Title

Molecular formula characterization of biogenic secondary organic aerosol: Descriptive statistical evaluation

Document Type

Conference Proceeding

Publication Date

12-2013

Abstract

The detailed molecular composition of approximately 20 laboratory generated terpene ozonolysis secondary organic aerosol (SOA) samples was studied using ultrahigh resolution Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry. Individual experiments were conducted with one of four terpene SOA precursors (α-pinene, β-pinene, limonene or β-caryophyllene), varied relative humidity (RH) conditions (0%, 4%, or 30%) and the presence or absence of cyclohexane (serving as a radical scavenger). In this work, we focus on the molecular composition of the SOA experiments conducted at 4% and 30% RH without cyclohexane. In each of the experimental SOA samples, the oxygen number and the DBE values increase with increasing carbon number and three or four distinct groups (aka oligomer groups) were observed in the mass spectra. The overall bulk properties, such as the elemental ratios and the average number of double bond equivalents (DBE), of the SOA were highly similar. Despite the high number of identified species (N ≥ 1000) in each SOA sample, compounds unique to the SOA formed at either 4% or 30% RH conditions were comparatively low (< 200). An exception to this was observed for the D-limonene ozonolysis SOA formed at 4% RH conditions where over 450 unique molecular formulas were observed. Due to the similarity in the bulk properties and composition of the SOA from the experiments, multivariate statistics were used to distinguish the experiments from each other. Hierarchical cluster analysis and principal component analysis was performed using the molecular formulas and their relative abundances for all of the identified species. Slight compositional differences between the experiments showed that experiments with the same terpene SOA precursor were most closely related regardless of the RH or the presence/absence of cyclohexane. Furthermore, SOA experiments with D-limonene and β-caryophyllene as precursors were clearly distinguished from β-pinene and α-pinene. When the experimental SOA composition was compared with ambient samples, we observed a high number of common monoisotopic molecular formulas for summer aerosol [63%; Mazzoleni et. al., Env. Chem. 2012] and winter cloudwater samples [60%; Zhao et. al., ACPD 2013]. However the molecular formulas identified as significant using principal components analysis, were not found consistently in both samples indicating variable SOA contributions to summer and winter ambient samples. Mazzoleni, L.R., P. Saranjampour, M.M. Dalbec, V. Samburova, B. Zielinska, A.G. Hallar, D. Lowenthal, and S. Kohl, Identification of Water-Soluble Organic Carbon in Nonurban Organic Aerosols using Ultrahigh-Resolution FT-ICR Mass Spectrometry: Organic Anions, Environmental Chemistry, Vol. 9(3) 285-297, 2012. Zhao, Y., A.G. Hallar, and L.R. Mazzoleni, Atmospheric Organic Matter in Clouds: Exact Masses and Molecular Formula Identification using Ultrahigh Resolution FT-ICR Mass Spectrometry, Atmospheric Chemistry and Physics Discussion, In Press, 2013.

Publisher's Statement

Publisher's version of record: http://adsabs.harvard.edu/abs/2013AGUFM.A31D0120D

Publication Title

Fall Meeting 2013