Aging of soot particles: Remote marine free-tropospheric aerosol at the Pico Mountain Observatory, Azores

Document Type

Conference Proceeding

Publication Date

12-2013

Abstract

Soot particles, often referred to as black carbon, are aggregates of carbonaceous monomers that strongly absorb light, significantly impacting the environment, Earth's radiation balance, atmospheric chemistry and properties of clouds. Soot can be transported over long distances, thus affecting global climate. During transport, soot aggregates undergo chemical and morphological changes such as oxidation, mixing, coating and restructuring. These changes have a significant impact on soot's light absorption and scattering efficiencies, and therefore on soot's effects on climate. Free tropospheric aerosols are being studied at the Pico Mountain Observatory, located near the top of the Pico Volcano in the Azores, Portugal (38.47°N, 28.40°W, 2225m asl). Typically above the marine boundary layer, this is an ideal site to study aerosol transported over long distances across the ocean, often from North America and sometimes from Africa and Europe. We studied the morphology and mixing state of individual soot particles using electron microscopy and energy dispersive X-ray spectroscopy. We also measured the optical properties of aerosols using light scattering data from a 3-wavelength nephelometer, and black carbon mass equivalent concentrations using a 7-wavelength aethalometer. In this presentation, we focus on samples collected during two events in July 2012. Back trajectory analysis shows that in both periods the air masses reaching Pico were traveling from west to east, apparently originating in North America. Soot particles were classified into four categories based on their coating and mixing state. We investigated the morphology of soot particles in the four categories, using various descriptors (e.g. aspect ratio, roundness and convexity), monomer size and fractal dimension. Most of the soot particles were coated. Bare or very thinly coated soot, exhibited very compacted structures and high convexity. The results of this study have implications on how soot particles can be represented in numerical models in remote regions of the free troposphere.

Publisher's Statement

Publisher's versiopn of record: http://adsabs.harvard.edu/abs/2013AGUFM.A13B0198C

Publication Title

Fall Meeting 2013

Share

COinS