Date of Award


Document Type

Master's Thesis

Degree Name

Master of Science in Civil Engineering (MS)

College, School or Department Name

Department of Civil and Environmental Engineering


Lawrence L Sutter


Carboxylate-based deicing and anti-icing chemicals became widely used in the mid 1990s, replacing more environmentally burdensome chemicals. Within a few years of their adoption, distress of portland cement concrete runways was reported by a few airports using the new chemicals. Distress manifested characteristics identical to that of alkali silica reactivity (ASR), but onset occurred early in the pavement’s operating life and with pavements thought to contain innocuous aggregate. The carboxylate-based deicing chemicals were suspected of exacerbating ASR-like expansion.

Innocuous, moderately, and highly reactive aggregates were tested using modified ASTM C1260 and ASTM C1567 procedures with soak solutions containing deicer solutions and sodium hydroxide or potassium hydroxide. ASR-like expansion is exacerbated in the presence of potassium acetate. The expansion rate produced by a given aggregate is also a function of the alkali hydroxide used. Petrographic analyses were performed on thin sections prepared from mortar bars used in the experiments. Expansion occurred via two mechanisms; rupture of aggregate grains and expansion of paste.