Theaceae*) with bryophytes on the bark. *Theaceae* becomes prominent at higher altitudes at Serra Neblina, Brazil. Photo by David J. Stang, through Creative Commons.

Figure 16. *Heliamphora chimantensis*, an insectivorous plant in the Serra Neblina in Peru. Photo by Andreas Eils, through Creative Commons.

In the Neotropics, the upper montane rainforest (Figure 17) can be distinguished from the lower montane rainforest by the greater percentage of temperate vegetation in the upper one (Churchill *et al.* 1995). The lower montane cloud forests, typically between 1,000 and 2,000 m asl, are characterized by a high percentage of epiphytes and tropical taxa.

Montane forests have a simpler structure than the lowland forest with a much more luxuriant epiphytic vegetation (Gradstein 1992). The forest floor is often covered with dense carpets of bryophytes, in contrast to the lowland forests. Low temperatures and higher light levels than in the lowland forests support a luxuriant growth of bryophytes up to 15-20 cm thick. These growths may be *tall turfs*, *feather* types, and *pendent* life forms.

The montane forest ecosystems are the most diverse of the highland habitats. In Bolivia, 88% of the liverworts and 74% of the mosses known in the country occur in the montane forest, yet this forest type occupies only 8% of the land (Churchill *et al.* 2009).

Within the highlands the 226 montane forest ecosystems are the most diverse. In Bolivia, for example, montane forests (Yungas and Tucuman-Bolivian) occupy only 8% of the land surface of the country, but contains 88% of the liverworts and 74% of the mosses recorded from the country (Churchill *et al.* 2009).

In the Ecuadorian montane (Figure 18) and lowland rainforest (Figure 19), Grubb *et al.* (1963) found an "exceedingly high" diversity of mosses (2,058 species), suggesting that the tropical Andes might be the richest in species of any tropical region of the world. The tropical Andes have approximately eight times as many species as the Amazon basin. The moss flora supports the vegetation zonation concept, with strong differences between the montane-páramo/puna ground species and the montane forest where epiphytes predominate.

Figure 17. Upper montane forest, Pui-Pui, Junín, Peru. Photo by E. Lehr and R. von May, through Creative Commons.

Figure 18. Montane region, El Cajas National Park, Ecuador. Photo by Kate, through Creative Commons.
In the montane rainforest of Peru, at 2,400 m asl in the Peruvian Yungas, a single tree of *Weinmannia* (Figure 20) sp. was substrate for 110 bryophyte species – 77 liverworts, 32 mosses, and 1 hornwort, a remarkably high species richness (Romanski *et al.* 2011). Using the Johansson zones (lower trunk, upper trunk, mid-crown, mid-outer crown, and outer crown), the researchers found that the upper trunk and large branches of the mid-crown had the highest species richness and abundance. Liverworts, especially *Lejeuneaceae* (Figure 9), dominated all five Johansson zones. (See Gradstein 1995 for additional discussion of the liverwort diversity in the montane forests of the tropical Andes.) The mid-crown enjoys a higher light intensity than the darkness surrounding the lower trunk, coupled with a high relative humidity. Romanski *et al.* distinguished four communities: outer crown, mid to mid-outer crown, upper trunk, and lower trunk. The outer crown had a remarkable 35 liverwort species, joined by only 2 moss species. Of these, 17 of the liverworts had a high light tolerance. This suggests that overall these liverworts have a higher tolerance to high light and exposure.

Costa and Lima (2005) supported previous studies by finding that the moss flora is not uniform in the tropical rainforests of Rio de Janeiro, southeastern Brazil. The lowland, montane, submontane, and upper montane Atlantic rainforests have very different moss floras. The highest number of exclusive species and greatest species richness occur in the montane Atlantic rainforest. The intermediate level of species richness is in the sub-montane Atlantic rainforest. The lowland Atlantic rainforest has the smallest number of species. The high diversity seen in the montane forest is most likely a consequence of the diversity of climatic, edaphic, and physiographic changes present in the macrophytic vegetation. The moss family *Sematophyllaceae* (Figure 21) comprises 19% of the taxa in the lowland forest, the pendant mosses of *Meteoraceae* (Figure 22) 10% of the montane forests, and *Dicranaceae* (Figure 26) 18% of the upper montane forests. Those taxa having broad Neotropical distributions are important in all these forests. Those comprise 40% of the bryophyte taxa. Grubb (1977) contributed additional information on the mineral nutrition in wet tropical mountains.
Gradstein and Vána (1994) noted the similarity of the bryophyte community of tropical montane forests of Mexico to that of the boreal community. For example, in the central highlands of the Chiapas, the *Nowellia curvifolia* (Figure 23) community is common on rotten logs and is rich in boreal liverworts. Among these, *Cephalozia catenulata* (Figure 24), *Nowellia curvifolia*, *Campylopodiella stenocarpa* (Figure 25), and *Dicranum frigidum* (Figure 26) were the most abundant. The humid flanks of logs typically had *Syzygiella autumnalis* (Figure 27), *Leptoscyphus amphibolius* (see Figure 28), and *Lophozia longiflora* (Figure 29), with *Anastrophyllum hellerianum* (Figure 30-Figure 31) also being frequent. In addition to these locations on logs, *Nowellia curvifolia* is very abundant on logs that have already lost their bark (decorticated logs).

Figure 23. *Nowellia curvifolia*, a common species on rotten logs in the Chiapas. Photo by Štěpán Koval, with permission.

Figure 24. *Cephalozia catenulata*, a common species on rotten logs in the Chiapas. Photo by Michael Lüth, with permission.

Figure 25. *Campylopodiella ditrichoides* with capsules; *C. stenocarpa* is a common species on rotten logs in the Chiapas. Photo by Michael Lüth, with permission.

Figure 26. *Dicranum frigidum*, a common species on rotten logs in the Chiapas. Photo by Jan-Peter Frahm, with permission.
Among the early south American bryophyte studies was that of Linares (1986). This researcher studied the taxonomic and ecological aspects of the high Andean strip of the El Tabalzo, Cundinamarca, Colombia.

As already noted for epiphytes in earlier subchapters, Veneklaas (1990) reported that the bryophytic epiphytes in the montane rainforests can play a major role in the nutrient dynamics of the rainforest. Veneklaas found that in two epiphyte-rich Andean rainforests of the Central Cordillera of Colombia, the elevation of 2,550 m exhibited a higher nutrient input to the forest through bulk precipitation, at least in part because this elevation has higher total precipitation. At the same time, losses of nutrients from the canopy were also higher, both in total amounts and per unit of precipitation. Bryophytes are able to capture and hold nutrients, often releasing pulses in the first rainfall after a drying period.

Concerned with the role of bryophytes in maintaining water balance and contributing to nutrient cycling in tropical montane forests, Benitez et al. (2015) assessed bryophytes and lichens on tree bases of 240 trees in both primary and secondary forests in southern Ecuador (Figure 19). As expected, diversity was higher in primary forests than in monospecific secondary forests. The reduction of canopy diminished bryophyte species. Shade epiphytes were intolerant of the increased light penetration and were replaced by sun epiphytes in the secondary forests.

Bisang et al. (2003) explored the diaspore banks in three Malaysian mountain rainforests (Figure 32). They...
incubated soil samples from 0-5 cm depth for 15 hours of light daily and mean daily temperature of 19°C with radiation of 3-5 µE m⁻² s⁻¹. These were kept moist with sterilized water as needed. After 5 months the cultures were gently disturbed with forceps. After 4 and 5 months they were placed under a bright light intensity of 100 µE m⁻² s⁻¹. Liverwort emergence exceeded that of mosses, especially from soils from lower altitudes. Consistent with living bryophytes, the species diversity was twice as high in samples from higher elevations compared to those from lower ones.

In Costa Rica, Dauphin L. and Grayum (2005) collected from dry lowland forests and moist montane forests in Guanacaste Province, Costa Rica (Figure 33). In the moist montane forests, corticolous (growing on bark) bryophytes predominate. This is in contrast to the soil, log, and rock substrates that are most important in the lowland dry forests. The submontane zone had significantly less species richness. The researchers considered higher temperatures, limiting water availability, and human disturbance as factors limiting the diversity of the submontane zone. Rare species occurred on the tree boles, with 99% of the locally rare species occurring on the tree boles.

Song et al. (2015) compared bole bryophytes in three protected forests, one in sub-montane, one in montane, and one in subalpine regions in Yunnan, China (Figure 34). Five plots were established at each of 12 altitudes, using 200 m intervals, totalling 594 subplots. The total number of species identified was 226. Life forms differed among the forest types, with smooth mat dominating the submontane, fan in the montane, and turf in the subalpine.

The Itatiaia National Park in Brazil (Figure 35) has well-defined climatic bands of montane, upper montane, and high-altitude fields. Costa et al. (2015) used literature, herbarium material, and data banks in addition to examining 10 representative elevations. These sources revealed 519 taxa. As in many other studies, the mid-altitudinal range (2,100-2,200 m asl) had the highest species richness. The number of threatened species increased with elevation. Furthermore, the upper montane forest had the most endemic species (47).

In Indonesia (Figure 36), submontane forests are known to have a very rich bryophyte flora (Gradstein & Culmsee 2010). On only eight canopy trees, 150 species were present. The researchers found that the lower
montane and upper montane forests of Sulawesi have very different bryophytes that characterize them. The low elevations have mostly mosses in Calymperaceae (Figure 37), Fissidentaceae (Figure 38), Hypopterygiaceae (Figure 93), Leucobryaceae (Figure 39), Meteoriaceae (Figure 40), Neckeraeaceae (Figure 41), Pterobryaceae (Figure 42), and Thuidiaceae (Figure 43), and liverworts in Lejeuneaceae (Figure 8-Figure 9), Lophocoleaceae (Figure 100), Porellaceae (Figure 60), Radulaceae (Figure 56). By contrast, the high elevations are characterized by the leafy liverworts Herbertaceae (Figure 44), Lepidoziaceae (Figure 97-Figure 99), Mastigophoraceae (Figure 45), Scapaniaceae (Figure 46), Schistochilaceae (Figure 47), and Trichocoleaceae (Figure 102). As is typical, the liverwort family Lejeuneaceae has the most species in the submontane and lower montane forests, whereas the leafy liverwort family Lepidoziaceae has the most in the upper montane forest. Moss dominance decreases while liverwort dominance increases with elevation. Some of these species prefer rough bark, but none shows a preference for smooth bark. Trunk diameter is important for some species, but communities don't seem to be affected by it.

Figure 36. Tangkoko National Park, North Sulawesi, Indonesia, showing mountains in the background. Photo by Lip Kee Yap, through Creative Commons.

Figure 37. Calymperes afzelii, one of the representatives of Calymperaceae in Indonesia. Photo by Jan-Peter Frahm, with permission.

Figure 38. Fissidens nobilis. Fissidens species are common at low elevations in Indonesia. Photo by Janice Glime.

Figure 39. Leucobryum juniperoides, one of the representatives of Leucobryaceae in Indonesia. Photo by Jan-Peter Frahm, with permission.

Figure 40. Aerobryopsis wallichii, one of the representatives of Meteoriaceae in Indonesia. Photo by Jan-Peter Frahm, with permission.
Figure 41. *Neckeropsis lepineana*, one of the representatives of *Neckeraceae* in Indonesia. Photo by Colin Meurk, through Creative Commons.

Figure 42. *Pterobryon* sp. (*Pterobryaceae*), a genus with the more robust species found in drier forests of tropical Asia. Photo by Efraín de Luna, with permission.

Figure 43. *Thuidium cymbifolium* with capsules, one of the representatives of *Thuidiaceae* in Indonesia. Photo by Li Zhang, with permission.

Figure 44. *Herbertus bivittatus* from the Neotropics. The family *Herbertaceae* is known in Indonesia. Photo by Michael Lüth, with permission.

Figure 45. *Mastigophora woodsii*. The family *Mastigophoraceae* is known in Indonesia. Photo by Blanka Aguero, with permission.

Figure 46. *Scapania compacta; S. javanica* represents the family *Scapaniaceae* in Indonesia. Photo by Michael Lüth, with permission.
Based on investigations in Southeast Asia, Africa, and South America, as the mountain vegetation zones shift from submontane to lower montane, the bryophyte life forms also shift (Kürschner et al. 1999). The mats are replaced by fan and weft formers that are able to take advantage of the cooler air with higher humidity. Perennial stayers and perennial shuttle species have a greater reliance on asexual propagules and clonal growth. The plants furthermore have a structure that permits them to take advantage of water vapor from fog, to conduct water internally, and to store water.

Lower Montane

In the lowland forest and the lower montane rainforest of Colombia (Figure 48), Wolf (1993a) identified four main bryophyte community groupings, primarily related to position within the host tree:

1. Communities of the lowland forest at 1,000 m (valley floor)
2. Communities of the lower montane rainforest, 1,250 m to ca. 2,130 (2,550) m
3. Communities of the upper montane rainforest, ranging from ~2,460 m to the treeline at 3,700 m.
4. Communities of *Polylepis* (Figure 49-Figure 50) dwarf forest at 4,130 m.

The *Polylepis pauta* (Figure 49-Figure 50) forests have dominated in many humid environments of the high Andes of Ecuador, Peru, and Bolivia (3,500-4,500 m asl) (Gradstein & León-Yánez 2018). However, now these forests are greatly diminished due to replacement with grasslands for grazing. They have become one of the most threatened ecosystems in South America. Gradstein and León-Yánez have documented the liverwort flora in the remnant forests in the páramo of Papallacta, Ecuador, finding 51 liverwort species. The forest floor and tree bases were nearly completely covered with bryophytes, in particular *Lepidozia auriculata* (see Figure 99) and the robust *Plagiochila* species *P. dependula*, *P. ensiformis*, *P. fuscolutea* (Figure 51), and *P. ovata*. The branches had abundant growths of *Frullania paradoxa* (see Figure 55), *Leptoscyphus hexagonus* (see Figure 28), *Plagiochila bifaria* (Figure 52), and *P. punctata* (Figure 53).
Figure 51. *Plagiochila fuscolutea*, a species of the forest floor in the high Andes. Photo by Jan-Peter Frahm, with permission.

Figure 52. *Plagiochila bifaria*, a species from the Azores and also of the forest floor in the high Andes. Photo by Jan-Peter Frahm, with permission.

Figure 53. *Plagiochila punctata*, a species of the forest floor in the high Andes. Photo by Stan Phillips, through public domain.

Figure 54. *Machaerium capote*, the dominant species in the secondary, semi-deciduous lowland forest. Photo by Damon Salveo, through Creative Commons.

Figure 55. *Frullania ericooides*, an epiphyte in secondary, semi-deciduous lowland forests of the Neotropics. Photo by Blanka Aguero, with permission.

The secondary, semi-deciduous lowland forest is dominated by *Machaerium capote* (Figure 54) (Wolf 1993a). The epiphytes are characterized by the leafy liverworts *Frullania ericooides* (Figure 55) and *Radula tectiloba* (Figure 56), as well as various *Lejeuneaceae* (Figure 9). *Frullania ericooides* is a pantropical xerophytic species. The canopy is characterized by a lichen community of *Heterodermia albicans* (Figure 57)-*Trypethelium eluteriae* (Figure 58). The trunk, by contrast, is dominated by the pendent moss *Meteorium nigrescens* (Figure 22) and the leafy liverwort *Radula caldana* (see Figure 56). Exclusive taxa in this association are *Papillaria nigrescens*, *Radula caldana*, *Mastigolejeunea auriculata* (Figure 59), *Porella brasiliensis* (see Figure 60), and *Sematophyllum subpinnatum* (see Figure 21). This community occurs from the tree base up to the inner crown. Epiphytes are absent on the twiglets of the outer canopy.
Because of the high humidity, every surface is potentially a bryophyte substrate. But these are also suitable substrata for other types of plants. Ingram and Nadkarni (1993) reported that the bryophytes formed only 5% of the epiphytic organic matter in a Neotropical lower montane forest where the dominant host was *Ocotea lundii* (see Figure 61). Flowering plants formed only 10% of the species biomass, with dead organic matter being the dominant portion at 60%.
The lower montane rainforest communities differ from those of the lowland forest (Wolf 1993a). Exclusive species include the leafy liverwort *Lejeunea flava* (Figure 62-Figure 63), the pendent moss *Squamidium nigricans* (see Figure 116), and the foliose lichen *Parmotrema subsumptum* (Figure 64). Three of the six identified communities of epiphytes [*Bryopteris filicina* (Figure 65) tree bole community, *Cheilolejeunea trifaria* (Figure 66) - *Schlotheimia acutifolia* var. *angustifolia* (see Figure 67) community, *Plagiochila fragilis* (see Figure 51-Figure 53) community from tree crowns] share the liverwort species *Cheilolejeunea rigidula* (see Figure 66), *Frullania caulisquva* (Figure 68), *Lejeunea laetevirens* (Figure 69), and the moss *Sematophyllum subpinnatum* (see Figure 21). Furthermore, *Cheilolejeunea rigidula* and *Lejeunea laetevirens* are exclusive to these three communities. In other communities, exclusive species include *Diplasiolejeunea pauckertii* (see Figure 70) in the *Diplasiolejeunea pauckertii* - *Brachiolejeunea laxifolia* community and *Squamidium nigricans* in the *Frullania arecae* (Figure 71) – *Frullanoidea densifolia* (Figure 72) – *Squamidium nigricans* community. In the *Bryopteris filicina* (Figure 65) community, present in the range of 1,210 and 1,980 m asl on the lower parts of tree trunks and less commonly on steep inner branches in the lower canopy, *B. filicina* is exclusive, accompanied by the liverworts *Cheilolejeunea rigidula* and *Lejeunea laetevirens*. The liverworts are closely appressed and grow intermixed with feather-shaped dendroid genera such as *Bryopteris, Neckerospis* (Figure 41), and *Porotrichum* (Figure 114) that stand out for several centimeters as horizontal shelves. The *Cheilolejeunea trifaria* – *Schlotheimia acutifolia* var. *angustifolia* community occurs in the inner crowns of trees in the range of 1,210 to 1,980 m asl. This Columbian community shares *C. trifaria* and *Lopholejeunea subfuscata* (Figure 73) with a lower trunk community of open secondary forests at 1,300 m asl in Malaysia (Kürschner 1990). The *Diplasiolejeunea pauckertii* - *Brachiolejeunea laxifolia* community occurs in the outer canopy at elevations primarily from 2,460 to 2,550 m asl.
Figure 64. *Parmotrema subsumptum*, a lichen exclusively in the lower Neotropical montane rainforest. Photo through Creative Commons.

Figure 65. *Bryopteris filicina*, a species that forms a tree bole community of the Neotropical lower montane rainforest. Photo by Eliana Calzadilla, through Creative Commons.

Figure 66. *Cheilolejeunea trifaria*, part of the bryophyte community in tree crowns in the Neotropical lower montane rainforest. *Cheilolejeunea rigidula* also occurs in the crowns. Photo by Michael Lüth, with permission.

Figure 67. *Schlotheimia* sp., part of the bryophyte community in tree crowns in the Neotropical lower montane rainforest. Photo by Michael Lüth, with permission.

Figure 68. *Frullania caulisequa*, part of the bryophyte community in tree crowns in the Neotropical lower montane rainforest. Photo by Blanka Aguero, with permission.

Figure 69. *Lejeunea laetevirens*, part of the bryophyte community in tree crowns in the Neotropical lower montane rainforest. Photo by Scott Zona, through Creative Commons.
In the lower montane rainforest of Panama, water content of bryophytes experiences pronounced daily flux (Zotz *et al.* 1997). These low and high levels are more important in limiting CO₂ exchange than the low photon flux density (light level) during rainstorms. More than half of the fixed carbon was lost to respiration during the night. Lösch *et al.* (1994) contributed an additional study on the photosynthetic gas exchange of bryophytes from the tropical lowlands and mountain forests of Central Africa.

In a lower montane rainforest of New Guinea, Edwards and Grubb (1977) estimated the epiphytic biomass to be 2 t ha⁻¹. Unfortunately, the bryophyte component of this was not measured separately, but the role of the epiphytes and accumulated "soil" in the crowns contribute ca. 1 t ha⁻¹ of soil. Minerals are released slowly from this epiphytic mass accumulation, providing a reservoir of nutrients for the soils.

Upper Montane

As the lower montane transitions into the upper montane, the proportion of cushion, short, and tall turf life forms of perennial stayers and perennial shuttle species begin to predominate (Kürschner & Parolly 2005). And as the habitat becomes more open, the bryophytes often have a dense rhizoid tomentum and a central conducting strand, aiding in rapid water conduction.

In the ericaceous forest of the upper montane of the Rwenzori Mountains of Uganda (Figure 74), Pentecost (1998) studied the epiphytes on mature trees of *Phillipia* (*Ericaceae*). *Usnea* spp. (Figure 75) and other macrolichens dominate the upper canopy. In the lower canopy, large cushion-forming liverworts such as *Chandonanthus* (Figure 76), *Herbertus* (Figure 44, Figure 77), and *Plagiochila* (Figure 10, Figure 51-Figure 53) dominate. Pentecost concluded that light intensity and age of host tree controlled the distribution of the bryophytes and lichens. Using fallen trees, Pentecost identified 14 bryophyte species, along with 2 algae, 22 lichens, and 2 ferns. The biomass of these organisms was nearly 1 ton ha⁻¹ and comprised 10% of the above-ground standing crop. Bryophytes held 8% of the above ground nutrients, with concentrations of 10 kg ha⁻¹ of N, 1 of P, and 3 of K.
forest was cool, with the temperature below the canopy ranging 4-9.5°C during the 10-day study period. The temperature increased slightly with canopy height. Evaporation below the canopy decreased significantly with increasing altitude from 2,300 to 3,600 m asl.

![Figure 74](image.png)
Figure 74. Rwenzori Mountains with *Denrosenecio adnivalis.* Photo by Agripio, through Creative Commons.

![Figure 75](image.png)
Figure 75. *Usnea*, a genus that occurs in the upper canopy of the ericaceous forest of the upper montane of the Rwenzori Mountains of Uganda. Photo through Creative Commons.

![Figure 76](image.png)
Figure 76. *Chandonanthus squarrosus; Chandonanthus* forms cushions in the lower canopy in Rwenzori Mountains of Uganda. Photo by David Tng, with permission.

![Figure 77](image.png)
Figure 77. *Herbertus aduncus*, in a genus that forms cushions in the lower canopy in Rwenzori Mountains of Uganda. Photo by Adolf Ceska, with permission.

Bizot *et al.* (1978) conducted one of the early studies on East African bryophytes, sampling in Ethiopia, Kenya, and the United Republic of Tanzania. They identified 96 liverwort and 211 moss species. They concluded that the Ethiopian Highlands are a part of the Afromontane vegetation group. Here they found disjunct populations of *Garckeia comosa* (see Figure 78) and *Aongstroemia julacea* (Figure 79).
Kürschner (2003) expanded his studies of epiphytic bryophytes to Arabia. He described the associations *Leptodon* (Figure 80) - *Leucodonetum schweinfurthii* (see Figure 81) and *Orthotricho* (Figure 82)-*Fabronietum socotranae* (see Figure 83) from the Yemen escarpment mountains. These associations are typical in the monsoon-impacted *Juniperus procera* (Figure 84) and *Acacia origena* (Figure 85) woodland. The species of bryophytes are typically drought-tolerant Afromontane mosses, with *Orthotrichum diaphanum* (Figure 82) and *Syntrichia laevipila* (Figure 86) typifying the synusiae. The drought-tolerant *Orthotricho-Fabronietum socotranae* (see Figure 83) is dominated by cushions, short turf, and mat-forming perennial stayers that regularly produce capsules. The sunny sites, by contrast, have tail or fan pleurocarpous perennial shuttle species with large spores and either moderately low reproduction or more "generative" reproduction, in addition to liverworts. This grouping forms the subhumid *Leptodon* (Figure 80) – *Leucodonetum schweinfurthii* (see Figure 81).
Figure 83. *Fabronia pusilla*; *F. sacrastrana* is a drought-tolerant Afromontane moss in Arabian *Acacia* and *Juniperus* woodland. Photo by Michael Lüth, with permission.

Figure 84. *Juniperus procera*, a species that is habitat for bryophytes in monsoon regions of Arabia. Photo by Plantsman, through Creative Commons.

Figure 85. *Acacia abyssinica* in Tanzania; *A. origena* is habitat for bryophytes in monsoon regions of Arabia. Photo by Guenther Eichhorn, through Creative Commons.

In the upper montane oak forests in the Cordillera de Talamanca of Costa Rica, Holz et al. (2002) found a large diversification of microhabitats and a high diversity of bryophytes. Liverworts (106 species) were slightly more numerous than mosses (100), with 1 hornwort in only 6 ha of forest. The researchers identified three main groups of microhabitats: forest floor, including tree bases, phyllosphere, and other epiphytic habitats. The forest floor was much richer in bryophyte species than in forests of lower elevation zones. These were distributed among tree bases (69 species), rotten logs (70), and soil (69) as the most species-rich habitats (Figure 87), heralding the greater light than that in lowland forests. Trunks (61 species), branches of the inner canopy (35), twigs of the outer canopy (14), and leaves of the understory (14) supported somewhat fewer species (Figure 87).

Figure 86. *Syntrichia laevipila*, a drought-tolerant Afromontane moss in Arabian *Acacia* and *Juniperus* woodland. Photo by Jonathan Sleath, with permission.

Figure 87. Number of species on each of the major microhabitats at Los Robles, Costa Rica, in the upper montane forest. Modified from Holz et al. 2002.

Holz and coworkers (2002) once again found that *Lejeuneaceae* (Figure 9) was by far the family represented by the most species, reaching ~60 at Monteverde, Costa Rica. The distribution of species among the major families is shown in Figure 88. The life forms are quite varied, with *turfs* and *mats* being the most common strategies (Figure 89). The "pronounced" dry season and host tree characters (tree height, stratification, number of host tree species)
modified this upper montane zone compared to more humid lower altitudes.

Holz and Gradstein (2005) compared cryptogamic epiphytes in early and late secondary oak (*Quercus copeyensis*; Figure 90-Figure 91) forests and in primary forest in Cordillera de Talamanca, Costa Rica. They found little difference in species richness between the secondary and primary forests. They concluded that the closed canopy of the secondary forests explained the high diversity there, resulting at least in part from the high atmospheric humidity. Nevertheless, even after 40 years one-third of the primary forest species were still absent in the secondary forest. Furthermore, while diversity was similar, the community composition differed markedly between primary and secondary forest, with 40% of all the species restricted to the secondary forests.

In the upper montane in the Central Cordillera of Colombia, rope-climbing techniques permitted assessment of the upper canopy (Wolf 1993b). Using the Braun-Blanquet method, Wolf sampled 15 sites at 200 m intervals on an altitudinal gradient. Wolf sampled four canopy trees, avoiding those with smooth, scaling, or hard bark. As in other studies, location within the host tree and altitude are the most influential characters on the epiphytic vegetation. Based on 59 host trees, Wolf found 187 liverwort and 108 moss species. There is great variability between relevés in
a single community, with a community of ~16%. A rapid change in community structure of the epiphytic vegetation occurs between 2,130 and 2,460 m asl. This is the elevation range where there is a rapid increase in air humidity. As in the Cordillera de Talamanca, *Usnea* (Figure 92) is very abundant in the outer canopy. pH values were somewhat wide-ranging and may have played a role in community composition. For example, at pH 7.1, the dominant community is that of the moss *Hypopterygium tamariscinum* (Figure 93) whereas at pH 3.2 the community of *Scapania portoricensis* (see Figure 46) – *Plagiothecium novogranatense* (see Figure 94-95) is prominent. The suspended soils of the lower montane rainforest and the upper montane rainforest differ significantly, with the latter having more organic matter and lower nutrient contents. Soils at tree bases in the lower montane rainforest have higher nutrient content than do the canopy soils. The opposite is the case in the upper montane rainforest. Exclusive epiphytic taxa in the upper montane rainforest are the liverworts *Adelanthus pittieri* (see Figure 96), *Bazzania breuteliana* (see Figure 97), *B. hookeri* (Figure 97), *Lepicolea pruinosa* (see Figure 98), *Lepidozia* spp. (Figure 99), *Lophocolea trapezooides* (see Figure 100), *Plagiochila bursata* (see Figure 10, Figure 51-Figure 53), *Riccardia* spp. (Figure 101), and *Trichocolea tomentosa* (Figure 102), and the moss *Sematophyllum insularum* (see Figure 21). In the canopy, the most common exclusive taxa are *Anoplolejeunea conferta*, *Jamesoniella rubricaulis* (Figure 103), *Leptoscyphus jackii* (see Figure 28), *L. porphyrius* (see Figure 28), *Plagiochila echinella/P. hansmeyeri/P. paludosa* (see Figure 10, Figure 51-Figure 53), *Prionodon fuscolutescens* (Figure 104), *Trachylejeunea dominicensis*, and the lichen *Hypotrachyna laevigata* (Figure 105)/*H. producta*. On tree bases, exclusive taxa for all five tree base communities include *Calypogeia peruviana* (Figure 106), *Cephalozia crassifolia* (Figure 107), *Lophocolea aff. connata* (see Figure 100), and *Telaranea nematodes* (Figure 108).
Figure 95. *Plagiothecium dentatum*; some members of this genus occur at pH 3.2 on trees in Colombia. Photo by Janice Glime.

Figure 96. *Adelanthus decipiens*; *A. pitteiri* occurs exclusively as an epiphyte in the upper montane rainforest of the Central Cordillera of Colombia. Photo by Des Callaghan, through Creative Commons.

Figure 97. *Bazzania hookeri*, a species that occurs exclusively as an epiphyte in the upper montane rainforest of the Central Cordillera of Colombia. Photo by Michael Lüth, with permission.

Figure 98. *Lepicolea ochroleuca*; *L. pruinosa* occurs exclusively as an epiphyte in the upper montane rainforest of the Central Cordillera of Colombia. Photo by Jan-Peter Frahm, with permission.

Figure 99. *Lepidozia cupressina*; some species in this genus occur exclusively as epiphytes in the upper montane rainforest of the Central Cordillera of Colombia. Photo from British Bryological Society, with permission per Barry Stewart.

Figure 100. *Lophocolea cf polychaeta*; *L. trapezoides* occurs exclusively as an epiphyte in the upper montane rainforest of the Central Cordillera of Colombia. Photo by Michael Lüth, with permission.
Figure 101. *Riccardia fucoida* from the Neotropics; several species of *Riccardia* occur exclusively as epiphytes in the upper montane rainforest of the Central Cordillera of Colombia. Photo by Michael Lüth, with permission.

Figure 102. *Trichocolea tomentella*, a widespread species that occurs exclusively as an epiphyte in the upper montane rainforest of the Central Cordillera of Colombia. Photo by Michael Lüth, with permission.

Figure 103. *Jamesoniella rubricaulis*, a species that occurs exclusively in the canopy in the upper montane rainforest of the Central Cordillera of Colombia. Photo by Jan-Peter Frahm, with permission.

Figure 104. *Prionodon fuscolutescens*, a species that occurs exclusively in the canopy in the upper montane rainforest of the Central Cordillera of Colombia. Photo by Juan David Parra, through Creative Commons.

Figure 105. *Hypotrachyna laevigata*, a lichen that occurs exclusively in the canopy in the upper montane rainforest of the Central Cordillera of Colombia. Photo by Siri Synnøve Høle, through Creative Commons.
The most common taxa exclusive for the canopy communities of the upper montane rainforest of the Central Cordillera of Colombia are *Anoprolejeunea conferta*, *Jamesoniella rubricaulis* (Figure 103), *Leptoscyphus jackii* (see Figure 28), *L. porphyrius* (see Figure 28), *Plagiochila echinella sensu lato* (incl. *P. hansmeyeri* and *P. paludosa*; see Figure 10, Figure 51-Figure 53), *Prionodon fuscolutescens* (Figure 104), *Trachylejeunea dominicensis*, and *Hypotrachyna laevigata* (not separated from *H. producta*; Figure 105).

In Tanzania (Figure 109), the upper montane forest bryophytes capture 50% of the yearly precipitation (Gradstein 1992). That amount is 2.5 times the capture of the lower montane forest. Interception values in the Colombian montane forests were much less, reaching only 18.3% capture in the upper montane forest (Veneklaas & van Ek 1991). This difference is likely to be related to the differences in the forest types, with the Colombian mossy forest being much higher and much more open (Gradstein 1992). Furthermore, bryophytes in the Colombian forest formed discontinuous cover on the branches and usually were in clumps, contrasting with nearly continuous bryophyte cover on the branches in Tanzania.

The leafy liverwort genera *Plagiochila* (Figure 10, Figure 51-Figure 53), *Bazzania* (Figure 97), *Herbertus* (Figure 44, Figure 77), *Lepidozia* (Figure 99), *Lepicolea* (Figure 98), and *Trichocola* (Figure 102) are the dominant liverworts in the wetter tropical montane forests (Gradstein 1992). In drier forests, mosses are more common. These include *Macromitrium* (Figure 110), *Meteoridium* (Figure 111), *Mittenothamnium* (Figure 112), *Papillaria* (Figure 113), *Porotrichum* (Figure 114), *Porotrichodendron*, *Prionodon densus* (Figure 115), and *Squamidium* (Figure 116). In Asia, one might find more robust mosses such as *Dicranoloma* (Figure 117), *Hypnodendron* (Figure 118), *Braunfelsia*, *Dicnemon* (Figure 119), and various members of the *Pterobryaceae* (Figure 42).
Figure 110. *Macromitrium sulcatum*; some members of *Macromitrium* occur in dry tropical forests on *Careya arborea*. Photo by Shyamal L., through Creative Commons.

Figure 111. *Meteoridium remotifolium*; the genus *Meteoridium* is among the dominant liverworts in the drier montane forests of the Neotropics. Photo by Michael Lüth, with permission.

Figure 112. *Mittenothamnium reptans* from the Neotropics; the genus *Mittenothamnium* is among the dominant liverworts in the drier montane forests of the Neotropics. Photo by Michael Lüth, with permission.

Figure 113. *Papillaria flavolimbata*; the genus *Papillaria* is among the dominant liverworts in the drier montane forests of the Neotropics. Photo by Lorraine Phelan, through Creative Commons.

Figure 114. *Porotrichum bigelowii*; the genus *Papillaria* is among the dominant liverworts in the drier montane forests of the Neotropics. Photo by Michael Lüth, with permission.

Figure 115. *Prionodon densus*, a species among the dominant liverworts in the drier montane forests of the Neotropics. Photo by Jan-Peter Frahm, with permission.
Gradstein and Vána (1994) reported that rotten logs in the pine forests in the central highlands of Chiapas, Mexico, exhibited a *Nowellia curvifolia* (Figure 23) community that had many species of boreal liverworts. They found eight species of liverworts and two of mosses. The most abundant of these, forming dense mats, were the leafy liverworts *Fuscocephaloziopsis catenulata* (Figure 120) and *Nowellia curvifolia* and the mosses *Campylopodiella stenocarpa* and *Dicranum frigidum* (Figure 26). Other common species were the liverworts *Syzygium autumnalis* (Figure 121), *Leptoscyphus amphibolius* (see Figure 122), and *Lophozia ventricosa* (Figure 123), with *Crosocalyx hellerianus* (Figure 124) often occurring on the very humid flanks of the logs. The species were all pioneers on the logs except for *Dicranum frigidum*. Six of the liverwort species are characteristic of boreal forest conifer logs. The researchers concluded that this community is probably limited in the tropics to occurrences of conifer forests in the northern parts of Central America.

Upper montane forests can have epiphytic bryophyte biomass reaching as much as 44 tons dry weight per hectare (Gradstein 1992), compared to only ~2 tons in the submontane rainforest (Pócs 1982).
Figure 121. *Syzygiella autumnalis*, a species that forms dense mats on rotten logs in the pine forests in the central highlands of Chiapas, Mexico. Photo by H. Tinguy, French National Museum of Natural History, with online permission.

Figure 122. *Leptoscyphus azoricus; L. amphibolius* is a common species on rotten logs in the pine forests in the central highlands of Chiapas, Mexico. Photo by Jan-Peter Frahm, with permission.

Figure 123. *Lophozia ventricosa*, a common species on rotten logs in the pine forests in the central highlands of Chiapas, Mexico. Photo by Hermann Schachner, through Creative Commons.

Figure 124. *Crossocalyx hellerianus*, a common species on the flanks of rotten logs in the pine forests in the central highlands of Chiapas, Mexico. Photo by Štěpán Koval, with permission.

Corrales et al. (2010) surveyed secondary montane forest, *Cupressus lusitanica* (Figure 125) plantations, and *Pinus patula* (Figure 126) plantations in the Central Cordillera of Colombia. They used 1 m² random plots along 40 transects. They identified 151 species of bryophytes. Species richness, weighted based on number of samples, was higher in the secondary montane forests and cypress plantations than in the pine plantations. The greatest abundance was in the cypress plantations. Nevertheless, DCA indicated a high degree of floristic similarity. Soil pH, slope, and light availability were the primary factors in determining bryophyte distribution, suggesting that habitat specialization is the main mechanism governing species distribution within a forest type. The similarity of the three forest types suggests that propagule dispersal is also important.

Figure 125. *Cupressus lusitanica*; the greatest diversity of bryophytes is in the plantations of these species. Photo by Sergio Kasusky, through Creative Commons.
Veneklaas et al. (1990) investigated the effects of epiphytic vegetation in rainfall interception in an upper montane rainforest at 3,370 m asl in the Central Cordillera of the Colombian Andes. This site had ~12 tons dry weight of epiphytes per hectare, comprised mostly of bryophytes and dead organic matter. They learned that the epiphytes were efficient at rainfall capture, gradually releasing the excess. Furthermore, loss through evaporation was slow.

Acknowledgments

My appreciation goes to Noris Salazar Allen for her efforts to make this chapter reliable and up-to-date. Her helpful discussions kept me going on this part of the world I know so little about.

Literature Cited

CHAPTER 8-10

TROPICS: CLOUD FORESTS, SUBALPINE, AND ALPINE

TABLE OF CONTENTS

Cloud Forests ... 8-10-2
Adaptations and Water Relations .. 8-10-2
Biomass .. 8-10-5
Colonization and Life Strategies .. 8-10-7
Species Diversity ... 8-10-8
Mount Kenya ... 8-10-21
Lowland Cloud Forest ... 8-10-22
Role .. 8-10-23
Subalpine ... 8-10-25
Alpine ... 8-10-25
Páramo ... 8-10-28
Moss Balls ... 8-10-31
Afro-alpine ... 8-10-33
Summary .. 8-10-38
Acknowledgments ... 8-10-39
Literature Cited ... 8-10-39
CHAPTER 8-10
TROPICS: CLOUD FORESTS, SUBALPINE, AND ALPINE

Cloud Forests

Neotropical cloud forests (Figure 2, often known as elfin forests or mossy forests, extend from 23°N to 25°S (Churchill et al. 1995). These researchers suggested that the cloud forests of the Neotropics are a subset of the montane rainforest. They are isolated in Mexico on the north by xeric vegetation and on the south in Chile and Argentina by temperate rainforest. These cloud forests generally occur at 1000-3000 m asl. But the seasonal variation in precipitation is low and there are no months in which the evapotranspiration exceeds the rainfall. Rather, cloud cover is nearly continuous, with 2,000-4,000 mm precipitation per year. The temperature decreases from 18-22°C at 1,000 m to less than 10°C at 3,000 m asl. The taxa of these cloud forests are strongly influenced by their connections with both North and South America. The low generic level of endemism and high species endemism suggest recent and rapid speciation.
Cloud forests carry an intrigue that matches their names. Generally perched atop high mountains where they are blanketed in the fog of low-lying clouds or recipients of moisture-laden air that results in a mist zone most of the time (Vitt 1991), these forests must survive the harsh, uninterrupted winds and the continuous moisture that accompanies such a lofty abode. (See also Lawton 1980, 1982.) Consequently, trees there tend to be short compared to forests at lower elevations. For example, in Taveuni, Fiji, the forest trees on top of Mt. Koroturanga at 1,210 m asl were about 3-7 m tall, increasing to 10 m at 1,140 m elevation, and to 30 m at sea level (Ash 1987). Sadly, these dwarfed forests are rapidly disappearing from the face of the Earth before we can begin to understand a fraction of their complexity. In the northern Andes alone, 90% of these remarkable forests have disappeared, compared with 20% loss of the Amazon rainforest (Wuethrich 1993). In Peru alone, the mountainous areas house more than 25,000 plant species.

One problem that keeps these elfin forests out of the public eye is their relative lack of trees. Instead, they are dominated by herbs, shrubs, epiphytic ferns and seed plants, and mosses, with the diversity of all of these increasing with altitude (Wuethrich 1993). Nevertheless, they are the source of more than 3,000 species of plants that are used by the local people and house the ancestors of some of the most important world food crops.

Gotsch et al. (2017) showed that vapor pressure deficit could predict the epiphyte abundance in a tropical elevational gradient where the montane cloud forests occupy only a narrow band of microclimate and are thus vulnerable to climate change that changes the heights of the clouds and brings drought to the area. Their predictions are supported by their data showing that epiphyte abundance increases with elevation and leaf wetness and that it decreases as vapor pressure deficit (VPD) increases. VPD differences, however, are not always correlated with elevation and thus serve as better predictors of the epiphyte abundance.

In cloud forests of the Amazon, a high density of 21,900 trees per hectare belies the low tree species richness of 15 species, whereas the lower elevation tabonuco has 170 species with only 1750 trees per hectare (Gorchov & Cornejo 1993). The area behaves as an ombrotrophic (low-nutrient) wetland with its 5000 mm rainfall per year and another 10% moisture contributed by clouds. Poor soil oxygenation due to water logging results in most roots being above the soil. These buttress roots are usually covered by numerous bryophytes, and one might suppose that these bryophytes steal most of the nutrients returned by stemflow. Research has begun only recently on the ecological role of these cloud forest bryophytes.

Terrestrial bryophyte cover in the elfin forest is strikingly different from that of the lowland rainforest. The bryophytes are less specialized, with many of the same taxa occurring on the soil and on the trees. And the higher moisture permits bryophytes to grow higher on the bole, often reaching the canopy (Richards 1984).

Russell and Miller (1977) found that at Pico del Oeste in Puerto Rico, 55% of their collections of Campylopus (Figure 3) also contained the moss Hemiragis (Figure 4), but Hemiragis never occurred with Leucoloma (Figure 5). As in the submontane rainforest, the leafy liverworts dominated the upper branches (Russell & Miller 1977). This high humidity no doubt accounts for the high percentage of leafy liverworts, estimated up to 90% of the bryophyte flora (Fulford et al. 1970). Yet at Monteverde, Costa Rica, Gradstein et al. (2001b) found that 36% of the 190 bryophyte species occurred exclusively in the canopy. The thick, lower branches had the highest diversity, with 99 species, presenting a sharp delineation of communities (Figure 6).
Figure 6. Total bryophyte species richness vs corticolous bryophyte species diversity in the canopy vs the understory in a cloud forest at Monteverde, Costa Rica. Species of rotten logs and epiphylls are not included in the corticolous counts. Redrawn from Gradstein et al. 2001b.

Merwin et al. (2001) reported 198 epiphytic bryophyte taxa in the Monteverde Cloud Forest Preserve. As is typical, the liverwort species (120) considerably outnumbered the moss species (77), with only 1 hornwort. Of these bryophyte species, 63 occurred in secondary forest and 84 in pastureland, whereas 178 species occurred in the primary forest.

These forests have such dense bryophyte growths on every trunk, branch, and twig that the forests appear “furry” (Gradstein & Pócs 1989). Biomass is high, with 11,000 kg ha⁻¹ dry weight in a Tanzanian elfin forest (80% of total canopy biomass), compared to the lower submontane rainforest with 1,773 kg (Pócs 1982). By comparison, an oak forest in Atlantic Europe had 355 kg (Schnock 1972) and a continental European oak forest had only 41 kg (Simon 1974).

One can find accumulations of organic matter in the crowns of trees of tropical wet forests such as the cloud forests. Bohlman et al. (1995) investigated the moisture and temperature patterns of these organic soils in the canopy and on the ground in Costa Rica. These two soil groupings ranged in temperature from 11.5ºC to 21.0ºC throughout the 42-month study period, but the soil from the two locations generally were within 1ºC of each other. Both soils remained moist (>70% water content) during the wet and misty seasons. Nevertheless during dry periods the canopy soils dropped to a water content of 20-40% while the forest floor soils retained 60-70% water content.

Gotsch et al. (2016) considered that a shift in the heights of the cloud base or precipitation due to climate change would make a huge impact on the cloud forest epiphyte community.

For a more general understanding of cloud forests one can consult such publications as that of Stadtmüller (1987).

Adaptations and Water Relations

In two Venezuelan cloud forests (Figure 7) in the northern Andes at 2000-2400 m, rainfall in January and February is typically 20 mm or less, but in August to October it can be 200 mm or more (León-Vargas et al. 2006). Nevertheless, it is quite variable in all seasons. The longest record for a dry period is only 143 hours. Humidity typically rises to more than 90% relative humidity at night, with one night in two typically reaching 100%. Six pendant (Figure 16) bryophytes were all able to survive at least a few days of desiccation; their recover was, however, better from high humidities. Their ability to reach light-saturation reached 95% at 110-256 µmol m⁻² s⁻¹, levels only slightly higher than that of typical field levels. The pendant and other diffuse life forms are especially able to intercept cloudwater droplets, a feature the permits them to maximise conditions during periods of low rainfall.

The horizontal plane of a fan provides maximum surface area to capture light for photosynthesis as well as intercepting water from the moving air (Song et al. 2015). In three of the common fan bryophytes [moss Homaliodendron flabellatum (Figure 8), liverworts Plagiochila arbuscua (Figure 9), P. assamica] in an Asian subtropical montane cloud forest, the plants experienced high relative humidity coupled with low light and temperatures in the understory. Fog is a major source of water. Data suggest that photosynthetically active periods for these bryophyte are short because they lose most of their free water within an hour. These fan bryophytes are further adapted to their low-light understory position by having low light saturation and compensation points for photosynthesis. The researchers expressed concern that these fan bryophytes would experience a net carbon loss if the frequency and severity of dry periods increase.

Figure 7. Cloud forests, Venezuelan Andes. Photo by Gianfranco Cardogna, through Creative Commons.

Figure 8. Homaliodendron flabellatum, a fan form found in the Asian subtropical montane cloud forest. Photo by Jiang Zhenyu, Mou Shanjie, Xu Zawen, Chen Jianzhi, through Creative Commons.
In the Asian subtropical montane cloud forest, there is high relative humidity accompanied by low light levels and temperatures in the understory (Song et al. 2015). Fog provides good water availability for the bryophytes. In this habitat, **fan** life forms (Figure 8-Figure 9) thrive. This life form loses its free water within one hour. Without sufficient water content, net photosynthesis can become negative. Song et al. (2015b) considered the **fan** life form to be especially suited to the cloud forest regime. The **fan** life form, extending outward from the vertical surfaces of trees (or rocks), is able to capture water from fog efficiently (Song et al. 2015). Furthermore, the cell walls have a high elasticity and osmoregulatory capacity that permit these life forms to tolerate desiccation. Additionally, these **fan** species have low light saturation and low compensation points for photosynthesis, all providing shade tolerance. While these characteristics provide ideal adaptations to the humid, low-light conditions of the cloud forest, the inability to tolerate and succeed under desiccating conditions puts these **fan** species at risk under changing climatic conditions that increase both the frequency and severity of droughts.

Biomass

Van Dunne and Kappelle (1998) estimated biomass of epiphytic bryophytes on *Quercus copeyensis* (Figure 10) in a Costa Rican montane cloud forest. They found 22 species each of mosses and liverworts. Biomass of bryophytes was correlated with frequency, with mosses contributing 54-99% of that biomass. Of these, 14% of the species accounted for 90% of the biomass. These bryophytes are important in controlling water flow. Dominant taxa include *Pilotrichella flexilis* (Figure 11), *Rigodium* sp. (Figure 12), *Porotrichodendron superbhum* (Figure 13), *Prionodon densus* (Figure 14), *Neckerachilensis* (see Figure 15), and *Plagiochila* (Figure 16).
Figure 12. *Rigodium pseudo-thuidium*, a species that occurs on *Quercus copeyensis* (Figure 10) in a Costa Rican montane cloud forest. Photo by Juan Larrain, through Creative Commons.

Figure 13. *Porotrichodendron superbum*, a species that occurs on *Quercus copeyensis* (Figure 10) in a Costa Rican montane cloud forest. Photo by Jan-Peter Frahm, with permission.

Figure 14. *Prionodon densus*, a species that occurs on *Quercus copeyensis* (Figure 10) in a Costa Rican montane cloud forest. Photo by Jan-Peter Frahm, with permission.

Figure 15. *Neckera cephalonica*; *N. chilensis* occurs on *Quercus copeyensis* (Figure 10) in a Costa Rican montane cloud forest. Photo by Jan-Peter Frahm, with permission.
Nadkarni (1984) was among the early Neotropical researchers who investigated ecology of the epiphytes. Unfortunately for us, these typically included the bryophytes, lichens, and tracheophytes together. Nevertheless, we can generally consider that most of the dead epiphyte biomass that accumulates is comprised of bryophytes. On a single large tree (*Clusia alata*), the standing crop was 141.9 kg, with the nutrient concentrations of N 3062 g, P 97 g, K 678 g, ca 460 g, Mg 126 g, and Na 207 g. Despite contributing only 2% to the biomass of the elfin forest dry weight, they contribute approximately 45% of the nutrients. This gives them a considerable role in the nutrient cycling of the cloud forest.

In a later study, Nadkarni et al. (2004) distinguished the role of bryophytes. The canopy organic matter in a primary montane cloud forest of Monteverde, Costa Rica, was 63% dead organic matter. Bryophytes comprised 12% of this. However, in the secondary cloud forest, bryophytes provided 95% of the biomass, with only 3% as dead organic matter. Branch junctions in the primary forest supported only dead organic matter and roots, whereas branch tips, subcanopy, and understory substrates supported only bryophytes. Trunks had diverse organic matter components, but little associated dead organic matter. The secondary forest, on the other hand, exhibited little differentiation between trunks and branches due to the dominance of bryophytes. The absence of bryophytes in branch junctions of both forest types is in stark contrast to their common appearance in these location in temperate forests.

Colonization and Life Strategies

A major problem for tropical bryophytes is that those with the common epiphytic life style must get dispersed and then become established on a vertical or otherwise elevated substrate. It is likely to be even more difficult for seeds of larger plants to become so established, so the bryophytes have an important role in providing a catchment for these propagules. Hence, the establishment of the bryophyte biomass is crucial to the cloud forest ecosystem.

Nadkarni and coworkers (2000) attempted to determine how successful the bryophytes were in becoming established from macroscopic fragments onto branches in a tropical cloud forest in Costa Rica (Figure 17). Not surprisingly, only 1% of the bryophyte fragments managed to land and remain on saplings for the six months of study. However, those dropped on the canopy were more successful. Those branches with intact epiphytes retained 24% of the fragments, whereas stripped branches in the same area retained only 5%. This suggests that larger-diameter branches are more successful at retaining the fragments, as are other epiphytes. After 10 years, the bryophytes showed good recovery (Figure 18) (Nadkarni 2000).
with more than 500 species (Pursell 1994). In Central America, this is the largest _Fissidens_ species, reaching 8 cm. In a Colombian cloud forest (Figure 21), van Leeram and coworkers (1990) found tall turfs and smooth mats to predominate in the crowns, with forms differing between the inner and outer canopy. While smooth mats are common forms in the higher branches of temperate forests, the tall turf would seem to be possible only where moisture is abundant. Surprisingly, they found that growth and life forms differed dependent upon phorophyte species. Epiphyllous forms seem to be limited by frost, occurring up to only about 3,000 m (Pócs 1982).

Figure 19. _Taxilejeunea_, a genus that occurs on horizontal branches of small trees and shrubs in the Neotropics. Photo by Michael Lüth, with permission.

Figure 20. _Fissidens polypodioides_, a cloud forest species that is the largest _Fissidens_ species in Central America. Photo by Janice Glime.

The perennial shuttle species take advantage of vegetative reproduction to become very important in the epiphytic communities on Mt. Kanabalu, North Borneo, whereas perennial stayers take advantage of the spores ultimately resulting from sexual reproduction or the occasional successful fragment to reach a new substrate, where they can persist for a long time (Frey & Kürschner 1991).

Figure 21. Montane cloud forest of Colombia. Photo courtesy of S. Robbert Gradstein.

Species Diversity

The humid cloud forests are important habitats for the leafy liverworts that typically exceed the mosses in number of species. For example, Russell and Miller (1977) found 60 species of epiphytic liverworts, but only 23 of mosses, in an elfin forest in Puerto Rico.

Mandl _et al._ (2010) questioned whether certain species groups could be used as surrogates for diversity in Neotropical montane forests in Ecuador (Figure 22). To test this, they surveyed 28 plots (400 m² each) of both terrestrial and epiphytic species in the ridge and slope forests in three locations in southern Ecuador. The epiphytic habitat had significantly more liverworts than the ground habitat. Mosses, on the other hand, were predominantly ground dwellers. Liverwort diversity proved to be a good indicator of fern α diversity. Moss α diversity was similar to that of ferns and liverworts only in epiphytic habitats. β diversity of ferns, mosses, and liverworts was similar among ground species, but not among epiphytic species. Thus, α diversity is not a good surrogate for β diversity in these cloud forests.

Figure 22. Montane cloud forest in Ecuador. Photo by Nils Köster, courtesy of S. Robbert Gradstein.

In a lower montane cloud forest at Monteverde, Costa Rica, Gradstein _et al._ (2001b) identified 133 liverwort, 56 moss, and 1 hornwort species. The thick branches of the lower canopy were the most species rich, with 99 species,
whereas trunks 1 m and above supported only 65 species. The lianas, shrubs, saplings, and understory leaves had only 36-46 species. Rotten logs were even more limited, with only 16 species. Roughly 36% of the species were exclusively in the canopy, with half the corticolous ones occurring there. In this case, the percentage of bryophyte species restricted to the canopy differs little from that of lowland and montane rainforests.

The Monteverde cloud forest has many rotting logs and fallen branches (Gradstein et al. 2001b). These serve as important habitats for the thallose liverworts Monoclea gottschei (Figure 23) and Riccardia spp. (Figure 24) and the mosses Trachyxiphium guadalupense (Figure 25) (Pilotrichaceae), Mittenothamnium reptans (Hypnaceae; Figure 26-Figure 27), Plagiomnium rynchophorum (Mniaceae; Figure 28), and Pyrrhobryum spiniforme (Rhizogoniaceae; Figure 29). Only one hornwort (Nothoceros vincentianus; Figure 30) was found in the study, and this could be found on rotten logs. The rotten log species were also frequently encountered on tree bases, especially rotten humus ones.

Figure 23. Monoclea gottschei, a common inhabitant of rotting logs and fallen branches in cloud forests of Monteverde, Costa Rica. Photo by Jan-Peter Frahm, with permission.

Figure 24. Riccardia fucoidea from the Neotropics; the genus Riccardia is a common inhabitant of rotting logs and fallen branches in cloud forests of Monteverde, Costa Rica. Photo by Michael Lüth, with permission.

Figure 25. Trachyxiphium guadalupense, a common inhabitant of rotting logs and fallen branches in cloud forests of Monteverde, Costa Rica. Photo by Michael Lüth, with permission.

Figure 26. Mittenothamnium reptans, a common inhabitant of rotting logs and fallen branches in cloud forests of Monteverde, Costa Rica. Photo by Michael Lüth, with permission.

Figure 27. Mittenothamnium reptans from the Neotropics. Photo by Michael Lüth, with permission.
Gradstein et al. (2001b) elaborated on the species found in the various levels of this Monteverde cloud forest, where they identified 190 species. Unlike some wet forests where Lejeunea (Figure 31) presents the most species, in this case that role belonged to Plagiochila (Figure 16). In the understory, the most frequent bryophytes on trunks, shrubs, lianas etc. were the moss Porotrichum korthalsianum (see Figure 32) and the leafy liverworts Plagiochila spp. and Radula antillana (see Figure 33), with other common taxa including Lepidopilum muelleri (see Figure 34-Figure 35), Metzgeria leptoneura (Figure 36), Omphalanthus filiformis (Figure 37), Taxilejeunea pterigonia (see Figure 38), and Trichocolea tomentosa (Figure 39). The well-lit sites were largely characterized by the pendent mosses Phyllogonium fulgens (Figure 40) in particular and various Meteoriaceae (Figure 54; Figure 72-Figure 73). These often occurred together with the robust liverworts Porella swartziana (see Figure 41), Bryopteris filicina (Figure 42), Plagiochila spp. (Figure 9, Figure 16), and Radula gottscheana (see Figure 33).
Figure 33. *Radula* from the Neotropics, a genus that is frequent in the understory on trunks, shrubs, and lianas in the cloud forests of Monteverde. Photo by Michael Lüth, with permission.

Figure 34. *Lepidopilum* from the Neotropics; *Lepidopilum muelleri* is common on trunks, shrubs, lianas *etc.* in the Monteverde cloud forest. Photo by Michael Lüth, with permission.

Figure 35. *Lepidopilum* from the Neotropics. Photo by Michael Lüth, with permission.

Figure 36. *Metzgeria* from the Neotropics; in a Monteverde cloud forest, *M. leptoneura* is common on trunks, shrubs, lianas *etc.* Photo by Michael Lüth, with permission.

Figure 37. *Omphalanthus filiformis*, an understory species in the Monteverde cloud forest. Photo by Jan-Peter Frahm, with permission.

Figure 38. *Taxilejeunea* Neotropics; *T. pterigonia* is common on trunks, shrubs, lianas *etc.* in the Monteverde cloud forest. Photo by Michael Lüth, with permission.
Figure 39. *Trichocolea* sp.; *T. tomentosa* is common on trunks, shrubs, lianas *etc.* in the Monteverde cloud forest. Photo by George Shepherd, through Creative Commons.

Figure 40. *Phyllogonium fulgens* from the Neotropics, a species common on trunks, shrubs, lianas *etc.* in the Monteverde cloud forest. Photo by Michael Lüth, with permission.

Figure 41. *Porella obtusata;* *P. swartziana* is a species common on trunks, shrubs, lianas *etc.* in the Monteverde cloud forest. Photo by Kristian Hassel, through Creative Commons.

Trunk bases at Monteverde (Figure 44) typically had the liverworts *Cephalozia crassifolia* (Figure 43), *Lophocolea connata* (see Figure 45), *Telaranae nematodes* (Figure 46), and various species of *Lejeunea* (Figure 31). Mosses here included *Fissidens* spp. (Figure 20) and *Hypopterygium tamariscinum* (Figure 47) (Gradstein *et al.* 2001b). Less common, but nevertheless characteristic trunk base species, were the leafy liverworts *Calypogeia* spp. and the thallose liverwort *Pallavicinia lyelli* (Figure 48), and the mosses *Cyrtot-hynnum schistocalyx* (Figure 49), *Leskeodon andicola* (Figure 50), *Ocktoflepharum erectifolium* (Figure 51), and *Syrrhopodon* spp. (Figure 52). Species of the liverwort *Bazzania* (Figure 53) could also be found, but these are much more common in the forest canopy.
Figure 44. Cloud forest, Monteverde Reserve, Costa Rica. Photo by Cephas, through Creative Commons.

Figure 45. *Lophocolea cf. polychaeta* from the Neotropics; *L. connata* is a species found on trunk bases at Monteverde, Costa Rica. Photo by Michael Lüth, with permission.

Figure 46. *Telaranea nematodes*, a species found on trunk bases at Monteverde, Costa Rica. Photo by Michael Lüth, with permission.

Figure 47. *Hypopterygium tamariscinum*, a species found on trunk bases at Monteverde, Costa Rica. Photo by Efrain de Luna, with permission.

Figure 48. *Pallavicinia lyellii* with sporophytes, a tree base species in the Monteverde, Costa Rica, cloud forest. Photo by Jan-Peter Frahm, with permission.
The canopy in the Monteverde cloud forest (Figure 44) demonstrated different communities (Gradstein et al. 2001 b). The nearly horizontal branches of the lower canopy displayed these mats of bryophytes. These included the leafy liverworts *Bazzania* (Figure 53), *Frullania convoluta* (Figure 54), *Herbertus* (Figure 55-Figure 56), *Lepidozia* (Figure 57), and *Plagiochila* (Figure 16), and the moss *Macromitrium* (Figure 58). Thick canopy branches added more *Frullania* plus the leafy liverworts *Adelanthus* (Figure 59), *Ceratolejeunea* (Figure 60), *Kurzia capillaris* (Figure 61), *Leptoscyphus porsphyrius* (see Figure 62), *Syzygiella pectiniformis* (see Figure 63), and *Acrobolus laxus* (Figure 64).
Figure 54. *Frullania convoluta*, a canopy species in the Monteverde, Costa Rica, cloud forest. Photo by Jan-Peter Frahm, with permission.

Figure 55. *Herbertus aduncus* forming deep cushions on branches, a typical sight to be found in the Monteverde, Costa Rica, cloud forest. Botany Website, UBC, with permission.

Figure 56. *Herbertus runcinatus* from Chile. Photo by Blanka Aguero, with permission.

Figure 57. *Lepidozia cupressina* from the Neotropics; *Lepidozia* is a common genus on the horizontal branches in the cloud forest at Monteverde, Costa Rica. Photo by Michael Lüth, with permission.

Figure 58. *Macromitrium microstomum* on rock; *Macromitrium* is frequent on lower branches in the Monteverde, Costa Rica, cloud forest. Photo by Tom Thekathyil, Blue Tier, with permission.
Figure 59. *Adelanthus decipiens*; the genus *Adelanthus* occurs on thick canopy branches in the cloud forest of Monteverde, Costa Rica. Photo by Michael Lüth, with permission.

Figure 60. *Ceratolejeuna cubensis*; thick canopy branches support mats of members of *Ceratolejeuna* in the cloud forest of Monteverde, Costa Rica and in the lowland cloud forest in French Guiana. Photo by Scott Zona, through Creative Commons.

Figure 61. *Kurzia capillaris* from the Neotropics, a species that occupies thick branches in the canopy of the Monteverde, Costa Rica, cloud forest. Photo by Michael Lüth, with permission.

Figure 62. *Leptoscyphus azoricus*; thick canopy branches support mats of members of *Leptoscyphus* in the cloud forest of Monteverde, Costa Rica. Photo by Jan-Peter Frahm, with permission.

Figure 63. *Syzygiella autumnalis*; thick canopy branches support mats of members of *Syzygiella* in the cloud forest of Monteverde, Costa Rica. Photo by H. Tinguy, French National Museum of Natural History, with online permission.

Figure 64. *Acrobolbus laxus*, a species that occupies thick branches in the canopy of the Monteverde, Costa Rica, cloud forest. Photo by Jan-Peter Frahm, with permission.
Mosses of the canopy included *Acroporium pungens* (Figure 65), *Bryum capillare* (Figure 66), *Campylopus arctocarpus* (Figure 67), *Leucobryum giganteum* (Figure 68), *Leucoloma cruegerianum* (Figure 69), *Pilotrichella flexilis* (Figure 11), *Squamidium nigricans* (see Figure 70), and *Syrrophodon lycopodioides* (Figure 71) (Gradstein et al. 2001). Some moss species were generalists: *Toloxis imponderosa* (Figure 72-Figure 73), the pendent *Phyllogonium* (Figure 40), and *Cheilojeunea filiformis* (see Figure 74), occurring in both the canopy and the understory. The fine twigs in the outer canopy supported communities of the moss *Daltonia gracilis* (see Figure 75) and many small species of the leafy liverwort family *Lejeuneaceae* (Figure 31, Figure 74). And of course the *Lejeuneaceae* predominated on leaves, especially in the understory. These *Lejeuneaceae* included *Cololejeunea* (Figure 76), *Cyclolejeunea convexitipa* (Figure 77), *C. peruviana* (Figure 78), *Drepanolejeunea* (Figure 79), and *Odontolejeunea lunulata* (Figure 80). Overall, 52% of the species are exclusive to the canopy and 20% to the forest understory.

Figure 65. *Acroporium pungens* in the cloud forest of the Luquillo Mountains, Puerto Rico. Photo by Janice Glime.

Figure 66. *Bryum capillare* with capsules, a species that occupies the canopy of the Monteverde, Costa Rica, cloud forest. Photo from Northern Defences, through Creative Commons.

Figure 67. *Campylopus arctocarpus*, a species that occupies the canopy of the Monteverde, Costa Rica, cloud forest. Photo by Jan-Peter Frahm, with permission.

Figure 68. *Leucobryum giganteum*, a species that occupies the canopy of the Monteverde, Costa Rica, cloud forest. Photo by Jan-Peter Frahm, with permission.

Figure 69. *Leucoloma cf cruegeriana*, a species that occupies the canopy of the Monteverde, Costa Rica, cloud forest. Photo by Michael Lüth, with permission.
Figure 70. *Squamidium* from Toro Negro, Puerto Rico; *S. nigricans* occupies the canopy of the Monteverde, Costa Rica, cloud forest. Photo by Janice Glime.

Figure 71. *Syrhopodon lycopodioides* from the Neotropics, a species that occupies the canopy of the Monteverde, Costa Rica, cloud forest. Photo by Michael Lüth, with permission.

Figure 72. *Toloxis imponderosa* from the Neotropics, a species that occupies the canopy of the Monteverde, Costa Rica, cloud forest. Photo by Michael Lüth, with permission.

Figure 73. *Toloxis imponderosa* from the Neotropics, where it is a generalist in the canopy. Photo by Michael Lüth, with permission.

Figure 74. *Cheilolejeunea* from the Neotropics; *Cheilolejeunea filiformis* is a *pendent* generalist species in the canopy and understory of the Monteverde, Costa Rica, cloud forest. Photo by Michael Lüth, with permission.

Figure 75. *Daltonia cf longifolia* with capsules; *D. gracilis* occurs on the fine twigs of the outer canopy in the Monteverde, Costa Rica, cloud forest. Photo by Michael Lüth, with permission.
The epiphytic biomass and the associated canopy humus and canopy water storage capacity vary greatly among old-growth tropical montane cloud forests (Köhler et al. 2007). Köhler and coworkers compared the epiphytes in an old-growth cloud forest and a 30-year-old secondary forest on wind-exposed slopes in the Cordillera de Tilarán (Figure 81) in northern Costa Rica where bryophytes were the dominant epiphytes. Epiphyte biomass and canopy humus of the old-growth forest (16,215 kg ha⁻¹) greatly exceeded that of the secondary forest (1,035 kg ha⁻¹). These old-growth forests held water contents of 36%-418% of their dry weights. Stand water storage of the non-tracheophyte epiphytes in the secondary forest was only 0.36 mm, compared to 4.95 mm in the old-growth forest. The bryophytes experienced more dynamic wetting and drying cycles when compared to canopy humus.
Bubb et al. (2004) suggested that bryophytes could serve as indicator species to map the distribution of cloud forests. Because the cloud forest bryophyte species are so sensitive to levels of atmospheric humidity, many have very restricted habitat requirements.

In the Pacific region, many tropical montane cloud forests occur as isolated patches on peaks of volcanoes or rugged upland ridges (Merlin & Juvik 1995). These typically have high rainfall, but also receive "horizontal precipitation" from wind-driven cloud water.

Nadkarni and Solano (2002) expressed concern that climate change models predict reduced cloud water in the tropical montane forests. This could greatly reduce the number of cloud forests in the world. They tested the effects of reduced cloud water on epiphytes by transplanting them, along with their arboreal soil, from the upper cloud forest trees to trees at slightly lower elevation where less cloud water was available. There were no transplantation effects among the controls that remained in the cloud forest. However, those transplanted to the lower elevations had significantly higher leaf mortality, lower leaf production, and reduced longevity. Although these were predominately tracheophytes, it raises the question of survivability of bryophytic epiphytes as well.

Sillett et al. (1995) demonstrated a reduction in species when comparing bryophytes in inner tree crowns of *Ficus tuerckheimii* (Figure 82) isolated in a pasture (76 species) with those from an intact cloud forest (109 species) in Costa Rica. Of these, 52 species occurred only on the intact forest trees, whereas only 18 were exclusive to the pasture trees. The intact forest similarly had significantly higher bryophyte species richness, cover, and frequency of *pendants, tall turfs, tails,* and *fans.* The isolated pasture tree epiphytes experienced higher rates of evaporation and more sunlight compared to those on forest trees. This corresponded with a desiccation gradient from the intact forest to the isolated trees.

Additional studies include those on the microclimate and ecology (Baynton 1968) and ecology of leafy liverworts (Fulford et al. 1971a, b) of Puerto Rican cloud forests.

As in so many other studies, Gradstein et al. (1977) found "numerous" species of *Lejeuneaceae* (Figure 31, Figure 74), as well as *Plagiochilaceae* (Figure 16). Characteristic species were *Lepicolea pruinosa* (see Figure 83), *Riccardia fucoides* (Figure 24), and *Scapania portoricensis* (see Figure 84), as well as multiple species of *Bazzania* (Figure 53), *Frullania* (especially *pendulous* species of the section *Meteoripsis*; Figure 54), *Herbertus* (Figure 55–Figure 56), *Lepidozia* (e.g. *L. wallisiana*; see Figure 57), *Lophocolea* (Figure 45), *Metzgeria* (Figure 36), and *Radula* (Figure 33).
Mount Kenya

Mount Kenya (Figure 85-Figure 86) is the highest mountain in Kenya (5,199 m), exceeded in Africa only by Mount Kilimanjaro (Figure 87). The wettest climate on the mountain is the lower southeastern slopes where the predominating weather system comes from the Indian Ocean (Wikipedia 2018b). This area is dominated by very dense montane forest. The mountain experiences two distinct wet seasons and two distinct dry seasons. Hedberg (1969) described the mountain as having winter every night and summer every day – a challenging climate for most organisms. See also Chamberlin and Okoola (2003) for a discussion of the rainy and dry seasons in eastern Africa.

The mountain straddles the equator, so in the northern summer the sun shines on the north side of the mountain and in the southern summer it shines on the south side (Wikipedia 2018b). There is only a one-minute difference between the shortest and longest day of the year, a phenomenon that eliminates the possibility of photoperiod as a trigger for life cycle events or preparation for seasonal changes.

The summit of the mountain is alpine, with most of the precipitation occurring as snow (Figure 85). However, frost serves as the primary water source. Between 2,400 m and 3,000 m asl (the lower part of the mountain), moist air rising from Lake Victoria forms clouds over the western forest zone (Clemens et al. 1991). Winds carry these clouds to the summit, where they protect the glaciers from melting by screening out direct sun (Hastenrath 1984).

Karlén et al. (1999) provide an historic climate perspective based on fluctuations in the glacier on Mount Kenya (Figure 85). Coe (1967) discusses the ecology of the alpine zone of Mt. Kenya. A somewhat recent expedition to Mt. Kenya revealed 10 new taxa, with two being new to all of Africa (Chuah-Petiot & Pócs 2003). These researchers found many protozoa living in the lobules of the leafy liverwort Colura kilimanjarica (see Figure 88).
Lowland Cloud Forest

Following the lead of Gradstein (2006) in French Guiana, Gehrig-Downie et al. (2011) defined this new type of cloud forest in northern South America, the lowland cloud forest (Figure 89). This type of forest occurs in river valleys in hilly areas where high air humidity and morning fog occur (Gradstein et al. 2010; Gehrig-Downie et al. 2011). The area is a rich epiphyte habitat in central French Guiana (Gehrig-Downie et al. 2011). This is most likely a result of the much longer periods of high relative humidity after sunrise. These researchers found significantly more epiphytic biomass in the lowland cloud forest (59 g m$^{-2}$) than in the lowland rainforest that lacked fog (35 g m$^{-2}$). Furthermore, epiphyte cover in the lowland cloud forest exceeded that of the lowland rainforest in all forest height zones (Figure 90).

Gradstein (2006) referred to the lowland cloud forest (400 m) of French Guiana (Figure 89) as a "liverwort hotspot." The species richness here is three times that of the Amazonian lowland forest. He found the species richness of epiphytic liverworts to be similar to that at 2,000 m asl in the Andes. Daytime fog prevents desiccation, permitting a positive net photosynthesis despite the high temperatures. About 30% of the liverwort species are restricted to the canopy and several are obligate epiphylls. Asexual reproduction in the understory is significantly more common than in the canopy. The greater dispersal ability of canopy species, particularly by spores, may explain the greater distributional ranges of species that occur there.

Following up on their earlier studies, Gehrig-Downie et al. (2013) described the species differences between lowland cloud forests (Figure 89) and lowland rainforests (Figure 91) in French Guiana. The species composition differs in all height zones, with three times as many indicator species in the lowland cloud forest. The liverwort richness differs more strongly between these two forest types than among the sampled elevations, with lowland cloud forests sometimes being richer in species than even the montane rainforests. Species restricted to the lowland cloud forest and occurring on more than one tree include Bazzania hookeri (Figure 92), Ceratolejeunea coarina (Figure 93), Cyclopelejeunea chitonia (see Figure 77-78), Metzgeria leptoneura (see Figure 36), Pictolejeunea picta, Plagiochila cf. gymnocalycina (see Figure 16, Figure 94), P. radifiana (Figure 94), P. ruticans (see Figure 16, Figure 94), and Radula flaccida (Figure 95). Ceratolejeunea cubensis (Figure 60) is the commonest species, occurring in more than 50% of the plots. In the lowland rainforest and collected on more than one tree, the exclusive species are Anoplolejeunea conferta, Diplasiolejeunea cf. cavifolia, and D. rudolphiana (Figure 96). Cheilo lejeunea adnata (see Figure 74) was present in 80% of lowland rainforest samples, but only in 40% of the lowland cloud forest samples. Liverwort species richness increased with height zone in both forest types. However, in the lowland cloud forest it was the middle and outer crowns where most species occurred, whereas it was highest only in the middle crowns in the lowland rainforest.
Cloud forest life forms are benefitted if they are able to take advantage of the moisture in the clouds. Even in lowland rainforests, such as those found in French Guiana, the clouds increase the diversity of epiphytic bryophytes. Compared to other lowland rainforests, the lowland cloud forest exhibits higher biomass and cover of bryophytes, especially in the mid and outer canopy. These bryophytes likewise exhibit a greater diversity of life forms. Typical cloud forest life forms such as tail, weft, and pendants are nearly absent in the canopies of the lowland rainforest, but these are frequent in the lowland cloud forests.

Role

Bryophytes have another important role in these cloud forests. Bruijnzeel and Proctor (1995) emphasized the importance of the tropical montane cloud forest in the water cycle, even in headwater areas. This role is especially important during dry periods, supplying water to downstream areas. Nevertheless, they are often neglected in vegetation studies.

While interception of rainfall in the submontane rainforest is high, that in the elfin forest is about 2.5 times higher and accounts for intercepting over 50% of the annual rainfall (Pócs 1980). The most effective of these receptive bryophytes were the leafy liverworts *Bazzania*...
(Figure 92), Plagiochila (Figure 94), Frullania (Figure 54), Lepidozia (Figure 57), and Trichocolea (Figure 39). These bryophytes maintain a humid environment beneath by nearly continuous dripping (Lyford 1969 – Puerto Rico; Pócs 1980 – Tanzania) and this seems to create the necessary conditions for terrestrial bryophyte growth. In montane rainforests of the Colombian Andes, at 3370 m, the epiphyte mass, primarily of bryophytes, was 12 tonnes of dry weight per hectare and held considerable rainfall (Figure 97), which was likewise released very gradually through drainage as well as slow evaporation (Veneklaas et al. 1990).

Figure 97. The biomass and interception of water by epiphytes, including bryophytes, and tree leaves in the cloud forest, showing their positions in the forest layers in Tanzania. Modified from Pócs 1980.

Martin et al. (2011) remind us that the moisture in a cloud forest reduces fire risk. This same cloud immersion fosters the growth of epiphytic bryophytes (Proctor 1982; Frahm & Gradstein 1991). These bryophytes, in turn, serve as sponges that strip moisture from the air and retain it, further lowering the flammability (Bruijnzeel & Proctor 1995).

Ah-Peng et al. (2017) reported excellent cloud water interception ability by the bryophytes in the cloud forest on Reunion Island, using Bazzania decrescens (Figure 98) and Mastigophora diclados (Figure 99) as study organisms. Mastigophora diclados had the greater ability to intercept water, but Bazzania decrescens had a far greater water storage capacity. Despite having less than half the abundance of M. diclados, B. decrescens stored more than twice the water per hectare. The two species combined stored approximately 34,500 L ha\(^{-1}\), the equivalent of 3.46 mm rainfall.

Ah-Peng et al. (2017) reported excellent cloud water interception ability by the bryophytes in the cloud forest on Reunion Island, using Bazzania decrescens (Figure 98) and Mastigophora diclados (Figure 99) as study organisms. Mastigophora diclados had the greater ability to intercept water, but Bazzania decrescens had a far greater water storage capacity. Despite having less than half the abundance of M. diclados, B. decrescens stored more than twice the water per hectare. The two species combined stored approximately 34,500 L ha\(^{-1}\), the equivalent of 3.46 mm rainfall.

Figures 98 and 99. Bazzania decrescens and Mastigophora diclados, two of the bryophytes that intercept cloud water in cloud forests on Reunion Island. Photos by Claudine Ah-Peng, with permission.

In the cloud forests of Papua New Guinea, Norris (1990) found that disturbance could cause serious reduction in the moisture within an epiphytic bryophyte colony. The epiphytes in these tropical cloud forests and rain forests have a much larger biomass than those of temperate forests. He suggested that larger colonies might maintain moisture longer than small colonies. Furthermore, contiguous clones will allow lateral conduction of water, whereas separated tufts result in little if any transfer across the host surface.

That water trapping is not always beneficial to the trees. In places where there are trees, the bryophytes can contribute to their demise. Encircling and hanging from branches, the bryophytes often capture 25% of the precipitation and absorb up to four times their own weight
Epiphytes have another interesting role as well in the development of some forest trees. Bryophytes, along with other components (filmy ferns, dead organic matter) of the humus on the branches, provide the moisture and nutrients needed to stimulate adventitious roots, that is, roots that develop from locations other than the base of the stem, in this case from the trunk or branches (Nadkarni 1994b). Using the shrub-tree *Jessea cooperi* (Figure 100), an inhabitant of landslides, she determined that wet epiphytes or nutrient solutions with foam sponges would stimulate the production and growth of adventitious roots, whereas dry epiphytes, distilled water with foam sponges, and dry sponges would not.

As with epiphytes in general, the epiphytes in the cloud forest can provide substrate, water reserves, and nutrient release that are available to tracheophytes. Orchids frequently become established in these mats (Frei 1973).

As with any thick bryophyte mat, the tropical bryophyte assemblages are home for numerous invertebrates. In the cloud forest of Costa Rica, these are likely to include amphipods, isopods, mites, Collembola, larvae, adult beetles, and ants (Nadkarni & Longino 1990). Interestingly, Nadkarni and Longino found that the composition of the fauna was basically the same in the canopy as that on the forest floor, but the ground had a mean density that was 2.6 times as great as that in the canopy, with the exception of ants, which were similar in both.

Subalpine

The sub-alpine (Figure 101) can act like an island, presenting a temperature regime that is more like the Arctic than the tropics. This makes mountaintop extinctions and a loss of biodiversity a danger under the influence of global climate change (Ah-Peng *et al.* 2014). On Réunion Island, Ah-Peng and coworkers found a relatively high species richness for bryophytes in the subalpine habitats, with diversity peaking at 2750 m asl for the ground-dwellers. They found that the functional richness with elevation differed between ground-dwellers and epiphytes, suggesting differences in the processes that structure these two community types. The ground-dwellers have a higher functional redundancy; the researchers interpreted this to indicate that the ground-dwellers may be more robust than the epiphytes when disturbances occur in this subalpine system.

![Figure 100. *Jessea cooperi*, a species that responds to wet sponges to form adventitious roots, suggesting a possible role for epiphytic bryophytes. Photo by Dick Culbert, through Creative Commons.](image)

![Figure 101. Tropical subalpine dwarf forest in Peru at 3,200 m asl with Jan-Peter Frahm among the epiphytes. Photo courtesy of S. Robbert Gradstein.](image)

Alpine

Luteyn *et al.* (1999, p. 1; see also Smith & Young 1987) list the different local names applied to the band of vegetation between the upper limit of continuous, closed-canopy forest (*timberline*; Figure 102) and the upper limit of plant life (*snowline*; Figure 103). In tropical regions of Mexico, Central and South America, Africa, Malesia including New Guinea, and Hawaii, this zone typically has tussock grasses, large rosette plants, evergreen shrubs, and cushion plants. These areas have different local names, including *zacatonales* (Mexico, Guatemala; Figure 104), *páramo* (Central and northern South America; Figure 105), *jalca* (northern Peru; Figure 115), *puna* (drier areas of the
altiplane of central Andes; Figure 106), *Afro-alpine* or *moorland* (East Africa; Figure 107), and *tropical-alpine* (Malesia; Figure 108-Figure 109).

Figure 102. **Tree-line** (timberline) in Tararuas, North Island of New Zealand. Photo by William Demchick, through Creative Commons.

Figure 103. Snowline on Chimborazo volcano, Ecuadorian Andes. Photo by Bernard Gagnon, through Creative Commons.

Figure 104. Zacotolal, Nevado de Toluca, Mexico. Photo by Mainau, through public domain.

Figure 105. Páramo in Colombia. Photo by Friedrich Kircher, through Creative Commons.

Figure 106. Central Andean wet puna. Photo by Idobi, through Creative Commons.

Figure 107. Afro-alpine, at Lascar, northern Chile. Photo by Jorge Lásca, through Creative Commons.
Bader et al. (2007) examined the role of bryophytes in tree regeneration above treeline in Ecuador (Figure 110). It is difficult for tree seedlings to become established there, and the researchers hypothesized that bryophytes could facilitate that establishment. First, they found that the number of naturally occurring tree sprouts (seedlings, saplings, and ramets) was highest just outside the forest, and decreased with distance to the forest edge. They transplanted seedlings into the alpine vegetation. The forest floor is totally covered with mosses, including species of *Sphagnum* (Figure 111), especially at the forest edge, and has a peaty organic layer of 30-100 cm on top of the dark mineral soil. The transplanted seedlings had negligible growth after 2.5 years, and some decreased in size due to damage of upper parts. Others seemed to be shorter due to the growth of fast-growing forest floor mosses that served as the measurement base. The seedlings that were planted in the mosses were sometimes overgrown by the mosses. The researchers concluded that seedlings can grow among mosses in the forest where that is the only available substrate, but that they are not favored by mosses.

In the Neotropics, Gradstein et al. (2001a) recognized páramo, Puna, and Zacatonal as the alpine habitats. Smith and Young (1987) noted how few studies existed on tropical alpine bryophytes and emphasized their importance in tropical mountain communities.
Páramo

The páramo (sparsely vegetated alpine zone on tops of high mountains of Andes and other high-elevation South American mountains; Figure 112-Figure 114) is generally considered to occur in Venezuela, Colombia, and northern Ecuador, with a pocket in Costa Rica (Luteyn 1999; Daniel Stanton, pers. comm. 4 December 2011). In northern Peru, wetter grasslands are known as jalcas (Figure 115). As pointed out by Daniel Stanton (pers. comm. 4 December 2011), the differences in naming may be more political or cultural than a reflection of real differences.

There is a striking shift in the substrate of bryophytes as one goes up in elevation in many parts of the tropics. Lower elevations, ranging up through the condensation zone and only slightly into the páramo, one can find most of the bryophyte cover as epiphytes on trees and shrubs. However, beginning at in the lower montane and increasing dramatically in the páramo, the major bryophytic cover is found on soil and rock for both mosses and liverworts (van Reenen & Gradstein 1983).

Central America enjoys the interesting flora that is a product of influence from both North and South America. In the Cordillera de Talamanca of Costa Rica, Holz (2003) and Holz and Gradstein (2005) identified 191 liverworts, 209 mosses, and 1 hornwort. Of these, 128 liverworts, 122 mosses, and 1 hornwort occur in the oak (*Quercus*) forests. The bryophytes are represented by proportionally more tropical species than are the tracheophytes. In the páramo, by contrast, the bryophyte flora is more similar to that of temperate regions. There are fewer endemics than are found in the oak forests.
<table>
<thead>
<tr>
<th>Family (no. genera/spp.)</th>
<th>Genus (family) (no. spp.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mosses (prepared by Steve Churchill and Dana Griffin III)</td>
<td></td>
</tr>
<tr>
<td>Dicranaceae (17/67) – Figure 3</td>
<td>Sphagnum (Sphagnaceae) (37) – Figure 111</td>
</tr>
<tr>
<td>Bryaceae (10/65) – Figure 121, Figure 123</td>
<td>Zygodon (Orthotrichaceae) (21) – Figure 116</td>
</tr>
<tr>
<td>Pottiaceae (19/63) – Figure 159</td>
<td>Bryum (Bryaceae) (18) – Figure 121</td>
</tr>
<tr>
<td>Bartramiaceae (7/40) – Figure 120</td>
<td>Leptodontium (Pottiaceae) (16) – Figure 140</td>
</tr>
<tr>
<td>Orthotrichaceae (3/36) – Figure 116, Figure 117</td>
<td>Orthotrichum (Orthotrichaceae) (14) – Figure 117</td>
</tr>
<tr>
<td>Sphagnaceae (1/27) – Figure 111</td>
<td>Breutelia (Bartramiaceae) (13) – Figure 120</td>
</tr>
<tr>
<td>Amblystegiaceae (9/19) – Figure 118-Figure 119</td>
<td>Daltonia (Daltoniaceae) (13) – Figure 122</td>
</tr>
<tr>
<td>Brachytheciaceae (7/18) – Figure 141</td>
<td>Macromitrium (Macromitriaceae/Orthotrichaceae) – Figure 58</td>
</tr>
<tr>
<td>Polytrichaceae (6/16) – Figure 158</td>
<td>Schizymenium (Bryaceae) (11) – Figure 123</td>
</tr>
<tr>
<td>Grimmiaeae (4/17) – Figure 132-Figure 133</td>
<td></td>
</tr>
<tr>
<td>Liverworts (prepared by Robbert Gradstein)</td>
<td></td>
</tr>
<tr>
<td>Lejeuneaceae (16/38) – (Figure 31, Figure 74)</td>
<td>Riccardia (Aneuraceae) (20) – (Figure 24)</td>
</tr>
<tr>
<td>Jungermanniaceae (11/31) – Figure 149</td>
<td>Metzgeria (Metzgeriaceae) (20) – Figure 124</td>
</tr>
<tr>
<td>Lepidoziaceae (6/20) – Figure 57</td>
<td>Plagiochila (Plagiochilaceae) (18) – Figure 16, Figure 94</td>
</tr>
<tr>
<td>Aneuraceae (2/21) – (Figure 24)</td>
<td>Frullania (Jubulaceae/Frullaniaceae) (13) – Figure 54</td>
</tr>
<tr>
<td>Metzgeriaceae (1/20) – Figure 124</td>
<td>Bazzania (Lepidoziaceae) (13) – Figure 98</td>
</tr>
<tr>
<td>Plagiochilaceae (2/19) – Figure 16, Figure 94</td>
<td>Anastrophyllum (Jungermanniaceae/Anastrophyllaceae) (8) – Figure 149</td>
</tr>
<tr>
<td>Geocalycaceae (7/18) – Figure 62</td>
<td>Lepidozia (Lepidoziaceae) (8) – Figure 57</td>
</tr>
<tr>
<td>Gymnomitriaceae (5/14) – Figure 129-Figure 130</td>
<td>Leptoscyphus (Geocalycaceae) (7) – Figure 62</td>
</tr>
<tr>
<td>Jubulaceae/Frullaniaceae (1/13) – Figure 54</td>
<td>Isotachis (Balantiopsidaceae) (6) – Figure 125</td>
</tr>
<tr>
<td>Balantiopsaceae (2/7) – Figure 125</td>
<td>Cephalozia (Cephaloziiaceae) (6) – Figure 126</td>
</tr>
<tr>
<td>Marsupella (Gymnomitriaceae) (6) – Figure 129-Figure 130</td>
<td>Radula (Radulaceae) (6) – Figure 33</td>
</tr>
</tbody>
</table>

Figure 116. *Zygodon conoideus*, with capsules, representing one of the 10 largest families in the páramo. Photo by Proyecto Musgo through Creative Commons.

Figure 117. *Orthotrichum rupestre* from the Neotropics, representing one of the 10 largest families in the páramo. Photo by Michael Lüth, with permission.
Figure 118. *Vittia pachyloma* habitat in Chile, representing one of the 10 largest families in the páramo. Photo by Juan Larrain, with permission.

Figure 119. *Vittia pachyloma*, representing one of the 10 largest families in the páramo. Photo from NYBG, through public domain.

Figure 120. *Breutelia wainoi* from the Neotropics, representing one of the 10 largest families in the páramo. Photo by Michael Lüth, with permission.

Figure 121. *Bryum apiculatum* from the Neotropics, representing one of the 10 largest families in the páramo. Photo by Michael Lüth, with permission.

Figure 122. *Daltonia cf longifolia* from the Neotropics, representing one of the 10 largest families in the páramo. Photo by Michael Lüth, with permission.

Figure 123. *Schizymenium pontevedrense* with capsules, in a genus that is common in the páramo in the Neotropics. Photo by Michael Lüth, with permission.
One reason for the low number of bryophyte taxa at lower elevations might be due to nighttime respiratory losses. High nighttime temperatures in the lowlands elevate the loss of CO₂ and prevent the bryophytes from attaining a net positive carbon balance (Proctor 1982; Richards 1984; Frahm 1987, 1990, 1994; Zotz et al. 1997; Zotz 1999). This is consistent with observations that the distribution correlates with increased moisture and lower temperatures at higher elevations (Pôrto 1992), permitting more time per day for photosynthetic gain.

Other studies on the páramo include liverwort diversity in the Neotropics (Gradstein 1998) and bryophytes and lichens of the páramo (Griffin 1979). Cleef (1978) described the Neotropical páramo vegetation and its relationship to that of the subAntarctic. Mägdefrau (1983) described bryophyte vegetation in the páramo of Venezuela and Colombia.

Moss Balls

Moss balls, also known as vagrant plants, erratic, solifluction floaters, and errant cryptogams (Pérez 1997b), are unattached plants that are blown about by the wind or moved by water or frost-heaving. Because of their movement, they frequently change their upward direction and consequently begin growth in a different direction (Shacklette 1966). This, and the tumbling that can break off extruding parts, forms them into balls. These are somewhat common on bare soils where climate conditions are subarctic, creating lenticular to spherical moss balls that are completely unattached and free to blow about on the snow and ice (Beck et al. 1986). These moss balls are particularly abundant in the alpine zone of high mountains of tropical Africa, especially on Mt. Kenya. In that location, the balls are formed by *Grimmia ovalis* (Figure 127-Figure 128). These are formed by continual motion of fragments of cushions that have been broken by frost or by single plants or small aggregations that occur on bare soil. These vulnerable bryophytes can be moved by wind and solifluction that occurs due to nocturnal needle-ice formation and subsequent thawing in the daytime. The outer layer of the balls that are formed is the living part; next is a layer of dead plant sections, whereas the core is a peaty material of disintegrated leaflets, rhizoids, stems, and minute soil particles.
Others, in particular *Marsupella* (Figure 129-Figure 130), occur on small soil buds and nubbins that are common on the ground surface in the high páramo (Pérez 1994). The moss balls are known in many biomes where wind or water create them. In the superpáramo zone, frost-heaving creates such moss balls, as also seen in the fruticose lichen *Thamnolia vermicularis* (Figure 131) and the acrocarpous moss *Grimmia longirostris* (Figure 132) (Pérez 1991, 1994). Members of *Grimmiaceae* seem to be suited to making vagrant populations. Shacklette (1966) reported unattached polsters (known as glacier moss) of *Schistidium apocarpum* (Figure 133) on sandy soil on Amchitka Island, Alaska, where they become detached by wind erosion.
Afro-alpine

In most people’s minds, the combination of African and alpine (Figure 134) seems like an oxymoron. Nevertheless, Afro-alpine zones exist and present unique communities (Hedberg 1964). The Dendrosenecio (Figure 135) woodlands present Breutelia diffracta (Figure 136), B. stuhlmannii (Figure 137), Brachythecium ramicola, Campylopus nivalis (Figure 138), Sanionia uncinata (Figure 139), and Leptodontium viticulosoides (Figure 140). The bottom layer is characterized by the mosses Brachythecium ruderale (Figure 141), B. spectabile, and Hypnum bizoni, and the liverworts Chiloscyphus cuspidatus (Figure 142), Lophocolea martiana (see Figure 45), Metzgeria hamata (Figure 143), M. hedbergii, Mylia hedbergii (see Figure 144), and Plagiochila haumanii (see Figure 16, Figure 94).
Figure 138. *Campylopus nivalis*, a species in the *Dendrosenecio* woodlands of the Afromontane region. Photo by Jan-Peter Frahm, with permission.

Figure 139. *Sanionia uncinata*, a species in the *Dendrosenecio* woodlands of the Afromontane region. Photo by Michael Lüth, with permission.

Figure 140. *Leptodontium viticulosoides*, a species of *Dendrosenecio* woodlands in the Afro-alpine zones. Photo by Li Zhang, with permission.

Figure 141. *Brachythecium ruderale*, a species of the bottom layer in the *Dendrosenecio* woodlands in the Afro-alpine zones. Photo by Claudio Delgadillo Moya, with permission.

Figure 142. *Chiloscyphus cuspidatus*, a species of the bottom layer in the *Dendrosenecio* woodlands in the Afro-alpine zones. Photo from the TePapa collection, through Creative Commons.

Figure 143. *Metzgeria hamata*, a species of the bottom layer in the *Dendrosenecio* woodlands in the Afro-alpine zones. Photo by Clive Shirley, Hidden Forest, with permission.
 Accompanying species include the moss *Hypnum cupressiforme* (Figure 147-Figure 148) and the leafy liverworts *Anastrophyllum auritum* (see Figure 149), *Lophocolea molleri* (see Figure 150), *Plagiochila colorans* (Figure 16, Figure 94), and *Radula boryana* (see Figure 151) (Hedberg 1964). These moss mats support several tracheophytes, including *Polypodium moniliforme* var. *rigescens* (see Figure 152), *Poa schimperiana* (see Figure 153), *Cardamine obliqua* (see Figure 154), *Arabis pterosperma* (Figure 155), and juvenile *Senecio* sp. The ground layer has a nearly continuous carpet of mosses that also cover boulders and decaying stems of *Senecio*Dendrosenecio and *Lobelia* (Figure 156). The important bryophytes in these carpets include the mosses *Brachythecium spectabile* (see Figure 141), *Breutelia diffracata* (Figure 136), *Hylocomium splendens* (common in boreal forests; Figure 157), *Pogonatum urnigerum* (Figure 158), *Syntrichia cavallii* (see Figure 159), and the liverwort *Metzgeria hamata* (Figure 143). Stones typically had a thin cover of *Homalothecium sericeum* (Figure 160). Many additional species were identified on the *Dendrosenecio*. The dominant *Sphagnum* species in the sedge (*Carex*) peatland was *S. strictum* subsp. *pappeanum* (Figure 161), with additional species on and among the grass tussocks.

Older stems of the *Dendrosenecio* (Figure 135) commonly support thick cushions of moss, with lichens being relatively rare (Hedberg 1964). These include numerous bryophyte species, but the moss *Antitrichia curtipendula* (Figure 145-Figure 146) is the most abundant.

Figure 144. *Mylia anomala; M. hedbergii* is a species of the bottom layer in the *Dendrosenecio* woodlands in the Afro-alpine zones. Photo by David T. Holyoak, with permission.

Figure 145. *Antitrichia curtipendula* habitat. This species is the most abundant on *Dendrosenecio* in the Afromontane. Photo by James K. Lindsey, with permission.

Figure 146. *Antitrichia curtipendula*, the most abundant species on *Dendrosenecio* in the Afromontane. Photo by James K. Lindsey, with permission.
Figure 147. *Hypnum cupressiforme*, a worldwide species that occurs on *Dendrosenecio* in the Afromontane. Photo by Michael Lüth, with permission.

Figure 148. *Hypnum cupressiforme*, a species that occurs on *Dendrosenecio* in the Afromontane. Photo by Michael Lüth, with permission.

Figure 149. *Anastrophyllum donnianum; Anastrophyllum auritum* occurs on *Dendrosenecio* in the Afromontane. Photo by Michael Lüth, with permission.

Figure 150. *Lophocolea semiteres; Lophocolea molleri* occurs on *Dendrosenecio* in the Afromontane. Photo by David T. Holyoak, with permission.

Figure 151. *Radula bolanderi; R. boryana* occurs on *Dendrosenecio* in the Afromontane. Photo by Ken-ichi Ueda through Creative Commons.

Figure 152. *Polypodium glycyrrhiza* growing among mosses; *P. moniliforme var. rigescens* grows among mosses on *Dendrosenecio*. Photo by J. Brew, through Creative Commons.
Figure 153. *Poa annua*; *P. schimperiana* is supported by moss mats on older stems of *Dendrosenecio*. Photo by Rasbak, through Creative Commons.

Figure 154. *Cardamine* sp.; *Cardamine obliqua* grows in moss mats on *Dendrosenecio* in the Afromontane. Photo through Creative Commons.

Figure 155. *Arabis pterosperma*, a species that grows in moss mats on *Dendrosenecio* in the Afromontane. Photo by B. R. Kailash, through Creative Commons.

Figure 156. Giant lobelia (*Lobelia deckenii*) on Mt. Kenya; juvenile lobelias can establish in moss mats. Photo by Mehmet Karatay, through Creative Commons.
Summary

The cloud forests have dwarfed trees that are typically covered with bryophytes. Seasonal variation in rainfall in cloud forests can be low or high. **Pendent** bryophytes and **fans** effectively trap water droplets and expose maximum surface area to the light; bryophytes can intercept over 50% of the annual rainfall in cloud forests. Water conservation within the bryophytes is facilitated by elastic cell walls. **Fan** species have low light saturation and low compensation points. Because of the high moisture requirements, the bryophyte species are often restricted to these cloud forests.

Liverworts typically outnumber mosses, but mosses can contribute 54-99% of the biomass. Whereas this biomass is relatively low compared to woody biomass, the bryophytes can contribute 45% of the nutrients through nitrogen fixation and entrapment of nutrients from the air, fog, and precipitation.
Dispersal may occur by fragments, and these are more successful when landing among epiphytes. Tall turfs and smooth mats predominate in crowns. Meteoriaceae, Phyllogoniaceae, Frullania, and Taxilejeunea are the most common taxa on horizontal branches of small trees and shrubs. These are among the typically perennial shuttles and perennial stayers that dominate the life strategies. Mosses predominate on the ground, liverworts as epiphytes. Instead of the typical Lejeunea, Plagiocilia predominates among the epiphytes at Monteverde, Costa Rica. Nevertheless, the Lejeuneaceae is common. Thallose liverworts are common on logs.

Lowland cloud forests are a recent discovery and have a similar high humidity to mountain cloud forests and a species richness often exceeding them. Life forms such as tail, weft, and pendants are nearly absent in the canopies of the lowland rainforest, but these are frequent in the lowland cloud forests. Bryophytes play a major role in the water cycle, with Bazzania, Plagiochila, Frullania, Lepidozia, and Trichocolea maintaining a humid environment beneath by nearly continuous dripping.

The canopy bryophytes serve to trap dust and contained nutrients, hold moisture, and in some cases provide rooting media. Their cushions hold massive amounts of water, thus maintaining a humid environment long after rainfall ceases. This minimizes fire danger. Unfortunately, their weight sometimes causes the branches to break. The bryophytes also provide habitat for a number of invertebrates.

The subalpine and alpine areas can act as islands because most of their species cannot grow at lower elevations. As one goes up into the alpine region, bryophytes are increasingly found on the soil and rocks. Glaciers and windy alpine tundra provide conditions that create moss balls that blow about on the substrate. Other moss balls are created by and carried by solifluction – movement by water. Members of Grimmiaceae are particularly common among these moss balls.

Acknowledgments

My appreciation goes to Noris Salazar Allen for her efforts to make this chapter reliable and up-to-date. Her helpful discussions kept me going on this part of the world I know so little about.

Literature Cited

Frey, W. and Kürschner, H. 1991. Lebensstrategien epiphytischer Bryophyten im tropischen Tieflands- and

CHAPTER 8-11
TROPICS: HYDRIC AND XERIC HABITATS

TABLE OF CONTENTS

Inundated Forests ... 8-11-2
Várzea and Igapó Forests ... 8-11-2
Floodplains and Mangrove Forests .. 8-11-4
Pirízal... 8-11-8
Peatlands .. 8-11-8
Aquatic ... 8-11-11
Rheophytes ... 8-11-12
Lakes ... 8-11-16
Seepage Areas .. 8-11-20
Xeric Habitats .. 8-11-21
Savannahs .. 8-11-24
Succession .. 8-11-25
Life Cycle Strategies ... 8-11-26
Tropical Deserts ... 8-11-27
Summary .. 8-11-31
Acknowledgments .. 8-11-31
Literature Cited .. 8-11-31
CHAPTER 8-11
TROPICS: HYDRIC AND XERIC HABITATS

Inundated Forests

The classification of inundated forests has been inconsistent even by botanists, particularly in different regions (Prance 1980), making descriptions of the vegetation based on literature difficult and confusing. Prance divided these forests into periodically inundated (seasonal várzea, seasonal igapó, mangrove, tidal várzea, flood plain forest) and permanently waterlogged (permanent white water swamp forest, permanent igapó).

Inundated forests are forests that are constantly or periodically in water and include the igapós (Figure 2-Figure 3) and várzeas (Figure 1, Figure 7) (Pires & Prance 1985). These flood forests cover 2% or more of Brazilian Amazonia, excluding the rivers themselves. For example, the palm Astrocaryum jauari is, in various places, flooded 30-340 days a year (Piedade et al. 2005, 2006). The igapós are black and clearwater areas, whereas the várzeas are muddy waters. In the black and clearwater areas, the igapó gives the water a golden appearance (Figure 4) (Pires & Prance 1985). In flood season, the igapó trees are flooded so that their trunks are completely submerged (Figure 5), permitting one to canoe through the canopy (Figure 6).
Várzea and Igapó Forests

The classification of Amazonian floodplains is based on water and vegetation types (Ferreira et al. 2005, 2013). The *igapó* (Figure 8) and *várzea* (Figure 1, Figure 7) are the most common of these. The *várzea* is a seasonally whitewater-flooded forest growing along rivers in the Amazon. The *igapó* forests are seasonally inundated with freshwater and typically occur along the lower reaches of rivers and around freshwater lakes, whereas the permanent *igapó* forest is in water year-round, but with fluctuating water levels.

Using 100 plots, each of 20 x 20 m, within 4 hectares, Ferreira and coworkers (2013) identified all trees and lianas greater than 10 cm diameter at breast height. They identified a total of 97 species, with 75 in igapó and 48 in várzea forests. Only 26 species occurred in both forests, indicating that these are distinct forests. The várzea forests have more soil nutrients, more light availability, and greater natural disturbance, perhaps helping to explain the plant diversity differences.
Cerqueira et al. (2017) studied the epiphytic bryophytes on Virola surinamensis (baboonwood; Figure 9) in igapó (Figure 8) and várzea (Figure 7) forests in the Caxiuana National Forest. They found a greater richness in the igapó forest (44 species) compared to that of the várzea forest (38 species) (Figure 10). Furthermore, the composition of the bryophyte communities differed between the várzea and the igapó, but did not differ between dry and rainy periods. Although Cerqueira et al. (2016) studied only seven species in detail, two species were associated with the forest type and two species to the seasonality of flooding. They identified 54 bryophyte species in 502 samples; 34 were fertile. Sexual reproduction predominated over asexual (Figure 10).

Lopes et al. (2016) compared the bryophyte communities as they relate to degrees of flooding in the igapó and várzea. They sampled eighteen transects each in the igapó and várzea forests of São Domingos do Capim, Pará State, Brazil. As in many rainforest studies, they found that the leafy liverwort family Lejeuneaceae (Figure 28) was the predominant family, with 63 species. Among the mosses, the Calymperaceae (Figure 11, Figure 30) had the most species, with 8 species. In total, they reported 118 bryophyte species, 82 liverworts and 37 mosses. Live bark was the most colonized substrate, with 45 species exclusive to it, but 101 species in total on bark. Decomposing bark followed, with 66 species, 16 of which were exclusive to it.

Floodplains and Mangrove Forests

Mangrove forests and floodplains are subject to inundation by salt water (Pires & Prance 1985). They are species-poor and typically quite uniform. Among the primary tree species is the mangrove, Rhizophora mangle (Figure 12).
In Thailand there are about 40 tree species in the mangrove forests (Thaithong 1984). Among these, only 10 species support epiphytic bryophytes. Thaithong found only 5 species of mosses and 21 species of leafy liverworts. *Rhizophora apiculata* (Figure 13) was the most favorable phorophyte for bryophyte species richness, with 23 bryophyte species found on this host. She found 22 of the 111 specimens of bryophytes belong to only 5 species of mosses [*Calymperes tenerum* (Figure 11), *Calymperes hampei*, *Octoblepharum albidum* (Figure 14), *Leucophanes albescens* (see Figure 15), and *Dixonia orientalis*]. The remaining 89 specimens were represented by 21 species of leafy liverworts in the genera *Frullania* (Figure 26), *Lejeunea* (Figure 16), *Acrolejeunea* (Figure 17-Figure 18), *Mastigolejeunea* (Figure 19), *Lopholejeunea* (Figure 20), *Pycnolejeunea* (Figure 21), *Thysananthus* (Figure 22), *Schiffnerolejeunea* (Figure 23), *Caudalejeunea* (Figure 24), and *Caleolejeunea* (Figure 25). The most common bryophytes, occurring in both the eastern and western mangrove forests, were *Frullania meyeniana* (Figure 26), *Acrolejeunea fertilis* (Figure 27), *Chelilejeunea intertexta* (Figure 28), and *Lopholejeunea subfuscusca* (Figure 29), all leafy liverworts and all but *Frullania* in the Lejeuneaceae. In the eastern mangrove forests, the moss *Calymperes tenerum* (Figure 11) is also common, whereas in the western mangroves *Calymperes erosum* (Figure 30) is common.
Figure 16. *Lejeunea flava*, member of a common leafy liverwort genus in the mangrove forests of Thailand. Photo by Scott Zona, through Creative Commons.

Figure 17. *Acrolejeunea fertilis*, member of a common leafy liverwort genus in the mangrove forests of Thailand. Photo by Heino Lepp, Australian National Botanic Gardens, with online permission for non-commercial use.

Figure 18. *Acrolejeunea fertilis*, in a common leafy liverwort genus in the mangrove forests of Thailand. Photo by Heino Lepp, Australian National Botanic Gardens, with permission only for non-commercial use.

Figure 19. *Mastigolejeunea auriculata*, member of a common leafy liverwort genus in the mangrove forests of Thailand. Photo by Blanka Aguero, with permission.

Figure 19. *Mastigolejeunea auriculata*, member of a common leafy liverwort genus in the mangrove forests of Thailand. Photo by Blanka Aguero, with permission.

Figure 20. *Lopholejeunea subfusca*, member of a common leafy liverwort genus in the mangrove forests of Thailand. Photo by Yang Jia-dong, through Creative Commons.

Figure 20. *Lopholejeunea subfusca*, member of a common leafy liverwort genus in the mangrove forests of Thailand. Photo by Yang Jia-dong, through Creative Commons.

Figure 21. *Pycnolejeunea pilifera*, member of a common leafy liverwort genus in the mangrove forests of Thailand. Photo by Paris, Muséum National d'Histoire Naturelle, MB, through Creative Commons.
Chapter 8-11: Tropics: Wet and Dry Habitats

Figure 22. *Thysananthus repletus* from China, in a common leafy liverwort genus in the mangrove forests of Thailand. Photo by Y. M. Wei, courtesy of Robbert Gradstein.

Figure 23. *Schiffneriolejeunea polycarpa*, in a common leafy liverwort genus in the mangrove forests of Thailand. Photo from <docencia.udea.edu.co>, with implied permission.

Figure 24. *Caudalejeunea lehmanniana*, member of a common leafy liverwort genus in the mangrove forests of Thailand. Photo by Scott Zona, with permission.

Figure 25. *Cololejeunea cardiocarpa*, member of a common leafy liverwort genus in the mangrove forests of Thailand. Photo by Paul Davison, with permission.

Figure 26. *Frullania meyeniana*, one of common species on *Rhizophora apiculata*. Photo by Scott Zona, through Creative Commons.

Figure 27. *Acrolejeunea fertilis*, one of common species on *Rhizophora apiculata*. Photo by Heino Lepp, Australian National Botanic Gardens, with online permission.
Frangi and Lugo (1992) used 10-year-old wooden stakes to examine bryophytes on the microtopographic gradient of a floodplain forest in the Luquillo Experimental Forest, Puerto Rico. They assessed biomass and nutrients, finding 210-1400 kg ha$^{-1}$ of ash-free biomass. Nutrient levels for bryophytes in the floodplain floor in kg ha$^{-1}$ were N (9.1), P (0.5), K (3.3), Ca (1.7), Mg (1.7), Mn (0.33), Fe (11.6), and Al (13.8). These accumulations are in the same order of magnitude as those of the fine litter, suggesting passive accumulation. On streambank slopes or slopes of tree mounds, the biomass and nutrient accumulation were greater than in other microhabitats. Frangi and Lugo concluded that the floodplain bryophytes serve as biotic filters of flood waters, helping in retention of nutrients in these habitats.

Studies on bryophytes of tropical floodplains and mangrove forests seem to be minimal. Yamaguchi et al. (1987) listed the terrestrial bryophytes in mangrove forests of Japan. Windolf (1989) analyzed the bryophyte species in sub-tropical mangroves in southern Queensland, Australia. Windolf made 337 collections and described the host-substrate relationship, comparing bryophyte occurrences to those on the adjacent non-mangrove trees. There seems to be an absence of ecological studies for this habitat.

Hydropogon fontinaloides occurs in periodically inundated locations in the Orinoco and Amazon River floodplains (Mägdefrau 1973).

Pirizal

The pirizal vegetation occurs only in small, restricted areas. These are shallow lakes or puddles and the water is stagnant, dark, and transparent. This tropical habitat is not typically a habitat for bryophytes.

Peatlands

Gates (1915) reported on *Sphagnum* (Figure 31–Figure 33) bogs in the tropics, noting that these had only been described from higher altitudes. Eddy (1977) provided a treatment of the *Sphagnum* species of tropical Asia.

McQueen (1991) considered the *Sphagnum*-dominated peatlands in southern Ecuador to be similar to the intermediate or transitional poor fens in the Northern Hemisphere, based on levels of pH, conductivity, and concentrations of Fe, K, Mg, Mn, Na, and P. Species included *S. magellanicum* (Figure 31), *S. recurvum* (Figure 32), *S. sancto-josephense*, and *S. denticulatum* (Figure 33).
Wolfe and McQueen (1992) noted that few tropical studies of *Sphagnum* (Figure 31-Figure 33) habitats had been published and that these were restricted to the páramo in the northwestern part of South America. Cleef (1981) distinguished four kinds of *Sphagnum* bogs in the Cordillera Oriental of Colombia, distinguished on the basis of vegetation, pH, altitude, and peat depth. In addition, Cleef described *Sphagnum* habitats including wet seeps, peaty lake shores, floating mats, and boggy glacial valleys at 3,600-3,850 m asl.

Peatlands are not always *Sphagnum* (Figure 31-Figure 33) habitats. In the high elevation tropical Andes of Colombia, similar conditions to those of *Sphagnum* bogs prevail, but these peatlands are *Distichia muscoides* (Juncaceae – rushes; Figure 34) cushion bogs. These cushions provide similar function and structure to those of *Sphagnum* in boreal and austral regions (Cleef 1981; Fritz et al. 2011). Even the dead parts of these cushions fall to the bottom of the pool and are converted to turf, as does *Sphagnum* (Cuatrecasas 1968). In the high Andes, such cushion plants are restricted to areas with poor drainage or that have a positive water balance (Cleef 1981; Kleinebecker et al. 2010). Benavides et al. (2013) concluded that cushion plants are "capable of reducing methane emission on an ecosystem scale by thorough soil and methane oxidation," whereas *Sphagnum* lawns had substantial methane emissions. These mountaintop peatland habitats are in danger of extinction under most climate change scenarios (Colwell *et al.* 2008; Ruiz *et al.* 2008).

Likewise, despite geographic differences, the niche width and overlap values of *Sphagnum* (Figure 31, Figure 35) species in tropical Costa Rica are similar to those for *Sphagnum* species in North America (McQueen 1995). In Costa Rica, *S. magellanicum* (Figure 31) and *S. sparsum* have the broadest niche widths. Despite its relatively narrow niche with, *S. sancto-josephense* is one of the most common *Sphagnum* species accompanying the other two. The niche overlap values are high, except for that of *S. platyphyllum* (Figure 35). This species occurs in habitats rich in iron. The pH, conductivity, and concentrations of Ca, Fe, K, Mg, Mn, Na, and P in these peatlands are similar to those of the páramo habitats in South America.
In Bolivia, McQueen (1997) determined that, based on pH, conductivity, and concentrations of Ca, K, Mg, Na, and P, the *Sphagnum* habitats in páramo and cloud forests of Bolivian Andes are ombrotrophic. In these habitats, the *Sphagnum* forms small, scattered carpets. The species include those from Ecuador and Costa Rica. Common species are *S. alegrense*, *S. boliviensis*, *S. cuspidatum* (Figure 36), *S. magellanicum* (Figure 31), *S. oxyphyllum*, *S. recurvum* (Figure 32), *S. sancto-josephense*, and *S. sparsum*.

Bosnian *et al.* (1993) described cushion mires in the páramo. Two types are dominated by tracheophytes, with *Campylopus reflexisetus* (Figure 37) occurring on the cushions. Two are dominated by bryophytes. The mosses *Sphagnum sparsum*, *Breutelia* sp. (Figure 38), and *Campylopus cuspidatus* var. *dicnemoioides* (Figure 39) dominate one of these, and the leafy liverwort *Lophonardia laxifolia* along with the tracheophyte *Cortaderia sericantha* (Figure 40) dominate the other. The *Sphagnum sparsum* type requires higher conductivity of ground water, higher NO$_3$ and PO$_4$ levels, and lower Fe levels. The *Lophonardia laxifolia* type requires lower levels of K and Al. A fifth type is dominated by submerged *Sphagnum cyclophyllum* (Figure 41), whereas the sixth has only the aquatic vegetation of *Equisetum bogotense* (Figure 42) and algae. Moss cover is low in the water-filled depressions among the cushions.
Figure 41. *Sphagnum cyclophyllum*, the dominant species in one type of cushion mire in the páramo. Photo by Blanka Aguero, with permission.

Figure 42. *Equisetum bogotense*, the dominant plant in one type of cushion mire in the páramo. Photo by Penarc, through public domain.

Liu et al. (2014) examined population structure of *Sphagnum tumidulum* (Figure 43) on tropical Reunion Island. Using genotypes at 10 microsatellite loci, they determined the species to be highly variable. They identified 31 multilocus genotypes. This variability suggests that sexual reproduction is successful on the island, although capsules have not been found. On the other hand, gene flow among populations appears to be very limited.

Oxygen deficiency is important for the survival of *Sphagnum* spores (Figure 44) (Feng et al. 2018). After 60 days of storage, those spores that experienced oxygen injection had lower germinability than those that lacked it. High pH further diminished the germinability. These requirements make *Sphagnum* peat suitable substrate for retaining viable spores.

Aquatic

In the tropics, aquatic bryophytes grow in periodically inundated habitats such as river beds, marshes, and waterfalls (Gradstein et al. 2018). Permanently submerged bryophytes are rare, occurring primarily at high altitudes. Their modifications of morphological traits (de Winton & Beever 2004; Rankin et al. 2017), sometimes induced by changing water conditions, make identification difficult.

Lowland tropical habitats are especially challenging for bryophytes. Because the bryophytes are continuously hydrated, they continue respiration even when the temperatures are high. This results in net carbon loss as respiration exceeds photosynthesis, especially in low light conditions.

The red-listed liverwort *Colura irrorata* (Figure 45) was known only from its type collection from the Ecuadorian Andes in 1857 (Gradstein et al. 2004). But Gradstein and coworkers found the species along two tributaries of the Rio Pastaza, Ecuador. It is in fact abundant along the Rio Topo, where it lives on the periodically submerged *Cuphea bombonasae* (Figure 45) shrubs along with the rare *Myriocoleopsis gymnocolca* (see Figure 46). In the Ecuadorian Andes, *Colura irrorata* occurs almost exclusively on the small, woody subshrub *Cuphea bombonasae* where it is very close to torrential water (Gradstein & Benitez 2014). Three other rare rheophytic bryophytes [*Lejeunea topoensis* (see Figure 47), *Myriocoleopsis gymnocolca*, and *Sematophyllum steyermarkii* (see Figure 48)] typically occur with it. The species *Colura irrorata* is distinguished by a very high number of clustered gynoecia as well as numerous antheridia per male bract (Gradstein et al. 2004).
Our knowledge of bryophytic rheophytes (aquatic plant that lives in fast moving water currents) in the tropics is somewhat limited. It is greater for Asia than for Africa or South America (Shevock et al. 2017). In Malesia, studies of floristic works have elaborated the bryophytes of such habitats (Koponen & Norris 1983; Eddy 1988, 1990, 1996). In Borneo Island, bryophytes are species rich above 1,000 m asl. In lower elevations, heavy deposits of sediments can be detrimental to rheophytic bryophytes.

The seemingly ever-present Lejeuneaceae even ventures into rheophytic habitats. Reiner-Drehwald (1999) reported Potamolejeunea polyantha [now considered to be a subgenus of Lejeunea (Gradstein & Reiner-Drehwald 2007)] as a rheophyte from South America, noting that it was poorly known.

At higher elevations, one can find Neckerosis beccariana (see Figure 49), Thamnobryum ellipticum (see Figure 50), and Fissidens beccarii (see Figure 51) on boulders; Calymperes tahitense (see Figure 52) occurs on hardwood branches or exposed tree roots; and Sclerohynnum littorale on branches of rheophytic shrubs (Akiyama 1992a). In a separate paper, Akiyama (1992b) described the morphology and ecology of these rheophytes. Along the river and streambanks, one can find carpets of bryophytes that are actually rheophytic, surviving high water levels and rapid flow (Ma et al. 2014). Above this flooding zone, the same shrub species lack these rheophytic bryophytes. In many areas of the tropics, these bryophytes are submerged multiple times through the year, especially during monsoon season.
Figure 49. Neckeropsis lepineana; Neckeropsis beccariiana occurs at higher elevations on boulders. Photo by Li Zhang, with permission.

Figure 50. Thamnobryum neckeroides; Thamnobryum ellipticum occurs at higher elevations on boulders. Photo by Blanka Aguero, with permission.

Figure 51. Fissidens marthae; Fissidens beccarii occurs at higher elevations on boulders. Photo by Jan-Peter Frahm, with permission.

Figure 52. Calymperes sp. from Toro Negro, Puerto Rico. Calymperes tahitense occurs on hardwood branches or exposed tree roots. Photo by Janice Glime.

Despite the cosmopolitan nature of many rheophytes in the temperate zone, new tropical species are still awaiting exploration. For example, Shevock et al. (2011) named Yunnanobryon as a new genus of rheophytic moss from southwest China. Yunnanobryon rhyacophilum (Figure 53-Figure 54) occurs in fast-flowing rivers. As is typical of mosses in fast-flowing water, it is pleurocarpous. It is slender with stoloniform primary stems and intricately much-branched secondary stems that become flagellate-attenuate at the tips.

Figure 53. Yunnanobryon rhyacophilum with developing young leaves in a stream in Yunnan, China. Photo by Jim Shevock, with permission.

Figure 54. Yunnanobryon rhyacophilum from a stream in Yunnan, China. Photo by Li Zhang, with permission.
Neotropical bryophyte families with at least some species that can be found as rheophytes include the mosses Amblystegiaceae (Figure 78, Figure 81), Andreaeaceae (Figure 55), Brachytheciaceae (Figure 56), Fissidentaceae (Figure 51), Hydrogonaceae, Leucomiaceae (Figure 57), Pilothrichaceae (Figure 58), Pottiaceae (Figure 86-Figure 87), Seligeriaceae (Figure 76), Sematophyllaceae (Figure 48), Sphagnaceae (Figure 31-Figure 33, Figure 35-Figure 36), and the liverworts Aneuraceae (Figure 73), Balantiopsidaceae (Figure 70), Cephalozziellaceae (Figure 59), Fossombronciaceae (Figure 62-Figure 63), Jungermanniaceae (Figure 75), Lejeuneaceae (Figure 27-Figure 29), Lophocoleaceae (Figure 60), and Pellia (Figure 61) (see Mägdefrau 1973; Griffin et al. 1982; Bartlett & Vitt 1986; Gradstein & Váňa 1999; Reiner-Drehwald 1999; Gradstein et al. 2004, 2011; Gradstein & Reiner-Drehwald 2007; Hedenäs 2003; Crandall-Stotler & Gradstein 2017). Permanent submergence is less common in the tropics compared to temperate and Arctic zones (Gradstein et al. 2018).

Figure 55. Andreaea nivalis (Andreaeaceae). Some members of this family are among the Neotropical rheophytes. Photo by Michael Lüth, with permission.

Figure 56. Platyhypnidium riparioides (Brachytheciaceae). Some members of this family are among the Neotropical rheophytes. Photo from Proyecto Musgo through Creative Commons.

Figure 57. Leucomium strumosum (Leucomiaceae). Some members of this family are among the Neotropical rheophytes. Photo by Claudio Delgadillo Moya, with permission.

Figure 58. Cyclodictyon laetevirens (Pilothrichaceae). Some members of this family are among the Neotropical rheophytes. Photo by Jan-Peter Frahm, with permission.

Figure 59. Cephalozziella dentata (Cephalozziellaceae). Some members of this family are among the Neotropical rheophytes. Photo by Des Callaghan, with permission.
Chapter 8-11: Tropics: Wet and Dry Habitats

Figure 60. *Chiloscyphus polyanthos* (Lophocoleaceae). Some members of this family are among the Neotropical rheophytes. Photo by Bernd Haynold through Creative Commons.

Figure 61. *Pellia endiviifolia* (Pelliaceae). Some members of this family are among the Neotropical rheophytes. Photo by Janice Glime.

Gradstein and Reiner-Drehwald (2007) described a new rheophytic liverwort, *Lejeunea topoensis* (Figure 16), from the Andes in Ecuador and southern Brazil. Crandall-Stotler and Gradstein (2017) found a new riverine species in Ecuador, *Fossombronia jostii* (Figure 62). It seems to be restricted to limestone boulders, where one can also find *F. texana* (Figure 63) and *F. wrightii*. These species experience major flooding events that appear to wipe out the entire population, but given a little time, these species return, regenerating from remaining shoot apices of plants that have otherwise been killed by the flooding.

Figure 62. *Fossombronia jostii* resprouting on limestone rocks in Ecuador after flooding. Photo by Lou Jost, EcoMinga, with permission.

Gradstein and Reiner-Drehwald (2007) described a new rheophytic liverwort, *Lejeunea topoensis* (Figure 16), from the Andes in Ecuador and southern Brazil. Crandall-Stotler and Gradstein (2017) found a new riverine species in Ecuador, *Fossombronia jostii* (Figure 62). It seems to be restricted to limestone boulders, where one can also find *F. texana* (Figure 63) and *F. wrightii*. These species experience major flooding events that appear to wipe out the entire population, but given a little time, these species return, regenerating from remaining shoot apices of plants that have otherwise been killed by the flooding.

Figure 63. *Fossombronia texana*, one of the species on the limestone rocks in Ecuador. Photo by Bob O’Kennon, through Creative Commons.

Racomitrium lamprocarpum (=Bucklandiella lamprocarpa; Figure 64) is a rheophytic moss from the central and northern Andean countries (Bednarek-Ochyra 2015). Ochyra concluded that *Racomitrium bartramii* should be included within this species. *Racomitrium lamprocarpum* is an austral cool-adapted species that has spread deep into the tropics, where it finds suitable habitat at high elevations in the Neotropics and in East and Central Africa.

Figure 64. *Racomitrium lamprocarpum*, Cape Horn, a rheophyte in both Africa and the Neotropics. Photo by Juan Larrain, through Creative Commons.

Ochyra *et al.* (1998) reported a new moss species from subtropical Tenerife as *Gradsteinia torrenticola*, considering it to be most closely related to the Andean *Gradsteinia andicola* from Colombia. But instead it was later placed in *Platyhypnidium* (*P. torrenticola*; Figure 65) (Ochyra & Bednarek-Ochyra 1999). In the Neotropics, *Platyhypnidium torrenticola* is known only from a single waterfall.
Figure 65. *Platyhypnidium torrenticola*, a species from waterfall habitats in Colombian Andes. Photo by BBS website, with permission from Barry Stewart.

So why are we seeing so many new species in a relatively restrictive habitat? Gradstein *et al.* (2011) attributed the unusual morphology of river bank species to habitat specialization and isolation. Such is the case for *Cololejeunea stotleriana* (Figure 66) from Ecuador. This species is both rheophilous and epiphytic. It was the first member of the subgenus *Chlorolejeunea* to be found in the Neotropics, with the other known member occurring in Asia. Furthermore, it occurs with the rare mosses *Fissidens hydropogon* (Figure 67) and *Lepidopilum caviusculum* (Figure 68), both previously known only from their type collections 150 years ago. But rarity and new species are probably products of the isolation between mountaintops, with unsuitable habitat in between.

Figure 66. *Cololejeunea stotleriana* on a fern frond. Photo by F. Werner, courtesy of Robbert Gradstein.

Lakes

Like the rheophytic habitat, Andean and other high-altitude lakes are isolated from those on surrounding mountains by inhospitable habitat surrounding them. Since aquatic bryophytes are transported mostly by fragments, this effectively isolates them.

In high altitude lakes in the Neotropics, one can find the liverworts *Clasmatocolea vermicularis* (Figure 69), *Gymnocoleopsis cylindroformis*, *Herbertus sendtneri* (Figure 83), *Isotachis obtusa* (Figure 70), *Jensenia spinosa* (Figure 71), *Lophonardia laxifolia*, *Marchantia plicata* (Figure 72), *Riccardia cataractarum* (see Figure 73), *Ricciocarpos natans* (Figure 74), and *Syzygiella*...
sonderi (see Figure 75) (Gradstein et al. 2018; see also Cleef 1981; Gradstein et al. 2001b; Hedenäs 2003; Churchill 2018). Mosses include Blindia gradsteinii (see Figure 76), Ditrichum submersum (see Figure 77), Drepanocladius spp. (Figure 78), Fontinalis bogotensis (see Figure 79), Gradsteinia andicola, Philonotis andina (see Figure 80), Pseudocalliergon spp. (Figure 81), Scopidium spp. (Figure 82), and Sphagnum spp. (Figure 31-Figure 33). Most of the mosses and all of the liverworts also can grow out of water in wet situations. Only the mosses Blindia gradsteinii, Ditrichum submersum, Fontinalis bogotensis, and possibly some Sphagnum species are restricted to submergence. Blindia gradsteinii is known from only one locality, a small pond at 4,090 m asl in the páramo de Sumapaz in Colombia (Churchill 2016). Gradsteinia andicola has been found only once, in a dried-up lake at 3,650 in the same páramo (Gradstein et al. 2018). These two rare species suggest that they are restricted by temperature.

Figure 69. Clasmatocolea vermicularis, a leafy liverwort from high altitude lakes in the Neotropics. Photo by John Engel, through Creative Commons.

Figure 70. Isotachis sp. from the Neotropics. Isotachis obtusa occurs in high-altitude lakes in the Neotropics. Photo by Michael Lüth, with permission.

Figure 71. Jensenia spinosa, a liverwort from high altitude lakes in the Neotropics. Photo by Jan-Peter Frahm, with permission.

Figure 72. Marchantia plicata, a liverwort from high altitude lakes in the Neotropics. Photo by Jan-Peter Frahm, with permission.
Figure 73. *Riccardia* sp. from the Neotropics. *Riccardia cataractarum* is a liverwort from high altitude lakes in the Neotropics. Photo by Michael Lüth, with permission.

Figure 74. *Ricciocarpos natans*, a liverwort from high altitude lakes in the Neotropics. Photo by Jan-Peter Frahm, with permission.

Figure 75. *Syzygiella autumnalis; Syzygiella sonderi* is a liverwort from high altitude lakes in the Neotropics. Photo by Hermann Schachner, through Creative Commons.

Figure 76. *Blindia acuta; Blindia gradsteinii* is a moss from high altitude lakes in the Neotropics. Photo by Hermann Schachner, through Creative Commons.

Figure 77. *Ditrichum gracile; Ditrichum submersum* is a moss from high altitude lakes in the Neotropics. Photo by Hermann Schachner, through Creative Commons.

Figure 78. *Drepanocladus aduncus; several species of Drepanocladus s.l.* occur in high altitude lakes in the Neotropics. Photo by Hermann Schachner, through Creative Commons.
Figure 79. *Fontinalis antipyretica*: *Fontinalis bogotensis* is a moss from high altitude lakes in the Neotropics. Photo by Malcolm Storey <DiscoverLife.com>, through online permission.

Figure 80. *Philonotis* sp. from the Neotropics; *Philonotis andina* is a moss from high altitude lakes in the Neotropics. Photo by Michael Lüth, with permission.

Figure 81. *Pseudocalliergon trifarium*; members of this genus occur in high altitude lakes in the Neotropics. Photo by Blanka Aguero, with permission.

Figure 82. *Scorpidium scorpioides*; members of this genus occur in high altitude lakes in the Neotropics. Photo by David T. Holyoak, with permission.

In the Andes of Colombia, at 4,120 m asl, Gradstein *et al.* (2018) found a large population of *Herbertus sendtneri* (Figure 83) in a glacial lake. The researchers speculated that a rock-inhabiting population had washed into the lake by vegetative branches or other fragments.

Figure 83. *Herbertus sendtneri*, a species found in a glacial lake of the Colombian Andes. Photo by Michael Lüth, with permission.

In seven páramo lakes above 3,800 m asl on Volcán Chiles, Ecuador, Terneus (2001) found that moss species (not including *Sphagnum*) were the most abundant and most frequent vegetation, exhibiting a 71.4% frequency among the lakes and a 70% frequency among the transects. They provided a mean cover of 26.7% and occupied maximum depths greater than 100 m. They had a wide depth range (>100 m) compared to other vegetation types.

In Lake Titicaca in the Andes on the border of Peru and Bolivia, *Drepanoclados longifolius* (Figure 84) is another deep-water moss (Richards 1984). It is not as deep as the moss occurrences reported by Terneus (2001), but reaches depths to 29 m and dominates one of the submerged vegetation zones in the lake.

Figure 84. *Drepanoclados longifolius*, a species found in a glacial lake of the Peruvian Andes. Photo by David T. Holyoak, with permission.
Seepage Areas

Volk (1979) reported *Riccia cavernosa* (Figure 85) (a nitrophilous species), *R. runssorensis*, and *R. volkii* from seepage areas around dams in southwest Africa. Similarly, Pettet (1967) reported several species of *Riccia* from seepage areas in the Sudan. In addition, Pettet found *Tortula bogosica* (see Figure 86), *Barbula unguiculata* (Figure 87), *Physcomitrium niloticum* (Figure 88), *Funaria* (Figure 89), and *Bryum* (Figure 90) from such areas.

Figure 84. *Drepanocladius longifolius*, a deep-water moss in the Andes in Lake Titicaca. Photo by Juan David Parra, MBG, through Creative Commons.

Figure 85. *Riccia cavernosa*, a species from seepage areas around dams in southwest Africa. Photo by Des Callaghan, with permission.

Figure 86. *Tortula hoppeana*; *Tortula bogosica* occurs in seepage areas in southwest Africa. Photo by Bryophyte CNPS, through Creative Commons.

Figure 87. *Barbula unguiculata*, a species of seepage areas in southwest Africa. Photo by Michael Lüth, with permission.

Figure 88. *Physcomitrium collenchymatum* from pond edge; *Physcomitrium niloticum* occurs in seepage areas of southwest Africa. Photo by Fred Essig, with permission.
Chapter 8-11: Tropics: Wet and Dry Habitats

Xeric Habitats

Subtropical Israel provides us with a glimpse of the importance of climate, particularly water availability. Distribution of bryophytes there depends on climate, altitude, other vegetation, and shelter (Bischler 2002). Israel is one of the drier sites on the Mediterranean, and the low liverwort species richness reflects this fact. Within Israel, species richness of liverworts is lowest in the arid region and highest in the Mediterranean zone. Those liverworts that are able to grow in the arid zone are also able to grow under less severe conditions and have a wide geographic distribution, whereas many of the Mediterranean species are absent in the arid zone, but otherwise widely distributed. The flora of the country tends to be cosmopolitan and no endemics are known.

To succeed in habitats that have long dry periods interrupted by short periods of moisture, bryophytes must be able to recover quickly from desiccation. Di Nola et al. (1983) found that the Pottiaceae mosses *Tortula brevissima* (Figure 91) and *Trichostomopsis aaronis* (see Figure 92) are able to resume photosynthesis and respiration rapidly after prolonged desiccation. Furthermore, they suffer little high light intensity damage. The chlorophyll is ready to resume photosynthesis without additional chlorophyll synthesis first. This is true for some temperate species as well, as seen in the Mediterranean moss *Didymodon fallax* (Figure 93), whereas *Homalothecium aureum* (Figure 94) has a slower recovery and is more sensitive to desiccation. But the temperate *Pohlia* (subgenus *Mniobryum*; Figure 95) sp. was unable to survive prolonged desiccation, exhibiting a lack of drought tolerance.
Frey (1986) noted the large percentage of endemic species in the arid parts of southwest Asia. Notable genera with endemic species include *Tortula* (Figure 86, Figure 91), *Crossidium* (Figure 122), and *Targionia* (Figure 102).

Pócs et al. (2007) reported on dry-land communities in Kenya. They described a community of *Mannia capensis* (Figure 96) that was accompanied by *Exormotheca pustulosa* (Figure 97), *Gongylanthus ericetorum* (Figure 98), *Plagiochasma rupestre* (Figure 99), *Riccia congoana* (Figure 100), *Riccia crinita* (Figure 101), and *Targionia hypophylla* (Figure 102), all liverworts. They identified several other associations in the dry lands. *Plagiochasma microcephalum* (see Figure 99) was accompanied by *Asterella cf. linearis* (see Figure 103), *Exormotheca pustulosa*, and *Riccia abolimbata* (Figure 104-Figure 105). *Riccia lanceolata* is widespread in tropical Africa, where it reaches a high diversity. This genus is particularly adapted to the seasonal rain, going dormant, then springing to growth when the rain arises. Other important *Riccia* species include *Riccia microciliata* (Figure 106), accompanied by *Riccia congoana, Riccia crinita*, and *Riccia okahandjana* (Figure 107). Widespread species include *Riccia congoana* and *Riccia atropurpurea* (Figure 108), accompanied by *Exormotheca pustulosa, Riccia crinita, Targionia hypophylla*.

Figure 94. *Homalothecium aureum*, a temperate species with a slower recovery from desiccation and greater sensitivity to desiccation. Photo by Michael Lüth, with permission.

Figure 95. *Pohlia melanodon*; temperate species in this subgenus (*Mniobryum*) are unable to survive desiccation. Photo by Jan-Peter Frahm, with permission.

Figure 96. *Mannia capensis*, a species forming a dry-land community in Kenya. Photo by Tony Benn, through Creative Commons.

Figure 97. *Exormotheca pustulosa*, a species in the *Mannia capensis* dry-land community in Kenya. Photo by Michael Lüth, with permission.

Figure 98. *Gongylanthus ericetorum*, a species in the *Mannia capensis* dry-land community in Kenya. Photo by Jan-Peter Frahm, with permission.
Figure 99. *Plagiochasma rupestre*, a species in the *Mannia capensis* dry-land community in Kenya. Photo by Alan Rockefeller, through Creative Commons.

Figure 100. *Riccia congoana*, a species in the *Mannia capensis* dry-land community in Kenya. Photo by Catherine Reeb, through Creative Commons.

Figure 101. *Riccia crinita*, a species in the *Mannia capensis* dry-land community in Kenya. Photo by Štěpán Koval, with permission.

Figure 102. *Targionia hypophylla*, a species of vertical volcanic cliffs in Kenya. Photo by Catherine Reeb, through Creative Commons.

Figure 103. *Asterella africana*; *Asterella cf. linearis* is a species in the *Mannia capensis* dry-land community in Kenya. Photo by Jonathan Sleath, with permission.

Figure 104. *Riccia albolimbata* dry, a species in the *Plagiochasma microcephalum* dry-land community in Kenya. Photo by Dale A. Zimmerman Herbarium, Western New Mexico University, with permission.
Figure 105. *Riccia albolimbata* wet; the ability to rehydrate and resume growth permits this species to live in dry-land areas with seasonal rainfall in Kenya. Photo from Dale A. Zimmerman Herbarium, Western New Mexico University, with permission.

Figure 106. *Riccia microciliata*, a species in the *Plagiochasma microcephalum* dry-land community in Kenya. Photo by Catherine Reeb, through Creative Commons.

Figure 107. *Riccia okahandjana*, an important *Riccia* species in the dry-land communities in Kenya. Photo by A. A. Dreyer, permission pending.

Savannahs

In their study of savannah bryophytes in southwest Nigeria, Makinde and Odu (1994) found little bryophyte diversity. Liverworts were rare.

Oyesiku and Egunyomi (2001, 2002) have explored savannah bryophytes in southwestern Nigeria. They likewise found that mosses were far more common than liverworts in the dry savannah. The intense dryness is unfavorable to liverworts. Tree bark, however, provides some protection, permitting corticolous bryophytes to live in areas with bush burning. On the trees in relatively closed stands, bryophytes, particularly mat-forming species, are able to spread from the base to locations under 3 m height. Some of these bryophytes [*Hyophila* (Figure 109), *Erythrodontium* (Figure 110), *Riccia* (Figure 85)] are specialists at specific heights. Generalists with no height preference include the mosses *Fissidens* (Figure 51, Figure 67), *Calymperes* (Figure 11, Figure 30), *Thuidium* (Figure 111), and the leafy liverwort *Lejeunea* (Figure 47).

Among these epiphytes, 60% of the mat species are dominant on host trees; the co-dominant tuft species comprise 34%.

Figure 108. *Riccia atropurpurea* on sandstone, a widespread species in southwest Asia. Photo by Catherine Reeb, through Creative Commons.

Figure 109. *Hyophila involuta*; members of this genus are specialists at specific heights in the savannahs. Photo by Michael Lüth, with permission.
Silva Bonfim et al. (2018) collected bryophytes from a Cerrado fragment in Caxias, Maranhão, Brazil. This area is mostly savannah. They identified 175 bryophyte samples in 12 families (10 mosses, 2 liverworts), 17 genera (15 mosses, 2 liverworts), and 23 species (21 mosses, 2 liverworts. The Sematophyllaceae was best represented (Trichosteleum subdemissum, Sematophyllum subsimplex (Figure 113), Sematophyllum subpinnatum (Figure 114), and Taxithelium planum (Figure 115), Dicranaceae, Fissidentaceae (Figure 51, Figure 67), and Pottiaceae (Figure 86-Figure 87, Figure 91-Figure 93) followed with three species each.

Succession

In their study of epiphytes in an Amazonian savannah in Brazil, Gottsberger and Morawetz (1993) noted that lichens and bryophytes have a successional relationship with their host trees. Young trees have lichen dominants. These lichens usually are diminished in older trees and bryophytes assume abundance, apparently suppressing the lichens.
Life Cycle Strategies

Makinde and Odu (1994) followed the reproductive cycles of four species [Archidium ohioense (Figure 116), Bryum coronatum (Figure 117), Fissidens minutifolius (see Figure 51, Figure 67), Trachycarpidium tisserantii] that reproduce predominately sexually. They found that the protonemata and gametophytes are produced in the field in March-April. Capsule dehiscence and spore dispersal occurs in September-October. The development of gametangia through the completion of dispersal all occur within the rainy season. Cleistocarpous capsules (capsules with no operculum and that open irregularly) of A. ohioense and T. tisserantii do not disperse their spores easily. All species experience only a short period between the formation of sex organs and the dehiscence of the capsule.

Figure 116. Archidium ohioense, a species with cleistocarpous capsules and a short period between fertilization and ripe capsules. Photo by Li Zhang, with permission.

Figure 117. Bryum coronatum; in the Nigerian savannah, development of gametangia through the completion of dispersal all occur within the rainy season in this species. Photo by Jan-Peter Frahm, with permission.

When long periods of drought are a regular part of the environment, reproduction can be challenging. Spore longevity would help to solve this problem. However, when Egunyomi (1979) tested spore viability of 20 tropical moss species, only 7 germinated after more than two years of storage, and only 4 species had as much as 50% germination. Freezing for 1 week or more was detrimental to all 20 species. Microcampylopus nanus (see Figure 118) had the highest spore longevity and germination after desiccation. Other species that survived desiccation for at least two years were Weissia papillosa (see Figure 119), Mittenothamnium overlaetii (Figure 120), and Weisiopsis nigeriana. What is interesting is that these four species are from a locality that is persistently wet.

Figure 118. Microcampylopus laevigatus; Microcampylopus nanus has high spore longevity and germination after desiccation. Photo by Jan-Peter Frahm, with permission.

Figure 119. Weissia multicapsularis; Weissia papillosa survives desiccation for at least two years. Photo by David T. Holyoak, with permission.

Figure 120. Mittenothamnium reptans; Mittenothamnium overlaetii can survive desiccation for at least two years. Photo by Michael Lüth, with permission.
Although we cannot rule out spore longevity, we need to find other means to explain reproductive success in these dry-habitat mosses. During and coworkers (During 1998, 2007; During & Moyo 1999) examined the diaspore bank in a savannah in Zimbabwe. They determined at least 2 hornworts, 10 liverworts, and 22 mosses that emerge from these soil samples. Some of these were in large numbers. Some of these species, such as *Micromitrium tenerum* (Figure 121), were rare or previously unknown in Africa or Zimbabwe. An added advantage for these diaspores is that they are able to survive above-ground burning.

Figure 121. *Micromitrium tenerum*, a species that can survive desiccation for at least two years. Photo by Jan-Peter Frahm, with permission.

Tropical Deserts

Deserts are not very friendly to bryophytes, and this habitat is likewise unfriendly for bryologists. Tropical deserts are often among the worst of these due to their even higher temperatures. Hence, systematic studies of bryophytes in these habitats are rare. Nevertheless, the guileless bryophytes and their adventurous observers can occur in these inhospitable places.

O'Shea (1997) reported over 3000 taxa of mosses in sub-Saharan Africa. Of these, 77% were considered endemic at the time. Because of the small number of bryologists exploring the vast area of Africa, it may still be a long time before we understand the African flora well enough to know how many of these are truly endemic.

The moss *Crossidium laevipilum* (Figure 122) occurs in semidesert conditions in Kenya, where it is associated with many xeric species (Pócs *et al*. 2007). *Didymodon revolutus* (Figure 123) occurs on vertical volcanic cliffs. This species has both axillary and rhizoidal gemmae, contrasting with American plants that are only known to have axillary gemmae. This species is known as a xerophyte in the desert and semidesert of southern United States, Mexico, Guatemala, and Ecuador.

Figure 122. *Crossidium laevipilum*, a species of semi-desert conditions in Kenya. Photo by Michael Lüth, with permission.

Figure 123. *Didymodon revolutus* dry, a species of vertical volcanic cliffs in Kenya. Photo from Dale A. Zimmerman Herbarium, Western New Mexico University, with permission from Russ Kleinman & Karen Blisard.

At the edge of the Tunisian Sahara, Pócs (2007) found the community of *Crossidium laevipilum* (Figure 122)-*Tortula atriovirens* (Figure 124) to be dominant. Only the tips of the plants and apical hair points, if present, extended above the sand. The hair points can protect against UV light and collect moisture. Most of the bryophytes, like these two, are in the Pottiaceae. The rock cliffs can support a community dominated by *Grimmia capillata* (Figure 125)-*Tortula revolvens* (Figure 126). The association of *Eucladium verticillatum* (Figure 127-Figure 128) and *Didymodon tophaceus* (Figure 129) occurs only near waterfalls of the Tamerza oasis. North-facing cliff bases provide enough shelter to support *Bryum funckii* (Figure 130)-*Didymodon australasiae* (Figure 131) associations. On the exposed limestone gravel scree and loess cliffs one can find the pioneer community of *Crossidium squamiferum* (Figure 132) and *Aloina bifrons* (Figure 133). The northern part is less extreme in climatic conditions and one can find the *Didymodon australasiae*-Tortula revolvens community.
Figure 124. *Tortula atrovirens*, part of the dominant *Crossidium laevipilum-Tortula atrovirens* community at the edge of the Tunisian Sahara. Photo by John Game, through Creative Commons.

Figure 125. *Grimmia capillata* with capsules, dry – part of the *Grimmia capillata-Tortula revolvens* association on rock cliffs at the edge of the Tunisian Sahara. Photo by Hank Greven, with permission.

Figure 126. *Tortula revolvens* – part of the *Grimmia capillata-Tortula revolvens* association on rock cliffs at the edge of the Tunisian Sahara. Photo from Proyecto Musgo, through Creative Commons.

Figure 127. *Eucladium verticillatum*, part of the waterfall association of *Eucladium verticillatum* and *Didymodon tophaceus* at the edge of the Tunisian Sahara. Photo by Michael Lüth, with permission.

Figure 128. *Eucladium verticillatum*, showing individual plants. Photo by Hermann Schachner, through Creative Commons.

Figure 129. *Didymodon tophaceus* with capsules, part of the waterfall association of *Eucladium verticillatum* and *Didymodon tophaceus* at the edge of the Tunisian Sahara. Photo by David T. Holyoak, with permission.
The thallose liverworts in such dry areas are "tiny" and become practically invisible during the dry season, reappearing when the rains arrive. This ability is particularly common in the Ricciaceae (Pócs et al. 2007). The Riccia species (Figure 100-Figure 101, Figure 104-Figure 106) in these dry habitats exhibit 20% endemism while another 20% are widespread, often cosmopolitan xerophytes. Most of the mosses are in the Pottiaceae (Figure 122-Figure 123). These xerophytic mosses have crispate, often contorted leaves with inrolled or recurved margins (Kürschner 2004). Kürschner (2000) described the bryophyte flora of the Arabian Peninsula (Figure 135) and Socotra (Figure 136), much of which is desert. Prior to 1980, no bryophytes were known from the entire peninsula. The bryological flora is characteristic for the monsoon-influenced peninsula, including 1 hornwort, 50 liverworts, and 173 mosses, with many Palaeotropical and Afro-montane taxa. On the other hand, the arid and semi-arid regions, with winter rainfall, are dominated by species that are drought adapted and drought tolerant. These include many Pottiaceae and thalloid liverworts that go dormant during the drought.
Later, Kürschner (2003) conducted a phytosociological analysis of the *Riccietum jovet-astii-argenteolimbatae* association as a new association found in the Jabal Arays area of Yemen. This association consists predominantly of *Riccia jovet-astiae* and *Riccia cf. albolimbata* (Figure 104-105). Kürschner identified this association as being grouped within the alliance of *Mannia androgyna* (Figure 137) with *Barbula unguiculata* (Figure 87). The new association typically occurs on shallow soils that overly volcanic rock outcrops, where it occurs in the understory of *Sterculia africana arabica* (Figure 138) woodland in monsoon-affected areas. The life strategy here is that of a shuttle species with large spores. Thus dispersal is short range. Spores in a diaspore bank help to maintain the presence of these liverworts. Of minor importance is their colonist strategy and they live on the soil where they can go dormant until monsoon season.
Summary

Neotropical floodplains include the igapó and várzea habitats, seasonally inundated, and supporting different bryophyte communities. Sexual reproduction predominates among the bryophytes. The leafy liverwort family Lejeuneaceae predominates in species richness, while the family Calymperaceae has the most moss species.

Mangrove forests are limited in bryophyte species because of saltwater. Nevertheless, Calymperaceae are among the few moss species present, with Lejeuneaceae being the most species-rich among the liverworts. Bryophytes in these floodplains are passive accumulators of nutrients and help to retain them within the floodplain.

Tropical peatlands are effectively restricted to high altitudes and include some of the well-known high latitude species such as Sphagnum magellanicum and S. recurvum. Sphagnum platyphyllum is common in peatlands rich in iron. Two mire types are dominated by tracheophytes, with the moss Campylopus reflexisetus occurring on the cushions. Two are dominated by bryophytes, differing in vegetation with differences in conductivity and nutrients. Genetic variation within species may be highly variable, as seen in Sphagnum tumidulum from Reunion Island. At least some Sphagnum spores have greater longevity in the absence of oxygen, permitting them to survive in the peat.

Few tropical bryophytes live permanently submerged except at high elevations. In low elevations, high temperatures, low CO2 levels, and low light intensities result in negative carbon gain. But in the Andes, several rare species are associated with torrential waters.

In rheophytic habitats, one can find leafy liverworts in the Lejeuneaceae, with a number of moss species on rheophytic shrubs, roots, and rocks where they are seasonally submerged. The absence of tropical studies on rheophytes leaves species awaiting discovery. Nevertheless, a number of families with rheophytic representatives are known.

Glacial lakes may have such species as Herbertus sendtneri. These lakes and other high-altitude tropical lakes are isolated by the hot valleys that are unsuitable as vegetative dispersal avenues for bryophytes.

Seepage areas often have species of Riccia and mosses that are typical of disturbed areas such as Barbula unguiculata, Funaria, and Bryum.

The tropics create a number of xeric habitats. These have low liverwort diversity but are able to support desiccation-tolerant mosses, particularly members of the Pottiaceae. These mosses are able to resume photosynthesis quickly upon rewetting. Among the liverworts, Riccia can become dormant for prolonged periods of time, then expand and resume growth. Among these xeric habitats are savannahs, where liverworts are rare and little diversity is common. Nevertheless, the liverworts Riccia and Lejeuneaceae can occur as epiphytes. The meager evidence on life cycle strategies suggests that the sexual cycle takes advantage of the short wet periods, with spore dispersal likewise occurring in wet periods. Some mosses have cleistocarpous capsules. Spores in 20 tested species exhibit limited longevity. However, spores seem to survive better in diaspore banks. Deserts, as might be expected, have their highest bryophyte diversity in the Pottiaceae and Ricciaceae. Canyon and shaded cliffs have a higher diversity.

Acknowledgments

Thank you to Tatiany Oliveira da Silva for her contributions of papers, images, and comments. Her helpful discussions kept me going on this part of the world. I know so little about and clarified some of the terminology of the inundated forests. Thank you to Claudine Ah-Peng for helping me obtain an image of Sphagnum tumidulum. And my appreciation to all the photographers who have put their images in Creative Commons.

Literature Cited

CHAPTER 8-12
TROPICS: ROCK OUTCROPS AND INSELBERGS

Figure 1. Inselbergs in Mozambique, Africa. Photo by Ton Rulkens, through Creative Commons.

Rock outcrops and inselbergs provide unique habitats, usually being more xeric than surrounding habitats. An inselberg (Figure 1) is distinguished as "those isolated rock outcrops that stand out abruptly from surrounding plains" (Potembski & Barthlott 2012). The term appears to have been introduced by Bornhardt (1900). Both outcrops and inselbergs can differ in rock types, and this can promote different vegetation groupings. Potembski and Barthlott noted that study of the widespread granite inselbergs has been neglected, yet it is "remarkably" rich in plant life. Porembski (2007) identified the three hot spots of inselberg plant diversity on a global scale as southeastern Brazil, Madagascar, and southwestern Australia.

Barthlott et al. (1993) note that the flora of the inselbergs differs almost completely from that of the surrounding area, behaving like islands. They concluded that the bare rock is covered almost completely by Cyanobacteria in French Guyana, but by lichens in the Ivory Coast. Nevertheless, the life forms are similar in the Palaeotropics and Neotropics. It would be interesting to make these same comparisons for bryophytes.

It is interesting that tracheophytes in such dry habitats may mimic some of the traits of bryophytes. These adaptations include forming mats and poikilochlorophyllous (lose chlorophyll and cease photosynthesis and transpiration when dry) behavior (Porembski & Barthlott 2000). It is incredible that of the approximately 330 species (in only 13 families) of tracheophytes that are desiccation-tolerant, close to 90% occur on inselbergs.

In Brazil, ironstone rock outcrops provide an adverse environment where daily temperatures vary widely, UV exposure is elevated, constant winds are present, and soils are impermeable and have low water retention with high
levels of iron (Peñaloza-Bojacá et al. 2018b). Such conditions favor a very rich and endemic community where xerophilic plants thrive.

Rock outcrops are not just bare rock, even in their earliest stages. These topographic differences include shallow depressions that can fill with water (Figure 2), drainage channels (Figure 3), vertical faces with directional N-S exposures (Figure 4), and horizontal plains (Figure 5). In Guinea, mats of *Afrotilepis pilosa* (Figure 6) create protected habitats, habitats with extremes (e.g. Figure 5) that support ephemeral plants, and areas experiencing flushes that have their own distinct vegetation (Porembski et al. 1994). Sandstone outcrops of Fouta Djalon in Guinea (Figure 7) are species-rich and have a large number of endemics. Porembski and coworkers suggested this may be due to the combination of vertical differentiation, large area, long-term climate stability, and isolation. The granite inselbergs and ferricretes (hard, erosion-resistant layer of sedimentary rock, usually conglomerate or breccia, cemented into a duricrust by iron oxides), on the other hand, lack local endemics and have a lower species richness. The greatest diversity of inselberg vegetation of tropical Africa seems to occur in Tanzania, Malawi, Mozambique, Zambia, Zimbabwe, and Angola.
Inuthail and Sridith (2010) examined the structure of plant communities on the granitic inselberg in Songkhla Province in Peninsular Thailand. They identified seven microhabitat types: rock crevices and clefts (Figure 8), rock falls (Figure 7), shallow depressions (Figure 2), deep depressions, exposed rock slopes (Figure 4), shady flat rocky slopes (Figure 3, Figure 9), and rock platform fringes. They recorded 73 species of tracheophytes, with Orchidaceae, Rubiaceae, and Poaceae predominating. The highest number of plant species occurred on the fringes of the rock platforms where soil conditions and light intensities vary.

Although some researchers disagree about which formations belong to the inselberg category, Porembski et al. (1997) considered granitic inselbergs to be present in all the climatic and vegetational zones of the tropics. Because of the harsh edaphic and microclimatic conditions, the vegetation of inselbergs differs greatly from that of their surroundings. The habitats on these rocks can be defined by vegetation groups including cryptogamic crusts, rock pools, monocot mats, and ephemeral flush vegetation. Stochastic (randomly determined) environmental disturbances promote greater species richness due to prevention of competitive exclusion. Other processes are deterministic, creating high temperatures and light levels and extended periods of drought. Moss cushions are able to take advantage of seepage water. In West Africa, *Bryum arachnoideum* (Figure 10) is able to take advantage of such wet areas (Frahm & Porembski 1994).
restricted to the inselberg habitat. Thus they are isolated patches of tracheophytic vegetation surrounded by bare rock or cryptogamic vegetation (algae, lichens, and bryophytes).

Sarthou and Villiers (1998) remind us that tropical inselbergs are surrounded by rainforest, but that they have their own special vegetation. They describe six such associations on French Guianan inselbergs. These respond to different environmental characteristics, including local relief, insolation, water availability, and soil depth. Species diversity is low in all of these associations. They found striking similarities in the vegetation units when comparing those of South American and African inselbergs.

It is only recently that ecological studies of bryophytes on inselbergs have emerged. Ribeiro et al. (2007) provided a comprehensive summary of vegetation on rock outcrops in Brazil and outlined the three needs they considered most urgent for study:

1. inselbergs and high mountains in the Amazon and the Brazilian northeast
2. long-term studies, which are almost totally unavailable, hindering global change monitoring and assessment
3. national and international networking to speed up scientific production about such habitats.

To elucidate outcrop vegetation in the northeastern Brazil, Silva et al. (2014a, b) looked at both tracheophytes and bryophytes on rocky outcrops there. They noted that for these small plants, the large outcrops served as islands amid a "sea" of soil, resulting in a floristic composition that results from \textit{stochastic processes} (unpredictable events) at a regional scale. However, such stochastic processes did not show any clear relationship with the communities on a local scale.

\section*{Adaptations}

Watson (1933) gave an early view of adaptations to terrestrial adaptations of bryophytes. He suggested that these included \textit{cushion} life forms, the arrangement of the leaves to be imbricated or twisted upon drying, hair points or hyaline leaf apices, leaf borders, infolded leaf margins, thickened cell walls, cell size, and papillae. Some store water and others prevent evaporation. Capillarity was accomplished by spaces between leaves, at leaf axils, between leaf folds, and specialized water folds (lobules as in \textit{Frullania}; Figure 11-Figure 12) and storage cells as in \textit{Leucobryum} (Figure 13). Although at that time there was little experimental evidence to support his suggestions, we now find that these traits often describe adaptations of bryophytes of rock outcrops and inselbergs.
Life Cycle Strategies

Life cycle strategies can be particularly important in these severe environments. As noted by Benassi et al. (2011) for the desert moss *Syntrichia caninervis* (Figure 14), those in the most extreme environments have lower frequencies of sexual expression, fewer sexual branches per individual, and a lower male:female ratio. Sexual reproduction is infrequent. They suggested that male rarity may be due to a lower desiccation tolerance in males. Males have a higher energetic requirement for their sex expression, and this may make them less tolerant to repeated cycles of hydration and desiccation. While rock outcrops and inselbergs are not deserts, many of their microclimate characteristics are similar, so we might expect similar life cycle restrictions.

Figure 14. *Syntrichia caninervis* (*Pottiaceae*), a xerophytic moss that has lower frequencies of sexual expression, fewer sexual branches per individual, and a lower male:female ratio. Photo by John Game, through Creative Commons.

Frahm (1996) found that bryophytes from the inselbergs he examined in the Ivory Coast and Zimbabwe had a conspicuous lack of both sexual and vegetative propagules. They lacked both the animal and wind dispersal found in inselberg tracheophytes.

Kürschner (2003) found that the life strategy for the *Riccia* liverwort association on thin soil over volcanic rock in Yemen was that of a shuttle species. These liverworts produce large spores with short-range dispersal. Disturbances could result in exposure of these spores that have been stored in the diaspore bank. Geophytes (plants with short, seasonal lifestyle and some form of underground storage organ) and colonists also occur, but are of only minor importance.

Kürschner (2006) elucidated the ecology of the saxicolous (growing on rocks) *Grimmia ovalis* (Figure 15)-*G. laevigata* (Figure 16-Figure 17)-*G. longirostris* (Figure 18) association on Socotra Island of Yemen. The bryophytes on these sun-exposed, acidic rock formations appear to be mostly endemic and are dominated by *Schlotheimia balfourii* (see Figure 19). The life strategy is that of drought-tolerant cushions, short turf-forming generative perennial shuttle species, perennial stayers, and pauciennial (short-lived) colonists.

Figure 15. *Grimmia ovalis* with capsules, a rock dweller on Socotra Island. Photo by Michael Lüth, with permission.

Figure 16. *Grimmia laevigata* with capsules, a rock dweller on Socotra Island. Photo by Hermann Schachner, through Creative Commons.

Figure 17. *Grimmia laevigata*, dry, a rock dweller on Socotra Island. Photo by Janice Glime.
Chapter 8-12: Tropics: Rocks and Inselbergs

In her study of bryophytes on rock outcrops in Brazil, Silva found that most species were monoicous (26 spp. compared to 20 dioicous species) (Silva 2012; Silva et al. 2014b). Nevertheless, the three most frequent species were dioicous. But of these three, two rarely produced sporophytes and one had them only occasionally.

Peñaloza-Bojacá et al. (2018a) found that asexual reproduction was important for several of the key species of mosses on Brazilian ironstone outcrops. Surprisingly, dioicous mosses had the highest sexual expression and reproductive success, with most of these species having a female bias. Of the 108 species, 70% were reproducing. A total of 50% of the specimens were reproducing either sexually or asexually. Mosses exhibited mostly asexual reproduction, whereas liverworts mostly exhibited sexual reproduction. Of the asexually reproducing species, 31% had gemmae and 69% had other deciduous propagules. Among the dioicous species, the majority had a female bias.

Pôrto et al. (2017) specifically studied the life cycle strategies of the widespread moss *Bryum argenteum* (Figure 20) from a rock outcrop in northeastern Brazil. They noted that despite the severe water constraints of the inselbergs, dioicous mosses are able to colonize rock outcrops and inselbergs. Previous researchers had found that in northeastern Brazilian rock outcrops, only *Bryum argenteum* frequently had sporophytes (Valente & Pôrto 2006; Silva & Germano 2013; Silva et al. 2014a, b). This dioicous species has several asexual strategies – axillary bulbils, rhizoidal gemmae (tubers), and caducous shoot apices (Frey & Kürschner 2011), complemented with numerous small spores when it reproduces sexually (Söderström 1994). Despite its asexual options, 93% of the rock outcrop colonies were expressing sex (Pôrto et al. 2017). Although there was a slight female bias, the ratio was only 56:44 female to male. The relationship of number of sporophytes to male:female sex ratio is shown in Figure 21.

So why is *Bryum argenteum* (Figure 20) so productive with sporophytes on the rocks when most other dioicous species are unable to succeed on these rocks? Cronberg et al. (2006, 2008) may have the answer. They found that mites are able to disperse the asexual propagules and that springtails (*Collembola*; Figure 22) and possibly mites as well facilitate fertilization. Another factor that may contribute to the success of *B. argenteum* on the rocks and
elsewhere is the ability of antheridia to survive desiccation and rehydration, then to release viable sperm (Shortlidge et al. 2012; Stark et al. 2016).

Dispersal

Dispersal can limit the species that reach inselbergs because the surrounding vegetation is of a completely different type (Burke 2002a). Frahm and Porembski (1994) considered the inselbergs of western Africa to be refugia for dry-adapted bryophyte species. Burke (2002a) investigated the role of inselbergs in Namibia as refugia for tracheophyte species. These inselbergs are considered to have a high recolonization potential and a high diversity relative to the landscape. Burke found that gene flow and nutrient flow occur from the inselbergs to the surrounding lowlands. The granite inselbergs support longer-lived species of stable communities, whereas the dolerite inselbergs support transient communities of short-lived species. Regional differences relate to climate, with differences in climate and geology contributing. Altitude is likewise an important variable. Species of granite inselbergs are more closely allied to the surrounding habitats than are those of dolerite inselbergs. Burke concluded that conserving groups of inselbergs is more important to conserving their unique species than conserving isolated mountains. "Stepping stone" inselbergs have greater potential for conserving those species with short dispersal ranges.

These principles should likewise apply to bryophytes, but most likely at a greater distance scale. One way that bryophyte dispersal is facilitated to boulders and inselbergs is having a large number of propagule sources nearby. This can be other boulders and inselbergs, but for many species, it is the ability to grow on other types of substrates. Pócs (1982) demonstrated that many of the tropical species of Meteoriaceae (Figure 69-Figure 70), Neckeraeae (Figure 23-Figure 24), Pterobryaceae (Figure 25), Plagiochila (Figure 26), and Lejeuneaceae (Figure 37) that are typically corticolous (growing on bark) may also be abundant on rocks.
Desiccation Recovery

One area of adaptations that was usually ignored in early studies was physiological adaptations. Lüttge et al. (2008) reported strong quenching of chlorophyll fluorescence in the three desiccated bryophytes in their study of three poikilohydric, homiochlorophyllous moss species from sun-exposed rocks of a Brazilian tropical inselberg. Using Campylopus savannarum (Figure 27), Rhacocarpus fontinaloides (see Figure 29), and Ptychomitrium vaginatum (see Figure 30), they concluded that these species have photo-oxidative protection that permits them to live on exposed rocks that experience high light intensity. They achieve this by a reduction of the base chlorophyll fluorescence to nearly zero. Upon rewetting there is a rapid recovery to higher values in the first 5 minutes, requiring more than 80 minutes to reach equilibrium. These adaptations help to define their niches, with C. savannarum forming an inner belt and R. fontinaloides forming an outer belt around the vegetation. Ptychomitrium vaginatum, on the other hand, lives in small cushions on bare rock. Nevertheless, these three species differ little in their reduction of fluorescence or rewetting recovery and have only slight differences in photosynthetic capacity. The researchers suggest that CO₂ acquisition is a greater problem in P. vaginatum than in the other two species, with water films causing limitations in CO₂ uptake.
Interactions with Other Plants

As noted by During and van Tooren (1990) as a general principle, bryophyte habitats can be defined by not only the physical environment, but also the tracheophyte vegetation associated with it. Nevertheless, at that time few studies had analyzed the functionality of these interactions.

Tracheophytes on boulders and inselbergs collect soil, provide shade, and retain moisture for longer times than unvegetated areas. Protection by the monocot *Cyanotis lanata* (Figure 31) permits *Archidium* (see Figure 32) to survive on savannah rock outcrops in southwestern Nigeria (Egunyomi 1984; Oluwole & Adetunji 2010). [The naming of this *Archidium* has been problematic, with Egunyomi naming it *Archidium ohiense*, then Frahm and Porembski (1994) determining it to be *Archidium globiferum* in West Africa. However, currently it seems to be considered to be *Archidium acanthophyllum.*] During the rainy season, the annual mosses *Bryum argenteum* (Figure 20) and *Pelekium gratum* (Figure 33) may also appear in this association (Egunyomi 1984).
On these southwestern Nigerian inselbergs, there is a three-member association that illustrates relationships among the moss *Archidium acanthophyllum* (see Figure 32), tracheophyte *Cyanotis lanata* (Figure 31), and lichen *Diploicia canescens* (Figure 34) (Oyesiku & Amusa 2010). Oyesiku and Egunyomi (2004) found a frequency of 50% of occurrences of *Archidium acanthophyllum* with *Cyanotis lanata*, whereas only 20% grew alone and 30% grew with other plants, suggesting some benefit from its association with *C. lanata*. But these two species grow best in somewhat different optima. For *C. lanata*, the optimum pH is 6.7, whereas it is 7.7 for *A. acanthophyllum*. *Cyanotis lanata* density increases and *Archidium acanthophyllum* decreases from March to September, whereas both the *A. acanthophyllum* and *C. lanata* decrease from September to December (Figure 35). This is likely due to the strong increase in temperature of the substrate to 39.6°C in December. Both plants are harmed at temperatures above 50°C. In June and September, the relative humidity above the vegetation increases significantly, with a mean of 79% during the study. Data indicate that *C. lanata* and *A. acanthophyllum* facilitate each other. As noted in other ecosystems (e.g. Richardson 1958; Edward & Miller 1977), thick bryophyte growths can serve as insulation to buffer the temperature of the underlying substrate. Richardson (1958) also noted that bryophytes could reduce evaporation. Both of these properties provide a more favorable environment for the roots of tracheophytes. Oyesiku and Egunyomi (2004) verified that these relationships are true for bryophytes on inselbergs.

![Figure 34. *Diploicia canescens*, a lichen that occurs on rock outcrops in southwestern Nigeria. Photo by Jymm, through public domain.](image)

On these inselbergs in southwestern Nigeria, the lichen *Diploicia canescens* (Figure 34) maintains a consistent density throughout the year (Oyesiku & Amusa 2010). On the other hand, the monocot *Cyanotis lanata* (Figure 31) and the moss *Archidium acanthophyllum* (see Figure 32) coexist, but in this relationship, the density of *A. acanthophyllum* decreases as that of *Cyanotis lanata* increases from March to September (Figure 35). From September to December, both species decrease (Figure 35). Whereas the moss and monocot seem to facilitate each other, the lichen is inhibited by growth of these two species.

![Figure 35. Quarterly density dominance of three interacting plants and lichens on the Baasi Inselberg, Nigeria. Modified from Oyesiku and Egunyomi 2004.](image)

The bryophytes and tracheophytes can also have nutrient cooperation. Bryophytes collect dust and runoff that contain nutrients. These can later be transferred to the tracheophytes. Oyesiku (2018 in press) investigated these relationships between *Archidium acanthophyllum* (see Figure 32) and *Cyanotis lanata* (Figure 31).

Lava Flows

Tropical lava flows provide unique rock habitats. Ah-Peng et al. (2007) investigated the altitudinal differences on a recent lava flow (19 years old) on Réunion Island. Because of the uniformity of the lava flow, it is easier than in most habitats to isolate variables such as altitudinal effects. They surveyed bryophyte communities from 250 to 850 m asl using the three substrates of ground and rachises of two fern species. As in many other altitudinal studies, bryophyte diversity increased with altitude. They identified 70 species of bryophytes in the study, with diversity related to microhabitats. The lava flows support a high number of pioneer organisms that are able to colonize remnant lowland rainforest.

Richness and Diversity

Rocky outcrops and inselbergs form islands amid the surrounding soil vegetation (Silva et al. 2014a, b), although Silva and coworkers did not compare the flora of the inselbergs with the surrounding vegetation. If they are correct, the species that arrive there must often come from a distance and must rely on stochasticity (unpredictable events). Silva and coworkers demonstrated that such processes are the major factors determining species clustering at a regional scale. Such a relationship was not clear at the local level.

Later, Sarthou et al. (2017) provided us with evidence that the surrounding forest, regional climate, and inselberg features including altitude, shape, habitats, summit vegetation, epiphytism, and fire events contribute to shifts in the distribution of species and functional traits. These factors determine the floristic patterns on inselbergs in French Guiana and demonstrate that the surrounding forest
can contribute to the inselberg vegetation. This is probably even more likely for bryophytes.

Ribeiro et al. (2007) often found xerophytes and hydrophytes (of the tracheophytes) side-by-side on the boulders due to the small scale environmental heterogeneity. Such conditions also support the great variety of bryophytes on these rocks.

Africa

The inselbergs of West Africa are geologically old and typically dome-shaped monoliths (Porembski & Barthlott 1996). The vegetation differs starkly from that of the surrounding vegetation. The inselbergs provide a severe climate with extreme temperatures and light intensity. Nevertheless, ~600 tracheophyte species occur among these inselbergs, predominately in the grasses (Poaceae), sedges (Cyperaceae), and legumes (Fabaceae). The rocks provide such habitats as cryptogamic crusts, rock pools, monocotyledonous mats, and ephemeral flush vegetation that can be distinguished based on physiognomy (Porembski et al. 1997). The ephemeral flush vegetation is the richest in species (Porembski & Barthlott 1996). Moss cushions, particularly those of Bryum arachnoideum (Figure 10), can establish where seepage water is sufficient (Frahm & Porembski 1994).

The tracheophytes on Ivory Coast inselbergs exhibit low beta diversity – that is, the flora is relatively uniform across the country (Porembski & Barthlott 1996). Higher beta diversity occurs in the small habitats like rock pools, presumably due to stochasticity. Diversity decreases from savannahs toward the rainforest zone. In the drier areas in the northern part of the Ivory Coast, the growing conditions are less favorable, permitting weak competitors to have a better chance.

On the tropical inselbergs of the Ivory Coast (Côte d'Ivoire) (Figure 36) and Zimbabwe, Frahm and coworkers found that the number of bryophyte species does not correlate with either size of inselberg or elevation (Frahm 1996; Frahm et al. 1996). In the Ivory Coast, species richness is greater when the inselberg is in the savannah compared to those in rainforest regions. In the Ivory Coast, they found total species richness of inselbergs to be 31, whereas in Zimbabwe it was only 25. Only 3 families are represented. These researchers found that inselberg bryophytes have larger distribution areas and no endemic species compared to tracheophytes on them. Eight species are common to both. One interesting feature is that these bryophytes typically lack sexual reproduction, but have "conspicuous" vegetative reproduction.

The highest number of bryophyte species from African inselbergs was in the Côte d'Ivoire with 31 species, contrasting with the lowest number of 16 in the Seychelles. This can probably be explained by the location of Côte d'Ivoire in the rainforest as well as in the savanna belt, widening the surrounding vegetation types. Most of the species of bryophytes are acrocarpous mosses, with only Sematophyllum fulvifolium and Erythrodonium squarrosum representing the pleurocarpous mosses.

Frahm and Porembski (1997) visited the small tropical African country of Benin. They identified 8 liverworts and 10 mosses from inselbergs. Of these, 5 liverworts (Acrolejeunea emergens (Figure 37), Riccia atropurpurea (Figure 38, R. congoana (Figure 39), R. discolor, R. moenkemeyeri) and all of the mosses [Archidium ochioense (possibly A. acanthophyllum; Figure 32), Brachymenium acuminatum (Figure 40), B. exile (Figure 41), Bryum arachnoideum (Figure 10), B. argenteum (Figure 20), Bryum depressum, Garckeoa moenkemeyeri (see Figure 42), Hyophila involuta (Figure 43-Figure 44), Philonotis mniobryoides (see Figure 58) and Weissia cf. edentula (Figure 45)] proved to be new records for the country. This may relate more to lack of studies than to uniqueness of the inselbergs.

Figure 36. Inselberg (kopje) in Marada Hills, Zimbabwe. Photo by Kevin Walsh, through Creative Commons.

The highest number of bryophyte species from African inselbergs was in the Côte d'Ivoire with 31 species, contrasting with the lowest number of 16 in the Seychelles. This can probably be explained by the location of Côte d'Ivoire in the rainforest as well as in the savanna belt, widening the surrounding vegetation types. Most of the species of bryophytes are acrocarpous mosses, with only Sematophyllum fulvifolium and Erythrodonium squarrosum representing the pleurocarpous mosses.

Frahm and Porembski (1997) visited the small tropical African country of Benin. They identified 8 liverworts and 10 mosses from inselbergs. Of these, 5 liverworts (Acrolejeunea emergens (Figure 37), Riccia atropurpurea (Figure 38, R. congoana (Figure 39), R. discolor, R. moenkemeyeri) and all of the mosses [Archidium ochioense (possibly A. acanthophyllum; Figure 32), Brachymenium acuminatum (Figure 40), B. exile (Figure 41), Bryum arachnoideum (Figure 10), B. argenteum (Figure 20), Bryum depressum, Garckeoa moenkemeyeri (see Figure 42), Hyophila involuta (Figure 43-Figure 44), Philonotis mniobryoides (see Figure 58) and Weissia cf. edentula (Figure 45)] proved to be new records for the country. This may relate more to lack of studies than to uniqueness of the inselbergs.

Figure 37. Acrolejeunea emergens (Lejeuneaceae) with rotifers (reddish). Photo courtesy of Claudine Ah-Peng.

Figure 38. Riccia atropurpurea, a liverwort that occurs on inselbergs in Benin, Africa. Photo from Missouri Botanical Garden, through Creative Commons.
Figure 39. *Riccia congoana*, a liverwort that occurs on inselbergs in Benin, Africa. Photo from Missouri Botanical Garden, through Creative Commons.

Figure 40. *Brachymenium acuminatum*, a moss that occurs on inselbergs in Benin, Africa. Photo by Jan-Peter Frahm, with permission.

Figure 41. *Brachymenium exile*, a moss that occurs on inselbergs in Benin, Africa. Photo by Show Ryu, through Creative Commons.

Figure 42. *Garckeia flexuosa; Garckeia moenkemeyeri* is a moss that occurs on inselbergs in Benin, Africa. Photo by Manju C. Nair, through Creative Commons.

Figure 43. *Hyophila involuta* habitat in India. Photo by Michael Lüth, with permission.

Figure 44. *Hyophila involuta*, a moss that occurs on inselbergs in Benin, Africa. Photo by Michael Lüth, with permission.
Burke (2002b) found that in Namibia, soil properties do not seem to have an important role in the arid environments. Furthermore, parameters such as slope aspect and angle play a minor role. The grassland and shrubland plant communities relate primarily to general habitat, elevation, size of inselberg, and geology. The inselbergs are able to harbor plant species from neighboring higher rainfall areas, thus providing a propagule source for recolonization.

Burke (2003) found that granite inselbergs in Namibia are more closely related to mountain habitats than are the dolerite ridges. And as expected, higher inselbergs are more closely related to mountain habitats than are lower inselbergs. Many species, especially those with broad habitat requirements, are common to both inselbergs and mountain habitats. On the other hand, the short-lived transient species are more similar between the dolerite ridges and the “mainland.” Thus, the granite inselbergs can be important sources of remnant populations from a wetter past, whereas the dolerite ridges can form species pools for the rangeland.

Kürschner (2003) extended our knowledge of rock outcrops in the Jabal Arays area of Yemen. Here they found communities of Riccia jovet-astiae (see Figure 38-Figure 39) and Riccia argenteolimbatae on the thin soils overlying volcanic rock outcrops in monsoon areas where woodlands are characterized by Sterculia africana (Figure 46). These are typically accompanied by Mannia androgyna (Figure 47) and Barbula unguiculata (Figure 48-Figure 49). The shallow soils generally have large numbers of riccioid and marchantioid liverworts, with Riccia atromarginata, R. albolimbata (Figure 50-Figure 51), and R. argenteolimbata characterizing the association.
In the Drakensberg area of South Africa, Hodgetts \textit{et al.} (1999) found that lowland sandstones support common and widespread species that can survive long drought periods. More species are present where there is more moisture, as in ravines, rock crevices, and on stream banks. A different suite of species occur on shaded sandstone cliffs and rocks. A third type of community occurs in flushes. Exposed rocks generally have few species, with \textit{Grimmia pulvinata} (Figure 52) and \textit{Ptychomitrium cucullatifolium} (Figure 53) being common here. On the basalt rocks, at about 3,000 m asl, most species are restricted to crevices, on boulders, and in the turf below the cliffs. \textit{Quathlamba debilicostata} (in narrow cracks) and \textit{Orthotrichum oreophilum} (in cushions on inner vertical and overhanging surfaces of wider cracks; Figure 54) seem to occur only in vertical cracks in the basalt cliffs.
Figure 54. Orthotrichum sp. on vertical rock; Orthotrichum oreophilum occurs on the inner vertical surfaces of wide cracks of inselbergs. Photo by Algirdas, through public domain.

Neotropics

Porembski et al. (1998; Porembski 2007) defined inselbergs as "mostly" dome-shaped rock outcrops in all climatic and vegetational zones of the tropics. In Brazil, these consist of Precambrian granites and gneiss that form ancient and stable landscape elements. Because of their exposure, they create harsh conditions of microclimate. These strikingly different conditions result in strikingly different vegetation. One of the most characteristic communities is one of monocotyledonous mats. These can provide cover and retain moisture that permits some bryophytes to survive there. Porembski and coworkers, studying tracheophytes, found that the alpha diversity (community diversity) of the mats differed little among the six outcrops studied. However, beta diversity (regional) differed greatly between sites. The Brazilian rock outcrops demonstrate a higher diversity compared to those of West African inselbergs, with the appearance of more endemics in the Brazilian communities. However, some species considered endemics at that time may have proved to be synonyms of more widespread species since then. Nevertheless, the diversity is high, perhaps due to the large species pool.

Silva (2012) studied the rock communities in the state of Pernambuco, Brazil. She divided the microhabitats on the outcrops into exposed rock, fissure, soil island, and cacimba (rock pools – pit in wet or marshy ground, collecting the water present in the soil that accumulates in it by condensation). Substrates also differed: rock, live trunk, dead trunk, and soil. She identified 49 species in 36 genera and 20 families. Of these, 34 were mosses, 15 were liverworts. The most species-rich families were the leafy liverworts Lejeuneaceae (Figure 37) (7 spp) and Frullaniaceae (Figure 55) (4 spp), and the moss families Bryaceae (Figure 20) (6 spp), Dicranaceae (Figure 27-28, Figure 56) (4 spp), and Pottiaceae (Figure 14) (4 spp), comprising 53% of the species. The liverwort genus Frullania (Figure 55) and moss genus Campylopus (Figure 56) had the highest species richness. The most common species were the mosses Brachymenium exile (Figure 57), Bryum argenteum (Figure 20), Campylopus pilifer (Figure 56), C. savannarum (Figure 27-Figure 28), Philonotis hastata (Figure 58), and Syrrhopodon gaudichaudii (Figure 59-Figure 60), and the liverworts Frullania kunzei (Figure 55) and Riccia vitilii (Figure 61); frequencies are in Table 1. Two of the less common species, Atractylcarpus brasiliensis (see Figure 62) and Riccia taeniiformis (Figure 63), are endemic to Brazil. Turf comprised 74% of the life forms. The most species richness (37 spp., 89%) occurred on soil islands that were 1.0 and 4.9 cm deep, whereas only 12 species occurred on rock. Approximately half the species had a wide distribution pattern. Similarity among sites was less than 50%.

Figure 55. Frullania kunzei, a frequent rock outcrop species in Brazil. Photo by Y. Inturias, through Creative Commons.

Figure 56. Campylopus pilifer on rock outcrop in Brazil. Photo courtesy of Tatiany Oliveira da Silva.
Figure 57. *Brachymenium exile*, one of the most common species on rock outcrops in Brazil. Photo by Show Ryu, through Creative Commons.

Figure 58. *Philonotis hastata*, a common species on rock outcrops in Brazil. Photo by Y. Inturias, through Creative Commons.

Figure 59. *Syrrhopodon gaudichaudii*, on a rock outcrop in Brazil. Photo courtesy of Tatiany Oliveira da Silva.

Figure 60. *Syrrhopodon gaudichaudii* demonstrating the leaf curling that helps it conserve water on exposed rocks. Photo by Juan David Parra, Creative Commons.

Figure 61. *Riccia vitalii*, a common liverwort on rock outcrops in Brazil. Photo courtesy of Tatiany Oliveira da Silva.

Figure 62. *Atractylocarpus madagascariensis*; *Atractylocarpus brasiliensis* occurs on rock outcrops in Brazil, where it is endemic. Photo by Jan-Peter Frahm, with permission.
Table 1. The most common bryophyte species on rock outcrops in Brazil (Silva 2012).

<table>
<thead>
<tr>
<th>Species</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Campylopus savannarum (Figure 27-Figure 28)</td>
<td>97</td>
</tr>
<tr>
<td>Campylopus pilifer (Figure 56)</td>
<td>52</td>
</tr>
<tr>
<td>Bryum argenteum (Figure 20)</td>
<td>30</td>
</tr>
<tr>
<td>Frullania kunzei (Figure 55)</td>
<td>15</td>
</tr>
<tr>
<td>Philonotis hastata (Figure 58)</td>
<td>14</td>
</tr>
<tr>
<td>Syrrhopodon gaudichaudii (Figure 59-Figure 60)</td>
<td>14</td>
</tr>
<tr>
<td>Barbula indica (Figure 64-Figure 65)</td>
<td>13</td>
</tr>
<tr>
<td>Brachymenium exile (Figure 57)</td>
<td>13</td>
</tr>
<tr>
<td>Riccia vitalii (Figure 61)</td>
<td>12</td>
</tr>
<tr>
<td>Octoblepharum albidum (Figure 66)</td>
<td>10</td>
</tr>
</tbody>
</table>

Like Silva (2012), when studying Brazilian ironstone outcrops Peñaloza-Bojacá et al. (2018a) found the greatest bryophyte diversity on soil, but also on the rocks. They identified 108 species of bryophytes (42 liverworts and 66 mosses). In Cangas sites, Peñaloza-Bojacá et al. (2018b) reported 96 bryophyte species from Brazilian ironstone outcrops. These were comprised of 56 mosses and 40 liverworts, with 68 of the species associated with tree microhabitats and 67 species with bark substrates. The ironstone sites seem to harbor more species that other types of rock outcrops in the country.

Silva and Germano (2013) studied rock outcrops in the caatinga biome in the state of Paraíba, Brazil, from February 2010 to May 2011 and identified 21 bryophyte species, 6 liverworts and 15 mosses. They were able to identify three species clusters. These were generalist species that required high light. Their leaf structures generally permitted them to withstand drying environmental conditions.

In their study of the campos rupestres of Chapada Diamantina, Bahia, Brazil, Bastos et al. (2000) identified 65 taxa (41 moss species, 24 liverwort species) comprising a total of 20 families. Most of these taxa seem to be restricted to the Chapada Diamantina and are not known from other parts of the state.
Sarthou et al. (2009) examined the factors that have a role in the seral stages on the inselbergs in French Guiana. The environment is harsh, with violent storms, intense runoff, and lightning strikes, destroying vegetation cover and organic matter. They considered the vegetational changes to be truly successional, not conditioned by slope. The vegetation experienced cyclic changes that were reinitiated by fire (lightning), wood-destroying fungi, and termites that destroyed the vegetation.

In her inselberg succession studies, Sarthou and coworkers (2009, 2017) found that where the aerial parts of Clusia minor (Figure 67) have been destroyed, the ground frequently is covered with mosses and lichens. Their rhizoids capture and retain soil particles, preventing them from being flushed away by water.

Sarthou et al. (2009) examined the factors that have a role in the seral stages on the inselbergs in French Guiana. The environment is harsh, with violent storms, intense runoff, and lightning strikes, destroying vegetation cover and organic matter. They considered the vegetational changes to be truly successional, not conditioned by slope. The vegetation experienced cyclic changes that were reinitiated by fire (lightning), wood-destroying fungi, and termites that destroyed the vegetation.

In her inselberg succession studies, Sarthou and coworkers (2009, 2017) found that where the aerial parts of Clusia minor (Figure 67) have been destroyed, the ground frequently is covered with mosses and lichens. Their rhizoids capture and retain soil particles, preventing them from being flushed away by water.

Sarthou et al. (2009) examined the factors that have a role in the seral stages on the inselbergs in French Guiana. The environment is harsh, with violent storms, intense runoff, and lightning strikes, destroying vegetation cover and organic matter. They considered the vegetational changes to be truly successional, not conditioned by slope. The vegetation experienced cyclic changes that were reinitiated by fire (lightning), wood-destroying fungi, and termites that destroyed the vegetation.

In her inselberg succession studies, Sarthou and coworkers (2009, 2017) found that where the aerial parts of Clusia minor (Figure 67) have been destroyed, the ground frequently is covered with mosses and lichens. Their rhizoids capture and retain soil particles, preventing them from being flushed away by water.

Jamaicensis (Figure 74) occurs in some Central American countries as well as Florida; it is sterile in Florida. This species typically occurs there with Marchantia paleacea (Figure 75). Hypopterygium tamarisci (Figure 76) is a tropical relic in Florida, also known from both Central and South American tropics. Leptodictyum riparium (Figure 77), also a Floridian limestone dweller, is more widespread in aquatic habitats, but is known from Mexican tropics. Gymnostomiella vernicosa (Figure 78-Figure 79) is also in Jamaica, Haiti, and Mexico. Plaubelia sprengelii (Figure 80) also occurs in the West Indies, Mexico, and Central America, whereas Syrrhopodon prolifer (Figure 81) occurs in these locations plus South America, typically on thin layers of soil over limestone in protected pockets. Taxiphyllum cuspidatum (see Figure 82) occurs on boulders. Hyophila involuta (Figure 43-Figure 44) is a common tropical rock dweller, but is again restricted to limestone in Florida. Fissidens hallianus (see Figure 72) is restricted in the USA to Florida. The other species Breen found on the Floridian limestone are not tropical.
Figure 70. *Papillaria crocea*. *Papillaria* is restricted mostly to bark in hammocks in Florida. Photo by Peter Woodard, through public domain.

Figure 71. *Cyclodictyon albicans* with capsules, in a tropical genus that also occurs in Florida, USA. Photo by Claudio Delgadillo Moya, with permission.

Figure 72. *Fissidens asplenioides* from the Neotropics, in a genus found in swamps in Florida. Photo by Michael Lüth, with permission.

Figure 73. *HyophidHELPHUS* sp. with capsules; *H. agraria* is a Neotropical species that in Florida is restricted to limestone. Photo by Fred Essig, with permission.

Figure 74. *Weissia jamaicensis* on limestone rock bands, Uige Province, Angola, a species that also occurs on limestone rocks in Florida, USA, and the Neotropics. Photo by T. Lautenschläger, through Creative Commons.
Figure 75. *Marchantia paleacea*, a species that occurs on limestone rocks in Florida, USA, and the Neotropics. Photo by David Long, with permission.

Figure 76. *Hypopterygium tamarisci*, a species that occurs on limestone rocks in Florida, USA, and the Neotropics. Photo by Peter Woodard, through Creative Commons.

Figure 77. *Leptodictyum riparium*, a species that occurs on limestone rocks in Florida, USA, and the Neotropics. Photo by Michael Lüth, with permission.

Figure 78. *Gymnostomiella vernicosa tenerum*, a species that occurs on limestone rocks in Florida, USA, and in the Neotropics. Photo by Sean Edwards, with permission.

Figure 79. *Gymnostomiella vernicosa tenerum* gemma, a species that occurs on limestone rocks in Florida, USA, and in the Neotropics. Photo by Sean Edwards, with permission.

Figure 80. *Plaubelia sprengelii*, a species that occurs on limestone rocks in Florida, USA, and the in Neotropics. Photo by Jan-Peter Frahm, with permission.
Limited competition permits stochastic processes to determine communities. Surprisingly, inselberg vegetation units of South America and Africa are similar.

Moss cushions are common. Adaptations such as hyaline tips and awns protect against UV light during dry periods. Leaves often twist when dry, have infolded leaf margins, thickened cell walls, small cells, and papillae to protect against UV damage and to retain water longer. Lobules help to store water in some leafy liverworts. Mosses such as Leucobryum have hyaline cells that store water and protect the chlorophyll. Sexual reproduction is infrequent. Photo-oxidative protection protects chlorophyll from UV light when dry. Riccia species on thin soil produce large spores with short-range dispersal and storage in diaspore banks, permitting them to be shuttle species. Other bryophytes are drought-tolerant cushions, short turf-forming perennial shuttle species, perennial stayers, and pauciennial colonists. Mosses are more likely to have asexual reproduction, whereas liverworts mostly exhibit sexual reproduction. Bryum argenteum is a common rock resident that frequently has sporophytes, perhaps due to sperm dispersal by springtails and mites. It is important to conserve groups of inselbergs to facilitate stepping stone dispersal. For others (e.g. Meteoriaceae, Neckercaceae, Pterobryaceae, Plagiochila, and Lejeuneaceae), having other suitable substrates increases dispersal potential.

In some cases the bryophytes retain moisture and collected nutrients that provide for the tracheophyte roots, whereas the tracheophyte provides shade that cools the bryophytes and protects from UV damage, as seen in the moss Archidium globiferum and the shrub Cyanotis lanata.

In Africa, inselbergs surrounded by savannah have a higher species richness than when forests surround them. Inselbergs can harbor recolonization sources for surrounding disturbed dry habitats. Asexual reproduction predominates. Leafy liverworts seem to be more common on the Neotropical rock outcrops than on the African inselbergs. Riccia species are common on thin soils in both areas. Having trees and shrubs to provide shade can greatly increase the diversity. Limestone areas in subtropical Florida, USA, provide similar habitats and harbor a number of tropical species.

Acknowledgments

Tatiany Oliveira da Silva was my inspiration for this subchapter. She generously gave me her collected papers, her images, her thesis, and her time to review this subchapter.

Literature Cited
8-12-24 Chapter 8-12: Tropics: Rocks and Inselbergs

CHAPTER 8-13
TROPICS: INTERACTIONS AND ROLES

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Role</td>
<td>8-13-2</td>
</tr>
<tr>
<td>Effect on Tree Seedlings</td>
<td>8-13-4</td>
</tr>
<tr>
<td>Bryophyte and Fauna Relationships</td>
<td>8-13-4</td>
</tr>
<tr>
<td>Anthropods</td>
<td>8-13-5</td>
</tr>
<tr>
<td>Vertebrates</td>
<td>8-13-7</td>
</tr>
<tr>
<td>Reptiles and Amphibians</td>
<td>8-13-7</td>
</tr>
<tr>
<td>Rodents</td>
<td>8-13-8</td>
</tr>
<tr>
<td>Bryophytes on Fungi</td>
<td>8-13-8</td>
</tr>
<tr>
<td>Summary</td>
<td>8-13-8</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>8-13-9</td>
</tr>
<tr>
<td>Literature Cited</td>
<td>8-13-8</td>
</tr>
</tbody>
</table>
CHAPTER 8-13
TROPICS: INTERACTIONS AND ROLES

Role

Although we have discussed the role of bryophytes in retaining water earlier, its role in water relations in the tropics cannot be overemphasized. Romero (1999) suggested that bryophyte sensitivity to moisture could be an indicator of the health of the forests where the bryophytes abound. In one submontane forest in Tanzania, epiphytes (including bryophytes, lichens, and tracheophytes) comprised 2,130 kg ha\(^{-1}\), intercepting about 15,000 L of rainfall water per hectare (Pócs 1980). In the elfin (cloud) forest, at only 2,120 m, a biomass of 14,000 kg ha\(^{-1}\) intercepts nearly 50,000 L ha\(^{-1}\). Thus, the impact of bryophytes on the water and nutrient regime of the cloud forest is surely significant.

In montane forests, bryophytes make considerable contribution to both biomass and litter. Growth of epiphytic bryophytes in Monteverde, Costa Rica, was approximately 39-49.9% per year, providing a net productivity of 122-203 g m\(^{-2}\) yr\(^{-1}\) (Clark et al. 1998). Nitrogen accumulation in these bryophytes was also significant at 1.8-3.0 g N m\(^{-2}\) yr\(^{-1}\). Most of the decomposition seems to occur the first year, with loss from litterbags in the canopy of 17±2% and 19±2% by the end of the second year. On the ground, losses were quite different, with 29±2% the first year and 45±3% after two years. One advantage to the ecosystem was that approximately 30% of the initial N mass was released rapidly both on the ground and from canopy litter. Furthermore, green shoots on the ground lost about 47% of their initial N content within the first three months. Although these were significant rapid releases from these sources, providing a steady supply of N to the soil, the remaining N content was recalcitrant, creating an N sink within the bryophytes. What may be more important is their role in transforming N from mobile forms reaching the canopy as atmospheric deposits to highly immobile forms. This maintenance of low N levels despite atmospheric deposition may help to maintain these low-nutrient bryophyte habitats and prevent the conversion to graminoids more typical of fertilized soil conditions.
Even in lowland floodplain forests, bryophyte biomass can be significant in the accumulation of nutrient elements. With an accumulation of only 210-1,400 kg ha\(^{-1}\) ash-free dry weight biomass on 10-year-old stakes in a floodplain, Frangi and Lugo (1992) still considered that the bryophytes in these floodplains served as biotic filters of flood waters that could retain nutrients in the terrestrial system.

In Guadeloupe and other tropical locations, nutrients in the canopy, particularly in the upper canopy of the montane rainforest, are released from bryophytes in pulses (Coxson 1991). These pulses result from rewetted bryophytes that have suffered membrane damage during desiccation. The ions are normally those of intracellular pools that were not otherwise available to the throughfall. During rewetting experiments, concentrations reached 11.8 kg ha\(^{-1}\) yr\(^{-1}\) for N, 1.4 kg ha\(^{-1}\) yr\(^{-1}\) for P, and 80.1 kg ha\(^{-1}\) yr\(^{-1}\) for K.

Bryophytes also moderate the microclimate. Stuntz et al. (2002) reported the importance of epiphytes in moderating the climate of the crowns in the rainforest, creating a natural air conditioning. In this case, they were discussing members of the pineapple family, finding that water loss through evaporative drying at microsites adjacent to them is nearly 20% lower than at exposed microsites. They create a habitat that is significantly lower in temperature than sites with no epiphytes in the same tree crown. Hence, these tracheophytic epiphytes create a habitat more hospitable to bryophytes, but it is likely that the bryophytes also contribute to evaporative cooling, thus helping to lower the temperature. These cooler microsites with greater moisture provide suitable habitats for small arthropods.

Tropical ferns are often associated with bryophyte-covered substrates. Carvalho et al. (2012) noted that *Cochlidium connellii* (see Figure 4), a fern in the Polypodiaceae, grows among mosses in rocky crevices. *Trichomanes robustum* (Hymenophyllaceae; Figure 3) and *Terpsichore taxifolia* (Polypodiaceae; Figure 5) occur on moss-covered trunks in the upper montane forest in Brazil and other locations in the tropics.
Effect on Tree Seedlings

One might think that bryophytes would benefit tree seedlings by maintaining moisture, but often they are a detriment. The shade tents in the experiments at the alpine treeline in northern Ecuador did indeed have a greater growth of mosses, indicating greater moisture (Bader et al. 2007). But thick mats of mosses can be detrimental. Bader and coworkers found that seedlings of forest trees in the tropics often appeared to have negative growth because the bryophytes, especially mosses, grew up around them. This growth often deprived the seedling leaves of light. Bader and coworkers concluded that the seedlings grew in the mosses because no other substrate was available in the forest and did not appear to be benefitted by them.

Bryophyte and Fauna Relationships

In an Ecuadorian cloud forest (Figure 7), Zitani et al. (2018) found annelids, molluscs, crustaceans, millipedes, centipedes, arachnids, and hexapods (and others) among the bryophytes. And of course many birds use bryophytes for making nests, especially the pendent and mat-forming species (Cao & Caihua 1991) (see also Chapter 16). And some rodents occur only in mossy forests (see Chapter 17).

When the new species *Herbertus sendtneri* (Figure 6) was discovered, it displayed swollen tips resembling gynoecia (Gradstein et al. 2018). These proved instead to be small, whitish colonies of protozoans that resemble gnathifers, but remain to be identified. These infected shoot tips failed to develop normally and instead produced branch innovations (1-2) below the swollen tips.
Insects abound in tropical forests, including those in bryophyte mats (Nadkarni & Longino 1990). Epiphytes can contribute antifeedants that help protect the host. Frahm and Kirchhoff (2002) tested alcoholic extracts from the moss Neckera crispa (Figure 9) and the liverwort Porella obtusata (Figure 10) on feeding by the slug Arion lusitanicus (Figure 11). Neckera crispa had only low antifeedant properties at 0.5% or more dry weight. Porella obtusata, on the other hand, was moderately effective at concentrations of 0.05%, with total effectiveness at 0.25% of dry weight.

Most of the animal interactions are discussed in the chapters on interactions in volume 2, but some deserve repetition here for those who want a quick view of their roles in the tropics. In addition to the many bryophytes in the tropics and the many more waiting to be discovered, there are likely many unusual or intimate relationships with insects to be discovered.

Arthropods

Many arthropods live among the epiphytic bryophytes. Yanoviak et al. (2004) compared the arthropod assemblages in the vegetative portions vs the humic portions of Neotropical cloud forest epiphyte mats. Many types of arthropods occur among the bryophytes of the Neotropical cloud forests. Bryophytes at different elevations and tree levels provide different conditions for these arthropods and thus increase their diversity in the tropics. Furthermore, the green and brown portions of the bryophytes support different communities, with the green portion containing twice as many individuals and species per gram dry mass compared to the brown portion.

Some species of invertebrates seem to be associated exclusively with bryophytic epiphytes. Bryospilus repens (Branchiopoda) has been considered a strictly epiphytic moss inhabitant (Cammaerts & Mertens 1999).

The rainforest brings new meaning to letting moss grow on your feet – or head or back. In the cloud forests of Papua New Guinea, at 2,000-3,000 m asl, one can find mosses (Daltonia angustifolia; Figure 12) and liverworts [Cololejeunea (Figure 13), Microlejeunea (Figure 14), and Metzgeria (Figure 15)] on the back of a beetle, a small weevil (Curculionidae) in the genus Gymnopholus (Figure 12) (Gressitt et al. 1965; Gradstein et al. 1984; Gradstein & Equihua 1995). Daltonia is not restricted to this weevil, but rather grows on bark and small branches of the montane rainforest where it is able to subsist when it is not being transported around the canopy. Gradstein and coworkers (1984) attribute the ability of Daltonia to inhabit the beetle to the ability of this moss to mature quickly and grow where the beetle lives. It is likely that the moss affords camouflage to the beetle. Could it also make the beetle distasteful?
Epizoic bryophytes occur on a variety of insects in the tropics. Epiphyllous liverworts sometimes extend their substrate to the forewings and pronotum of the Costa Rican shield mantids [*Choeradodis rhombicollis* (Figure 16) and *C. rhomboidea* (Figure 17)] (Lücking et al. 2010). These insects can become home to five species of liverworts. In their collection of 84 individuals, the researchers found 60 with epiphylls. They colonized more females than males and more of *C. rhombicollis* than *C. rhomboidea*. This is likely due to the longer lifespan of females and suggests that the same should be true for host leaves. The bryophytes may provide camouflage for the insects.

Several mantids and walking sticks are mimics of mosses or liverworts. In other cases, insect larvae may use epiphyllous bryophytes as host plants in the tropics (DeVries 1988).

Callaghan (1992) described the behavior of 16 *Lycaenidae* butterflies in Nigeria. The larvae of all these species grazed on epiphylls "such as lichens and fungi." Mimicry is much more common in the tropics than elsewhere. Occasionally epiphyllous bryophytes, especially liverworts, are able to contribute to this mimicry.

Insects and other animals associated with your bryophyte collections can cause immigration control to quarantine your specimens for months and may result in your never seeing them again. Heating/drying methods beforehand can drive these inhabitants out or kill them, increasing your chances of getting your samples through customs.
Vertebrates

Reptiles and Amphibians

Many tropical amphibians (see, for example, Allison & Kraus 2000) and some snakes and lizards are associated with bryophytes. Many tropical epiphytes provide nesting sites and cover for animals such as salamanders (Bruce 1999). Some amphibians use them as calling sites, with the bryophytes modifying the types of sounds they make. Others use them for egg-laying sites. See Chapters 14 (Amphibians) and 15 (Reptiles) in Volume 2 (Bryological Interaction) for details.

In a study in the montane cloud forest of Cameroon, Böhme and Fischer (2000) found lizards with a greenish coloration. This ground chameleon, *Rhampholeon spectrum* (Figure 18), was sporting an overgrowth of four species of typically epiphyllous liverworts from the family *Lejeuneaceae*. The species included *Cololejeunea jovetastiana* (see Figure 19) and *Colura digitalis* (Figure 20) as the most abundant; only a few plants of *Cololejeunea* sp. were present; *Lejeunea* (Figure 21) was present in only two samples.

![Figure 18. *Rhampholeon spectrum* in Cameroon, a species that can be inhabited by several species of liverworts in the *Lejeuneaceae*. Photo by Bernard DuPont, through Creative Commons.](image1)

![Figure 19. *Cololejeunea minutissima*, *Cololejeunea jovetastiana* is one of the leafy liverworts known to live on the lizard *Rhampholeon spectrum*. Photo by David T. Holyoak, with permission.](image2)

![Figure 20. *Colura digitalis*, one of the leafy liverworts known to live on the lizard *Rhampholeon spectrum*. Photo by Jan-Peter Frahm, with permission.](image3)

![Figure 21. *Lejeunea anisophylla*, *Lejeunea* is one of the genera of leafy liverworts known to live on the lizard *Rhampholeon spectrum*. Photo by Lionel Courmont, through Creative Commons.](image4)

But a stranger vision might be that of a lizard with a head dress! In the Mexican rainforest, *Corythophanes cristatus* (Figure 22-Figure 23), a lizard of the lowland rainforest of the Chiapas, sports a crown of filamentous algae including *Cladophora* (dominant; Figure 24), and Chaetophorales (Figure 25), with the tiny leafy liverwort *Taxilejeunea obtusangula* (Figure 26) living among them (Gradstein & Equihua 1995). This liverwort species is normally a common bark inhabitant, but also occurs on rocks (Evans 1911).
Figure 22. *Corythophanes cristatus*, a lizard species that uses its head as a shovel and sometimes carries a mantle of bryophytes there. Photo by Simon J. Tonge, through Creative Commons.

Figure 23. Head of *Corythophanes cristatus* showing colonization by bryophytes. Photo by Twan Leenders, with permission.

Figure 24. *Cladophora* sp., a green alga that lives on the heads of *Corythophanes cristatus*. Photo by Kristian Peters, through Creative Commons.

Figure 25. *Stigeoclonium* sp., an alga in the Chaetophorales – an order of green algae known to live on the heads of *Corythophanes cristatus*. Photo by Kristian Peters, through Creative Commons.

Figure 26. *Taxilejeunea obtusangula*, one of the inhabitants on some crested lizards, *Corythophanes cristatus*. Photo by Elena Reiner-Drehwald, with permission.

Rodents

Even mice (moss mice) live among bryophytes in the tropics. In Sulawesi, Indonesia, moss mice live and nest among the bryophytes (Helgen & Helgen 2009).

Bryophytes on Fungi

A surprising number of bryophytes are able to grow on the sporocarps of Basidiomycota fungi. Vital *et al.* (2000) identified 26 moss and 35 liverwort species growing on these substrates. None was exclusive to the fungi, all occurring on dead trunks where fungi occurred as well. Could it be that the fungus provides some chemical that is needed for the bryophyte life cycle to be completed?

Summary

Bryophytes can play major roles in water and nutrient cycling in tropical forests. In particular, they provide suitable habitat for nitrogen-fixing Cyanobacteria, as well as trapping nutrients from rainwater and the atmosphere. These nutrients can be
released in pulses, often at important times for forest growth. Bryophytes in trees provide suitable substrate for many species of flowering and fern epiphytes, but their exact role is poorly known. On the other hand, many organisms use the mosses as homes or for nesting materials. Inhabitants include insects and other arthropods, velvet worms, annelids, molluscs, frogs, snakes, and rodents. On the other hand, bryophytes can inhibit the growth of bacteria and fungi and discourage herbivory by insects and other herbivores. Some of these organisms are known exclusively from bryophytes. Rodents and birds use bryophytes as nesting materials. Some bryophytes grow on insects or lizards and may provide camouflage. And a surprising large number of bryophytes are able to grow on fruiting parts of fungi.

Acknowledgments

My appreciation goes to Sean Edwards, who frequently has sent me interesting publications on interactions of animals and bryophytes.

Literature Cited

the arboreal bryosphere of an Ecuadorian cloud forest. Amer. Entomol. 64: 94-101.

CHAPTER 8-14

TROPICS: DISTURBANCE AND CONSERVATION

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural Disturbance</td>
<td>8-14-2</td>
</tr>
<tr>
<td>El Niño and Hurricanes</td>
<td>8-14-2</td>
</tr>
<tr>
<td>Nutrient Relationships</td>
<td>8-14-3</td>
</tr>
<tr>
<td>Recovery</td>
<td>8-14-3</td>
</tr>
<tr>
<td>Bryophyte Loss Effect on Tracheophytes</td>
<td>8-14-4</td>
</tr>
<tr>
<td>Fire</td>
<td>8-14-5</td>
</tr>
<tr>
<td>Volcanoes</td>
<td>8-14-5</td>
</tr>
<tr>
<td>Animal Activity</td>
<td>8-14-6</td>
</tr>
<tr>
<td>Rare and Threatened Species</td>
<td>8-14-7</td>
</tr>
<tr>
<td>Pollution and Disturbance</td>
<td>8-14-8</td>
</tr>
<tr>
<td>Deforestation</td>
<td>8-14-9</td>
</tr>
<tr>
<td>Fragmentation Effects</td>
<td>8-14-16</td>
</tr>
<tr>
<td>Harvesting</td>
<td>8-14-17</td>
</tr>
<tr>
<td>Industrialization and Air Pollution</td>
<td>8-14-19</td>
</tr>
<tr>
<td>Radiation</td>
<td>8-14-21</td>
</tr>
<tr>
<td>Man-made Habitats</td>
<td>8-14-22</td>
</tr>
<tr>
<td>Climate Change</td>
<td>8-14-24</td>
</tr>
<tr>
<td>Recovery</td>
<td>8-14-24</td>
</tr>
<tr>
<td>Conservation Issues</td>
<td>8-14-26</td>
</tr>
<tr>
<td>Current Status</td>
<td>8-14-29</td>
</tr>
<tr>
<td>Summary</td>
<td>8-14-30</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>8-14-30</td>
</tr>
<tr>
<td>Literature Cited</td>
<td>8-14-30</td>
</tr>
</tbody>
</table>
CHAPTER 8-14
TROPICS: DISTURBANCE
AND CONSERVATION

Figure 1. Deforestation in Indonesia, a common scene throughout the tropics. Photo from Rainforest Action Network, through Creative Commons.

From a northern perspective, most of what we hear about the tropics is about massive disturbance. Hence, it would be irresponsible to discuss this region without at least a glimpse of the impact of disturbance on the bryophyte flora. Unfortunately, we have no before-and-after data for the vast areas that have been converted from tropical rainforest into short-lived agricultural land and that are now experiencing the jungle of plants tolerant of low nutrients, shallow soil, and exposure. However, some recent comparative studies may help us understand what we have lost.

Natural Disturbance

Nature has her own form of devastating disturbances. These include events such as hurricanes, tornadoes, and other high winds, animal activities, volcanoes, fire, and extreme drought.

El Niño and Hurricanes

Despite the frequency of hurricanes in some tropical areas, it appears that few studies have addressed the effects on bryophyte communities. Weber (1985) seems to be one of the earliest. He assessed the effects on both bryophytes and lichens resulting from the El Niño in the Galápagos Islands.

Hurricanes can have severe impacts on the epiphytic bryophytes in the tropics (Loope et al. 1994). Hurricanes can be very powerful forces that destroy nearly everything in their paths. In Puerto Rico, Hurricane Hugo created mass destruction in 1989. Recovery in the cool cloud forest has been slow compared to that of the lowland. Bryophytes were stripped from the trees by the high-powered winds and rain. Fortunately, the return frequency of hurricanes to any given area is low, usually occurring after years or decades (Lodge & McDowell 1991). But at the same time, the life span of a canopy tree or a forest ecosystem is longer than that interval.

Considering the number of hurricanes in the tropics, and the considerable damage I have witnessed to epiphytic bryophyte communities following Hurricane Hugo (Weaver 1999) in Puerto Rico, I am surprised at how few
studies have addressed the damaging effects of hurricanes on these communities.

Nutrient Relationships

Nutrient levels can affect the damage to trees and their adhering bryophytes. Herbert *et al.* (1999) found that large trees sustained damage at twice the frequency of smaller trees. Thus, trees that had a richer phosphorus environment were more susceptible to damage due to greater growth.

Hurricanes alter the nutrient cycling in tropical forests (Lodge *et al.* 1991). Hurricane Hugo (Figure 2), in September 1989, struck Puerto Rico, severely damaging wet forest sites. This, and other hurricanes since, have caused a massive increase in fine litter as leaves (Figure 3), small twigs, and other miscellaneous debris were ripped from the trees and deposited on the forest floor. Concentrations of N and P increased as much as 1.5 times for N and 3.3 for P compared to normal litter fall. This raises the question of effects on competition and the success of bryophytes under these conditions.

Walker *et al.* (1996) mentioned bryophytes in their study comparing altitudinal responses by hurricane-damaged forests in Puerto Rico. Nutrient treatments initiated 1-6 months after the hurricane decreased the bryophytes threefold while causing graminoids to increase 10-fold in the cloud forest (Walker *et al.* 1996).

The cloud forest understory is dominated by bryophytes; epiphytes are common. Walker *et al.* (1996) tested the effects of fertilization on the vegetation following hurricane damage. Fertilization increased biomass of the graminoids (grasses, sedges) in the elfin cloud forest by a factor of 10, whereas bryophytes decreased 3-fold. The same differences were absent in the lowland forest. Cover of ferns did not respond to differences in treatment or time. At the high elevations, bryophyte biomass is most likely sustained by the constant high humidity. It is likely that the bryophytes were negatively affected by the fertilizer salts. They could also have been out-competed by the graminoids. Recovery of the bryophytes was most likely facilitated by their ability to spread. As I have observed in Puerto Rico after Hurricane Hugo (Figure 2), the bryophytes are removed from the trees in patches, leaving behind the source for new growth. This removal is due to high winds and driving rain.

Recovery

Some bryophytes escape damage by living in protected locations. The rare liverwort species *Lejeunea paucidentata* (*Lejeuneaceae*; Figure 4) occurs in the rainforests of Dominica (Figure 5) (Schäfer-Verwimp 1999). Fortunately, it escapes hurricane damage because it lives on small fern fronds in the undergrowth and benefits from similar conditions in humid secondary vegetation or in heavily damaged old growth rainforest. On the other hand, Schäfer-Verwimp considers that the disappearance of *Phycolepidozia exigua* (Figure 6) is possibly due to hurricane damage to bark. This species most commonly grows on the bark of old trees, but old trees tend to be more susceptible to hurricane damage than the more pliable young trees.
Many have tried to determine what limits the species that become established on a given tree. Yeaton and Gladstone (1982) tried to determine what determines the structure of the tracheophytic epiphyte community on the calabash tree (Crescentia alata; Figure 7-Figure 8). As a result of their data analysis, they hypothesized that the colonization pattern is the result of the quantity of propagules produced by each species. It is possible that this is an important factor for bryophytes as well.

Nadkarni (2000) found a 30% reduction in bryophyte cover at severely impacted sites. She demonstrated, by experimental branch stripping, that epiphyte colonization occurs upwards from the abaxial (in this case, lower) branch surface. She considered that the shading by the branch permitted these abaxial sites to retain more water, increasing the time that the surface provided a suitable microclimate.

Bryophyte Loss Effect on Tracheophytes

Batke and Kelly (2015) documented the effects of a hurricane on the epiphytic bryophytes in the Cusuco National Park, northwest Honduras (Figure 9). They considered the epiphytes to be mechanically dependent plants and examined how hurricanes affected these dependents (Figure 10). Although the effect on bryophytes was not discussed directly, the researchers found that differences in life forms and families of tracheophytes among the tree branches resulted from branch surface area and bryophyte cover. Hence, the destruction of bryophyte mats led to reduced communities of tracheophytic epiphytes. They found that branches on trees that were more severely impacted had significantly lower cover. They considered that branches that were stripped of bryophytes and their dependent (Figure 10) plants during the severe gusts are less likely to experience early recolonization.
Damage to the bryophyte communities can affect other epiphytes as well. Tremblay (2008) assessed the relationships of a rare epiphytic orchid after Hurricane Georges. At first he could find no correlation with the percent cover of mosses on standing trees. But a non-parametric density contour map revealed that the moss density does seem to affect the population size of the orchids. Using this technique, Tremblay demonstrated that the orchids are present more frequently when there is a 40-90% moss cover.

Fire

Many forests around the world are subject to fire. In the tropical cloud forests, the bryophytes may actually reduce fire damage. They not only reduce the likelihood of fire because of the moisture they hold, they also facilitate growth of additional epiphytes through their moisture-absorbing and moisture-holding capacity (Proctor 1982; Frahm & Gradstein 1991). This moisture-holding capacity reduces the flammability of the forest (Bruijnzeel & Proctor 1995).

Nepstad et al. (2008) noted that forest degradation and dieback and subsequent drought increase the susceptibility to forest fires. And fires increase drought, further increasing the susceptibility to bryophyte loss. Furthermore, deforestation and smoke can inhibit rainfall, further increasing fire risk. These researchers predicted that in the next 20 years following 2008 approximately 55% of the Amazon forests will be cleared, logged, damaged by drought, or burned.

Diaspore banks can facilitate recovery of bryophytes after a fire. In a diaspore bank, Zander and During (1999) found the moss Neophoenix matoposensis (Pottiaceae) in Zimbabwe as a new species. They recommended the "forced diaspore bank analysis" as a means to find small species with short life cycles, giving them only limited above-ground exposure. In this case the method was used to uncover species in experimental fire plots. Two additional species were uncovered as new to Zimbabwe and new to Africa. One of these was previously known only from Brazil and Australia.

Volcanoes

Air pollution is not always of human origin. Volcanic activity (Figure 11, Figure 15) can be a major contributor. Baudoin (1985) reported that epiphyllous bryophytes can be used satisfactorily as indicators of volcanic air pollution.

Volcanoes offer opportunities for observing effects of elevation with fewer environmental variables than most substrates. However, when they erupt, they create severe disturbances. These severe habitats, following cooling, create bare rock substrate that differs drastically from the surrounding area. Smith (1981) compared the bryophyte and lichen communities of these severe substrates with those of the surrounding ecosystems at the Puhima Geothermal Area in the Hawaii Volcanoes National park. He found very few of the species from surrounding areas to be present on the volcano ground in geothermal areas. The center of the geothermal area is nearly lacking in any vegetation. Only small communities of vegetation, dominated by the endemic moss Campylopus praemorsus (see Figure 12) are scattered here. The mosses seem to provide a safe haven for the lichen Cladonia oceanica (see Figure 13), where it grows epiphytically on the mosses in areas lacking the high temperatures. Outside that central zone, where temperatures are lower, the grass Andropogon (Figure 14) dominates. Here, both Campylopus praemorsus and Cladonia oceanica commonly produce reproductive structures.
In Costa Rica, Griffin (1974) suggested that sulfur gasses downwind from a volcano might account for the paucity of mosses there. Both species composition and cover of mosses are diminished on the downwind side of the Poas Volcano (Figure 15).

Ah-Peng et al. (2007) found 70 species of bryophytes on a 19-year-old lava flow. They suggested that the high diversity is promoted by the host substrate and the bryophyte adaptations to colonize this new substrate. Hence, the disturbance by the volcano brought new space there to house a wide diversity of pioneer organisms.

Animal Activity

Forest animals can likewise be very destructive to bryophytes (Nadkarni 2000). Howler monkeys (*Alouatta* spp.; Figure 16) and tayras (*Eira barbara*; Figure 17) knock clumps of moss and other epiphytes from the branches as they climb and jump about. White-faced capuchins (*Cebus capucinus*; Figure 18) remove them to look for invertebrates in the bromeliads. Most literature indicates that such disturbances are easily and quickly healed with recolonization coming primarily through encroachment from the sides of the plots, thus having the same species. But in the detailed study at Monteverde, Costa Rica, mimicking effects of animal activity, Nadkarni found something quite different when she removed 75 cm strips of epiphytes from canopy branches. Despite the presence of neighboring plants, recolonization was extremely slow, with no colonization during the first five years after stripping. When it did occur, the communities were quite different. Crustose and foliose lichens began the colonization, two groups that were totally absent originally. And rather than encroaching from the sides, colonization extended from the bottoms of the branches. By the sixth year, there were some algae and bryophytes on the undersides of branches. It was not until the eighth year that some of the bryophytes from the underside had joined on the top side. Small seedlings began to appear in the tenth year.
Rare and Threatened Species

By their very nature, severe habitats often have rare and endangered species. That is because bryophytes must have special adaptations to survive in these extreme habitats. Perhaps they sacrifice competitive ability to achieve this physiological adaptation.

Gradstein (1992a) noted that loss of tropical species may vary considerably in deforested areas, depending on the size of the area affected and degree of habitat change. This damage is greatest for shade epiphytes, with an estimated 10% of rainforest species under threat by 1992. Gradstein listed 19 endangered species and 27 rare ones that are disappearing from the rainforests. Costa Rica and Panama have been particularly vulnerable, along with the Greater Antilles, the Chocó, southeastern Brazil, and parts of Amazonia.

Koponen (1992) considered the bryophytes in the tropical (and temperate) regions to have much more danger of becoming rare or extinct than those of the boreal and Arctic regions. The richest tropical floras are in the rainforests and montane forests, and deforestation creates disjunct patterns. Deforestation is particularly problematic in China, where nearly all the forests have been cut for agriculture. Very few bryophyte species from virgin tropical forests are able to survive in manmade habitats.

On the other hand, some disturbed habitats, created by agroforestry, can provide the conditions needed for some of the rare species. For example, Gradstein (1999) rediscovered the endangered leafy liverwort *Sprutheanthus theobromae* (*Lejeuneaceae*; Figure 19) on cacao trees (*Theobroma cacao* (Figure 20) in western Ecuador.
The real loss of tropical rare and endangered species is difficult to assess. Many areas were destroyed before any bryophyte assessment occurred. And many species considered rare or endemic have proven to be synonyms of species in a neighboring country or mountain.

Pollution and Disturbance

Managing for bryophytes often does not coincide with the best management plan for the forest. Andersson and Gradstein (2005) studied the biodiversity of bryophyte and lichen epiphytes in cacao plantations (Figure 21) in western Ecuador. They found 51 bryophyte and 61 lichen species. The managed cacao plantation epiphyte assemblages resembled those of natural tropical rainforests, but with lower species richness. Species also were typically found lower on the trunks. The species on cacao were typically widespread Neotropical or pantropical species. But *Spruceanthus theobromae* (Figure 19) is endemic to cacao plantations in western Ecuador. Management involving manual removal of epiphytes in the plantations significantly impacted the epiphyte species diversity. High management intensity particularly affected diversity of liverworts and lichens, but not mosses. As one might expect, plantations with low management had the highest percent cover of bryophytes. Plantations with low and moderate management serve as reserves for some ecological specialists, making them important in the conservation of epiphytes.

Working in tropical rainforests of the Pacific, Pócs and Tóthmérész (1997) found that the average species richness in the most diverse epiphyll communities was 8-9 per leaf. Degraded habitats exhibited as few as 3-4 species. At the habitat level, the number of species could reach 24-25 species. The number of species per habitat does not typically decrease as a result of habitat degradation because beta diversity (differences in species composition among sites; regional diversity) tends to increase while the number of species per leaf decreases. The study emphasizes the importance of the scale of the study in order to assess the impacts of disturbance.

Some of our understanding of microhabitat differences can be derived from studies on the effects of disturbance. For example, Werner and Gradstein (2009) compared various degrees of disturbance in closed-canopy mixed acacia forest (old secondary), pure acacia forest (old secondary), forest edge, young semi-closed secondary woodland, and isolated trees in grassland. They found that density of bryophytic epiphytes on 100 trees of *Acacia macracantha* (Figure 22) in northern Ecuador at 2,300 m asl is significantly lower in edge habitat and on isolated trees than in closed forest. Forest edge is more
impoverished than semi-closed woodland and has similar floristic affinity to isolated trees and to closed forest types. The microhabitats among these habitat types vary, contributing to the diversity. As they point out, "Assemblages were significantly nested; habitat types with major disturbance held only subsets of the closed forest assemblages, indicating a gradual reduction in niche availability." They found no diversity effect from distance to the forest for epiphytes on isolated trees. Species density is closely correlated with crown closure. They concluded that microclimate, not dispersal constraints, determine most of the epiphyte assemblage. The researchers also concluded that the bryophytic epiphytes are sensitive indicators of changes in microclimate and human disturbance in the montane dry forests. A major treatise on the canopy community is that of Lowman et al. (2013).

Deforestation

Deforestation has become a major factor impacting diversity and biomass in the tropics (Figure 23). "Between 1990 and 1997, 5.8 ± 1.4 million hectares of humid tropical forest were lost each year, with a further 2.3 ± 0.7 million hectares of forest visibly degraded." (Achard et al. 2002) although the rate has slowed in recent years, deforestation continues, increasing the total impact.

Scatena et al. (2010) noted that the cloudy, wet, difficult terrain of the tropical montane cloud forests had afforded the bryophytes some protection from deforestation. However, in the late 1970's and early 1980's, even these forests were being torn down or fragmented. By the 1990's they became one of the most threatened ecosystems in the world, with a loss rate exceeding that of the lowland tropical forests (1.1% y$^{-1}$ vs. 0.8% y$^{-1}$).

Costa (1999) compared epiphytic bryophyte diversity in primary and secondary lowland rainforests of southeastern Brazil. The highest species richness occurs in mature secondary hillside rainforest (43 species). The lowest is in a highly degraded hillside rainforest (6 species and a hillside secondary rainforest (5 species). As seen elsewhere, the important families are Lejeuneaceae (Figure 4; 23 species, 30%) and Sematophyllaceae (Figure 24; 7 species, 10%). And as in other studies, the canopy has the highest number of exclusive species (45% of canopy species). The shade epiphytes are the most affected by deforestation and many do not return 20-45 years after the destruction. However, after 80 years the species composition is similar to that of the primary forest.
In a different location in southeastern Brazil, Costa (1998) found the highest species richness in the mature secondary hillside rainforest (43 species). The lowest is again the highly degraded hillside rainforest (6 species).

Hyvönen et al. (1987), however, found that many mosses can find suitable niches even in disturbed areas, unless destruction of the habitat is complete. Nevertheless, some are eliminated by current practices of land use. In their study on the Huon Peninsula of Papua New Guinea, they used 18,000 specimens to determine effects of disturbance on the bryophytes. Of 43 species, 14 were restricted to undisturbed habitats, 16 occurred about equally in both, and 23 were preferentially in disturbed areas. Primeval habitats were dominated by terrestrial & epiphytic mosses; weedy species occurred in disturbed habitats. The sensitive epiphytic species that decreased with disturbance include *Meteorium buchananii* (Figure 25), *Trachypus bicolor* (Figure 26), *T. humilis* (Figure 27), *Pseudotrachypus wallichii*, *Cryptopapillaria fuscescens*, and *Pelekium contortulum* (Figure 28). In addition, *Campylopus clemensiae* (see Figure 39) and *Leptocladialla flagellaris* grow on living trees as well as rotten wood. Soil species that are sensitive include *Dawsonia grandis*, *D. papuana* (see Figure 29), *Rhodobryum giganteum* (Figure 30), with less substrate-discriminating *Macrothamnium hylocomioides* (see Figure 31), *Thuidium cymbifolium* (Figure 32), and *T. glaucinum* (Figure 33). Persistent species include *Bryum apiculatum* (Figure 34) and *Plagiomnium integrum* (see Figure 35), although they decrease in altered habitats. On the other hand, the outer crown epiphyte *Leptostomum intermedium* (see Figure 36) seems to increase with human influence, but that could be an artifact due to the difficulty of sampling it. The species that clearly increase with disturbance include *Brachymenium nepalense* (Figure 37), *Bryum billarderii* (Figure 38), *Campylopus exasperatus*, *C. umbellatus* (Figure 39), *Elmeriobryum philippinense*, and *Orthomnion elimbatum* (Figure 40). Species that were clearly present only following disturbance include *Bryum argenteum* (Figure 41) and *B. microerythrocarpum* (= *B. dichotomum*, *B. subapiculatum*, or *Gemmabryum subapiculatum*; Figure 42).
Figure 28. *Pelekium contortulum*, a sensitive moss species that decreases with disturbance. Photo through Creative Commons.

Figure 29. *Dawsonia superba; Dawsonia grandis* and *D. papuana* are soil species that are sensitive to disturbance. Photo by Phil Bendle, with permission from John Grehan.

Figure 30. *Rhodobryum giganteum*, a sensitive moss species that decreases with disturbance. Photo by Leonardo L. Co, with online permission.

Figure 31. *Macrothamnium submacrocarpum* from Doi Inthanon, Thailand; *Macrothamnium hylocomioides* is a sensitive soil species that decreases when faced with disturbance. Photo courtesy of Hiroyuki Akiyama.

Figure 32. *Thuidium cymbifolium* with capsules, a sensitive species of soil and other substrates that decreases when faced with disturbance. Photo by Li Zhang, with permission.

Figure 33. *Thuidium glaucinum*, a sensitive species of soil and other substrates that decreases when faced with disturbance. Photo through Creative Commons.
Figure 34. *Bryum apiculatum* with capsules, a persistent tropical soil species that is less negatively affected by disturbance. Photo by David T. Holyoak, with permission.

Figure 35. *Plagiomnium affine, Plagiomnium integrum* is a persistent tropical soil species that is less negatively affected by disturbance. Photo by Michael Lüth, with permission.

Figure 36. *Leptostomum inclinens* with capsules; *Leptostomum intermedium* is an outer crown species that actually increases with human disturbance. Photo by Clive Shirley, Hidden Forest, with permission.

Figure 37. *Brachymenium nepalense*, a species that becomes more abundant with disturbance. Photo by Li Zhang, with permission.

Figure 38. *Bryum billarderii*, a species that becomes more abundant with disturbance. Photo by Bramadi Arya, through Creative Commons.

Figure 39. *Campylopus umbellatus* with capsules, a species that becomes more abundant with disturbance. Photo by Li Zhang, with permission.
Evidence shows that logging does not have to be totally destructive. The main effect of such disturbance in tropical forests is increased desiccation due to greater wind movement and insolation, causing a reduction in biomass of epiphytic bryophytes (Norris 1990). This, in turn, decreases the water and mineral retention of the remaining bryophytes and interferes with their ability to trap and release water and mineral nutrients. In Papua New Guinea, Norris found that logging and agricultural practices may alter bryophyte species frequency, but with careful attention to logging management, there is no evidence of a significant loss of species.

When Romero (1999) compared bryophytes in logged and non-logged plots in a tropical montane forest in Costa Rica, he found that pendent epiphytes were more abundant on branches less than 1 cm in diameter. The highest biomass was that of branches supporting shade-tolerant species, i.e., non-logged plots.

A comparison of fallow land (4-15 years) vs submontane rainforest in Bolivia reveals considerably less diversity of both bryophyte families and species in the fallows (Acebey et al. 2003). Surprisingly, there is little difference in liverwort diversity between them except in the very young (4-year-old) fallows. Life forms differ, with significantly more smooth mats (72%) in the fallows. Nevertheless, in just 10-15 years, approximately half of the bryophyte taxa of the rainforest are re-established among the trees of the fallows. Most of these arrivals are ecological generalists and sun-loving epiphytes, with ecological specialists and shade species arriving and establishing more slowly. The highest diversity of the fallows is in the understory, contrasting with the highest richness in the canopy of the uncut rainforest. The shift to lower parts of the trees in the fallows corresponds with the greater air humidity there and most likely also with lower temperatures and reduced light intensity.

Return of bryophytes to remnant forests after logging is slow. In subtropical rainforests of Australia, few bryophytes had returned even 25 years after the disturbance (Chapman & King 1983). The same was true in southeastern Brazil (Costa 1999). In Costa Rica, isolated remnant trees (e.g., Figure 43), lacking the dense canopy of the undisturbed forest, had bryophyte diversity reduced by 50% compared to the remaining intact forest.
Much of the land in the tropics has been lost to agriculture before we have even assessed what bryophyte species live there. Sulawesi, Indonesia (Figure 44), is characterized by steep slopes that are often difficult for bryologists to navigate, but logging has nevertheless altered the environment. Ariyanti et al. (2008) investigated the bryophytes on tree trunk bases in the natural forest, selectively logged forest, and cacao plantation (Figure 21) shaded by remnants of the natural forest there. They found that species richness differs little among these forest types. But on close inspection, one finds that the moss richness is lowest in the cacao plantations, but the liverwort richness differs little among the forests. By contrast, the moss cover differs little among the forests, but liverwort cover is significantly less in the disturbed forest. Species composition likewise differs markedly in the cacao plantations compared to the natural forests and selectively logged forests. Drought-sensitive species are notably rare or absent in the cacao plantation, with drought-tolerant species replacing them. Large vs small trees have little effect on bryophyte species composition except in the cacao plantation; the latter phenomenon the researchers attribute to changes in stemflow of precipitation water.

Gradstein and Sporn (2010) compared epiphytic bryophytes from different land use types in several countries of the Neotropics and Indonesia (Sulawesi), including natural rainforests, secondary rainforests, fallows, isolated pasture trees (Figure 20), and cacao agroforests (Figure 21). They found changes in species richness between these disturbed habitats and the various disturbances to vary by 0-10% species loss in the old secondary forest and up to 65-80% loss in young fallows and cacao agroforests. The cacao agroforests lost 75% of their species. In contrast, the remnant forest trees in pastures provide a rich habitat where bryophytes can be conserved. In submontane forests, there were considerable changes in life forms, but these changed little in the montane zones. Sun epiphytes replace shade epiphytes in the deforested areas. The study demonstrates the importance of canopy cover in preserving the rainforest bryophyte vegetation.

Nöské et al. (2008) compared the epiphyte diversity of mature and recovering forest and that in open vegetation in the montane zone of Ecuador. They were unable to discern any pattern of change in species richness among different taxonomic groups (lichens, bryophytes, tracheophytes, and moths) with increasing disturbance. However, richness of epiphytic bryophytes decreased significantly from mature forest through the cline to open vegetation. For some of the taxa, the modified habitats serve to increase overall biodiversity in the Andes.

Benítez et al. (2015) likewise noted the decline of bryophyte and lichen epiphytes in moist tropical montane forests, due to deforestation and habitat loss. Benítez and coworkers investigated 240 trees in primary and secondary forests of southern Ecuador and found that diversity is higher in primary forests and lower in monospecific secondary forest stands. Habitat loss and reduction of canopy cover negatively affect total diversity. This, in turn, modifies the water balance and nutrient cycling of these forests, further complicating the loss of bryophytes and lichens. Shade epiphytes are replaced by sun epiphytes, and species richness diminishes.

In the fragmented Afromontane forests, Malombe et al. (2016) found the diversity of epiphyllous bryophytes exhibits no direct correlation with the distance from forest edge. However, they are affected by microenvironmental variables. These variables include tree species composition, sunlight exposure, and canopy structure, all factors that are typically affected by deforestation, even just thinning.

Cloud forests (Figure 45) are unique ecosystems with high bryological diversity and cover in the northern Andes (Benavides & Gutierrez 2011). But this ecosystem is also one of the most endangered ecosystems in the tropics. Agricultural techniques using slash and burn leave behind isolated individual palms in the middle of newly created grasslands or agricultural fields. This isolates the rare canopy bryophyte species. In Colombia, 72 liverwort species and 21 moss species comprised these epiphytic communities. The researchers found a decrease in the number of species from the forest to the grassland. The diversity likewise decreases from base to canopy of palms, with the more common species appearing an average of 4 m lower on the palms in the grassland when compared to those in the forest. The species remaining tend to be drought-tolerant forest species and species that commonly occur in disturbed sites. Hence, these isolated palms do not serve as suitable refugia for the rarer cloud forest species.

Cordova and del Castillo (2001) conducted a chronosequence study exclusively on tree bases in a tropical montane cloud forest in Mexico (Figure 46). The trees examined were in stands of 15, 45, 75, >90 years old, and a primary forest, and had originally been tropical montane cloud forests. They sampled the trees at 1 dm intervals using a sampling grid, up to 160 cm. Total epiphyte cover increases with forest age, following an S-shaped curve. The highest rate of increase is between 15 and 45 years. Whereas moss and liverwort cover increase with stand age, macro- and microlichen cover appear to be independent of age. Cover of microlichens decreases as cover of mosses and tracheophytes increases. Total epiphyte cover per unit area shows some decrease as the diameter of the tree increases.

Figure 44. Tangkoko National Park, North Sulawesi, Indonesia. Photo by Lip Kee Yap, through Creative Commons.
In an assessment of bryophytic epiphytic diversity in Columbian (Figure 47) forest patches, Orrego (2005) suggested that there is a direct relationship between bryophyte species diversity and the structural heterogeneity of forest fragments. He cautioned that a single index is not adequate to assess the epiphytic bryophyte diversity.

Gradstein (2008) noted that drought-intolerant species suffer more than drought-tolerant ones under the loss of cover due to deforestation. In the South American tropics, disturbance causes high species turnover and the return to the original epiphytic bryophyte flora is slow. Even after 50 years of forest recovery, the bryophyte flora is still very different from the undisturbed flora. Gradstein and Sporn (2010) documented the tropical diversity of epiphytic bryophytes with land use gradients.

Gradstein and Sporn (2010) summarize the effects of deforestation on the bryophyte communities of the tropics:

1. Deforestation has a significant impact on the bryophyte diversity in what was once forested land. Old secondary forests still experience 0-10% loss, whereas young fallows and cacao agroforest can have 65-80% loss. Epiphytic bryophytes are more strongly affected than are lichens (Gradstein 1992b), with a 4X turnover of bryophytes compared to lichens (Nöske et al. 2008). In the arid regions, bryophytes are more sensitive to land use changes than are the tracheophytes (Werner & Gradstein 2009).

2. Life form proportions change in the submontane forests, but not in the montane forests. Mats increase in submontane fallows and tufts increase in cacao agroforests; this change is accompanied by a loss of fans, pendants, and tails.

3. Shade epiphytes disappear as more exposure is created, and these are replaced by sun epiphytes. Epiphyte heights on the trees experience a shift to lower locations. The canopies become almost devoid of epiphytes.

4. Canopy closure, microclimate, and host tree characteristics serve as drivers of the epiphytic bryophyte diversity under different land-use types, indicating that canopy cover is necessary to maintain the rainforest diversity (Steffan-Dewenter et al. 2007). As a result, it may take more than 100 years for the bryophyte diversity to fully recover in second-growth forests.
5. Remnant trees in the pastures can provide a rich habitat where bryophyte species can be conserved. However, some agroforests, such as the cacao agroforest, are unable to provide this role (Andersson & Gradstein 2005).

6. Some bryophyte species can serve as indicators of land-use change at the local and regional scales, but not at larger scales. Qualitative and quantitative study of life forms and ecological groups of epiphytic bryophytes promise to provide bioindication of land-use change and rainforest disturbance in the tropics.

Fragmentation Effects

Deforestation is creating forest fragments in many areas of the tropics (Figure 1). Zartman (2003) discussed the effects of this habitat fragmentation on epiphyllous bryophyte communities in central Amazonia. He found that regionally common taxa are often reduced in epiphyll diversity in small fragments. On the other hand, rare taxa are often more abundant in fragments than in continuous forest habitat. Larger fragments (100 ha) exhibit higher species richness, abundance, and among site variation than do the smaller fragments (1 & 10 ha).

Silva and Pôrto assessed effects of fragmentation on bryophytes of decaying logs in the Atlantic Forest remnants in northeastern Brazil. They identified 99 bryophyte species (52 liverworts, 47 mosses). They determined that fragment size is important in determining the community structure on decaying logs. They did not find a correlation between distance from forest edge and bryophyte richness or cover, suggesting that the relationship is non-linear.

Zartman and Shaw (2006) consider the demographic mechanisms causing species loss in the tropics to be greatly under-explored. To contribute to the understanding of the impact of fragmentation, they chose the epiphyllous leafy liverworts *Radula flaccida* (Figure 48) and *Cololejeunea surinamensis* (see Figure 49). They transplanted these two species to study sites with areas ranging 1, 10, 100, up to 110,000 ha. All the transplants exhibited significantly positive local growth with a nearly constant per-generation extinction probability of 15%. In reserves of 100 ha or greater, the colonization rate nearly doubled (to 48%) compared to small reserves (27%). They considered this an indication that epiphyll loss in small fragments was due to reduced colonization.

Bryophytes have relatively fast colonization and extinction rates, making them ideal study organisms for the effects of forest fragmentation (Pharo & Zartman 2007). Nevertheless, they are limited by dispersal, and this somewhat random process helps to explain their observed recolonization patterns.

Nevertheless, edge effects have an impact on community structure, especially where these create abrupt differences in microclimate. Establishment experiments repeatedly indicate dispersal limitation to explain the absence of typical forest species in fragmented habitats (Zartman & Nascimento 2006; Gunnarsson & Söderström 2007).

Younger fragments (<25 yrs), in particular, have lower richness and different species composition than adjacent mature forests (Pharo et al. 2004). Similarly, Snäll et al. (2003) found that age of the trees is more important than size for the moss *Orthotrichum* (Figure 50) on aspen (*Populus*; Figure 51) trees. Older trees support larger colonies.
In southern Veracruz, Mexico, the number of epiphytic tracheophyte species per tree and total estimated biomass correlate most with tree size, measured as diameter at breast height (Hietz-Seifert et al. 1996). When considering this relationship, the number of epiphytes on remnant trees is similar to that in the forest plots. However, the forest plots still differ significantly from each other, a response Hietz-Seifert and coworkers considered might be due to differences in humidity. The number of epiphytes on isolated forest tree species exhibit a negative correlation with distance from the forest border. The researchers also considered that some of the differences exhibited by the remnant trees, which included many figs, may have been due to the attraction of birds and bats that could contribute to seed dispersal. Although the importance of various environmental variables differ between bryophytes and tracheophytes, some of these same variables may affect both, and destruction of bryophytic epiphytes can affect the success of tracheophytic epiphytes and vice versa.

In open, disturbed areas in the Amazonian Andes of northern Peru, contrasting with the larger life forms of the forests, the disturbed and exposed areas comprising secondary forests are characterized by short turf-forming acrocarpous mosses that have a colonist life strategy, a life form not typically found within the developed forests (Kürschner & Parolly 1998; Kürschner et al. 1999).

Harvesting

Deforestation isn't the only human danger. Harvesting of bryophytes for commercial use likewise can endanger the bryophytes (Peralta & Wolf 2001). In addition to many Neotropical areas, in India, Japan, and China mats of mosses are peeled from their substrates for use in the horticulture industry (Wuethrich 1993; Peck 2006; Peck & Moyle Studlar 2008). These can greatly reduce cover on the reachable branches and logs.

In the monarch butterfly biosphere reserve, Sierra Chincua, Michoacan, Mexico, mats of bryophytes are harvested, packed, and sold in Mexico City for ornamental use. One family alone (about 10 members) harvested 50 tons (fresh weight) of bryophytes in one collecting season. This created a mosaic of gaps of bare soil in the mossy layer, with an average gap size of 0.48 m2. This moss removal consequently caused the removal of 11,000 Abies (fir) seedlings that were growing with the mosses.

In the montane tropical oak-bamboo forests in Costa Rica, pendent bryophytes are a locally valuable resource subject to commercial harvesting (Romero 1999). Thus, logging that destroys the habitat of these taxa is of local concern. These harvestable bryophytes include the mosses *Pilotrichella flexilis* (Figure 52-Figure 53), *Phyllagonium viscosum* (Figure 54), *Zelometeoriurn* sp. (Figure 55), and *Squamidium leucotrichum* (Figure 56) and other *Frullania* species. These pendent life forms are important in water interception and thus might be expected to have an important effect on the hydrological balance in these forests. However, nine years after careful selective logging in a montane oak-bamboo forest, there were no detectable negative impacts on the biomass of these bryophytes at commercially available heights (1-3 m). Unfortunately, there is no comparable study in Costa Rica to show the impact of bryophyte harvesting on their successful return. In Africa, Jacobsen (1978) found that epiphyte harvesting on their successful return. In Africa, Jacobsen (1978) found that epiphytes require a minimum of 7-10 years to regenerate after harvesting from the forest.
Figure 53. Close view of *Pilotrichella flexilis*, a pendent bryophyte that is used locally in Costa Rica as a forest product. Photo by Claudio Delgadillo Moya, with permission.

Figure 54. *Phyllogonium viscosum*, a pendent bryophyte that is used locally in Costa Rica as a forest product. Photo by Jan-Peter Frahm, with permission.

Figure 55. *Zelometeorium patulum* from the Neotropics, a pendent bryophyte in a genus that is used locally in Costa Rica as a forest product. Photo by Michael Lüth, with permission.

Figure 56. *Squamidium leucotrichum* from the Neotropics, a pendent bryophyte that is used locally in Costa Rica as a forest product. Photo by Michael Lüth, with permission.
Industrialization and Air Pollution

Escocia Ariza (1998) reported losses of epiphyllous and epiphytic bryophyte species in the 20th century. The industrial district in particular has lower coverage, sexual reproduction, diversity, and a lower index of community vigor. Chlorosis (loss of green color of chlorophyll) indicates stress. Lejeunea trinitensis (Figure 58) emerged as a stress-tolerant species, whereas Leptolejeunea exocellata (Figure 59) is a sensitive species that disappears from the industrialized area. The species present in the polluted area are colonists, particularly on rocks. The colonization is a slow process. Species with both sexual and asexual reproduction are more successful at establishment.

Vareschi (1953) was one of the earliest researchers on tropical air pollution in Venezuela. These studies were actually the reverse of most, looking at the influence of the forests and parks on the air quality of the city of Caracas. Rebelo et al. (1995) reported on the epiphytic bryophyte communities under the effects of air pollution in Brazil.

In 1992, Durán et al. used the Index of Air Purity (IAP) to evaluate the responses of epiphytic mosses to air pollution in Mexico City, Mexico. They were able to demonstrate a significant negative correlation ($p<0.5$) between these IAP values and SO_2, NO_2, NO_x, and Pb (lead). On the other hand, there were significant positive correlations with ozone. This relationship is manifest in the gradual decrease in frequency and cover of epiphytic mosses in Mexico City.

Bryophytes in temperate zones are well known for their ability to accumulate heavy metals (e.g. Faus-Kessler et al. 2001). But the behaviors of tropical bryophytes are less well known. Based on many temperate studies showing that bryophytes were good accumulators of heavy metals, Lisboa and Borges (1995) examined the potential use of bryophyte diversity as an indicator of pollution in Belém, in the lower Amazon region of Brazil.
Jayasekera and Rossbach (1996) conducted one of the few tropical species to address this issue. They examined background levels of heavy metals and their differences in plants of different taxonomic groups, including bryophytes, in a montane rainforest in Sri Lanka. They found that when a lichen (Usnea barbata; Figure 60), an epiphytic club moss (Huperzia selago; Figure 61), an epiphytic fern (Pleopeltis lanceolata; Figure 63), an epiphytic orchid (Bulbophyllum elliae (see Figure 64), a large dicotyledonous tree (Actinodaphne ambigua; see Figure 65) and a moss [Pogonatum sp. (Figure 66)] were compared for their heavy metal content, the levels were essentially homogeneous for Cd, Cu, Pb, and Zn. The moss Pogonatum had the highest degree of homogeneity for lead. The primitive taxa, the lichen Usnea and moss Pogonatum seem to have higher accumulation levels of As, Cd, Co, and Pb than do the tracheophytes.

Figure 60. Usnea from Cumbre Vieja, Canary Islands, a genus used locally in Costa Rica as a forest product. Photo by Fährtenleser, through Creative Commons.

Figure 61. Usnea barbata, a fruticose lichen with higher accumulations of Cd, Cu, Pb, and Zn levels than surrounding tracheophytes. Photo from MO Observers, through Creative Commons.

Figure 62. Huperzia selago, a tracheophyte with less accumulation of Cd, Cu, Pb, and Zn than the associated moss and lichen tested. Photo by Malcolm Storey, DiscoverLife, with online permission.

Figure 63. Pleopeltis lanceolata, a tracheophyte with less accumulation of Cd, Cu, Pb, and Zn than the associated moss and lichen tested. Photo by Robbin Moran, with permission.
Faus-Kessler et al. (2001) used biannual collections of epiphytic *Hypnum cupressiforme* (Figure 67) to determine changes in accumulations of trace metals.

On the other hand, bryophytes have been used to help clean the air and remove pollutants (Vareschi 1953). Bryophytes greatly expand the available surface area for trapping and immobilizing both water and ions from the atmosphere (Coxson 1991).

Radiation

Although the studies on radiation effects on tropical bryophytes are limited, the extensive study at El Verde, Puerto Rico (Figure 68), did include bryophytes (Odum et al. 1970). High levels of radiation fallout retention were present in the epiphytic mosses in the mossy forest (Figure 69) of the Luquillo Mountains in 1962. The algae-moss-liverwort encrustations had the highest levels of radiation, with massive moss colonies being second. Bromeliads and rooted plants had less. Radioactivity in tree leaves was in proportion to the epiphyllous growths on them, and that growth was related to leaf age.
Man-made Habitats

Many forested areas have been replaced by man-made habitats. These provide greater variety in available habitats. In the tropics, one can find *Diplophyllum obtusatum* (Figure 70), *Solenostoma sphaerocarpum* (Figure 71), and *Schistochilopsis incisa* (Figure 72) in man-made habitats (Gradstein & Vána 1987). It appears that these Laurasian species have spread relatively recently through human activities.

In Alto Beni, Bolivia, corticolous bryophytes on trees in the primary rainforest decreased significantly in the fallows as measured after 4-15 years (Caby et al. 2003). But liverwort diversity barely changed except in the 4-year-old forest. Smooth mats had a significantly higher percentage (72%) in the fallows, perhaps due to the warmer, drier microclimate. But even in the 10-15-year-old fallows, only about half the species had returned, mostly generalists and sun epiphytes. Whereas species richness is highest in the undisturbed canopy, in the fallows it is highest in the understorey, with rough mats, fans, and tails shifting to lower heights on the trees, most likely due to changes in air temperature and air humidity.

If sufficient natural forest is retained, artificial forests can increase the diversity by providing new niches. Petit and Symons (1974) reported 28 bryophyte species from 17 artificial woodlands planted with *Cupressus* (Figure 73-Figure 74) and *Acacia* (Figure 22) in Burundi, Africa. In these woods, the litter layer is covered with bryophytes and the flowering plants are almost absent.
Sillett et al. (1995) compared bryophyte diversity in *Ficus* tree crowns from the cloud forest and a pasture in Costa Rica. In the lower montane wet forest, they found 127 bryophyte species (50 mosses, 76 liverworts, 1 hornwort) in the inner crowns of only six *Ficus tuerckheimii* trees. Of these, 52 were found only in the intact forest, whereas only 18 species occurred exclusively in the isolated trees of the pasture. One of the factors contributing to the differences was a moisture gradient that diminished away from the intact forest.

In the northern Andes, roadside habitats in humid locations can be invaded by canopy liverworts from the montane forest (Gradstein 1992b). These include such liverwort species as *Dicranolejeunea axillaris*, *Frullania brasiliensis* (Figure 75), *Frullania convoluta* (Figure 77), *Frullanoides densifolia* (Figure 76), *Herbertus acanthelius* (see Figure 77), *Jamesoniella rubricaulis* (Figure 77), *Omphalanthus filiformis* (Figure 79), and *Taxilejeunea pterigonia* (see Figure 80). In such locations these liverworts behave as pioneers.

Figure 75. *Frullania brasiliensis*, a species that inhabits wet roadside habitats in the northern Andes. Photo by Germaine A. Parada, through Creative Commons.

Figure 76. *Frullanoides densifolia*, a species that inhabits wet roadside habitats in the northern Andes. Photo by Jan-Peter Frahm, with permission.

Figure 77. *Herbertus* sp., Oahu, Hawaii; *Herbertus acanthelius* inhabits wet roadside habitats in the northern Andes. Photo by David Eickhoff, with online permission.

Figure 78. *Jamesoniella rubricaulis*, a species that inhabits wet roadside habitats in the northern Andes. Photo by Jan-Peter Frahm, with permission.
Climate Change

Benzing, in 1998, stressed the vulnerabilities of tropical forests to climate change, and even more so to that of their bryophytic inhabitants. Noting the complexity of these systems, he pointed to the narrow set of circumstances that define the habitats for these bryophytes. This raises the concern of their often underestimated role in both hydrology and mineral cycling, added to their ability to support a wide diversity of smaller organisms such as salamanders, arthropods, fungi, and micro-organisms, makes them major contributors to the ecosystem. Yet their vulnerability in tropical forests under climate change is great.

Many bryophytes in the tropics are approaching their limits of tolerance to the high temperatures that increase their rate of respiration (see Microclimate above). Hence, as considered by Zotz and Bader (2009), "rising temperatures could have disastrous effects." Moving farther away from the equator may provide a refuge for some species, but the authors suggest that epiphytes may be "particularly threatened" because the cloud forest habitats are likely to be the most seriously affected. And these are species-rich habitats where "exceptional" species occur. They furthermore are often isolated, requiring long-distance dispersal to reach a suitable climate.

Durán et al. (1992) used the IAP values to demonstrate that higher rainfall and relative humidity helped to account for higher bryophyte diversity values. Climate changes can affect these parameters, making some areas drier. Furthermore, bryophyte IAP values exhibit a negative correlation with temperature.

Climate change studies in the tropics are of utmost importance in a region where many species are already limited by temperature. Jácome et al. (2011) summarized what we know about the effects on the epiphytic bryophyte communities of simulated climate change in the tropics. Based on a translocation experiment in the upper montane forest in Bolivia they showed that exposure to air temperature increases of 1.5-2.5°C had a measurable effect on the structure of epiphytic bryophyte communities of the tropical montane forest within two years. The results confirm the sensitivity of non-tracheophytic epiphytes to atmospheric changes and predict that changes in the climatic regimes of tropical montane forests will rapidly affect the rich non-tracheophytic epiphyte communities.

Epiphytes seem to be particularly vulnerable to climate change because they must survive "at the interface of vegetation and atmosphere" (Zotz & Bader 2009). Furthermore, land use exacerbates the problem by decreasing the suitability of the environment. On the other hand, some drought-resistant species may benefit. They projected that new assemblages would form among bryophytes and lichens. But rising temperatures can be very destructive for both bryophytes and lichens. This will most likely be most detrimental to the habitats in the tropics with exceptional species richness, in particular, the cloud forests.

Sometimes human interference resulting in local climate change actually helps bryophytes. Kautz and Gradstein (2001) found that the critically endangered Spruteanthis theobromae (Lejeuneaceae; Figure 19) grows on the trunk bases of Theobroma cacao (Figure 20-Figure 21) in 12 plantations that had minimal management. In fact, the researchers felt that it should instead be considered as a near-threatened species and removed from the World Red List.

Recovery

Hallingbäck and Tan (1996) bemoaned the loss of species worldwide, citing reduction, fragmentation, and isolation of their habitats, in addition to damaging pollution. They noted the value of designating certain bryophytes as key species to protect because of the associated plants and animals that would also be protected. But if areas already impacted are allowed to recover, what can we expect?

Gradstein and Sporn (2010) found that canopy closure, microclimate, and host tree characteristics are important in determining epiphytic bryophyte diversity. Preservation of the canopy, therefore, is important in maintaining this diversity. Recovery of bryophyte communities after clear-cutting is very slow and may take more than 100 years.

Recovery following deforestation requires the presence of viable plant parts or reproductive units. Olarinmoye (1986), working in Nigeria, examined survival strategies in
three species during re-establishment after a period of drought. *Hyophila involuta* (Figure 81-Figure 82) is able to re-establish through spores, with its sporophyte production appearing to give it a competitive advantage compared to *Barbula indica* (Figure 83) and *Fissidens asplenioides* (Figure 84). The latter two species were similarly wide-spread, using vegetative regrowth from rhizoids, shoot bases, apices, or the main stem, with rhizoids contributing the most regrowth.

Figure 81. *Hyophila involuta*, a species that can recolonize disturbed areas. Photo by Shyamal L., through Creative Commons.

Figure 82. *Hyophila involuta*, a species that can colonize by spores after disturbance. Photo by M. C. Nair, K. P. Rajesh, and Madhusoodanan, through Creative Commons.

Figure 83. *Barbula indica*, a species that can colonize deforested areas by vegetative means. Photo by Michael Lüth, with permission.

Figure 84. *Fissidens asplenioides*, a species that can colonize deforested areas by vegetative means. Photo by David Tng, with permission.

Liu *et al.* (2007) elaborated the species on the forest floor and on the tree trunks in the forest of Heishiding Nature Reserve, Guandong, China. They found that species composition of the mature forest was similar to that of the mixed pine and broad-leaved forest, and to young secondary forest, but community structure of the mature forest was quite different from that of the secondary forest. Most of the bryophytes occurred on the tree trunks (40 species), with only 24 species on the forest floor. Bryophyte cover was low on both substrata. Species richness of forest floor bryophytes in 2,500 m² quadrats ranged 8 to 13 with 0.59% to 1.12% cover. Slope and microenvironment were the primary determinants of species distribution and richness on the forest floor. Epiphytes, on the other hand, exhibited 12 to 20 species with a mean cover of 0.63 to 1.63% in these plots. The researchers concluded that bryophytes in 30-year-old secondary broad-leaved forest had returned to the level of the mature broad-leaved forest.

Corrales *et al.* (2010) recorded 151 terrestrial bryophyte species in secondary and planted montane forests in the northern portion of the Central Cordillera of Colombia. Secondary montane forests have a higher weighted species richness than do the pine plantations. Weighted species richness is higher in secondary montane forests and cypress plantations than in pine plantations. Cypress plantations have the highest bryophyte abundances, although Detrended Correspondence Analysis indicates a high floristic similarity among the various forest types. Differences seem to relate to soil pH, slope, and light availability. Regional patterns depend on continuous dispersal of propagules.

Serrano (1996) found 37 species of mosses in 25 genera in disturbed areas in the municipality of Bayamon, Puerto Rico. *Fissidens* is the most species-rich genus. The most frequent of all species is *Fissidens zollingeri* (see
Figure 84), occurring at all study sites. It is an indicator of disturbed areas. Urbanization further reduces the number of species present. One mechanism accounting for the spread of the species is spore production. Of the 37 species, 18 were observed with capsules and these species tended to occur more frequently when their sporophytes were more frequent. Only 7 species exhibited special vegetative reproductive structures. Among the pleurocarpous species, those with the greatest frequency in collections were those colonizing the greatest number of substrates.

Conservation Issues

Gradstein (1992a, b) and Pócs (1996) emphasized that conservation of epiphytes "can only be achieved through the rigorous protection of the forests."

Plantations seem to have positive and negative effects on bryophyte diversity. One problem they create is a reduction in the number of niches (Ramovs & Roberts 2005; Yan et al. 2013). Their reduction in substrates includes absence of rotten logs and tip-up mounds, substrates that typically have at least some differences in species from typical epiphytic habitats.

Deforestation (Figure 85) has greatly reduced diversity of bryophytes, as one might expect. The loss of the high canopy has forced species that typically occupy the canopy to appear as low as the base of the tree (Gradstein 2002). This change in position correlates with the microclimate of the canopy in the mature forest, with the microclimate in the falls matching closely the humidity and air temperature of the mature canopy. Such is not the case with the microclimate of the tree bases under the mature canopy.

![Figure 85. Deforestation in the Amazon forest. Photo by Matt Zimmerman, through Creative Commons.](image)

Henderson et al. (1991) reported that approximately 90% of the South American tropical mountain forests had been converted into pastureland or other non-forest use. Bryophyte losses are greater among mosses than among liverworts (Jácome et al. 2011). Shade species are more affected than drought-tolerant canopy species. The latter species are able to grow in lower positions on the remaining trees. A dense canopy is important in maintaining high diversity (Steffan-Dewenter et al. 2007; Sporn et al. 2009). Despite the negative impact, in Costa Rica the secondary forests may have up to 40% of their epiphytic species exclusively in the secondary forest.

When the cacao (Figure 20–Figure 21) culture was expanded by 230% by converting tropical rainforests, there was little effect on the overall species richness, but plant biomass and carbon storage were reduced by approximately 75% (Steffan-Dewenter et al. 2007). Species richness of forest species was reduced by approximately 60%. More intense agriculture and reduced shade by agroindustry of cacao plantations reduced shade cover from 80% to 40%, but only minor quantitative changes occurred in biodiversity. Unfortunately for the forests and their bryophytes, unshaded systems increased income by 40%. Intermediate levels of canopy cover seemed best for species richness of herbs, bees, wasps, and their antagonists. On the other hand, bryophytes, canopy beetles, and ants lack any significant correlation with canopy cover. This may be because only a small fraction of the forest herb, bryophyte, and beetle species were also able to colonize the agroforestry systems.

When epiphytes were transplanted to lower elevations in the Bolivian Andes, the cover became more even and dominance of individual species decreased (Jácome et al. 2011). The researchers concluded that as the climate changes the individual species responses will differ, resulting in new community relationships. They warn that short-term responses might not be indicative of long-term responses.

Pócs (1989) reported that epiphytes are much rarer in disturbed forests than they are in undisturbed forests in submontane rainforests in the East Usambara Mountains of East Africa. Rather, the species in the disturbed forests are sun species and occur on the lower parts of trunks of Maesopsis (umbrella tree; Figure 86). In the undisturbed forests, these same species occur in the canopy. Pócs has also found a decline in epiphytes in the "undisturbed forest." He attributed this to the drying climate.

Hallingbäck and Hodggets (2000) contend that the negative impact of habitat loss has already gone too far in the tropical lowlands. Forested land has been cleared continuously for the expansion of the human population and the agriculture to support it (Hyvönen et al. 1987).

Costa and Faria (2008) noted conservation priorities for bryophytes in the state of Rio de Janeiro, Brazil. Recognizing the high degree of biological diversity, with an estimated 1,040 species of bryophytes, they cautioned that most of the inventories have focussed on the montane rainforest and coastal region. Among those bryophytes that have been recorded, 14% are considered vulnerable or threatened in the region. They considered the old-growth Atlantic forests to be among most important habitats needing conservation, citing reduction, fragmentation, and isolation as causes for concern. Although 13% of the land area of the state is protected, these protected areas are mostly montane and upper montane Atlantic rainforests.

Alvarenga et al. (2009b) likewise reported a highly significant loss of richness as a result of habitat loss in a Brazilian Atlantic forest. The most conserved fragments have more than 10 times the species richness of the least conserved fragment. In non-conserved fragments, the epiphytes do not colonize the lower trunks (2.1–10 m) or higher zones. Instead, they are restricted to the lowest 2 m.
at the tree base and clearly exhibit an altered floristic composition. Specialists of sun or shade are impacted more than generalists. The generalists decrease in richness in non-conserved habitats, but their proportion increases due to the loss of specialists. The habitats that retain their rich epiphyte flora are greater than 300 ha in size – an uncommonly large size in the Brazilian Atlantic rainforest.

Figure 86. *Maesopsis eminii* (umbrella tree) providing shade for a coffee plantation. Photo by Aniruddha Dhamorikar, through Creative Commons.

Holz and Gradstein (2005) found that total species richness of bryophytes and lichens differs little between primary and early or late secondary upper montane *Quercus copeyensis* forests (Figure 87) of Costa Rica. The high richness in the secondary forest is most likely due to the high humidity under the closed canopy. Nevertheless, species composition differs markedly. After 40 years of recovery, 46 (one-third) of the species still had not become re-established. Of all recorded species, 40% (68 species) occur exclusively in the secondary forests.

Figure 86. *Maesopsis eminii* (umbrella tree) providing shade for a coffee plantation. Photo by Aniruddha Dhamorikar, through Creative Commons.

In addition to habitat loss, pollutants can destroy canopy bryophytes. Bryophytes are scavengers of atmospheric nitrogen as they collect the dust from the atmosphere. In this way, they are able to serve as bio-indicators of nitrogen pollution. Shi *et al.* (2017) examined epiphytic bryophytes from a subtropical montane cloud forest in southwest China. The critical load of nitrogen deposition there was estimated at 18 kg N ha⁻¹ yr⁻¹. The bryophytes become nutrient pools in these circumstances. These high levels are detrimental to the bryophytes, with a significant decrease in cover when the nitrogen input is only 7.4 kg ha⁻¹ yr⁻¹. The study site had a nitrogen deposition rate of 10.5 kg ha⁻¹ yr⁻¹. The researchers suggested that the high N levels not only did direct damage, but caused the leakage of magnesium and potassium, both essential nutrients for cellular metabolism.

Holz and Gradstein (2005) found that total species richness of bryophytes and lichens differs little between primary and early or late secondary upper montane *Quercus copeyensis* forests (Figure 87) of Costa Rica. The high richness in the secondary forest is most likely due to the high humidity under the closed canopy. Nevertheless, species composition differs markedly. After 40 years of recovery, 46 (one-third) of the species still had not become re-established. Of all recorded species, 40% (68 species) occur exclusively in the secondary forests.

Plantations seem to have both positive and negative effects on bryophyte diversity. One problem they create is a reduction in the number of niches (Roberts *et al.* 2005). Their reduction in substrates includes absence of rotten logs and tip-up mounds, substrates that typically have at least some differences in species from typical epiphytic habitats.

Deforestation (Figure 1, Figure 85) has greatly reduced diversity of bryophytes, as one might expect. The loss of high canopy has forced species that typically occupy the canopy to appear as low as the base of the tree (Gradstein 2002). This change in position correlates with the microclimate of the canopy in the mature forest, with the microclimate in the fallows matching closely the humidity
and air temperature of the mature canopy. Such is not the case with the microclimate of the tree bases under the mature canopy.

When epiphytes were transplanted to lower elevations in the Bolivian Andes, the cover became more even and dominance of individual species decreased (Jácome et al. 2011). The researchers concluded that as the climate changes the individual species responses will differ, resulting in new community relationships. They warn that short-term responses might not be indicative of long-term responses.

Pócs (1989) reported that epiphytes are much rarer in disturbed forests than they are in undisturbed forests in submontane rainforests in the East Usambara Mountains of East Africa. Rather, the species in the disturbed forests are sun species and occur on the lower parts of trunks of *Maesopsis* (Figure 86). In the undisturbed forests, these same species occur in the canopy. Pócs has also found a decline in epiphytes in the "undisturbed forest." He attributed this to the drying climate.

Climate change studies in the tropics are of utmost importance in a region where many species are already limited by temperature. Jácome et al. (2011) summarized what we know about the effects on the epiphytic bryophyte communities to simulated climate change in the tropics.

Jacobsen (1978) found that epiphytes require a minimum of 7-10 years to regenerate after harvesting of the forest. In any case, deforestation leads to local extinction of species (Gradstein 1992b). Shade epiphytes are the most easily affected by disturbance.

Hallingbäck and Hodgetts (2000) contend that the negative impact of habitat loss has already gone too far in the tropical lowlands. Forested land has been cleared continuously for the expansion of the human population and the agriculture to support it (Hyvönen et al. 1987). In India, Japan, and China mats of mosses are peeled from their substrates for use in the horticulture industry (Peck 2006).

Alvarenga et al. (2009b) likewise reported a highly significant loss of richness as a result of habitat loss in a Brazilian Atlantic forest (Figure 88). The most conserved fragments had more than 10 times the species richness of the least conserved fragment. In non-conserved fragments, the epiphytes did not colonize the lower trunks (2.1-10 m) or higher zones. Instead, they were restricted to the lowest 2 m at the tree base and clearly exhibited an altered floristic composition. Specialists of sun or shade were impacted more than generalists. The generalists decreased in richness in non-conserved habitats, but their proportion increased due to the loss of specialists. The habitats that retained their rich epiphyte flora were greater than 300 ha in size – an uncommonly large size in the Brazilian Atlantic rainforest.

In addition to habitat loss, as seen above, pollutants can destroy canopy bryophytes. Bryophytes are scavengers of atmospheric nitrogen as they collect the dust from the atmosphere. In this way, they are able to serve as bi-indicators of nitrogen pollution. Shi et al. (2017) examined epiphytic bryophytes from a subtropical montane cloud forest in southwest China. The critical load of nitrogen deposition there is estimated at 18 kg N ha⁻¹ yr⁻¹. The bryophytes become nutrient pools in these circumstances. These high levels are detrimental to the bryophytes, with a significant decrease in cover when the nitrogen level is only 7.4 kg ha⁻¹ yr⁻¹. The study site had a nitrogen deposition rate of 10.5 kg ha⁻¹ yr⁻¹. The researchers suggest that the high N levels not only do direct damage, but cause the leakage of magnesium and potassium, both essential nutrients for cellular metabolism.

The researchers concluded that as the climate changes the individual species responses will differ, resulting in new community relationships. They warn that short-term responses might not be indicative of long-term responses.

Pócs (1989) reported that epiphytes are much rarer in disturbed forests than they are in undisturbed forests in submontane rainforests in the East Usambara Mountains of East Africa. Rather, the species in the disturbed forests are sun species and occur on the lower parts of trunks of *Maesopsis* (Figure 86). In the undisturbed forests, these same species occur in the canopy. Pócs has also found a decline in epiphytes in the "undisturbed forest." He attributed this to the drying climate.

Climate change studies in the tropics are of utmost importance in a region where many species are already limited by temperature. Jácome et al. (2011) summarized what we know about the effects on the epiphytic bryophyte communities to simulated climate change in the tropics.

Jacobsen (1978) found that epiphytes require a minimum of 7-10 years to regenerate after harvesting of the forest. In any case, deforestation leads to local extinction of species (Gradstein 1992b). Shade epiphytes are the most easily affected by disturbance.

Hallingbäck and Hodgetts (2000) contend that the negative impact of habitat loss has already gone too far in the tropical lowlands. Forested land has been cleared continuously for the expansion of the human population and the agriculture to support it (Hyvönen et al. 1987). In India, Japan, and China mats of mosses are peeled from their substrates for use in the horticulture industry (Peck 2006).

Alvarenga et al. (2009b) likewise reported a highly significant loss of richness as a result of habitat loss in a Brazilian Atlantic forest (Figure 88). The most conserved fragments had more than 10 times the species richness of the least conserved fragment. In non-conserved fragments, the epiphytes did not colonize the lower trunks (2.1-10 m) or higher zones. Instead, they were restricted to the lowest 2 m at the tree base and clearly exhibited an altered floristic composition. Specialists of sun or shade were impacted more than generalists. The generalists decreased in richness in non-conserved habitats, but their proportion increased due to the loss of specialists. The habitats that retained their rich epiphyte flora were greater than 300 ha in size – an uncommonly large size in the Brazilian Atlantic rainforest.

In addition to habitat loss, as seen above, pollutants can destroy canopy bryophytes. Bryophytes are scavengers of atmospheric nitrogen as they collect the dust from the atmosphere. In this way, they are able to serve as bi-indicators of nitrogen pollution. Shi et al. (2017) examined epiphytic bryophytes from a subtropical montane cloud forest in southwest China. The critical load of nitrogen deposition there is estimated at 18 kg N ha⁻¹ yr⁻¹. The bryophytes become nutrient pools in these circumstances. These high levels are detrimental to the bryophytes, with a significant decrease in cover when the nitrogen level is only 7.4 kg ha⁻¹ yr⁻¹. The study site had a nitrogen deposition rate of 10.5 kg ha⁻¹ yr⁻¹. The researchers suggest that the high N levels not only do direct damage, but cause the leakage of magnesium and potassium, both essential nutrients for cellular metabolism.

The researchers concluded that as the climate changes the individual species responses will differ, resulting in new community relationships. They warn that short-term responses might not be indicative of long-term responses.

Pócs (1989) reported that epiphytes are much rarer in disturbed forests than they are in undisturbed forests in submontane rainforests in the East Usambara Mountains of East Africa. Rather, the species in the disturbed forests are sun species and occur on the lower parts of trunks of *Maesopsis* (Figure 86). In the undisturbed forests, these same species occur in the canopy. Pócs has also found a decline in epiphytes in the "undisturbed forest." He attributed this to the drying climate.

Climate change studies in the tropics are of utmost importance in a region where many species are already limited by temperature. Jácome et al. (2011) summarized what we know about the effects on the epiphytic bryophyte communities to simulated climate change in the tropics.

Jacobsen (1978) found that epiphytes require a minimum of 7-10 years to regenerate after harvesting of the forest. In any case, deforestation leads to local extinction of species (Gradstein 1992b). Shade epiphytes are the most easily affected by disturbance.

Hallingbäck and Hodgetts (2000) contend that the negative impact of habitat loss has already gone too far in the tropical lowlands. Forested land has been cleared continuously for the expansion of the human population and the agriculture to support it (Hyvönen et al. 1987). In India, Japan, and China mats of mosses are peeled from their substrates for use in the horticulture industry (Peck 2006).

Alvarenga et al. (2009b) likewise reported a highly significant loss of richness as a result of habitat loss in a Brazilian Atlantic forest (Figure 88). The most conserved fragments had more than 10 times the species richness of the least conserved fragment. In non-conserved fragments, the epiphytes did not colonize the lower trunks (2.1-10 m) or higher zones. Instead, they were restricted to the lowest 2 m at the tree base and clearly exhibited an altered floristic composition. Specialists of sun or shade were impacted more than generalists. The generalists decreased in richness in non-conserved habitats, but their proportion increased due to the loss of specialists. The habitats that retained their rich epiphyte flora were greater than 300 ha in size – an uncommonly large size in the Brazilian Atlantic rainforest.

In addition to habitat loss, as seen above, pollutants can destroy canopy bryophytes. Bryophytes are scavengers of atmospheric nitrogen as they collect the dust from the atmosphere. In this way, they are able to serve as bi-indicators of nitrogen pollution. Shi et al. (2017) examined epiphytic bryophytes from a subtropical montane cloud forest in southwest China. The critical load of nitrogen deposition there is estimated at 18 kg N ha⁻¹ yr⁻¹. The bryophytes become nutrient pools in these circumstances. These high levels are detrimental to the bryophytes, with a significant decrease in cover when the nitrogen level is only 7.4 kg ha⁻¹ yr⁻¹. The study site had a nitrogen deposition rate of 10.5 kg ha⁻¹ yr⁻¹. The researchers suggest that the high N levels not only do direct damage, but cause the leakage of magnesium and potassium, both essential nutrients for cellular metabolism.
Twenty years ago, our knowledge of tropical bryology was quite meager, making conservation efforts problematic. Sastre de Jesus and Tan (1995) noted the problems in Puerto Rico and the Philippines. As noted by Streimann (1994) for Australia, conservation programs must be preceded by a good knowledge of the bryophytes. In absence of those data, he recommended that at least for those areas that are poorly known for bryophytes, those areas conserved for vascular plants, including national parks and forest reserves, would in most cases be adequate to conserve bryophytes as well.

The bryophyte flora of Mexico was somewhat better known, with more than 900 species, including 98 endemic taxa (Delgadillo 1996). Even so, many areas still need to be explored. Meanwhile, habitat destruction may be destroying some taxa forever. Delgadillo bemoaned the fact that there still was no legislation to protect the habitats of any Mexican mosses.

As in Mexico, moss diversity in the tropical Andes is extensive, with 2,058 species known in 1995. Although this number is probably inflated due to the same species being named multiple times in different locations, the presence of 343 genera and 75 families is still an indicator of the high diversity. Churchill et al. (1995a) estimate the actual number to be 1,500-1,700. They contend that the tropical Andes are eight times as rich in moss species as the Amazon basin. Churchill (1996) summarized the status of our knowledge of moss diversity and conservation in the Andes, noting the needs to prepare for the future.

One of the problems with conserving bryophytes in Neotropical cloud forests (Figure 45) is that they are typically surrounded by xeric habitats unsuitable for their survival (Churchill et al. 1995b).

The Neotropics are not the only tropical area experiencing serious species loss. Turner et al. (1994) reported extinction of 594 of the 2,277 tracheophyte species in the Republic of Singapore. Epiphytic species have suffered 62% loss. These losses are due to deforestation (99.8% of primary forest) and disturbance, with the mangrove epiphytic flora disappearing completely. These losses will necessarily impact the losses of bryophytes through loss of substrate, shade, and sufficient humidity.

Holz and Gradstein (2005) considered that genera and species of bryophytes and macrolichens that are exclusive to the primary (uncut) forests could be used as indicator taxa and that these species and their forests should be conserved.

In French Guiana, water availability affects the bryophyte life forms. When Pardow et al. (2012) compared the life forms of the lowland cloud forests with those of the other lowland forests, they concluded that life forms could indicate lowland cloud forests that are appropriate for conservation. This would permit conservation of a rich bryophyte flora with higher biomass and cover.

With 1,000 epiphyllous liverworts worldwide, these tiny plants represent a group that is also endangered worldwide (Pócs 1996). Of these, 504 are in Asia and 375 in the Americas. They are by far the most species rich in the tropical and subtropical rainforests, but as these forests disappear, so do the epiphylls.

Newer tools may help us to process the data in meaningful ways to understand environmental impacts. In summarizing the symposium and priorities for future research, presented at the first IAB and IAL Symposium on Foliicolous Cryptogams, Gradstein and Lücking (1997) noted that multivariate statistical methods were useful in analyzing the foliicolous community data.

With the inevitability of global climate change, bryophytes living in tropical mountain habitats are clearly in danger. Zhang (2001) found a linear increase in number of species per forest plot with an increase in altitude. As those areas become warmer, those species may not have the time needed for significant dispersal to distant areas with a similar cool climate.

Gradstein and Pócs (1992a) advised that protection of as much as possible of the remaining natural tropical rainforest area seems the best approach to the conservation of the tropical bryophyte flora.

Current Status

In 1982, Schultze-Motel referred to the crisis in tropical bryology. Part of this crisis is the loss of habitats and species before we have even explored to determine what is there to be lost. Even worse, we know little of their role in these sensitive, disappearing ecosystems, even today.

In 1992, Motito et al. recognized the need for bryological study in Cuba (Figure 90). At that time 383...
Infrageneric bryophyte taxa were known, and studies had begun on phytochemistry and antibiosis. However, it seems that little progress has been made since then on protection of species or of understanding their ecology.

Summary

Natural disturbances such as El Niño, hurricanes, fire, volcanoes, and animal activity can dislodge bryophytes or provide conditions unsuitable to their continued growth. Some rare and threatened species thrive in these altered conditions, but in general these are potential sources of species losses.

Disturbance is a major cause of loss of species and populations in the tropics. Approximately half of the bryophyte taxa lost on fallow land can become re-established in 10-15 years; most of these are ecological generalists and sun-loving epiphytes. For others it can take 100 years. Sufficient fragment size is important in maintenance and re-establishment of species.

The highest diversity of the fallows is in the understory, contrasting with the highest richness in the canopy of the uncut rainforest. This difference is the result of light penetration, and in some cases moisture.

Human harvesting of bryophytes for horticulture and other human uses not only reduces the bryophyte cover, but also removes habitat for numerous invertebrates and many amphibians.

Industrialization can raise nitrogen levels beyond the limits of tolerance. Heavy metals accumulate in the bryophytes and an reach lethal levels. On the other hand, the bryophytes can serve as filters to remove these pollutants from the air, in some cases after the bryophytes die.

Man-made habitats displace natural habitats, but they do increase the number of niches. Some species thrive in these new niches. For example, the leafy liverwort *Sprutheanthus theobromae* is currently known from the bark of cacao on plantations.

Many bryophytes have narrow temperature, light, and moisture requirements. Changing climate can not only destroy the forests where they live, but change the microclimate so that it is no longer suitable for them.

Bryophyte recovery can take a long time. In particular, those species living on mountain tops may not have any suitable propagule source without intervening unsuitable habitats. Even in restored lowland rainforests, recovery of bryophyte diversity can require more than 100 years.

The most pressing issues seem to be massive losses of habitat due to agriculture and forestry management for trees only. But climate change is likely to be a close second in the loss of tropical bryophytes in the tropics.

Current practices are beginning to recognize that some species can be conserved by maintaining larger fragments, keeping more trees where trees are cut, and designating more land to conservation.

Acknowledgments

My appreciation goes to Robbert Gradstein for his efforts to make this subchapter complete and up-to-date. His many publications, his contribution of images, his mentoring of students, and his helpful comments on a very early version of the chapter kept me going on this part of the world I know so little about.

Literature Cited

Gradstein, S. R. and Sporn, S. G. 2010. Land-use change and epiphytic bryophyte diversity in the tropics. Cambio en el...

