Off-campus Michigan Tech users: To download campus access theses or dissertations, please use the following button to log in with your Michigan Tech ID and password: log in to proxy server

Non-Michigan Tech users: Please talk to your librarian about requesting this thesis or dissertation through interlibrary loan.

Date of Award

2014

Document Type

Master's Thesis

Degree Name

Master of Science in Civil Engineering (MS)

College, School or Department Name

Department of Civil and Environmental Engineering

First Advisor

Yue Li

Abstract

Water distribution systems are important for life saving facilities especially in the recovery after earthquakes. In this paper, a framework is discussed about seismic serviceability of water systems that includes the fragility evaluation of water sources of water distribution networks. Also, a case study is brought about the performance of a water system under different levels of seismic hazard.

The seismic serviceability of a water supply system provided by EPANET is evaluated under various levels of seismic hazard. Basically, the assessment process is based on hydraulic analysis and Monte Carlo simulations, implemented with empirical fragility data provided by the American Lifeline Alliance (ALA, 2001) for both pipelines and water facilities.

Represented by the Seismic Serviceability Index (Cornell University, 2008), the serviceability of the water distribution system is evaluated under each level of earthquakes with return periods of 72 years, 475 years, and 2475 years. The system serviceability under levels of earthquake hazard are compared with and without considering the seismic fragility of the water source. The results show that the seismic serviceability of the water system decreases with the growing of the return period of seismic hazard, and after considering the seismic fragility of the water source, the seismic serviceability decreases. The results reveal the importance of considering the seismic fragility of water sources, and the growing dependence of the system performance of water system on the seismic resilience of water source under severe earthquakes.

Share

COinS