Date of Award

2011

Document Type

Master's Thesis

Degree Name

Master of Science in Geological Engineering (MS)

College, School or Department Name

Department of Geological and Mining Engineering and Sciences

Advisor

Wayne D Pennington

Abstract

This work is conducted to study the complications associated with the sonic log prediction in carbonate logs and to investigate the possible solutions to accurately predict the sonic logs in Traverse Limestone. Well logs from fifty different wells were analyzed to define the mineralogy of the Traverse Limestone by using conventional 4-mineral and 3-mineral identification approaches. We modified the conventional 3-mineral identification approach (that completely neglects the gamma ray response) to correct the shale effects on the basis of gamma ray log before employing the 3-mineral identification. This modification helped to get the meaningful insight of the data when a plot was made between DGA (dry grain density) and UMA (Photoelectric Volumetric Cross-section) with the characteristic ternary diagram of the quartz, calcite and dolomite. The results were then compared with the 4-mineral identification approach. Contour maps of the average mineral fractions present in the Traverse Limestone were prepared to see the basin wide mineralogy of Traverse Limestone.

In the second part, sonic response of Traverse Limestone was predicted in fifty randomly distributed wells. We used the modified time average equation that accounts for the shale effects on the basis of gamma ray log, and used it to predict the sonic behavior from density porosity and average porosity. To account for the secondary porosity of dolomite, we subtracted the dolomitic fraction of clean porosity from the total porosity. The pseudo-sonic logs were then compared with the measured sonic logs on the root mean square (RMS) basis. Addition of dolomite correction in modified time average equation improved the results of sonic prediction from neutron porosity and average porosity. The results demonstrated that sonic logs could be predicted in carbonate rocks with a root mean square error of about 4μsec/ft. We also attempted the use of individual mineral components for sonic log prediction but the ambiguities in mineral fractions and in the sonic properties of the minerals limited the accuracy of the results.

Included in

Geology Commons

Share

COinS