Title

Volcanic particle aggregation in explosive eruption columns. Part I: Parameterization of the microphysics of hydrometeors and ash

Document Type

Article

Publication Date

12-15-2005

Abstract

The aggregation of volcanic ash particles within the eruption column of explosive eruptions has been observed at many volcanoes. It influences the residence time of ash in the atmosphere and the radiative properties of the umbrella cloud. However, the information on the processes leading to aggregate formation are still either lacking or very incomplete. We examine the fate of ash particles through numerical experiments with the plume model ATHAM (Active Tracer High resolution Atmospheric Model) in order to determine the conditions that promote ash particle aggregation. In this paper we describe the microphysics and parameterization of ash and hydrometeors. In a companion paper (this issue) we use this information in a series of numerical experiments.

The parameterization includes the condensation of water vapor in the rising eruption column. The formation of liquid and solid hydrometeors and the effect of latent heat release on the eruption column dynamics are considered. The interactions of hydrometeors and volcanic ash within the eruption column that lead to aggregate formation are simulated for the first time within a rising eruption column. The microphysical parameterization follows a modal approach. The hydrometeors are described by two size classes, each of which is divided into a liquid and a frozen category. By analogy with the hydrometeor classification, we specify four categories of volcanic ash particles. We imply that volcanic particles are active as condensation nuclei for water and ice formation. Ash can be contained in all categories of hydrometeors, thus forming mixed particles of any composition reaching from mud rain to accretionary lapilli. Collisions are caused by gravitational capture of particles with different fall velocity. Coalescence of hydrometeor–ash aggregates is assumed to be a function of the hydrometeor mass fraction within the mixed particles. The parameterization also includes simplified descriptions of electrostatics and salinity effects.

Publisher's Statement

© 2005 Elsevier B.V. Publisher's version of record: https://dx.doi.org/10.1016/j.jvolgeores.2005.09.007

Publication Title

Journal of Volcanology and Geothermal Research

Share

COinS