Date of Award

2012

Document Type

Master's Thesis

Degree Name

Master of Science in Environmental Engineering (MS)

College, School or Department Name

Department of Civil and Environmental Engineering

Advisor

Shiliang Wu

Abstract

Carbon Monoxide (CO) and Ozone (O3) are considered to be one of the most important atmospheric pollutants in the troposphere with both having significant effects on human health. Both are included in the U.S. E.P.A list of criteria pollutants. CO is primarily emitted in the source region whereas O3 can be formed near the source, during transport of the pollution plumes containing O3 precursors or in a receptor region as the plumes subside. The long chemical lifetimes of both CO and O3 enable them to be transported over long distances. This transport is important on continental scales as well, commonly referred to as inter-continental transport and affects the concentrations of both CO and O3 in downwind receptor regions, thereby having significant implications for their air quality standards. Over the period 2001-2011, there have been decreases in the anthropogenic emissions of CO and NOx in North America and Europe whereas the emissions over Asia have increased. How these emission trends have affected concentrations at remote sites located downwind of these continents is an important question. The PICO-NARE observatory located on the Pico Mountain in Azores, Portugal is frequently impacted by North American pollution outflow (both anthropogenic and biomass burning) and is a unique site to investigate long range transport from North America. This study uses in-situ observations of CO and O3 for the period 2001-2011 at PICO-NARE coupled with output from the full chemistry (with normal and fixed anthropogenic emissions) and tagged CO simulations in GEOS-Chem, a global 3-D chemical transport model of atmospheric composition driven by meteorological input from the Goddard Earth Observing System (GEOS) of the NASA Global Modeling and Assimilation Office, to determine and interpret the trends in CO and O3 concentrations over the past decade. These trends would be useful in ascertaining the impacts emission reductions in the United States have had over Pico and in general over the North Atlantic. A regression model with sinusoidal functions and a linear trend term was fit to the in-situ observations and the GEOS-Chem output for CO and O3 at Pico respectively. The regression model yielded decreasing trends for CO and O3 with the observations (-0.314 ppbv/year & -0.208 ppbv/year respectively) and the full chemistry simulation with normal emissions (-0.343 ppbv/year & -0.526 ppbv/year respectively). Based on analysis of the results from the full chemistry simulation with fixed anthropogenic emissions and the tagged CO simulation it was concluded that the decreasing trends in CO were a consequence of the anthropogenic emission changes in regions such as USA and Asia. The emission reductions in USA are countered by Asian increases but the former have a greater impact resulting in decreasing trends for CO at PICO-NARE. For O3 however, it is the increase in water vapor content (which increases O3 destruction) along the pathways of transport from North America to PICO-NARE as well as around the site that has resulted in decreasing trends over this period. This decrease is offset by increase in O3 concentrations due to anthropogenic influence which could be due to increasing Asian emissions of O3 precursors as these emissions have decreased over the US. However, the anthropogenic influence does not change the final direction of the trend. It can thus be concluded that CO and O3 concentrations at PICO-NARE have decreased over 2001-2011.

Share

COinS