Date of Award
2014
Document Type
Master's Thesis
Degree Name
Master of Science in Mechanical Engineering (MS)
College, School or Department Name
Department of Mechanical Engineering-Engineering Mechanics
Advisor
Charles Van Karsen
Co-Advisor
Jason R. Blough
Abstract
Today’s snowmobile industry faces great challenges in the field of noise & vibration. The area of main concern is the pass-by noise restriction defined by the Society of Automotive Engineers (SAE) test standard J192, with a maximum sound pressure level of 78 dB(A) being required by many states and national parks. To continue meet or beat this requirement without effecting machine performance, a deeper understanding of the sound transfer paths is required. This thesis examines the transfer paths created by the tunnel, rear suspension, drive shaft, and rubber composite track, with the primary source being suspension input through the ground. Using a combination of field experiments and analytical modeling, perspective was gained on which suspension and drive elements create the primary transfer paths. With further understanding of these paths, industry can tailor and fine-tune the approaches taken in to control overall noise output.
Recommended Citation
Kleinendorst, Jamie L., "UNDERSTANDING CHASSIS INPUTS FROM THE REAR SUSPENSION OF A SNOWMOBILE", Master's Thesis, Michigan Technological University, 2014.