Date of Award


Document Type

Master's report

Degree Name

Master of Science in Computer Science (MS)

College, School or Department Name

Department of Computer Science


Steven M. Carr


Zhenlin Wang


Reuse distance analysis, the prediction of how many distinct memory addresses will be accessed between two accesses to a given address, has been established as a useful technique in profile-based compiler optimization, but the cost of collecting the memory reuse profile has been prohibitive for some applications. In this report, we propose using the hardware monitoring facilities available in existing CPUs to gather an approximate reuse distance profile. The difficulties associated with this monitoring technique are discussed, most importantly that there is no obvious link between the reuse profile produced by hardware monitoring and the actual reuse behavior. Potential applications which would be made viable by a reliable hardware-based reuse distance analysis are identified.