Off-campus Michigan Tech users: To download campus access theses or dissertations, please use the following button to log in with your Michigan Tech ID and password: log in to proxy server
Non-Michigan Tech users: Please talk to your librarian about requesting this thesis or dissertation through interlibrary loan.
Date of Award
2010
Document Type
Master's Thesis
Degree Name
Master of Science in Electrical Engineering (MS)
College, School or Department Name
Department of Electrical and Computer Engineering
First Advisor
Megan C Frost
Co-Advisor
Michael Robert Neuman
Abstract
The perturbation of homeostatic mechanisms caused by interactions between any indwelling biomedical device and the biological medium into which it is implanted initiates a dynamic wound healing response from the host which can be rigorous and ongoing. The typical result of this response is a severe degradation in the performance and safety of the device, often to the extent of precluding their clinical use.
Nitric oxide (NO) is an endogenously produced biomolecule capable of mediating many of the cellular processes leveraged against implanted devices. The in vivo performance of indwelling devices prepared with NO release coatings has recently been evaluated with very encouraging results. This work developed a platform capable of both generating programmable fluxes of NO and directly evaluating the performance of indwelling probes under different profiles of NO generation. This platform can be used to improve the efficacy of NO release materials in mitigating the host response.
Recommended Citation
Starrett, Michael A., "Development of a wireless platform to generate nitric oxide for implanted biomedical devices", Master's Thesis, Michigan Technological University, 2010.