Title
Theoretical study of physisorption of nucleobases on boron nitride nanotubes: a new class of hybrid nano-biomaterials
Document Type
Article
Publication Date
3-30-2010
Abstract
We investigate the adsorption of the nucleic acid bases—adenine (A), guanine (G), cytosine (C), thymine (T) and uracil (U)—on the outer wall of a high curvature semiconducting single-walled boron nitride nanotube (BNNT) by first-principles density functional theory calculations. The calculated binding energy shows the order: G > A ≈ C ≈ T ≈ U, implying that the interaction strength of the high curvature BNNT with the nucleobases, G being an exception, is nearly the same. A higher binding energy for the G–BNNT conjugate appears to result from hybridization of the molecular orbitals of G and the BNNT. A smaller energy gap predicted for the G–BNNT conjugate relative to that of the pristine BNNT may be useful in the application of this class of biofunctional materials to the design of next-generation sensing devices.
Publication Title
Nanotechnology
Recommended Citation
Mukhopadhyay, S.,
S, G.,
Scheicher, R. H.,
Pandey, R.,
&
Karna, S. P.
(2010).
Theoretical study of physisorption of nucleobases on boron nitride nanotubes: a new class of hybrid nano-biomaterials.
Nanotechnology,
21(16).
http://doi.org/10.1088/0957-4484/21/16/165703
Retrieved from: https://digitalcommons.mtu.edu/data-science-fp/24
Publisher's Statement
© 2010 IOP Publishing Ltd. Publisher's version of record: http://dx.doi.org/10.1088/0957-4484/21/16/165703