Date of Award

2011

Document Type

Master's report

Degree Name

Master of Science in Forest Ecology and Management (MS)

College, School or Department Name

School of Forest Resources and Environmental Science

Advisor

Martin F Jurgensen

Co-Advisor

Helja-Sisko Helmisaari

Abstract

In 2009 and 2010 a study was conducted on the Hiawatha National Forest (HNF) to determine if whole-tree harvest (WTH) of jack pine would deplete the soil nutrients in the very coarse-textured Rubicon soil. WTH is restricted on Rubicon sand in order to preserve the soil fertility, but the increasing construction of biomass-fueled power plants is expected to increase the demand for forest biomass. The specific objectives of this study were to estimate biomass and nutrient content of above- and below-ground tree components in mature jack pine (Pinus banksiana) stands growing on a coarse-textured, low-productivity soil, determine pools of total C and N and exchangeable soil cations in Rubicon sand, and to compare the possible impacts of conventional stem-only harvest (CH) and WTH on soil nutrient pools and the implications for productivity of subsequent rotations. Four even-aged jack pine stands on Rubicon soil were studied. Allometric equations were used to estimate above-ground biomass and nutrients, and soil samples from each stand were taken for physical and chemical analysis. Results indicate that WTH will result in cation deficits in all stands, with exceptionally large Ca deficits occurring in two stands. Where a deficit does not occur, the cation surplus is small and, chemical weathering and atmospheric deposition is not anticipated to replace the removed cations. CH will result in a surplus of cations, and will likely not result in productivity declines during the first rotation. However even under CH, the surplus is small, and chemical weathering and atmospheric deposition will not supply enough cations for the second rotation.

Share

COinS