Document Type

Conference Paper/Presentation

Publication Date

5-2015

Abstract

Preparation is key to utilizing Earth Observations and process-based models to support post-wildfire mitigation. Post-fire flooding and erosion can pose a serious threat to life, property and municipal water supplies. Increased runoff and sediment delivery due to the loss of surface cover and fire-induced changes in soil properties are of great concern. Remediation plans and treatments must be developed and implemented before the first major storms in order to be effective. One of the primary sources of information for making remediation decisions is a soil burn severity map derived from Earth Observation data (typically Landsat) that reflects fire induced changes in vegetation and soil properties. Slope, soils, land cover and climate are also important parameters that need to be considered. Spatially-explicit process-based models can account for these parameters, but they are currently under-utilized relative to simpler, lumped models because they are difficult to set up and require spatially-explicit inputs (digital elevation models, soils, and land cover). Our goal is to make process-based models more accessible by preparing spatial inputs before a fire, so that datasets can be rapidly combined with soil burn severity maps and formatted for model use. We are building an online database (http://geodjango.mtri.org/geowepp /) for the continental United States that will allow users to upload soil burn severity maps. The soil burn severity map is combined with land cover and soil datasets to generate the spatial model inputs needed for hydrological modeling of burn scars. Datasets will be created to support hydrological models, post-fire debris flow models and a dry ravel model. Our overall vision for this project is that advanced GIS surface erosion and mass failure prediction tools will be readily available for post-fire analysis using spatial information from a single online site.

Publisher's Statement

© Author(s) 2015. This work is distributed
under the Creative Commons Attribution 3.0 License. Publisher's version of record: http://dx.doi.org/10.5194/isprsarchives-XL-7-W3-469-2015

Publication Title

International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences

Creative Commons License

Creative Commons Attribution 3.0 License
This work is licensed under a Creative Commons Attribution 3.0 License.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.