Date of Award
2011
Document Type
Master's Thesis
Degree Name
Master of Science in Mechanical Engineering (MS)
College, School or Department Name
Department of Mechanical Engineering-Engineering Mechanics
Advisor
Spandan Maiti
Co-Advisor
Gregory M Odegard
Abstract
In recent times, the demand for the storage of electrical energy has grown rapidly for both static applications and the portable electronics enforcing the substantial improvement in battery systems, and Li-ion batteries have been proven to have maximum energy storage density in all rechargeable batteries. However, major breakthroughs are required to consummate the requirement of higher energy density with lower cost to penetrate new markets. Graphite anode having limited capacity has become a bottle neck in the process of developing next generation batteries and can be replaced by higher capacity metals such as Silicon. In the present study we are focusing on the mechanical behavior of the Si-thin film anode under various operating conditions. A numerical model is developed to simulate the intercalation induced stress and the failure mechanism of the complex anode structure. Effect of the various physical phenomena such as diffusion induced stress, plasticity and the crack propagation are investigated to predict better performance parameters for improved design.
Recommended Citation
Patel, Siddharth H., "Numerical modeling of the failure mechanisms in Si thin film anode for Li-ion batteries", Master's Thesis, Michigan Technological University, 2011.