Date of Award
2011
Document Type
Master's Thesis
Degree Name
Master of Science in Mechanical Engineering (MS)
College, School or Department Name
Department of Mechanical Engineering-Engineering Mechanics
Advisor
Seth W Donahue
Abstract
Disuse osteoporosis is a problem for people with spinal cord injury or stroke, patients confined to bed rest, and astronauts exposed to microgravity. Unlike most mammals however, bears have been shown to prevent bone loss during hibernation, a seasonal period of disuse. Similarly, studies in ground squirrels indicate preservation of whole bone strength during hibernation, though evidence suggests there may be some increased osteocytic osteolysis. Uncovering the mechanism by which these animals prevent bone loss during hibernation could lead to an improved treatment for osteoporosis in humans. Marmots are a good animal model for these studies because they are small enough to easily house in an animal facility yet still utilize intracortical remodeling like humans and bears, and unlike smaller rodents like squirrels. Marmots preserve bone mechanical and microstructural properties during hibernation. Bone mechanical and geometrical properties are not diminished in post-hibernation samples compared to pre-hibernation samples. Mineral content, measured by ash fraction, was higher in post-hibernation samples (p = 0.0003). Haversian porosity as well as remodeling cavity density were not different (p > 0.38) between pre- and post-hibernation samples. Similarly, average lacunar area, lacunar density, and lacunar porosity were all lower (p < 0.0001) in post-hibernation samples. Trabecular thickness was larger in posthibernation samples (p = 0.0058). Bone volume fraction was not different between groups, but approached significance (p = 0.0725). Further studies in marmots and other hibernators could help uncover the mechanism that allows hibernators to prevent disuse osteoporosis during hibernation.
Recommended Citation
Wojda, Samantha J., "Effects of hibernation on bone in yellow-bellied marmots", Master's Thesis, Michigan Technological University, 2011.