Date of Award
2009
Document Type
Master's report
Degree Name
Master of Science in Biological Sciences (MS)
College, School or Department Name
Department of Biological Sciences
Advisor
Susan T. Bagley
Abstract
Bioplastics are polymers (such as polyesters) produced from bacterial fermentations that are biodegradable and nonhazardous. They are produced by a wide variety of bacteria and are made only when stress conditions allow, such as when nutrient levels are low, more specifically levels of nitrogen and oxygen. These stress conditions cause certain bacteria to build up excess carbon deposits as energy reserves in the form of polyhydroxyalkanoates (PHAs). PHAs can be extracted and formed into actual plastic with the same strength of conventional, synthetic-based plastics without the need to rely on foreign petroleum.
The overall goal of this project was to select for a bacteria that could grow on sugars found in the lignocellulosic biomass, and get the bacteria to produce PHAs and peptidoglycan. Once this was accomplished the goal was to extract PHAs and peptidoglycan in order to make a stronger more rigid plastic, by combing them into a co-polymer. The individual goals of this project were to: (1) Select and screen bacteria that are capable of producing PHAs by utilizing the carbon/energy sources found in lignocellulosic biomass; (2) Maximize the utilization of those sugars present in woody biomass in order to produce optimal levels of PHAs. (3) Use room temperature ionic liquids (RTILs) in order to separate the cell membrane and peptidoglycan, allowing for better extraction of PHAs and more intact peptidoglycan. B. megaterium a Gram-positive PHA-producing bacterium was selected for study in this project. It was grown on a variety of different substrates in order to maximize both its growth and production of PHAs. The optimal conditions were found to be 30°C, pH 6.0 and sugar concentration of either 30g/L glucose or xylose. After optimal growth was obtained, both RTILs and enzymatic treatments were used to break the cell wall, in order to extract the PHAs, and peptidoglycan. PHAs and peptidoglycan were successfully extracted from the cell, and will be used in the future to create a new stronger co-polymer. Peptidoglycan recovery yield was 16% of the cells’ dry weight.
Recommended Citation
Paladino, Louis Paul-Anthony, "Screening, optimization and extraction of polyhydroxyalkanoates and peptidoglycan from Bacillus megaterium", Master's report, Michigan Technological University, 2009.