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Abstract

Inverse problems arise in many branches of science and engineering. In order to get a

good approximation of the solution of this kind of problems, the use of regularization

methods is required. Tikhonov regularization is one of the most popular methods

for estimating the solutions of inverse problems. This method needs a regularization

parameter and the quality of the approximate solution depends on how good the

regularization parameter is.

The L-curve method is a convenient parameter choice strategy for selecting the

Tikhonov regularization parameter and it works well most of the time. There are

some problems in which the L-curve criterion does not perform properly.

Multiplicative regularization is a method for solving inverse problems and does not

require any parameter selection strategies. However, it turns out that there is a close

connection between multiplicative regularization and Tikhonov regularization; in fact,

multiplicative regularization can be regarded as defining a parameter choice rule for

Tikhonov regularization.

In this work, we have analyzed multiplicative regularization for finite-dimensional

xix



problems. We also have presented some preliminary theoretical results for infinite-

dimensional problems. Furthermore, we have demonstrated with numerical experi-

ments that the multiplicative regularization method produces a solution that is usu-

ally very similar to the solution obtained by the L-curve method. This method

is guaranteed to define a positive regularization parameter under some conditions.

Computationally, this method is not expensive and is easier to analyze compared to

the L-curve method.

xx



Chapter 1

Introduction

1.1 Linear inverse problems

Let X and Y be Hilbert spaces (that is, complete inner product spaces) and let

T : X → Y be a linear operator. We will study inverse problems of the following

form: given y ∈ Y , find x ∈ X satisfying Tx = y.

An equation Tx = y in which the operator T has certain properties represents an

inverse problem. As we will see, an inverse problem is a certain kind of ill-posed

problem.
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The results in this section are well-known; to learn more, see [12] for further expla-

nations.

1.1.1 Well-posed and ill-posed problems

Hadamard’s definition of a well-posed problem says that a mathematical problem is

well-posed if and only if the following properties hold:

1. Existence: A solution exists for all admissible data.

2. Uniqueness: The solution is unique for all admissible data.

3. Stability: The solution depends continuously on data.

If the problem is not well-posed, then we call it ill-posed. If one of the first two

properties, existence or uniqueness, fails to hold, the problem is ill-posed, but we do

not classify it as an inverse problem. The important property makes the equation an

inverse problem is that the solution x does not depend continuously on data y (that

is, we have an inverse problem if stability fails to hold). The continuity depends on

the norms chosen for both spaces. A given problem can be stable under one norm

and unstable under a different norm, but normally we have to work with the given

norms on X and Y .
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For the problem Tx = y, existence and uniqueness are equivalent to the existence of

T−1, and stability is equivalent to the continuity (boundedness) of T−1. So Tx = y

is well-posed if and only if T−1 exists and is bounded.

1.1.2 Dealing with lack of existence and lack of uniqueness

If a problem is ill-posed because existence or uniqueness fails, then there are standard

methods for defining a related problem that may be well-posed.

Lack of existence: If the existence property fails for Tx = y, it just means that

R(T ) is not all of Y . In this case, for y /∈ R(T ), we consider the least-squares

problem instead: min ‖Tx− y‖ for x ∈ X.

Definition 1. Let T : X → Y be a linear operator. If x ∈ X satisfies

‖Tx− y‖ = inf{‖Tz − y‖ | z ∈ X}, (1.1.1)

then x is called a least−squares solution of Tx = y.

For a given y, the problem Tx = y has a least-squares solution if and only if y ∈

R(T )⊕ R(T )⊥. Also Tx = y has a least-squares solution for all y ∈ Y if and only if

R(T ) is closed, because when R(T ) is closed, R(T )⊕R(T )⊥ = Y .

3



Recall that the adjoint operator T ∗ is defined by 〈Tx, y〉Y = 〈x, T ∗y〉X for all x ∈ X

and y ∈ Y .

Theorem 2. Let y ∈ R(T )⊕R(T )⊥. Then x is a least-squares solution of Tx = y if

and only if T ∗Tx = T ∗y.

Lack of uniqueness: If the uniqueness property fails (but existence holds), that is,

if the problem Tx = y has more than one solution, we pick the solution of smallest

norm and we reformulate the problem as min ‖x‖X such that x is a solution of problem

Tx = y. Because T is linear, uniqueness is related to N(T ). To be precise, if Tx = y

has multiple solutions, then N(T ) is nontrivial. Conversely, if N(T ) is nontrivial and

Tx = y has a solution, then this solution is not unique.

If x̂ is a solution of Tx = y and N(T ) is nontrivial, then the set of all solutions of

Tx = y is given by

x̂+N(T ) = {x̂+ u | u ∈ N(T )}. (1.1.2)

This set has a unique smallest element, namely, the unique element in N(T )⊥. In

other words, if Tx = y has a solution, then it has a unique solution belonging to

N(T )⊥, and that is the minimum-norm solution.

If the uniqueness and existence both fail, then we pick the minimum-norm least-

squares solution of the problem Tx = y.

Definition 3. Let T : X → Y be a linear operator. If x is a least-squares solution of

4



Tx = y and

‖x‖ = inf{‖z‖ | z is least-squares solution of Tx = y}, (1.1.3)

then x is called the minimum-norm least-squares solution of Tx = y.

The set of all least-squares solutions of Tx = y is given by x̂+N(T ∗T ), which is the

same as x̂+N(T ) because N(T ∗T ) = N(T ). The set x̂+N(T ) has a unique element

in N(T )⊥, which is the minimum-norm least-squares solution.

1.1.3 The Moore-Penrose generalized inverse

Recall that Tx = y is well-posed if and only if T−1 exists and is bounded. As we

discussed, if existence or uniqueness fails, we try to find the minimum-norm least-

squares solution instead.

We have seen that for each y ∈ R(T ) ⊕ R(T )⊥, there exists a unique minimum-

norm least-squares solution of Tx = y. We define T † : R(T ) ⊕ R(T )⊥ → X by

the condition T †y is the minimum-norm least-squares solution of Tx = y. We write

D(T †) = R(T ) ⊕ R(T )⊥. The operator T † is called the Moore-Penrose generalized

inverse of T .

5



If existence or uniqueness fails (i.e., if our problem has no solution or it has more

than one solution), then for y ∈ D(T †), the best approximate solution is given by

x = T †y.

We now see that x = T †y is characterized by the condition T ∗Tx = T ∗y and x ∈

N(T )⊥. It follows that R(T †) ⊂ N(T )⊥. Also if we define T̂ = T |N(T⊥): N(T )⊥ →

R(T ), since N(T̂ ) is trivial and R(T̂ ) = R(T ), then T̂−1 exists. Now for all x ∈

N(T )⊥, T †Tx = T̂−1T̂ x = x, which implies N(T )⊥ ⊂ R(T †). Therefore R(T †) =

N(T )⊥.

Since R(T ) is dense in R(T ), then D(T †) is dense in R(T ) ⊕ R(T )⊥ = Y , and thus

T † is a densely defined operator. Also T † is a closed operator, i.e., for yn ⊂ D(T †),

yn → y and T †yn → x ∈ X imply that y ∈ D(T †) and x = T †y. If R(T ) is closed,

then clearly D(T †) = Y and T † : Y → X; therefore by the closed graph theorem,

T † is bounded. Also if T † : D(T †) → X and T † is bounded, then by Theorem 2.15

of [12], D(T †) is closed and as a result R(T ) is closed. Now we have the following

fundamental result.

Corollary 4. Let T : X → Y be a linear operator. Then T † is bounded (i.e.,

continuous) if and only if R(T ) is closed.

6



1.1.4 Compact operators

Compact operators are central to the study of the inverse problems. Except for certain

degenerate cases, every compact operator K defines an inverse problem Kx = y.

Definition 5. Let K : X → Y be linear. Then K is a compact operator if and only

if it maps bounded sets in X to pre-compact sets in Y . Equivalently K is a compact

operator if and only if

{xn} ⊂ X, {xn} bounded ⇒ {Kxn} has a convergent subsequence.

If K : X → Y is a compact operator, then clearly K is bounded because if it is

not, then there exists {xn} ⊂ X with ‖xn‖X = 1 for all n such that ‖Kxn‖ → ∞

as n → ∞. That implies {Kxn} cannot have a convergent subsequence, which is a

contradiction.

Here is the degenerate case mentioned above.

Definition 6. Let K : X → Y be linear. Then K is a finite-rank operator if and

only if R(K) is finite-dimensional.

A finite-rank operator is a type of compact operator because every bounded subset

of a finite-dimensional space is pre-compact.

7



Theorem 7. Let K : X → Y be bounded and finite-rank. Then K is compact.

Theorem 8. Let K : X → Y be compact but not finite-rank. Then R(K) is not

closed.

The above theorem can be proved by way of contradiction. If we assume R(K) is

closed, then it is complete, so the new operator K̂ = K |N(K)⊥ : N(K)⊥ → R(K) is

continuously invertible. Then KK̂−1 = IR(K) is compact and hence R(K) is finite-

dimensional.

1.1.5 The singular value expansion (SVE)

A compact operator can always be expressed as a simple form known as the singular

value expansion.

Definition 9. Let X and Y be Hilbert spaces and let x ∈ X and y ∈ Y . The outer

product y ⊗ x : X → Y is the linear operator defined by

(y ⊗ x)u = 〈x, u〉y ∀u ∈ X. (1.1.4)

Theorem 10. Let K : X → Y be compact. Then there exist orthonormal sequences

{ϕn} ⊂ X and {ψn} ⊂ Y and a sequence {σn} of positive numbers such that σ1 ≥

8



σ2 ≥ σ3 ≥ ... > 0, and

K =
∑
n

σnψn ⊗ ϕn. (1.1.5)

The representation K =
∑

n σnψn ⊗ ϕn is called the singular value expansion of K.

If a compact operator K has infinitely many singular values σ1, σ2, ..., then R(K) is

non-closed, and also limn→∞ σn = 0.

Theorem 11. Let K : X → Y be a compact linear operator and let
∑

n σnψn⊗ϕn be

the SVE of K. Then {σ2
n}{n∈N} is the set of nonzero eigenvalues of the self-adjoint

operator K∗K. Also {ϕn}{n∈N} is a set of eigenvectors of K∗K and the ψn is defined

by ψn = Kϕn

σn
.

Each ϕn is an eigenvector of K∗K corresponding to σ2
n, and {ϕn} is a complete

orthonormal system for N(K)⊥. The following formulas are satisfied:

Kϕn = σnψn, (1.1.6)

K∗ψn = σnϕn, (1.1.7)

Kx =
∑
n

σn〈x, ϕn〉Xψn, x ∈ X, (1.1.8)

K∗y =
∑
n

σn〈y, ψn〉Y ϕn, y ∈ Y. (1.1.9)

Theorem 12. Let
∑

n σnψn⊗ϕn be the SVE of the compact linear operator K. Then

9



we have

1.

y ∈ D(K†) ⇔
∑
n

|〈y, ψn〉Y |2
σ2
n

< ∞. (1.1.10)

2. For y ∈ D(K†),

K†y =
∑
n

〈y, ψn〉Y
σn

ϕn. (1.1.11)

The first condition is called the Picard condition and it implies that the minimum-

norm least-squares solution of Kx = y exists only if the Fourier coefficients 〈y, ψn〉

decay faster than the corresponding singular values σn. The second condition gives an

explicit formula for the minimum-norm least-squares solution x† = K†y of Kx = y.

1.1.6 Fredholm integral equations

A Fredholm integral equation of the first kind is an equation of the form

∫ 1

0

k(s, t)f(t) dt = g(s), 0 ≤ s ≤ 1. (1.1.12)

Here the kernel k and the right-hand-side function g are known functions while the

function f is unknown and we would like to know it.

We can view this as a linear operator equation Kf = g by defining K : L2(a, b) →

10



L2(a, b) as

(Kf)(s) =

∫ b

a

k(s, t)f(t) dt, (1.1.13)

where k ∈ L2((a, b)× (a, b)). Such an operator K is always compact.

Definition 13. Let K be an integral operator of the first kind with kernel k. We say

that k is degenerate if and only if there exists functions a1, ..., an, b1, ..., bn such that

k(x, y) =
n∑
i=1

ai(x)bi(y).

It can be shown that K has finite rank if and only if k is degenerate.

1.2 Tikhonov regularization and parameter choice

rules

Considering an inverse problem where the data y is perturbed by errors, the solution

to the perturbed problem is usually dominated by errors (because of the lack of

stability—the solution does not depend continuously on the data). In such a case, it

is necessary to use a regularization method to compute a solution that is less sensitive

to the perturbation.

Tikhonov Regularization is one of the most popular regularization methods for inverse

11



problems. It was introduced by Tikhonov [39].

We typically do not know y∗ exactly but we rather know an estimate y of y∗. The idea

of regularization is to replace the system Tx = y with one that is less sensitive to noise

in the data. We will now describe the Tikhonov regularization method. (For more

information about Tikhonov regularization, and to learn about other regularization

methods, see Engl et al. [12] and Hansen [25]).

Tikhonov regularization defines an approximate solution of Tx = y as the minimizer

of the function

‖Tx− y‖2Y + α‖x‖2X . (1.2.1)

Insisting on making ‖Tx − y‖2Y as small as possible can lead to ‖x‖2X → ∞, so we

prevent this by adding the penalty term α‖x‖2X . For each α > 0, there exists a unique

minimizer of (1.2.1):

xα,y = (T ∗T + αI)−1T ∗y. (1.2.2)

For the Tikhonov regularization to work, we would expect that for all y∗ ∈ D(T †),

xα,y∗ → T †y∗ as α → 0+. More generally, since y∗ is not known exactly, we want

xα,y → T †y∗ for y /∈ D(T †) as (α, y) → (0+, y∗). We will see that this holds only if α

is chosen properly with respect to y, specifically, only if α does not converge to zero

12



too quickly with respect to ‖y − y∗‖Y .

These convergence properties must hold for the Tikhonov regularization method. But

on a specific problem, we do not have a sequence {yn} converging to y∗. We just have

one measurement y of y∗, and we need to choose a good value of α. The purpose of

this dissertation is to study one method for choosing α.

A variation of Tikhonov regularization is given by

‖Tx− y‖2Y + α‖Lx‖2Z , (1.2.3)

where L : X → Z. In this case the unique minimizer of the Tikhonov functional is

given by

xα,y = (T ∗T + αL∗L)−1T ∗y.

We will not study this variation here.

1.2.1 Definitions and basic properties

The quality of the approximated solution xα,y depends on choosing a good regular-

ization parameter α. Parameter choice method are described by whether they use a

bound δ on the noise level ‖y − y∗‖Y . Let α be a regularization parameter choice.

Then it is called

13



- an a priori parameter choice if it just depends on the noise level δ: α = α(δ).

- an a posteriori parameter choice if it depends on both the noise level δ and the

noisy data y: α = α(δ, y).

- a purely a posteriori (or heuristic) parameter choice if it depends only on the

noisy data y: α = α(y).

If we assume R(T ) is non-closed, then T † is unbounded. Since in an inverse problem,

T † is not bounded and data are not exact, then T †y need not exist and might not

be a good approximation for T †y∗ even if does exist. That is the reason for using

regularization methods for approximating T †y∗. We look for an approximation xα,y of

T †y∗ which depends continuously on the data and has the property that xα,y → T †y∗

as δ → 0, provided α is chosen properly. However, based on the result of Bakushinskii

[3], this is not possible if the parameter choice rule depends only on the noisy data

(α = α(y)), unless T has finite rank. In other words, no purely a posteriori parameter

choice strategy can yield a convergent regularization method.

The advantage of a purely a posteriori method is that it does not require a knowledge

of δ. Since this kind of method can not define a convergent regularization method

unless T has finite rank, we consider this kind of method as a heuristic parameter

choice rule.
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The following theorem gives the basic convergence results about Tikhonov regular-

ization.

Theorem 14. [12] Let xα,y be the unique minimizer of the Tikhonov functional,

y∗ ∈ R(T ), ‖y − y∗‖ ≤ δ and let α = α(δ) be such that

lim
δ→0

α(δ) = 0, (1.2.4)

and

lim
δ→0

δ2

α(δ)
= 0. (1.2.5)

Then

lim
δ→0

xα,y = T †y∗. (1.2.6)

The theorem implies that sufficient conditions for strong convergence are α(δ) → 0

and δ2

α(δ)
→ 0, as δ → 0.

The condition δ2

α(δ)
→ 0 implies that α must converge to zero at the slower rate than

δ2. If we have α = Cδp (where C is a constant), then in order to obtain convergence

we must have 0 < p < 2.

If limδ→0 α(δ) = 0 and δ2

α(δ)
is only bounded above, then ‖xα,y − T †y∗‖2X ≤ C and

xα,y → T †y∗ weakly.
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1.3 Multiplicative regularization

The parameter selection is the most difficult part in the regularization of an in-

verse problem, and finding a proper Tikhonov regularization parameter is not always

straightforward. To avoid the difficulties of choosing an proper regularization pa-

rameter, Berg, Broekhoven and Abubaker [41] and [2] proposed a new regularization

method.

Let Tx = y be a linear inverse problem, where T : X → Y , y ∈ Y is given, and x is

to be estimated. Multiplicative regularization tries to estimate x by solving

min
x∈X

J(x; y) (1.3.1)

where J(x; y) = 1
2
‖Tx− y‖2Y ‖x‖2X . The goal is to identify a value of x that makes the

residual ‖Tx − y‖2Y small without letting the regularized solution ‖x‖2X to be large.

Note that we must ignore the global minimizer x = 0 and calculate a local minimizer

(if one exists) near T †y∗.

To analyze this problem, we notice that

∇xJ(x, y) = ‖Tx− y‖2Y x+ ‖x‖2X(T ∗Tx− T ∗y).
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If x is a minimizer of J , then ∇xJ(x, y) = 0. Assuming x �= 0, ∇xJ(x, y) = 0 is

equivalent to

‖Tx− y‖2Y x+ ‖x‖2X(T ∗Tx− T ∗y) = 0 ⇔ T ∗Tx− T ∗y +
‖Tx− y‖2Y

‖x‖2X
x = 0.

Thus x �= 0 is a minimizer of J only if

T ∗Tx+ αx = T ∗y (1.3.2)

where

α =
‖Tx− y‖2Y

‖x‖2X
. (1.3.3)

If α satisfies (1.3.2) and (1.3.3), then xα,y = (T ∗T + αI)−1T ∗y is a stationary point

of J . Conversely, if x is a nontrivial stationary point of J , then x must equal xα,y for

α =
‖Tx−y‖2Y

‖x‖2X
.

In this dissertation we study multiplicative regularization as a purely a posteriori

parameter choice method for Tikhonov regularization. We will evaluate the perfor-

mance of multiplicative regularization by comparing it with the performance of the

L-curve method.
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1.4 The L-curve criterion

1.4.1 Definitions of the L-curve

The L-curve criterion is a method for choosing the regularization parameter for

Tikhonov regularization method. This method is a purely a-posteriori choice method

and it works well most of the time, although there exists some problems in which the

L-curve criterion does not perform properly (see [21] and [24]).

The linear L-curve is a set of all points (‖Txα,y − y‖Y , ‖xα,y‖X) such that α > 0. For

the noisy data y /∈ D(T †), the solution norm and residual norm have the following

behaviors:

α → 0+ ⇒

⎧⎪⎪⎨
⎪⎪⎩

‖xα,y‖X → ∞,

‖Txα,y − y‖Y → ‖PR(K)y − y‖Y .

On the other hand,

α → ∞ ⇒

⎧⎪⎪⎨
⎪⎪⎩

‖xα,y‖X → 0,

‖Txα,y − y‖Y → ‖y‖Y .

Finding a good regularization parameter balances the norm of the residual ‖Txα,y −

y‖Y and the norm of the regularized solution ‖xα,y‖X .
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The log-log L-curve is a set of all points (log ‖Txα,y − y‖2Y , log ‖xα,y‖2X) such that

α > 0.

A graph of ‖xα,y‖X versus ‖Txα,y − y‖Y tends to have a distinctive shape, especially

when plotted in log-log scale. This curve frequently has an L-shaped appearance with

an obvious corner separating the vertical and the horizontal parts (see [24]). Using

the log-log plot can be useful to increase the sharpness of the corner. The L-curve

method chooses the regularization parameter α by picking the value that corresponds

to the corner of the L-curve, which is defined as the point of maximum curvature.
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Figure 1.1: The L-curve plot of the test problem “deriv2” (n=100) where
the noise level is δ = 10−1. The test problems are described in Section 1.6.
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1.5 Regularization and finite-dimensional prob-

lems

Finite dimensional problems can not be unstable. However, if Ax = b is obtained by

discretizing an inverse problem Tx = y, then A is generally very ill-conditioned. An

ill-conditioned system Ax = b has essentially the same character as inverse problem

Tx = y: the solution is very sensitive to errors in the data.

1.5.1 The singular value decomposition (SVD)

The singular value decomposition is a valuable tool for dealing with problems with

ill-conditioned matrices. Let A ∈ Rm×n be a rectangular matrix where m ≥ n. Then

the singular value decomposition of A can be defined as A = UΣV T =
∑n

i=1 σiuiv
t
i ,

where U = (u1, ..., um) ∈ Rm×m and V = (v1, ..., vn) ∈ Rn×n are orthogonal matrices

and Σ = diag(σ1, ..., σn) has nonnegative elements such that numbers σ1, σ2, ..., σn are

the singular values of A, arranged in non-increasing order σ1 ≥ σ2 ≥ ... ≥ σn ≥ 0.

Every matrix A ∈ Rm×n has a singular value decomposition.

The minimum-norm least-squares solution of Ax = b is given by
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A†b =
r∑
i=1

ui · b
σi

vi, (1.5.1)

where r = rank(A).

1.5.2 The comparison between SVE and SVD

In the table below, we compare the singular value expansion of an operator K with

the singular value decomposition of a matrix A.

Table 1.1
The comparison of the singular value expansion and the singular value

decomposition of a matrix

SVE SVD

σ1 ≥ σ2 ≥ ... > 0 σ1 ≥ σ2 ≥ ... ≥ 0

〈ϕi, ϕj〉X = δi,j i, j = 1, 2, ... vi · vj = δi,j i, j = 1, ..., n

〈ψi, ψj〉Y = δi,j i, j = 1, 2, ... ui · uj = δi,j i, j = 1, ..., n

Kϕi = σiψi Avi = σiui
K∗ψi = σiϕi ATui = σivi

1.5.3 Tikhonov regularization method

Let Ax = b be an ill-conditioned linear system, where A ∈ Rm×n and b ∈ Rm are

given and x is supposed to be estimated.
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Tikhonov regularization defines an approximate solution of Ax = b as the minimizer

of the function

‖Ax− b‖2 + α‖x‖2.

The Tikhonov regularized solution is

xα,b = (ATA+ αI)−1A∗b.

In terms of the SVD, the regularized solution is given by

xα,b =
n∑
i=1

σ2
i

σ2
i + α

(ui · b)
σi

vi. (1.5.2)

We call
σ2
i

σ2
i +α

, i = 1, 2, ..., n, the filter factors for Tikhonov regularization method and

we use them in order to decrease the effect of small singular values. They filter out the

contributions of the smaller singular values to the solution, while leaving the effect

of the large singular values almost unchanged. This is true because if σi � α then

σi
σ2
i +α

≈ σi
σ2
i
= 1

σi
, while if σi � α then σi

σ2
i +α

≈ σi
α
= 0.

The filter factors for Tikhonov regularization filter out the singular values which are

smaller than α. Since for the least-squares solution, the largest perturbations are

associated with the smallest σi, then it is obvious that the regularized solution is less

sensitive to the perturbations than the least-squares solution.
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1.6 Test problems

We will use a collection of test problems from Hansen’s Regularization Tools package

[22]. Here are the problems we will use, with a short name for each:

baart: Discretization of the first-kind Fredholm integral equation

∫ π

0

k(s, t)f(t) dt = g(s), 0 ≤ s ≤ π

2
, 0 ≤ t ≤ π,

where k(s, t) = exp(s cos(t)), g(s) = 2( sinh(s)
s

) and the solution is f(t) = sin(t). The

equation is discretized by the Galerkin method with orthonormal box functions.

heat: Discretization of the first-kind Volterra integral equation

∫ 1

0

k(s, t)f(t) dt = g(s), 0 ≤ t, s ≤ 1,

where k(s, t) = t
−3
2

2
√
π
exp(−1

4t
), The equation is discretized by means of simple quadra-

ture (midpoint rule). An exact solution is constructed, and then the right-hand side

is produced as b = Ax.

23



foxgood: Discretization of the first-kind Fredholm integral equation

∫ 1

0

k(s, t)f(t) dt = g(s), 0 ≤ t, s ≤ 1,

where k(s, t) =
√
s2 + t2, and g(s) = (1+s2)

3
2−s3

3
. The exact solution is f(t) = t. The

equation is discretized by simple quadrature (midpoint rule).

shaw: Discretization of the first-kind Fredholm integral equation

∫ π
2

−π
2

k(s, t)f(t) dt = g(s),
−π

2
≤ t, s ≤ π

2
,

where k(s, t) = (cos(s) + cos(t))2
(

sin(π(sin(s)+sin(t)))
sin(s)+sin(t)

)2

. The exact solution is

f(t) = 2 exp(−6(t− 0.8)2) + exp(−2(t+ 0.5)2),

and right-hand side is produced by b = Ax. The equation is discretized by simple

quadrature.

deriv2: Discretization of the first-kind integral equation

∫ 1

0

k(s, t)f(t) dt = g(s), 0 ≤ t, s ≤ 1,
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where

k(s, t) =

⎧⎪⎪⎨
⎪⎪⎩

s(t− 1), s < t,

t(s− 1), otherwise,

and g(s) = (s3−s)
6

. The exact solution is f(t) = t. The equation is discretized by the

Galerkin method with orthonormal box functions.

phillips: Discretization of the first-kind integral equation

∫ 1

0

k(s, t)f(t) dt = g(s), 0 ≤ t, s ≤ 1,

where k(s, t) = φ(s− t), and g(s) = (6− |s|)(1+0.5 cos(πs
3
))+ 9

(2π) sin(π|s|
3 )

. The exact

solution is f(t) = φ(t). The function φ is defined as

φ(x) =

⎧⎪⎪⎨
⎪⎪⎩

1 + cos(πx
3
), |x| < 3,

0, |x| ≥ 3

The equation is discretized by the Galerkin method with orthonormal box functions.

i laplace: Discretization of the inverse Laplace transformation

∫ ∞

0

k(s, t)f(t) dt = g(s), 0 ≤ s, t < ∞,

where k(s, t) = exp(−st), and g(s) = 1
(s+0.5)

. The exact solution is f(t) = exp
(− t

2

)
.

The equation is discretized by means of Gauss-Laguerre quadrature.
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wing: Discretization of the first-kind Fredholm integral eqaution

∫ 1

0

k(s, t)f(t) dt = g(s), 0 < t, s < 1,

where k(s, t) = t exp(−st2), and g(s) =
exp(−st21)−exp(−st22)

2s
for t1 =

1
3
and t2 =

2
3
. The

solution f(t) is given by where

f(t) =

⎧⎪⎪⎨
⎪⎪⎩

1, t1 < t < t2,

0, otherwise.

The equation is discretized by the Galerkin method with orthonormal box functions.

Table 1.2
Summary of test problems

Test problems
deriv2 Computation of the second derivative, a mildly ill-posed problem
phillips Discretization of a first king Fredholm integral equation
heat Inverse heat problem, discretization of a first king Volterra integral equation

i laplace Inverse Laplace transformation, discretization of a first king Fredholm integral equation
foxgood Severely ill-conditioned problem, discretized by simple quadrature (midpoint rule)
baart Discretization of a first king Fredholm integral equation
shaw One dimensional image resolution model, discretization of a first king Fredholm integral

equation
wing Test problem with a discontinuous solution, discretization of a first king Fredholm integral

equation

1.6.1 The degree of ill-posedness

The degree of ill-posedness describes how fast the singular values σn converge to zero

as n → ∞. For each test problem, we found the singular values for n = 100. If there
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exists a positive real number q such that σn = cn−q (where c is a constant), then

the problem is called mildly or moderately ill-posed. If on the other hand we have

σn = ce−qn
t
, then the problem is called severely ill-posed. The results are given in

Table 1.3. It turns out that “deriv2” and “phillips” are mildly ill-posed problems and

the rest of the test problems are severely ill-posed.

Table 1.3
The degree of ill-posedness of the test problems

Test problems σn = O(n−q) σn = O(e−qnt
)

deriv2 �
phillips �
heat �

i laplace �
foxgood �
baart �
shaw �
wing �

Next, we tried to find the best fit for each test problem and the results are given in

Table 1.4.

Table 1.4
Convergence of the singular values to zero

Test problems σn ≈ cn−q σn ≈ ce−qnt

deriv2 (c, q) = (−0.88706, 2.1191)
phillips (c, q) = (2.8293, 3.6590)
heat (c, q, t) = (0.45411, 0.85161, 0.57676)

i laplace (c, q, t) = (4.9452, 0.63472, 1.0893)
foxgood (c, t, q) = (2.0765, 2.5645, 0.76484)
shaw (c, q, t) = (2.9445, 0.37951, 1.2961)
baart (c, q, t) = (5.5648, 0.66672, 1.08300)
wing (c, q, t) = (2.0295, 1.7269, 1.3599)

27



1.7 Outline of dissertation

We have seen that for an inverse problems, it is necessary to use a regularization

method to compute a solution that is less sensitive to the noise in the data. Most

methods require us to choose a good regularization parameter α.

In Chapter 2, we review existing parameter choice rules, especially the L-curve

method, which is the most popular purely a posteriori rule.

The L-curve parameter choice strategy is a useful method but sometimes it fails to

find a proper regularization parameter. Multiplicative regularization was originally

introduced to avoid the need to choose a parameter. However, as we saw in Chapter

1, it can be viewed as a parameter choice method for Tikhonov regularization. We

analyze multiplicative regularization for finite-dimensional problems in Chapter 3.

Numerical results show that both methods, multiplicative regularization and the L-

curve method, perform remarkably similarly provided A ∈ R
m×n and col(A) is a

proper subspace of Rm.

In Chapter 4, we present some preliminary theoretical and numerical results on the

performance of multiplicative regularization on infinite-dimensional problems. The

main results and the numerical experiments are found in Chapter 3 and 4.
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In Chapter 5, we present our conclusions and discuss the future plans and goal.
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Chapter 2

Literature review

2.1 Multiplicative regularization

The parameter selection is the most difficult part in the regularization of an ill-

posed problem, and finding a proper Tikhonov regularization parameter is not always

straightforward. In order to avoid the difficulties of choosing a proper regularization

parameter, Berg, Broekhoven and Abubaker in [41] and [2] proposed a new regu-

larization method. The main advantage of this method is that we do not have to

determine the regularization parameter. In this method, no a priori knowledge on

the data is needed.

Multiplicative regularization has recently been studied in the PhD dissertation of
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Orozco Rodŕıquez [38]. He analyzes the multiplicative regularization as a parameter

choice strategy and compares the performance of multiplicative regularization with

the L-curve criterion for an image deblurring problem.

Multiplicative regularization has been used in a variety of applications in the past

decade (see for example [2] and [1]).

2.2 Popular parameter choice rules

Various methods have been introduced in the literature for selecting the regularization

parameter α. Parameter choice strategies are categorized based on their assumptions

about the error norm. Here we introduce the most popular ones briefly.

2.2.1 Morozov discrepancy principle

Morozov discrepancy principle is the most popular a-posteriori parameter choice rule

for Tikhonov regularization [32]. This method chooses α to satisfy

‖Txα,y − y‖ = δ, (2.2.1)
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that is, the regularization parameter is chosen via a comparison between the residual

and the noise level. The equation (2.2.1) has a solution α = α(δ, y) > 0 as long as

‖y − y∗‖ ≤ δ, ‖y‖ > δ, and (y − y∗) /∈ R(T )⊥. The discrepancy principle defines a

convergent regularization method provided y∗ ∈ R(T ).

In the real world examples, the information about the noise level is not always avail-

able. Therefore it is necessary to consider some other parameter choice rules that

avoid knowledge of noise level. Such a heuristic parameter choice rule is called a

purely a posteriori parameter choice method.

2.2.2 Generalized cross-validation method

This method was introduced by Golub et al. [40] and it is a purely a posteriori

parameter choice method. This method includes statistical considerations and does

not require any prior knowledge about the error. The method selects a regularization

parameter in order to minimize the predicted data error of the regularized solution.

Although generalized cross-validation is an accurate purely a-posteriori method for

choosing the regularization parameter (see [17]), it has been rarely applied to large

scale problems. A major difficulty lies in the evaluation of the cross-validation func-

tion which requires the calculation of the trace of an inverse matrix (see [14]).
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The next parameter selecting strategy is the L-curve method which is one of the

most popular parameter choice methods. We discuss this method in details since we

compare the performance of multiplicative regularization with this method.

2.3 The L-curve method

The L-curve criterion is a parameter choice strategy for the Tikhonov regularization

method. The use of the L-curve goes back to Miller [31]. In infinite dimensions,

no convergence result is possible, as explained in Section 1.2. The L-curve method

sometimes fails to find a proper regularization parameter, but it still is a useful

method.

2.3.1 The definition of the corner

A difficulty with the L-curve method is that a wide range of regularization parameters

corresponding to points on the L-curve near the corner. Therefore the corner of the

curve should be selected by some numerical method rather than by visual selection.

Hansen and O’Leary [24] proposed a method for choosing α when the errors of the

right hand side are white noise1. They defined the corner of a continuous L-curve

1E[b− b∗] = 0 and E[(b− b∗) · (b− b∗)] = σ2I where E[·] denotes the expectation.
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as the point where the curvature attains a local maximum and they presented an

algorithm for locating the corner of the L-curve.

2.3.2 Concavity of the L-curve

In linear scale, independently of the right hand side, the L-curve is always convex. For

finite-dimensional problems, Reginska [36] proved the following lemmas that describe

the shape of the L-curve in logarithmic scale.

1. The L-curve in logarithmic scale is always concave for α less than or equal the

smallest singular value, i.e., (α ≤ σn) and also for α greater than or equal to

the largest singular value, i.e., (α ≥ σ1).

2. Let i1 < i2 be such that for i ∈ {i1, i2} we have uTi ·b �= 0 and also for i /∈ {i1, i2}

we have uTi · b = 0. If
|ui2 ·b|
σ2
i2

<
|ui1 ·b|
σ2
i1

then the L-curve in logarithmic scale is

strictly concave.

The first result ensures that both ends of a L-curve is always concave but it does not

deal with the behavior of the L-curve for α ∈ [σ1, σn]. The second result constructs a

class of specific examples for which the L-curve in logarithmic scale does not have a

corner; in particular, it proves that the L-curve does not always have a corner.

Hansen [23] dealt with other conditions under which the L-curve in logarithmic scale
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Figure 2.1: The L-curve plot of the problem “shaw” (n=100) where the
noise level is zero.
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Figure 2.2: The L-curve plot of the problem “foxgood” (n=100) where the
noise level is zero. The value of α at corner is 3.0809× 10−15.

is concave. He gave the heuristic arguments that an exact unperturbed right hand

side b∗ satisfying the discrete Picard condition (see, for example, Figure 2.1) or a right

hand side consisting of pure noise e, lead typically to a concave L-curve in logarithmic

scale. In certain cases, though, we see other behavior. In certain examples, with

b = b∗, there is a convex corner, though it corresponds to a very small α. This

happens especially when the matrix A is so severely ill-conditioned that most of the

singular values are zero. For instance, the test problem foxgood indicates a convex

corner even when b is in the column space of A (see Figure 2.2).
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Figure 2.3: The L-curve of the problem “heat” (n = 100) for δ = 10−1.

Furthermore Bazan [5] did a further study of the convexity properties of the L-curve

discussed by Reginska [36] and Hansen [23]. He showed that there exist some situa-

tions in which the L-curve criterion fails since the L-curve has several convex corners.

The heat problem was chosen in his analysis since this problem most of the time

displays more than one convex corner. In this case, Bazan suggested choosing the

regularization parameter corresponding to the sharper corner or else to the right-most

corner.

2.3.3 Other disadvantages of the L-curve

Vogel in [42] studied the behavior of an n-dimensional problem with discrete white

noise as n → ∞, and considered a partially discrete, partially stochastic model2 for

2Let An is an operator from Hilbert space Z into Rn. Then the semi-discrete, semi-stochastic data
model is given by [bn]i = [Anx

∗]i+σ[ηn]i for i = 1, ..., n where σ is a fixed operator, x∗ is the exact
solution and it is assumed to be deterministic, and ηn are discrete white noise vectors with unit
covariance which means E([ηn(x)]i) = 0 for i = 1, ..., n, and E([ηn]i[ηn]j) = δij for i, j = 1, ..., n, (δ
is the Dirac delta distribution).
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analyzing the L-curve in logarithmic scale. He considered more data samples in his

analysis rather than assuming that the noise level in data decreases. He showed that

the L-curve method is not convergent under certain conditions. The non-convergence

of the L-curve method happens when the solution T †y∗ is rough or lacks smoothness,

that is, when the Fourier coefficients decay more slowly or at the same rate than the

singular values. Vogel showed that the regularization parameters computed by this

model stagnate, that is, are bounded away from zero.

Another disadvantage of the L-curve is related to very smooth exact solutions. Hanke

[16] proved that for this kind of solutions, the L-curve method would fail. He con-

structed an infinite-dimensional example and showed the chosen regularization pa-

rameter by the L-curve method vanishes too rapidly as the noise to signal ratio in the

data level goes to zero. Based on the analysis and numerical examples, he showed

that the L-curve method may sometimes fail in the sense that the regularized solu-

tions xα,y do not converge to the true solution x of the equation Tx = y as δ → 0.

This can happen when the solution x is very smooth and the noise level is very small.

2.3.4 Rate of convergence

If we fit the α computed from the L-curve method to a formula of the form α = Cδp

(where C and p are constant), then we find the following values of p shown in Table
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Table 2.1
The rate of convergence for the L-curve method

L-curve

Test problem p

deriv2 0.99133

phillips 1.7481

heat 2.578

i laplace 1.9549

foxgood 1.9582

shaw 2.0207

baart 2.0215

wing 2.0946

2.1 for the test problems.

2.4 Conclusions

The L-curve is a plot of the norm of the regularized solutions versus the norm of the

residuals. Under certain conditions, the curve has an L-shaped form with a convex

corner; however, this is not always the case. The selected regularization parameter

is the point with maximum curvature. The behavior of the L-curve method in some

cases is not predictable. The location of the corner depends on the scale of the L-

curve and in some scales, the corner may not appear. Unfortunately, the change of

scale does not preserves the convexity of the L-curve.
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Because of difficulties associated with the L-curve method, we will introduce and

analyze the multiplicative regularization method as a parameter choice strategy.
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Chapter 3

Multiplicative regularization for

finite-dimensional problems

In order to avoid the difficulties of choosing a proper regularization parameter, Berg,

Broekhoven and Abubaker proposed a new regularization method, which we call

multiplicative regularization (see [41], [2]). The method is based on minimizing the

function

J(x, b) =
1

2
‖Ax− b‖2‖x‖2.

Multiplicative regularization tries to identify a value of x that makes the residual small

without letting the regularized solution be large. As explained in the Introduction, it

turns out that there is a close relationship between multiplicative regularization and
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Tikhonov regularization. In fact, multiplicative regularization can be considered as

defining a parameter choice method for Tikhonov regularization.

In this chapter, ‖ · ‖ denotes the Euclidean norm, and 〈·, ·〉 denotes the Euclidean dot

product.

We will study multiplicative regularization for finite-dimensional problems, and we

will show by numerical experiments that the performance of this method is compa-

rable to that of the L-curve method.

3.1 Notation and assumption

Let Ax = b be an ill-conditioned problem, where A ∈ R
m×n, and b ∈ R

m are given,

and x is to be estimated. We always assume that b /∈ N(AT ). We assume that b∗ is

the exact data, x∗ is the exact solution (Ax∗ = b∗, x∗ ∈ N(A)⊥), and b is close to b∗.

We try to find a local minimizer of J that is near x∗. Notice that x = 0 is always a

global minimizer of J , but this is not of interest.

To analyze this problem, we notice that

∇xJ(x, b) = ‖Ax− b‖2x+ ‖x‖2(ATAx− AT b).
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If x is a minimizer of J , then ∇xJ(x, b) = 0. Assuming x �= 0, ∇xJ(x, b) = 0 is

equivalent to

‖Ax− b‖2x+ ‖x‖2X(ATAx− AT b) = 0 ⇔ ATAx− AT b+
‖Ax− b‖2

‖x‖2 x = 0

⇔ ATAx+
‖Ax− b‖2

‖x‖2 x = AT b.

Thus x �= 0 is a minimizer of J only if

ATAx+ αx = AT b, (3.1.1)

where

α =
‖Ax− b‖2

‖x‖2 . (3.1.2)

If α satisfies (3.1.1) and (3.1.2), then xα,b = (ATA + αI)−1AT b is a stationary point

of J . Conversely, if x is a nontrivial stationary point of J , then x must equal xα,b for

α =
‖Axα,b − b‖2

‖xα,b‖2 . (3.1.3)

Thus every nontrivial stationary point of J is a Tikhonov solution xα,b, where α

satisfies (3.1.3).

Reginska [36] has analyzed a similar regularization method by defining the objective

function as
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φ(α, b) =
1

2
‖Axα,y − b‖2‖xα,y‖2,

and selecting α by minimizing this function. We can show that α is a stationary point

of φ(·, b) if and only if α satisfies α = ‖Axα,y−b‖2
‖xα,y‖2 . To prove this, we first derive some

results that will be used repeatedly. We can show that xα,b is a smooth function of α

for all α > 0, and we have the following results:

1. x′
α,b =

∂
∂α
(xα,y) = −N−1

α xα,b (where Nα = (ATA+ αI)).

2. ∂
∂α
(‖xα,y‖) = 2〈xα,y, x′

α,y〉.

3.

∂

∂α
(‖Axα,y − b‖2) = 2〈(Axα,b − b), Ax′

α,b〉 = 2〈(ATAxα,b − AT b), x′
α,b〉

= −2α〈xα,y, x′
α,y〉 = −α

∂

∂α
(‖xα,y‖2).

(Here we use the fact that ATAxα,b + αxα,b = AT b, that is, ATAxα,b − AT b =

αxα,b.

Using the previous results, we have

φ′(α, b) = −α〈xα,b, x′
α,b〉‖xα,b‖2 + 2〈xα,b, x′

α,b〉‖Axα,b − b‖2)

= 〈xα,b, x′
α,b〉(‖Axα,b − b‖2 − α‖xα,b‖2).
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For b /∈ N(AT ), 〈xα,y, x′
α,y〉 is never zero. That is true because we have

〈xα,y, x′
α,y〉 = −〈N−1

α AT b,N−2
α AT b〉 = −〈AT b,N−3

α AT b〉,

and we know that N−3
α is symmetric positive definite. Therefore, α is a stationary

point of φ(·, b) if and only if α =
‖Axα,b−b‖2

‖xα,b‖2 . So Reginska’s approach is closely related

to multiplicative regularization.

3.2 Preliminaries

Notice that (3.1.3) is equivalent to ‖Axα,b − b‖2 − α‖xα,b‖2 = 0. We define

F (α, b) = ‖Axα,b − b‖2 − α‖xα,b‖2, (3.2.1)

for α > 0 and all b ∈ R
m.

Let r = rank(A). We will now express the Tikhonov solution of Ax = b in terms of

the singular value decomposition of A. The reduced SVD of A is

A =
r∑
i=1

σiψi ⊗ ϕi,

where {ϕ1, ϕ2, ..., ϕr} is an orthonormal set in R
n, {ψ1, ψ2, ..., ψr} is an orthonormal
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set in R
m, σ1 ≥ σ2 ≥ ... ≥ σr > 0. It can be show that AT =

∑r
i=1 σiϕi⊗ψi. If we ex-

tend {ϕ1, ϕ2, ..., ϕr} to an orthonormal basis {ϕ1, ϕ2, ..., ϕn} of Rn, then {ϕr+1, ..., ϕn}

is a basis for N(A) and every x ∈ R
n is given by x =

∑n
i=1〈x, ϕi〉ϕi. We have

ATAx = ATA

(
n∑
i=1

〈x, ϕi〉ϕi
)

= AT

(
r∑
i=1

σi〈x, ϕi〉ψi
)

=
r∑
i=1

σ2
i 〈x, ϕi〉ϕi,

and therefore

(ATA+ αI)x =
r∑
i=1

σ2
i 〈x, ϕi〉ϕi + α

n∑
i=1

〈x, ϕi〉ϕi

=
r∑
i=1

(σ2
i + α)〈x, ϕi〉ϕi + α

n∑
i=r+1

〈x, ϕi〉ϕi.

If we extend {ψ1, ψ2, ..., ψr} to an orthonormal basis {ψ1, ψ2, ..., ψm} of R
m, then

{ψr+1, ..., ψm} is a basis for N(AT ) and every b ∈ R
m is given by b =

∑m
i=1〈b, ψi〉ψi.

Thus we have

AT b = AT

(
m∑
i=1

〈b, ψi〉ψi
)

=
r∑
i=1

σi〈b, ψi〉ϕi.

We know that (ATA+ αI)xα,b = AT b and it follows that
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r∑
i=1

(σ2
i + α)〈xα,b, ϕi〉ϕi + α

n∑
i=r+1

〈x, ϕi〉ϕi =
r∑
i=1

σi〈b, ψi〉ϕi

⇒

⎧⎪⎪⎨
⎪⎪⎩

(σ2
i + α)〈xα,b, ϕi〉 = σi〈b, ψi〉, i = 1, 2, ..., r,

α〈xα,b, ϕi〉 = 0, i = r + 1, ..., n,

⇒

⎧⎪⎪⎨
⎪⎪⎩

〈xα,b, ϕi〉 = σi
σ2
i +α

〈b, ψi〉, i = 1, 2, ..., r,

〈xα,b, ϕi〉 = 0, i = r + 1, ..., n,

⇒ xα,b =
r∑
i=1

σi
σ2
i + α

〈b, ψi〉ϕi.

We then have

Axα,b − b = A

(
r∑
i=1

σi
σ2
i + α

〈b, ψi〉ϕi
)

−
m∑
i=1

〈b, ψi〉ψi

=
r∑
i=1

σ2
i

σ2
i + α

〈b, ψi〉ψi −
m∑
i=1

〈b, ψi〉ψi

=
r∑
i=1

−α

σ2
i + α

〈b, ψi〉ψi −
m∑

i=r+1

〈b, ψi〉ψi.

For α > 0, we have

F (α, b) = ‖Axα,b − b‖2 − α‖xα,b‖2

=
r∑
i=1

α2

(σ2
i + α)2

|〈b, ψi〉|2 +
m∑

i=r+1

|〈b, ψi〉|2 − α

r∑
i=1

σ2
i

(σ2
i + α)2

|〈b, ψi〉|2

=
r∑
i=1

α2 − ασ2
i

(σ2
i + α)2

|〈b, ψi〉|2 +
m∑

i=r+1

|〈b, ψi〉|2.
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Note that for each b ∈ R
m, limα→0+ xα,b exists, and

lim
α→0+

xα,b = lim
α→0+

r∑
i=1

σi
σ2
i + α

〈b, ψi〉ϕi =
r∑
i=1

〈b, ψi〉
σi

ϕi.

We define x0,b =
∑r

i=1
〈b,ψi〉
σi

ϕi. We will show that x0,b is the minimum-norm least-

squares solution of Ax = b, that is, that x0,b solves

min‖x‖

s.t. ATAx = AT b.

To see this, let x be any least-squares solution of Ax = b. Then we have

ATAx = AT b ⇒
r∑
i=1

σ2
i 〈x, ϕi〉ϕi =

r∑
i=1

σi〈b, ψi〉ϕi

⇒ σ2
i 〈x, ϕi〉 = σi〈b, ψi〉, for i = 1, 2, ..., r,

⇒ 〈x, ϕi〉 = 1

σi
〈b, ψi〉, for i = 1, 2, ..., r,

⇒ x =
r∑
i=1

1

σi
〈b, ψi〉ϕi +

n∑
i=r+1

βiϕi

⇒ x = x0,b +
n∑

i=r+1

βiϕi,

where βr+1, ..., βn can be any real numbers.

Conversely, we can easily show that if x =
∑r

i=1
1
σi
〈b, ψi〉ϕi +

∑n
i=r+1 βiϕi, then
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ATAx = AT b and x is a least-squares solution. This shows that x0,b is a least-squares

solution of Ax = b.

So we have ‖x‖2 = ‖x0,b‖2 +
∑n

i=r+1 β
2
i , which implies that ‖x0,b‖2 ≤ ‖x‖2 for every

other least-squares solutions.

We define A† by the condition that A†b is the unique minimum-norm least-squares

solution of Ax = b. The previous result shows that A†b =
∑r

i=1
1
σi
〈b, ψi〉ϕi for all

b ∈ R
m, and hence A† =

∑r
i=1

1
σi
ϕi ⊗ ψi.

We can see that for every b ∈ R
m, x0,b = A†b, that is, limα→0+ xα,b = A†b. We

also can show that for all b ∈ R
m and all α > 0, ‖xα,b‖ ≤ ‖x0,b‖ and as a result

‖N−1
α AT‖ ≤ ‖A†‖. We argue by the way of contradiction. If we assume that there

exists b ∈ R
m and α > 0 such that ‖x0,b‖ < ‖xα,b‖, then since for all x ∈ R

n,

‖Ax0,b − b‖2 ≤ ‖Ax− b‖2, it follows that

‖Ax0,b − b‖2 + α‖x0,b‖2 < ‖Axα,b − b‖2 + α‖xα,b‖2,

which contradicts the definition of xα,b as the unique minimizer of ‖Ax− b‖2+α‖x‖2.

For b ∈ R
m, we write b = b + b̂ where b = Ax0,b = projcol(A)b and b̂ = b − Ax0,b =

proj
col(A)

⊥b. Since xα,b → x0,b as α → 0+, then ‖Axα,b − b‖2 → ‖Ax0,b − b‖2 = ‖b̂‖2

as α → 0+, and α‖xα,b‖2 → 0 as α → 0+.
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Thus we extend the definition of F as follows:

F (α, b) =

⎧⎪⎪⎨
⎪⎪⎩

‖Axα,b − b‖2 − α‖xα,b‖2, α > 0,

‖b̂‖2, α = 0.

In terms of the SVD, we have

F (α, b) =

⎧⎪⎪⎨
⎪⎪⎩

∑r
i=1

α2−ασ2
i

(σ2
i +α)

2 |〈b, ψi〉|2 +
∑n

i=r+1 |〈b, ψi〉|2, α > 0,

∑n
i=r+1 |〈b, ψi〉|2, α = 0.

For the exact data b∗ ∈ col(A), it follows that F (0, b∗) = 0. We wish to apply the

implicit function theorem to show that F (α, b) = 0 has a locally unique solution

α = α(b) for each b sufficiently close to b∗. To do this, we must extend F from

[0,∞)×R
m to R×R

m and prove that F is C1. First we need to show the following

preliminary results.

We know that the problem

min ‖Ax− b‖2 + α‖x‖2

has a unique solution for each α > 0 and b ∈ R
m. It is clear that the above problem
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is equivalent to

min ‖Mαx− (b, 0)‖2,

where Mαx = (Ax,
√
αx). Then the normal equation takes the form MT

αMαx =

MT
α (b, 0) and xα,b is a least-squares solution of it since

MT
αMαxα,b = MT

α (b, 0) ⇔ MT
α (Axα,b,

√
αxα,b) = MT

α (b, 0)

⇔ ATAxα,b + αxα,b = AT b

⇔ (ATA+ αI)xα,b = AT b

⇔ xα,b = N−1
α AT b.

SinceMαxα,b is the projection of (b, 0) onto col(Mα), then by the Pythagorean theorem

we have

‖Mαxα,b‖2 + ‖Mαxα,b − (b, 0)‖2 = ‖(b, 0)‖2,

which is equivalent to

‖Axα,b‖2 + 2α‖xα,b‖2 + ‖Axα,b − b‖2 = ‖b‖2.

It follows that

• ‖Axα,b‖2 ≤ ‖b‖2 ⇒ ‖AN−1
α AT b‖ ≤ ‖b‖, ∀b ∈ R

m ⇒ ‖AN−1
α AT‖ ≤ 1.

• ‖b−Axα,b‖2 ≤ ‖b‖2 ⇒ ‖b−AN−1
α AT b‖2 ≤ ‖b‖2, ∀b ∈ R

m ⇒ ‖(I−AN−1
α AT )‖ ≤ 1.
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• 2α‖xα,b‖2 ≤ ‖b‖2 ⇒ √
2α‖N−1

α AT b‖ ≤ ‖b‖, ∀b ∈ R
m ⇒ ‖N−1

α AT‖ ≤ 1√
2α
.

Also we know that ‖N−1
α AT‖ ≤ ‖A†‖, therefore ‖N−1

α AT‖ ≤ min{ 1√
2α
, ‖A†‖}.

We also derive the following important result.

Lemma 15. For all α ∈ (0, 1], ‖N−1
α ‖ ≤ 1

α
.

Proof. For α > 0, x ·Nαx = x · (ATA+ αI)x = ‖Ax‖2 + α‖x‖2 ≥ α‖x‖2. Since Nα is

a bounded and symmetric operator, it follows that ‖N−1
α ‖ ≤ 1

α
, that is, ‖αN−1

α ‖ ≤ 1

(see [13, Theorem 3.2]).

Lemma 16. For each b ∈ R
m, there exists a unique vector vb ∈ col(A†) = N(A)⊥

such that x0,b = ATAvb, namely, vb =
∑r

i=1
〈b,ψi〉
σ3
i
ϕi.

Proof. Since N(A)⊥ = span{ϕ1, ..., ϕr}, vb ∈ N(A)⊥ = col(A†), and we have

ATAvb = ATA

(
r∑
i=1

〈b, ψi〉
σ3
i

ϕi

)
= AT

(
r∑
i=1

〈b, ψi〉
σ2
i

ψi

)
=

r∑
i=1

〈b, ψi〉
σi

ϕi = x0,y.

Let v̂b be another solution in N(A)⊥ such that x0,b = ATAv̂b. Then vb − v̂b ∈ N(A)⊥

and vb − v̂b ∈ N(ATA) = N(A), therefore vb − v̂b ∈ N(A) ∩ N(A)⊥ = {0} and the

proof is complete.
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Notice that vb is the Lagrange multiplier for the problem

min‖x‖

s.t. ATAx = AT b.

This vector will be used later.

3.3 Analysis of multiplicative regularization

To apply the desired form of the implicit function theorem, we must show that F

is C1. First we will show that the F is a continuous function. We start with the

following proof.

Lemma 17. Let b0 ∈ R
m be given. Then xα,b → x0,b0 as (α, b) → (0, b0).

Proof. We have

lim
(α,b)→(0,b0)

xα,b = lim
(α,b)→(0,b0)

r∑
i=1

σi
σ2
i + α

〈b, ψi〉ϕi

= lim
(α,b)→(0,b0)

r∑
i=1

σi
σ2
i + α

〈b− b0, ψi〉ϕi + lim
α→0

r∑
i=1

σi
σ2
i + α

〈b0, ψi〉ϕi

=
r∑
i=1

〈b0, ψi〉
σi

ϕi = x0,b0 .
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Theorem 18. The function F : [0,∞)× R
m → R defined by

F (α, b) =

⎧⎪⎪⎨
⎪⎪⎩

‖Axα,b − b‖2 − α‖xα,b‖2, α > 0,

‖b̂‖2. α = 0,

is continuous.

Proof. It is obvious that F is continuous on (0,∞)×R
m. We must show that, for all

b0 ∈ R
m,

lim
(α,b)→(0,b0)

F (α, b) = F (0, b0).

We have

lim
(α,b)→(0,b0)

F (α, b) = lim
(α,b)→(0,b0)

(
r∑
i=1

α2 − ασ2
i

(σ2
i + α)2

|〈b, ψi〉|2 +
n∑

i=r+1

|〈b, ψi〉|2
)

= lim
b→b0

n∑
i=r+1

|〈b, ψi〉|2 =
n∑

i=r+1

|〈b0, ψi〉|2 = ‖b̂0‖2 = F (0, b0).

Notice that

lim
(α,b)→(0,b0)

r∑
i=1

α2 − ασ2
i

(σ2
i + α)2

|〈b, ψi〉|2 = 0,

because
α2−ασ2

i

(σ2
i +α)

2 → 0 as α → 0 , and also 〈b, ψi〉 → 〈b0, ψi〉 as b → b0.

We can show that x′
α,b → −vb as α → 0. It is clear that x′

α,b, in terms of SVD, is
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x′
α,b =

∂

∂α
(xα,b) =

∂

∂α

(
r∑
i=1

σi
σ2
i + α

〈b, ψi〉ϕi
)

=
r∑
i=1

−σi
(σ2

i + α)2
〈b, ψi〉ϕi.

Now we can prove the following lemma.

Theorem 19. For all b ∈ R
m, x′

α,b → −vb as α → 0.

Proof. We have

lim
α→0

x′
α,b = lim

α→0

(
r∑
i=1

−σi
(σ2

i + α)2
〈b, ψi〉ϕi

)
= −

r∑
i=1

〈b, ψi〉
σ3
i

ϕi = −vb,

and the proof is complete.

Theorem 20. The function F defined by (3.2.1) is C1, with

∂F

∂α
(α, b) =

⎧⎪⎪⎨
⎪⎪⎩

−4αxα,b · x′
α,b − ‖xα,b‖2, α > 0,

−‖x0,b‖2, α = 0,

(3.3.1)

and

∇bF (α, b) =

⎧⎪⎪⎨
⎪⎪⎩

2(b− Axα,b + αAx′
α,b), α > 0,

2b̂, α = 0.

(3.3.2)

Proof. Once again, it is straightforward to show that F is C1 for α > 0. We have
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∂F

∂α
(α, b) =

∂

∂α
(‖Axα,b − b‖2 − α‖xα,b‖2)

= −2α〈xα,b, x′
α,b〉 − 2α〈xα,b, x′

α,b〉 − ‖xα,b‖2

= −4α〈xα,b, x′
α,b〉 − ‖xα,b‖2,

since ∂
∂α
(‖Axα,b − b‖2) = −α ∂

∂α
(‖xα,b‖2) = −2α〈xα,b, x′

α,b〉. Also, we have

F (α, b) = 〈Axα,b, Axα,b〉 − 2〈b, Axα,b〉+ 〈b, b〉 − α〈xα,b, xα,b〉

= 〈AN−1
α AT b, AN−1

α AT b〉 − 2〈b, AN−1
α AT b〉+ 〈b, b〉 − α〈N−1

α AT b,N−1
α AT b〉

= 〈b, AN−1
α ATAN−1

α AT b〉 − 2〈b, AN−1
α AT b〉+ 〈b, b〉 − α〈b, AN−2

α AT b〉,

and hence

∇bF (α, b) = 2AN−1
α ATAxα,b − 4Axα,b + 2b+ 2αAx′

α,b

= 2A(I − αN−1
α )xα,b − 4Axα,b + 2b+ 2αAx′

α,b

= 2Axα,b + 2αAx′
α,b − 4Axα,b + 2b+ 2αAx′

α,b

= 2(b− Axα,b + 2αAx′
α,b).

We must show that, for all b0 ∈ R
m, ∂F

∂α
(0, b0) and ∇bF (0, b0) exist and

∂F
∂α

(α, b) →
∂F
∂α

(0, b0) and ∇bF (α, b) → ∇bF (0, b0) as (α, b) → (0, b0). We have
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∂F

∂α
(0, b) = lim

α→0+

F (α, b)− F (0, b)

α
= lim

α→0+

(
r∑
i=1

α− σ2
i

(σ2
i + α)2

|〈b, ψi〉|2
)

= −
r∑
i=1

|〈b, ψi〉|2
σ2
i

= −‖x0,b‖2.

Also we have

∂F

∂α
(α, b) =

∂

∂α

(
r∑
i=1

α2 − ασ2
i

(σ2
i + α)2

|〈b, ψi〉|2 +
n∑

i=r+1

|〈b, ψi〉|2
)

=
r∑
i=1

3ασ2
i − σ4

i

(σ2
i + α)3

|〈b, ψi〉|2,

and we see that

lim
(α,b)→(0+,b0)

∂F

∂α
(α, b) = lim

(α,b)→(0+,b0)

(
r∑
i=1

3ασ2
i − σ4

i

(σ2
i + α)3

|〈b, ψi〉|2
)

= −
r∑
i=1

|〈b0, ψi〉|2
σ2
i

= −‖x0,b0‖2 =
∂F

∂α
(0, b0).

It follows that lim(α,b)→(0+,b0)
∂F
∂α

(α, b) = ∂F
∂α

(0, b). Also we have F (0, b) = ‖b̂‖2, and it

follows that ∇bF (0, b) = 2b̂. Therefore we have

lim
(α,b)→(0,b0)

∇bF (α, b) = lim
(α,b)→(0,b0)

2(b− Axα,b + 2αAx′
α,b)

= 2(b0 − Ax0,b0) = 2b̂0 = ∇bF (0, b0).

57



The function F is defined for all α ≥ 0. To apply the implicit function theorem, we

must extend F to all of R×R
m. For a fixed b, we define the function G : [0,∞) → R

as G(α) = F (α, b), and shift it vertically to get Ĝ(α) = F (α, b) − F (0, b). Then Ĝ

satisfies Ĝ(0) = 0. Now we form the odd extension of Ĝ to get

Ĝ(α) =

⎧⎪⎪⎨
⎪⎪⎩

Ĝ(α) = F (α, b)− F (0, b), α ≥ 0,

−Ĝ(−α) = −F (−α, b) + F (0, b), α < 0.

Finally we shift the function Ĝ(α) back to get

G(α) =

⎧⎪⎪⎨
⎪⎪⎩

F (α, b), α ≥ 0,

−F (−α, b) + 2F (0, b), α < 0.

Therefore, we define F (−α, b) = 2F (0, b) − F (α, b) for all α > 0, b ∈ R
m. It is a

standard construction in elementary calculus that the odd extension of a C1 function

(passing through the origin) is C1. Therefore, it is easy to show that the function F ,

thus extended to all of R × R
m, is C1. Now we apply the implicit function theorem

to show that F (α, b) = 0 has a unique solution for each b sufficiently close to b∗. Let

b∗ ∈ col(A) be given. It follows that F (0, b∗) = 0 and ∂F
∂α

(0, b∗) = −‖x0,b∗‖2 < 0. (Note

that we assume b∗ /∈ N(AT ), and hence x0,b∗ �= 0.) Therefore, the implicit function

theorem applies. Then there exist δ1, δ2 > 0 and a C1 function r : Bδ2(b
∗) → (−δ1, δ1)

such that for each b ∈ Bδ2(b
∗), α = r(b) is the unique solution of F (α, b) = 0 in

(−δ1, δ1).
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We can also show that the solution α = r(b) of F (α, b) = 0 must satisfy α ≥ 0. For

each b ∈ Bδ2(b
∗), we can apply the mean value theorem to find t ∈ (0, 1) such that

F (α, b) = F (0, b) +
∂F

∂α
(tα, b)α.

If we take α = r(b), we obtain F (0, b) + ∂F
∂α

(tα, b)α = 0, which implies that

∂F
∂α

(tα, b)α = −F (0, b) ≤ 0. We just need to prove that ∂F
∂α

(t r(b), b) < 0 for all

b ∈ Bδ2(b
∗). From the continuity of ∂F

∂α
and r, by reducing δ1 and δ2 if necessary, it

follows that ∂F
∂α

(tα, b) < 0, and hence that α = r(b) ≥ 0.

For b ∈ col(A), α = r(b) = 0 and for b /∈ col(A), ‖Axα,b − b‖ > 0 and hence

‖Axα,b − b‖2 − α‖xα,b‖2 = 0 implies that α �= 0. Thus α = r(b) > 0 for b /∈ col(A).

We have seen that xα,b with α = r(b), is a stationary point of J(·; b). We can show

that it is a local minimizer of J(·; b) by proving that ∇2
xxJ(xα,b, b) is positive definite.

We have

∇2
xxJ(x, b) = ∇2

xx

(
1

2
‖Ax− b‖2‖x‖2

)
= ∇x(‖x‖2(ATAx− AT b) + ‖Ax− b‖2x)

= ∇x(‖x‖2)(ATAx− AT b) + ‖x‖2∇x(A
TAx− AT b)

+∇x(‖Ax− b‖2)x+ ‖Ax− b‖2∇x(x)

= ‖x‖2(ATA) + 2((ATAx− AT b)xT + 2x(ATAx− AT b)T ) + ‖Ax− b‖2I,
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and for x = xα,b, since ATAxα,b − AT b = −αxα,b, then it follows that

∇2
xxJ(xα,b, b) = ‖xα,b‖2(ATA)− 4αxα,bx

T
α,b + α‖xα,b‖2I

= ‖xα,b‖2Nα − 4αxα,bx
T
α,b.

We will now show that for α = r(b), J(xα,b, b) is positive definite by showing that

〈v,∇2
xxJ(xα,b, b)v〉 > 0 for every v ∈ R

n, v �= 0. We first show that every vector

v ∈ R
n = U ⊕ U⊥ (where U = span{xα,b}⊥) can be represented uniquely as v =

u + βx′
α,b, where u ∈ U and β ∈ R. We know that x′

α,b ∈ R
n can be written as

x′
α,b = û + γxα,b for û ∈ U , γ ∈ R and γ �= 0 (because if γ = 0, then that implies

x′
α,b ∈ span{xα,b}⊥ and 〈xα,b, x′

α,b〉 = 0, which is a contradiction for b /∈ N(AT )). It

follows that xα,b = γ−1x′
α,b − γ−1û and for v ∈ R

n we have

v = u+ λxα,b = u+ λ(γ−1x′
α,b − γ−1û) = (u− λγ−1û) + λγ−1x′

α,b.

Thus v = u + βx′
α,b, where u = u − λγ−1û ∈ U and β = λγ−1 ∈ R. Now suppose

there exist u1 ∈ U and β1 ∈ R such that v = u + βx′
α,b = u1 + β1x

′
α,b. Then we

have u − u1 = β1x
′
α,b − βx′

α,b, where u − u1 ∈ U and (β1 − β)x′
α,b ∈ R

n. Therefore

(β1 − β)x′
α,b = u − u1 ∈ U , that is, (β1 − β)〈xα,b, x′

α,b〉 = 0 and therefore β1 − β = 0

since 〈xα,b, x′
α,b〉 �= 0. Also it follows that u − u1 = 0 and thus every v ∈ R

n has a

unique representation.
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Now for all v ∈ R
n, if v = u+ βx′

α,b and v �= 0, then we have

〈v,∇2
xxJ(xα,b, b)v〉 = 〈v, (‖xα,b‖2Nα − 4αxα,bx

T
α,b)v〉

= ‖xα,b‖2〈v,Nαv〉 − 4α|〈v, xα,b〉|2

= ‖xα,b‖2〈(u+ βx′α,b), Nα(u+ βx′α,b)〉 − 4α|〈(u+ βx′α,b), xα,b〉|2

= ‖xα,b‖2(〈u,Nαu〉+ 2β〈x′α,b, Nαu〉+ β2〈x′α,b, Nαx
′
α,b〉)− 4α|〈(u+ βx′α,b), xα,b〉|2

= ‖xα,b‖2(〈u,Nαu〉 − 2β〈xα,b, u〉+ β2〈x′α,b, Nαx
′
α,b〉)− 4α|〈u, xα,b〉+ β〈x′α,b, xα,b〉|2

= ‖xα,b‖2〈u,Nαu〉 − β2‖xα,b‖2〈xα,b, x
′
α,b〉 − 4αβ2|〈xα,b, x

′
α,b〉|2 (since 〈u, xα,b〉 = 0)

= ‖xα,b‖2〈u,Nαu〉 − β2〈xα,b, x
′
α,b〉(‖xα,b‖2 + 4α〈xα,b, x

′
α,b〉)

= ‖xα,b‖2〈u,Nαu〉+ β2〈xα,b, Nαxα,b〉(‖xα,b‖2 − 4α〈xα,b, N
−1
α xα,b〉).

Recall that ∂F
∂α

(α, b) = 4α〈xα,b, Nαxα,b〉−‖xα,b‖2 < 0 for α = r(b). Also if v �= 0, then

u �= 0 or β �= 0 (or both). If u �= 0, then 〈u,Nαu〉 > 0 and if β �= 0, then

β2〈xα,b, Nαxα,b〉(‖xα,b‖2 − 4α〈xα,b, N−1
α xα,b〉) > 0.

Therefore,

〈v,∇2
xxJ(xα,b, b)v〉 = ‖xα,b‖2〈u,Nαu〉+ β2〈xα,b, Nαxα,b〉(‖xα,b‖2 − 4α〈xα,b, N

−1
α xα,b〉) > 0.

We now see that there exists δ2 > 0 such that for all b ∈ Bδ2(b
∗) \ col(A), J(·; b) has

a local minimizer xα,b, where α = r(b) satisfies α =
‖Axα,b−b‖2

‖xα,b‖2 . We can also say that

this α is a local minimizer of ϕ(·; b).
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3.4 Rate of convergence

The standard theory of Tikhonov regularization for an infinite-dimensional problem

shows that if α = r(b) → 0 as b → b∗ and

- ‖b−b∗‖2
α

→ 0, then xα,b → x0,b∗ strongly;

- ‖b−b∗‖2
α

≤ C, then xα,b → x0,b∗ weakly;

- ‖b−b∗‖2
α

→ ∞, xα,b � x0,b∗ (‖xα,b‖ → ∞).

In a finite-dimensional problem, α = r(b) → 0 as b → b∗ is sufficient to imply that

xα,b → x0,b∗ . This can be proved as follows

‖xα,b − x0,b∗‖ = ‖xα,b − xα,b∗ + xα,b∗ − x0,b∗‖ ≤ ‖N−1
α T ∗(b− b∗)‖+ ‖xα,b∗ − x0,b∗‖

≤ ‖N−1
α T ∗‖‖b− b∗‖+ ‖xα,b∗ − x0,b∗‖

≤ ‖T †‖‖b− b∗‖+ ‖xα,b∗ − x0,b∗‖ → 0, as b → b∗.

Nevertheless, since most interesting finite-dimensional problems arise from discretiz-

ing infinite-dimensional problems, we would like to investigate the behavior of ‖b−b∗‖2
α

as b → b∗.
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Let b ∈ R
m. We define a new function

f(α, b) = ‖b̂‖2 − F (α, b) =

⎧⎪⎪⎨
⎪⎪⎩

α‖xα,b‖2 − ‖Axα,b − b‖2, α > 0,

0, α = 0.

Then F (α, b) = 0 is equivalent to f(α, b) = ‖b̂‖2. Thus α = r(b) satisfies

α =
‖b̂‖2

‖xα,b‖2 − α−1‖Axα,b − b‖2 .

We can show that lim(α,b)→(0,b∗)(‖xα,b‖2 − α−1‖Axα,b − b‖2) = ‖x0,b∗‖2.

That is true because

lim
(α,b)→(0,b∗)

(‖xα,b‖2 − α−1‖Axα,b − b‖2) = lim
(α,b)→(0,b∗)

(
r∑

i=1

α− σ2
i

(σ2
i + α)2

|〈b, ψi〉|2 +
m∑

i=r+1

|〈b, ψi〉|2
)

= lim
(α,b)→(0,b∗)

r∑
i=1

α− σ2
i

(σ2
i + α)2

|〈b, ψi〉|2 + lim
b→b∗

m∑
i=r+1

|〈b, ψi〉|2)

= −
r∑

i=1

|〈b∗, ψi〉|2
σ2
i

+

m∑
i=r+1

|〈b∗, ψi〉|2 = ‖x0,b∗‖2.

Notice that 〈b∗, ψi〉 = 0 for all i = r + 1, ..., n because b∗ ∈ col(A) =

span{ψr+1, ..., ψn}⊥. Therefore,

‖b̂‖2
α

= ‖xα,b‖2 − α−1‖Axα,b − b‖2 → ‖x0,b∗‖2 as b → b∗,
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Figure 3.1: The exact data and the noisy data for the test problem “shaw”
(n=100), with relative error 10−1 in the noisy data.

where α = r(b). We see that α goes to zero at the same rate as ‖b̂‖2. This analysis is

meaningful if b̂ �= 0, which is not possible if col(A) is all of Rm. If col(A) = R
m, then

multiplicative regularization does not work, that is, it produces α = r(b) = 0.

3.4.1 Numerical examples

For our numerical experiments, we use eight test problems from Hansen’s Regular-

ization Tools package [22]. See Section 1.6 for a description of these problems. For

each experiment, we generate noisy vectors b for several different relative noise levels

δ = ‖b−b∗‖
‖b∗‖ (see Figure 3.1 for a typical example). The components of the noise vector

are uniformly distributed random numbers selected from an interval centered at zero.

Our numerical tests verify that α → 0 as δ → 0, where α is the regularization

parameter selected by multiplicative regularization. If we fit α to a formula of the

64



Table 3.1
The rate of convergence for multiplicative regularization

Multiplicative Regularization
Test problem p

deriv2 −
phillips −
heat 2.288

i laplace 1.9565
foxgood 2.0097
shaw 2.0134
baart 2.0228
wing 2.0692

form α = Cδp (where C and p are constant), then we find the values of p shown in

Table 3.1 for the test problems.

Multiplicative regularization fails on “deriv2” and “phillips”, which will be discussed

in Section 3.5.1. The test problem “heat” is a special case and the convergence is

slightly faster than predicted. That is probably because most of the components of

b are in the col(A) (A is 100 × 100 and rank(A) = 97). For the other problems, the

results are as expected.

3.5 Comparison with the L-curve method

To see the performance of multiplicative regularization, we compare the computed

solutions with results obtained by the L-curve method for different noise levels. We
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Figure 3.2: Tikhonov regularization: The exact solution for the “shaw”
problem, together with the regularized solutions produced by the L-curve
method and multiplicative regularization. In this example, the results of the
two methods are essentially the same.

Figure 3.3: Tikhonov regularization: The exact solution for the “heat”
problem, together with the regularized solutions produced by the L-curve
method and multiplicative regularization. In this example, the two methods
produce similar estimates, but the L-curve estimate is slightly better.

compare the solutions produced by both methods on the basis of the error ‖x−x∗‖
‖x∗‖ .

We classify the results of each experiment into one of three categories: we use (MR) if
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Figure 3.4: The exact solution for the “foxgood” problem, together with
the regularized solutions produced by the L-curve method and multiplicative
regularization. In this example, the two methods produce similar estimates,
but multiplicative regularization estimate is slightly better.

multiplicative regularization produces a better solution, (LC) if the L-curve method

performs better and (–) if the results are essentially the same. One solution is classified

as the better solution if the error of that solution is at least 10% smaller than the

error of the other one. We tested the method on eight problems with seven noise

levels for each, a total of 56 cases. On four problems (28 cases), the performance

of the two methods is essentially identical (see Figure 3.2 for a typical example).

On two problems (14 cases), the performance is similar, but sometimes the L-curve

method is slightly better (see Figure 3.2) and sometimes multiplicative regularization

is somewhat better (see Figure 3.3). In these cases, L-curve is usually the better

method. On two problems (14 cases), multiplicative regularization fails for the reason

discussed earlier. The L-curve method also failed in three of these 14 cases.
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Table 3.2
Comparison of multiplicative regularization with the L-curve method

deriv2

L-curve MR
δ α error α error better

10−1 5.7566 · 10−5 0.41855 0 −− LC
10−2 7.1802 · 10−7 0.27427 0 −− LC
10−3 5.7862 · 10−9 0.30171 0 −− LC
10−4 7.2312 · 10−10 0.12678 0 −− LC
10−5 0 −− 0 −− –
10−6 0 −− 0 −− –
10−7 0 −− 0 −− –

phillips

L-curve MR
δ α error α error better

10−1 1.6686 · 10−1 0.090231 0 −− LC
10−2 3.3077 · 10−3 0.12628 0 −− LC
10−3 2.2990 · 10−5 0.21318 0 −− LC
10−4 2.4142 · 10−7 0.23551 0 −− LC
10−5 1.9277 · 10−10 0.53181 0 −− LC
10−6 3.0106 · 10−10 0.055528 0 −− LC
10−7 2.7930 · 10−11 0.013930 0 −− LC

heat

L-curve MR
δ α error α error better

10−1 2.1189 · 10−4 0.30626 5.4788 · 10−4 0.34348 LC
10−2 3.5426 · 10−6 0.20621 2.7224 · 10−6 0.23292 LC
10−3 2.5138 · 10−8 0.28105 1.1999 · 10−8 0.41573 LC
10−4 8.5424 · 10−11 0.36220 4.3379 · 10−11 0.47847 LC
10−5 2.7944 · 10−14 0.41658 8.7091 · 10−14 0.36679 MR
10−6 1.2293 · 10−18 0.041476 2.8514 · 10−16 0.041328 –
10−7 6.2984 · 10−19 0.0044045 1.8570 · 10−17 0.0044042 –

i laplace

L-curve MR
δ α error α error better

10−1 1.5499 · 10−2 0.24465 3.2401 · 10−2 0.23914 –
10−2 1.5208 · 10−4 0.15536 2.9277 · 10−4 0.14565 –
10−3 2.7505 · 10−6 0.088633 2.7436 · 10−6 0.088650 –
10−4 2.8259 · 10−8 0.061933 2.7011 · 10−8 0.062916 –
10−5 1.8743 · 10−10 0.079925 2.8186 · 10−10 0.074567 –
10−6 4.7361 · 10−12 0.034634 2.6419 · 10−12 0.051626 LC
10−7 3.1414 · 10−14 0.071051 2.7174 · 10−14 0.074970 –
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Table 3.3
Comparison of multiplicative regularization with the L-curve method

foxgood

L-curve MR
δ α error α error better

10−1 2.0157 · 10−3 0.11777 6.2084 · 10−3 0.16537 LC
10−2 5.0232 · 10−5 0.039497 5.8650 · 10−5 0.038102 –
10−3 6.9384 · 10−7 0.020652 5.6384 · 10−7 0.022084 –
10−4 8.9824 · 10−9 0.059639 5.7022 · 10−9 0.072235 LC
10−5 1.6246 · 10−10 0.029053 5.5865 · 10−11 0.057751 LC
10−6 1.0776 · 10−12 0.017196 4.8795 · 10−13 0.025274 LC
10−7 3.6618 · 10−15 0.10967 5.3269 · 10−15 0.095239 MR

shaw

L-curve MR
δ α error α error better

10−1 2.4366 · 10−2 0.18347 5.9525 · 10−2 0.18632 –
10−2 3.8168 · 10−4 0.086376 5.1872 · 10−4 0.080728 –
10−3 4.8446 · 10−6 0.084472 5.0056 · 10−6 0.083831 –
10−4 4.4892 · 10−8 0.043844 4.9867 · 10−8 0.044030 –
10−5 8.1194 · 10−10 0.049761 4.9749 · 10−10 0.053016 –
10−6 5.3854 · 10−12 0.029093 4.9204 · 10−12 0.029143 –
10−7 1.8301 · 10−14 0.066169 4.4538 · 10−14 0.061199 –

baart

L-curve MR
δ α error α error better

10−1 1.8203 · 10−2 0.38809 7.4751 · 10−2 0.37298 –
10−2 2.0462 · 10−4 0.15442 5.5709 · 10−4 0.16481 –
10−3 2.3146 · 10−6 0.13694 5.1749 · 10−6 0.12438 –
10−4 5.2228 · 10−8 0.059095 5.0171 · 10−8 0.058916 –
10−5 6.7614 · 10−10 0.061845 5.2440 · 10−10 0.064648 –
10−6 6.2654 · 10−12 0.053637 5.2037 · 10−12 0.054689 –
10−7 2.9745 · 10−14 0.032913 4.8572 · 10−14 0.034044 –

wing

L-curve MR
δ α error α error better

10−1 3.8860 · 10−3 0.73238 2.4572 · 10−3 0.70125 –
10−2 3.1947 · 10−6 0.59493 1.0035 · 10−5 0.59475 –
10−3 5.5346 · 10−8 0.59242 9.8831 · 10−8 0.59341 –
10−4 1.9538 · 10−9 0.56667 9.6922 · 10−10 0.54962 –
10−5 3.4017 · 10−12 0.44772 7.4998 · 10−12 0.44230 –
10−6 3.1521 · 10−14 0.35107 7.5627 · 10−14 0.36499 –
10−7 4.0807 · 10−16 0.32416 6.8258 · 10−16 0.32399 –
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3.5.1 The failure of multiplicative regularization on “deriv2”

and “phillips” test problems

The analysis shows that multiplicative regularization chooses a regularization param-

eter of zero when the noisy data vector lies in the column space of the matrix.

The test problems “deriv2” and “phillips” are both obtained by discretization of first

kind Fredholm integral equations. The infinite-dimensional problems are both mildly

ill-posed, that is, their singular values decay slowly to zero. In both cases, discretiza-

tion yields a square, nonsingular matrix A and hence multiplicative regularization

chooses α = 0 for every b lies in the column space of A (see Figures 3.7, 3.8, 3.9 and

3.10). Also for “deriv2”, the L-curve method fails itself for smaller noise levels (see

Figure 3.10). In these cases, the L-curve does not have a corner.

We expect multiplicative regularization to work well on “deriv2” and “phillips” if the

problem are discretized so that A ∈ R
m×n,m > n. Then b /∈ col(A) is likely to hold if b

contains random noise. We discretized these problems to obtain A ∈ R
m×n, m = 2n.

This corresponds to collecting more data. As shown in Table 3.4, multiplicative

regularization works well with these discretizations and produces better solutions

than does the L-curve most of the time (see Figures 3.11, 3.12, 3.13 and 3.14).

70



Table 3.4
Comparison of multiplicative regularization with the L-curve method

Re-discretized deriv2
L-curve multi-reg

δ α error α error better
10−1 2.6408 · 10−5 0.34582 9.3739 · 10−5 0.39561 LC
10−2 3.0159 · 10−7 0.24397 6.7902 · 10−7 0.23069 –
10−3 4.3886 · 10−9 0.21248 5.7205 · 10−9 0.19077 MR
10−4 8.8420 · 10−11 0.22389 3.3278 · 10−11 0.35279 MR
10−5 2.6816 · 10−11 0.056869 3.3157 · 10−13 0.012736 MR
10−6 0 −− 2.8832 · 10−15 0.014071 MR
10−7 0 −− 3.1382 · 10−17 0.0014544 MR

Re-discretized phillips
L-curve multi-reg

δ α error α error better
10−1 5.8377 · 10−2 0.067864 2.6483 · 10−1 0.037441 MR
10−2 1.6060 · 10−3 0.099886 2.4835 · 10−3 0.075813 MR
10−3 2.0743 · 10−5 0.096715 2.3827 · 10−5 0.089421 –
10−4 1.0972 · 10−7 0.28569 1.9927 · 10−7 0.20812 MR
10−5 2.7038 · 10−9 0.23465 1.4817 · 10−9 0.32184 LC
10−6 4.7798 · 10−9 0.036692 6.7599 · 10−11 0.32768 MR
10−7 5.5115 · 10−9 0.029525 5.3987 · 10−11 0.31202 LC

3.5.2 More details about the numerical examples

In this section, we will look carefully at some problems for which the two methods

perform essentially the same and deal with some other problems for which the two

methods differ noticeably.

Figures 3.5 and 3.6 show four typical cases, in which both methods work well. We

graph the curvature of the L-curve and the function ϕ(·; b) in each figure. In each

case, the curvature has a well-defined maximum and ϕ has a well-defined minimum.

The two values are similar.
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Figure 3.5: The test problem “foxgood”, with the noise level 10−2 on the
left and the test problem “heat”, with the noise level 10−3 on the right. Both
methods perform well.

Figure 3.6: The test problem “i laplace”, with the noise level 10−4 on the
left and the test problem “shaw”, with the noise level 10−5 on the right.
Both methods perform well.

Next, we present some cases in which the two methods differ. Figures 3.7, 3.8 and

3.9 are examples for which the L-curve method succeeds but the multiplicative reg-

ularization method fails because b ∈ col(A). Notice that for these three cases, the

curvature of the L-curve has a well-defined maximum. However, the smallest min-

imizer of ϕ(·; b), which is the value of α chosen by multiplicative regularization, is

α = 0 for all three problems.
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Figure 3.7: The test problem “deriv2” with relative error δ = 10−1 in
the noisy data. The curvature has a well-defined corner but multiplicative
regularization fails. The graph on the right is the graph of the L-curve.

Figure 3.8: The test problem “phillips” with the noise level δ = 10−1 in
the noisy data. The curvature has a well-defined corner but multiplicative
regularization fails. The graph on the right is the graph of the L-curve.

Figure 3.9: The test problem “deriv2” with relative error δ = 10−5 in the
noisy data. Both methods fail to identify nonzero regularization parameters.
The graph on the right is the graph of the L-curve and it does not have a
corner.
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Figure 3.10: The test problem “phillips” with relative error δ = 10−5 in
the noisy data. The curvature has a well-defined corner but multiplicative
regularization fails. The graph on the right is the graph of the L-curve.

Figure 3.10 is an example for which the L-curve method and the multiplicative regu-

larization method both fail. Notice that the curvature of the L-curve does not have

a well-defined maximum and the smallest minimizer of ϕ(·; b) is α = 0.

Figures 3.11 and 3.12 are examples of re-discretized test problems “deriv2” and

“phillips” with relative error δ = 10−1 in the noisy data. The L-curve method

succeeds and the multiplicative regularization method does not fail anymore since

b /∈ col(A). Notice that for both cases, the curvature of the L-curve has a well-defined

maximum and ϕ(·; b) has a well-defined minimum.

Figure 3.13 is an example of (re-discretized) test problems“phillips” with relative error

δ = 10−5 in the noisy data. Notice that the curvature of the L-curve has a well-defined

maximum and ϕ(·; b) has a well-defined minimum. Since the smallest minimizer of

ϕ(·; b) is not clear, we graph the fixed-point equation β = fb(α) (where fb(α) =

‖Axα,b−b‖2
‖xα,b‖2 ). It is clear that the fixed-point equation finds a nonzero regularization
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Figure 3.11: The re-descretized test problem “deriv2” with relative error
δ = 10−1 in the noisy data. Both methods identify nonzero regularization
parameters. The graph on the right is the graph of the L-curve and it has a
well-defined corner.

Figure 3.12: The re-discretized test problem “phillips” with relative error
δ = 10−1 in the noisy data. Both methods identify nonzero regularization
parameters. The graph on the right is the graph of the L-curve and has a
well-defined corner.

parameter.

Figures 3.14 is an example of (re-discretized) test problems“deriv2” with relative

error δ = 10−5 in the noisy data. The L-curve method fails since the curvature of

the L-curve does not have a well-defined corner; however, ϕ(·; b) has a well-defined

minimum. Multiplicative regularization performs well since the fixed point equation

finds a nonzero regularization parameter.
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Figure 3.13: The re-discretized test problem “phillips” with relative error
δ = 10−5 in the noisy data. Both methods identify nonzero regularization
parameters.

Figure 3.14: The re-discretized test problem “deriv2” with relative error
δ = 10−5 in the noisy data.The multiplicative regularization identifies a
nonzero regularization parameter and the L-curve method fails to identify a
corner.

3.6 Conclusions

Based on the numerical results, both method perform remarkably similarly provided

A ∈ R
m×n and col(A) is a proper subspace of R

m. Multiplicative regularization

is easy to analyze, while there are no analytic results for L-curve. For instance, we

cannot prove that the L-curve always has a corner; indeed, we have just seen examples
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in which it does not. On the other hand, provided b /∈ col(A) and b is sufficiently

close to b∗, we know that multiplicative regularization defines a positive regularization

parameter α. Moreover, we know that α → 0 at the same rate as ‖b̂‖2 as b → b∗.

We know that for an infinite-dimensional inverse problem, a purely a posteriori pa-

rameter choice method can not be convergent. However, if we prove that these results

extend to infinite dimensions, namely, that

y → y∗, ‖ŷ‖Y ≥ θ‖y − y∗‖Y ⇒ α(y) → 0 like ‖ŷ‖2Y , (3.6.1)

then we will obtain xα,y → x∗ weakly. We know that as yk → y and even if {yk} is

almost contained in R(T ), then multiplicative regularization probably fails. We need

to ensure that each yk contains a significant component in R(T )⊥. The condition

‖ŷ‖Y ≥ θ‖y − y∗‖Y is necessary in order to avoid the asymptotic convergence of y to

y∗ since α(y) should converge to zero at a slower rate than ‖ŷ‖2Y . We are not able to

prove (3.6.1), but in the next chapter we present some preliminary results.
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Chapter 4

Multiplicative regularization for

infinite-dimensional problems

4.1 Analysis of multiplicative regularization for

infinite-dimensional problems

Let X and Y be Hilbert spaces and let T : X → Y be a nonzero bounded linear op-

erator. We wish to estimate x ∈ X that satisfies Tx = y, which is an inverse problem

when R(T ) fails to be closed. Multiplicative regularization is based on minimizing

the function

J(x; y) =
1

2
‖Tx− y‖2Y ‖x‖2X .
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Assuming y is near y∗, we try to find a local minimizer of J near x∗ = T †y∗. When

y /∈ R(T ), x is a nontrivial stationary point of J(·; y) if and only if x = xα,y, where

α =
‖Txα,y − y‖2Y

‖xα,y‖2X
. (4.1.1)

We want to study (4.1.1) or equivalently ‖Txα,y − y‖2Y − α‖xα,y‖2X = 0.

Let y ∈ Y . Write y = y + ŷ where y = projR(T )y and ŷ = projR(T )⊥y. We define the

function F : [0,∞)× Y → R by

F (α, y) =

⎧⎪⎪⎨
⎪⎪⎩

‖Txα,y − y‖2Y − α‖xα,y‖2X + ‖ŷ‖2Y , α > 0,

‖ŷ‖2 α = 0,

We want to show that for all y near y∗ and y /∈ R(T ), there exists α such that

F (α, y) = 0. It turns out that we cannot use the implicit function theorem to prove

this, because we cannot prove that F is C1 (though it is continuous).

We define the new function f(α, y) = ‖ŷ‖2Y − F (α, y), that is,

f(α, y) =

⎧⎪⎪⎨
⎪⎪⎩

α‖xα,y‖2X − ‖Txα,y − y‖2Y , α > 0,

0, α = 0.

Then F (α, y) = 0 is equivalent to f(α, y) = ‖ŷ‖2Y . We need to show that the function
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F is continuous. We start with the following important results.

Lemma 21. For each y ∈ Y , Txα,y → y = projR(T )y as α → 0+.

Proof. Since Txα,y ∈ R(T ), then by the Pythagorean theorem we have

‖Txα,y − y‖2Y = ‖Txα,y − y + y − y‖2Y = ‖Txα,y − y‖2Y + ‖y − y‖2Y .

It follows that ‖Txα,y − y‖2Y ≥ ‖y − y‖2Y and it can be shown that ‖Txα,y − y‖2Y is

non-increasing as α → 0+ (see Proposition 5.24 in [12]). Thus

lim
α→0+

‖Txα,y − y‖2Y = M ≥ ‖y − y‖2Y .

We need to show that M = ‖y − y‖2Y . By way of contradiction, suppose that M >

‖y−y‖2Y . Define ε to be ε = M−‖y−y‖2Y . Choose x ∈ X such that ‖Tx−y‖2Y < M− ε
2
.

Then for all α > 0 sufficiently small we have

‖Tx−y‖2Y +α‖x‖2X < M− ε

2
+α‖x‖2X < M < ‖y−y‖2Y ≤ ‖Txα,y−y‖2Y ≤ ‖Txα,y−y‖2Y +α‖xα,y‖2X ,

which is a contradiction. This shows that M = ‖y − y‖2Y and

lim
α→0+

‖Txα,y − y‖2Y = ‖y − y‖2Y .

We have that ‖Txα,y−y‖2Y = ‖Txα,y−y‖2Y +‖y−y‖2Y and as α → 0+, ‖Txα,y−y‖2Y →

‖y − y‖2Y , thus it follows that ‖Txα,y − y‖2Y → 0 as α → 0+, i.e., Txα,y → y as

81



α → 0+.

Lemma 22. For all y ∈ Y ,
√
αN−1

α T ∗y → 0 as α → 0+.

Proof. We have that ‖Txα,y − y‖2Y + ‖Txα,y‖2Y + 2α‖xα,y‖2X = ‖y‖2Y . Also it follows

from the previous lemma that for each y ∈ Y as α → 0+, Txα,y → y. Thus as

α → 0+,

2α‖xα,y‖2X = ‖y‖2Y − ‖Txα,y − y‖2Y − ‖Txα,y‖2Y

→ ‖y‖2Y − ‖y − y‖2Y − ‖y‖2Y

= ‖y‖2Y − ‖ŷ‖2Y − ‖y‖2Y = 0.

Therefore α‖xα,y‖2X = ‖√αN−1
α T ∗y‖2X → 0 as α → 0+ and the proof is complete.

Now we can prove that the function F is continuous.

Theorem 23. The function F is continuous.

Proof. It is straightforward to prove that F is continuous on (0,∞)× Y . We need to

show that for all y0 ∈ Y , lim(α,y)→(0,y0) F (α, y) = F (0, y0). We have

lim
(α,y)→(0,y0)

F (α, y) = lim
(α,y)→(0,y0)

(‖Txα,y − y‖2Y − α‖xα,y‖2X).
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We can see that lim(α,y)→(0,y0) ‖Txα,y − y‖2Y = ‖ŷ0‖2Y , since

y − Txα,y = y − TN−1
α T ∗y = y − TN−1

α T ∗(y − y0)− TN−1
α T ∗y0.

Now as (α, y) → (0, y0), TN
−1
α T ∗(y−y0) → 0 since ‖TN−1

α T ∗‖ ≤ 1 and TN−1
α T ∗y0 →

y0 as α → 0. Thus we have

y − Txα,y → y0 − y0 = ŷ0, as (α, y) → (0, y0).

Also lim(α,y)→(0,y0) α‖xα,y‖2X = 0. That is true because

√
αxα,y =

√
αN−1

α T ∗(y − y0) +
√
αN−1

α T ∗y0 → 0 as (α, y) → (0, y0).

Therefore,

lim
(α,y)→(0,y0)

F (α, y) = ‖ŷ0‖2Y = F (0, y0).

and the proof is complete.

Since F is continuous on [0,∞)×Y and f(α, y) = ‖ŷ‖2Y −F (α, y), it follows that f is

continuous on [0,∞)× Y . For y∗ ∈ R(T ) we have f(α, y∗) = α‖xα,y∗‖2X − ‖Txα,y∗ −

y∗‖2Y . Then clearly

lim
α→0+

f(α, y∗) = −‖TT †y∗ − y∗‖2Y = 0,
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and also

lim
α→∞

f(α, y∗) = −‖y∗‖2Y .

We will show that f(α, y∗) > 0 for all α > 0 sufficiently small. We have

f(α, y∗) = α‖xα,y∗‖2X − ‖Txα,y∗ − y∗‖2Y = α(‖xα,y∗‖2X − α−1‖Txα,y∗ − y∗‖2Y )

= α(‖xα,y∗‖2X − α−1‖TN−1
α T ∗Tx0,y∗ − Tx0,y∗‖2Y )

= α(‖xα,y∗‖2X − α−1‖T (I − αN−1
α )x0,y∗ − Tx0,y∗‖2Y )

= α(‖xα,y∗‖2X − α−1‖αTN−1
α x0,y∗‖2Y )

= α(‖xα,y∗‖2X − α‖TN−1
α x0,y∗‖2Y )

≥ α(‖xα,y∗‖2X − α‖TN−1
α ‖2‖x0,y∗‖2Y )

≥ α(‖xα,y∗‖2X − 1

2
‖x0,y∗‖2X) (‖TN−1

α ‖2 ≤ 1

2α
).

Then since limα→0+(‖xα,y∗‖2X− 1
2
‖x0,y∗‖2X) = 1

2
‖x0,y∗‖2X > 0, it follows that f(α, y∗) >

0 for all α > 0 sufficiently small. Therefore there exists α̂ > 0 such that f(α, y∗) > 0

for all α ∈ (0, α̂). We define α∗ to be

α∗ = arg max{f(α, y∗)|α ∈ (0, α̂)}.

Theorem 24. There exists ε > 0 such that for all y ∈ Bε1(y
∗) \ R(T ), there exists

α ∈ (0, α∗) satisfying f(α, y) = ‖ŷ‖2Y .
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Proof. If ε1 is sufficiently small and y ∈ Bε1(y
∗)\R(T ), then f(0, y) = 0 and f(α∗, y) ≥

1
2
f(α∗, y∗). We define ε2 =

√
1
2
f(α∗, y∗) and consider ε = min{ε1, ε2}. Now if y ∈

Bε(y
∗) \ R(T ), then we have f(0, y) = 0, f(α∗, y) ≥ ε22 > 0, and ‖ŷ‖2Y < ε22. By

intermediate value theorem, since f(0, y) < ‖ŷ‖2Y < f(α∗, y), there exists 0 < α < α∗

such that f(α, y) = ‖ŷ‖2Y .

By Theorem 24, we can define α : Bε(y
∗) → [0, α∗] such that α = α(y) is the smallest

positive solution of f(α, y) = ‖ŷ‖2Y .

Now, we prove the following important result.

Lemma 25. As y → y∗, α(y) → 0.

Proof. Let {yk} ⊂ Y , yk → y∗, αk = α(yk) for all k ∈ Z
+. We have

f(αk, yk) = ‖ŷ‖2Y ⇔ F (αk, yk) = 0 ⇔ ‖Txαk,yk − yk‖2Y = αk‖xαk,yk‖2X .

If {αk} does not converge to 0, then without loss of generality we can assume that

αk → α ∈ (0, α∗] as yk → y∗. Then as (αk, yk) → (α, y∗), we have F (αk, yk) →

F (α, y∗) and that implies F (α, y∗) = 0, which contradicts the fact that F (α, y∗) > 0

for all α ∈ (0, α̂). So we have αk → 0 as yk → y∗.

We proved that for each y sufficiently close to y∗, y /∈ R(T ), there exists α > 0
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satisfying F (α, y) = 0.

We would like to study the possibility of determining the rate at which α = α(y) → 0

as y → y∗.

4.2 Rate of convergence

The standard theory of Tikhonov regularization for an infinite-dimensional problem

shows that if α = α(y) → 0 as y → y∗ and
‖y−y∗‖2Y

α
≤ C, then xα,y → x0,y∗ weakly.

To see that, we have

‖xα,y − x0,y∗‖X = ‖xα,y − xα,y∗ + xα,y∗ − x0,y∗‖X

≤ ‖xα,y − xα,y∗‖X + ‖xα,y∗ − x0,y∗‖X .

It is clear that ‖xα,y∗ − x0,y∗‖X is bounded as α → 0 since

‖xα,y∗ − x0,y∗‖X = ‖N−1
α T ∗y∗ − x0,y∗‖X = ‖N−1

α T ∗Tx0,y∗ − x0,y∗‖X

= ‖(I − αN−1
α )x0,y∗ − x0,y∗‖X = ‖αN−1

α x0,y∗‖X

≤ ‖αN−1
α ‖‖x0,y∗‖X ≤ ‖x0,y∗‖X ≤ Ĉ.

In fact, since xα,y∗ → T †y∗ strongly as α → 0, it follows that ‖xα,y∗ − x0,y∗‖X → 0
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as α → 0. Also we have

‖xα,y − xα,y∗‖X ≤ ‖N−1
α T ∗(y − y∗)‖X ≤ 1√

2α
‖y − y∗‖Y ≤ 1√

2
C

1
2 .

Thus {xα,y} is bounded as y → y∗ and it can be shown that xα,y → x0,y∗ weakly

under this condition. To show that, suppose xα,y → x ∈ X weakly. We will see

that x = x0,y∗ . We have that T ∗y → T ∗y∗ strongly (since y → y∗ strongly and the

operator T ∗ is bounded) and also T ∗Txα,y → T ∗Tx weakly (since xα,y → x weakly

and the operator T ∗T is bounded). Moreover, since {xα,y} is bounded, αxα,y → 0

strongly as α → 0. We have T ∗Txα,y + αxα,y = T ∗y.

It follows that T ∗Tx = T ∗y∗ and that implies x is a least-square solution of Tx = y∗.

We have seen that xα,y ∈ N(T )⊥ and since N(T )⊥ is closed, then x ∈ N(T )⊥.

It follows that x is the minimum-norm least-squares solution of Tx = y∗, that is,

x = x0,y∗ .

For an infinite-dimensional inverse problem, a purely a posteriori parameter choice

method like multiplicative regularization cannot be convergent. We conjecture that

if ‖ŷ‖Y ≥ θ‖y − y∗‖Y holds, then
‖ŷ‖2Y
α(y)

≤ C holds and xα,y → x0,y∗ weakly. The

condition ‖ŷ‖Y ≥ θ‖y−y∗‖Y is necessary to ensure that each yk contains a significant

component in R(T )⊥.
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4.2.1 Special cases

We would like to show that ‖ŷ‖2
α

is bounded above as y → y∗. Unfortunately we are

not able to prove that in general, but we can show that it is true for two special cases.

First suppose that {yk} ⊂ Y , yk = y∗ + ŷk, αk = α(yk) for all k ∈ Z
+ and yk → y∗,

as k → ∞. Then we have

‖ŷk‖2Y
αk

= ‖xαk,yk
‖2X − 1

αk
‖Txαk,yk

− yk‖2Y ≤ ‖xαk,yk
‖2X

=

∞∑
i=1

σ2
i

(σ2
i + αk)2

|〈yk, ψi〉Y |2 =

∞∑
i=1

σ2
i

(σ2
i + αk)2

|〈y∗ + ŷk, ψi〉Y |2

=

∞∑
i=1

σ2
i

(σ2
i + αk)2

|〈y∗, ψi〉Y |2 +
∞∑
i=1

σ2
i

(σ2
i + αk)2

|〈ŷk, ψi〉Y |2

= ‖xαk,y∗‖2X ≤ ‖x0,y∗‖2X since 〈ŷk, ψi〉Y = 0 ∀i.

Thus
‖ŷk‖2Y
αk

≤ C as yk → y∗, where C = ‖x0,y∗‖2X .

For our second special case we suppose {yk} ⊂ Y , yk = y∗ + σkψk + ŷk, αk = α(yk)

for all k ∈ Z
+ and ŷk → 0, as k → ∞. Then we have

‖ŷk‖2Y
αk

= ‖xαk,yk
‖2X − 1

αk
‖Txαk,yk

− yk‖2Y ≤ ‖xαk,yk
‖2X =

∞∑
i=1

σ2
i

(σ2
i + αk)2

|〈yk, ψi〉Y |2

=

∞∑
i=1

σ2
i

(σ2
i + αk)2

|〈y∗ + σkψk + ŷk, ψi〉Y |2

=

∞∑
i=1

σ2
i

(σ2
i + αk)2

|〈y∗ + σkψk, ψi〉Y |2 since 〈ŷk, ψi〉Y = 0 ∀i

=

∞∑
i=1

σ2
i

(σ2
i + αk)2

|〈y∗, ψi〉Y |2 + σ4
k

(σ2
k + αk)2

+
2σ3

k

(σ2
k + αk)2

〈y∗, ψk〉Y

= ‖xαk,y∗‖2X +
σ4
k

(σ2
k + αk)2

+
2σ3

k

(σ2
k + αk)2

|〈y∗, ψk〉Y |.
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The last step follows from the fact 〈ŷk, ψk〉Y = 0 since ŷk is orthogonal to col(A).

It can be seen that
‖ŷk‖2Y
αk

is bounded above since ‖xαk,y∗‖2X is bounded by ‖x0,y∗‖2X ,
σ4
k

(σ2
k+αk)2

is bounded by 1 and also

2σ3
k

(σ2
k + αk)2

|〈y∗, ψk〉Y | = 2σ4
k

(σ2
k + αk)2

|〈y∗, ψk〉Y |
σk

→ 0.

Therefore
‖ŷk‖2Y
αk

is bounded above by a constant C where C > 0. Also we can show

that by imposing the condition ‖yk− y∗k‖ < θ‖ŷk‖ (for some θ > 0), α
‖ŷk‖2Y

is bounded

above. To see that we have

‖ŷk‖2Y
α

= ‖xαk,y
∗
k
‖2X − 1

α
‖Txαk,y

∗
k
− y∗k‖2Y

≥ ‖xαk,y
∗
k
‖2X − 1

α
‖yk − y∗k‖2Y

≥ ‖xαk,y
∗
k
‖2X − θ‖ŷk‖2Y

α
.

It follows that (1 + θ)
‖ŷk‖2Y
α

≥ ‖xαk,y
∗
k
‖2X and thus

α

‖ŷk‖2Y
≤ (1 + θ)

‖xαk,y
∗
k
‖2X

≤ Ĉ as yk → y∗,

where Ĉ > 0. Thus 0 < Ĉ ≤ ‖ŷk‖2Y
α

≤ C.
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4.2.2 Counter-example

Now with a counter-example, we can show that imposing the condition

‖ŷ‖Y ≥ θ‖y − y∗‖Y ,

is necessary. In the previous section, we proved that for all y sufficiently close to y∗

and y /∈ R(T ), there exists α = α(y) > 0 satisfying f(α, y) = ‖ŷ‖2Y , that is, there

exists α = α(y) > 0 satisfying α =
‖ŷ‖2Y

‖xα,y‖2X−α−1‖Txα,y−y‖2Y
.

We have

α− ‖ŷ‖2Y
‖x0,y∗‖2X

=
‖ŷ‖2Y

‖xα,y∗‖2X − α−1‖Txα,y∗ − y∗‖2Y
− ‖ŷ‖2Y

‖x0,y∗‖2X
=

‖ŷ‖2Y (‖x0,y∗‖2X − (‖xα,y∗‖2X − α−1‖Txα,y∗ − y‖2Y ))
‖x0,y∗‖2X(‖xα,y∗‖2X − α−1‖Txα,y∗ − y∗‖2Y )

=
‖ŷ‖2Y

‖x0,y∗‖2X

(‖x0,y∗‖2X − (‖xα,y∗‖2X − α−1‖Txα,y∗ − y∗‖2Y )
‖xα,y∗‖2X − α−1‖Txα,y∗ − y∗‖2Y

)
,

and thus it follows that

‖ŷ‖2Y
‖xα,y∗‖2X − α−1‖Txα,y∗ − y∗‖2Y

=
‖ŷ‖2Y

‖x0,y∗‖2X
+

‖ŷ‖2Y
‖x0,y∗‖2X

(
‖x0,y∗‖2X − (‖xα,y∗‖2X − α−1‖Txα,y∗ − y∗‖2Y )

‖xα,y∗‖2X − α−1‖Txα,y∗ − y∗‖2Y

)

=
‖ŷ‖2Y

‖x0,y∗‖2X

(
1 +

‖x0,y∗‖2X − ‖xα,y∗‖2X − α−1‖Txα,y∗ − y∗‖2Y
‖xα,y∗‖2X − α−1‖Txα,y∗ − y∗‖2Y

)
.
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We can choose {y∗k} ⊂ R(T ) such that as k → ∞, y∗k → y∗ and ‖x0,y∗k‖2 → ∞. To

see that, suppose y∗k = y∗ +
√
σkψk. Then we have

x0,y∗k = T †y∗k = T †(y∗ +
√
σkψk) = T †y∗ + T †√σkψk

= x0,y∗ +

√
σk
σk

ψk = x0,y∗ +
1√
σk

ψk.

Clearly as k → ∞, σk → 0, y∗k → y∗ and ‖x0,y∗k‖2 → ∞. Now for each k, choose yk as

yk = y∗k + ŷk = y∗ +
√
σkψk + ŷk,

where ŷk is sufficiently small such that

α(yk) =
‖ŷk‖2Y

‖x0,y∗k‖2X
(1 + θk), |θk| < 1

k
.

To see that, we have

θk =
‖x0,y∗k‖2X − ‖xαk,y

∗
k
‖2X − αk

−1‖Txαk,y
∗
k
− y∗k‖2Y

‖xαk,y
∗
k
‖2X − α−1

k ‖Txαk,y
∗
k
− y∗k‖2Y

=

∑∞
n=1

3αkσ
2
n+α

2
k

(σ2
n+αk)2

|〈y∗k,ψn〉|2
σ2
n∑∞

n=1

σ2
n−α2

k

(σ2
n+αk)2

|〈y∗k, ψn〉|2

≤
∑∞

n=1
3σ2

n+αk

(σ2
n+αk)

|〈y∗k,ψn〉|2
σ2
n∑∞

n=1

σ2
n−α2

k

(σ2
n+αk)2

|〈y∗k, ψn〉|2
.

It follows that for each fixed k, θk → 0 as ŷk → 0 (because αk → 0 as ŷk → 0).
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We also have that

‖yk − y∗k‖2Y = ‖yk − yk‖2Y + ‖yk − y∗k‖2Y = ‖yk − yk‖2Y + ‖ŷk‖2Y ,

and clearly ‖ŷk‖2Y ≤ ‖yk − y∗k‖2Y . We then have

α(yk)

‖yk − y∗k‖2Y
≤ α(yk)

‖ŷk‖2Y
=

1 + θk
‖x0,y∗k‖2X

→ 0, as k → ∞,

since ‖x0,y∗k‖2 → ∞ and θk → 0 as k → ∞. Hence for this choice of {yk}, ‖yk−y∗k‖2Y
α(yk)

is not bounded. In general, we can see that
‖ŷ‖2Y
α(y)

need not be bounded if we do not

impose the condition ‖ŷ‖Y ≥ θ‖y − y∗‖Y .

4.2.3 Numerical experiments

In Chapter 3, we have shown that for a finite-dimensional problem,

lim
b→b∗

‖b̂‖2
α

= lim
b→b∗

(‖xα,b‖2 − α−1‖Axα,b − b‖2) = ‖x0,b∗‖2, (4.2.1)

which implies as b → b∗, ‖b̂‖2
α

→ ‖x0,b∗‖2. In this chapter, we will do some numerical

experiments to test whether (4.2.1) seems to be true for infinite-dimensional problems.

We construct a noisy data function y as y = y∗ + δz, where y∗ is the exact data, δ is
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the noise level and z is a discontinuous function. In our example, the function y does

not belong to the D(T †). Now by increasing n (the dimension of the problem) and

choosing n sufficiently large, we get to compute the various quantities to 4 correct

digits.

We consider some test problems from Hansen’s Regularization Tools package [22].

We start with the test problem “baart”, which is obtained by discretization of the

first-kind Fredholm integral equation

∫ π

0

k(s, t)f(t) dt = g(s), 0 ≤ s ≤ π

2
, (4.2.2)

where k(s, t) = exp(s cos(t)) and f(t) = sin(t). The right hand side is g(s) =

2( sinh(s)
s

) + δz. The function z(s) is given by

z =

⎧⎪⎪⎨
⎪⎪⎩

s, 0 ≤ s ≤ π
4
,

2− 2s, π
4
< s ≤ π

2
.

The equation is discretized by the Galerkin method with orthonormal box functions.

The dimension n of the problem should be large enough in order to get accurate

results, and we choose n to be 1000. The results for different noise levels are given

in Table 4.1. The exact solution of the “baart” test problem satisfies ‖x∗‖2 = 1.5708.

As we can see, as y → y∗, ‖ŷ‖2
α

appears to converge to ‖x0,y∗‖2.
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Table 4.1
Numerical results for the infinite-dimensional test problem “baart”

δ α ‖ŷ‖ ‖ŷ‖2
α

‖xα,y‖2
10−2 2.3556 · 10−6 9.1723 · 10−4 0.3571 1.8309
10−3 1.4422 · 10−8 9.1723 · 10−5 0.5833 1.7123
10−4 1.2021 · 10−10 9.1723 · 10−6 0.6999 1.6731
10−5 1.1141 · 10−12 9.1723 · 10−7 0.7552 1.5943
10−6 8.8572 · 10−15 9.1723 · 10−8 0.9499 1.6214
10−7 7.2416 · 10−17 9.1727 · 10−9 1.1619 1.6763
10−8 7.0916 · 10−19 9.1723 · 10−10 1.1864 1.5841
10−9 6.4209 · 10−21 9.1725 · 10−11 1.3104 1.5854
10−10 5.7308 · 10−23 9.1750 · 10−12 1.4689 1.6303
10−11 5.4646 · 10−25 9.3045 · 10−13 1.5788 1.5824

Our second example is the test problem “wing” which is obtained from discretization

of the first-kind integral equation

∫ 1

0

k(s, t)f(t) dt = g(s), 0 < s < 1, (4.2.3)

where k(s, t) = t exp(−st2), and the solution f(t) is

f(t) =

⎧⎪⎪⎨
⎪⎪⎩

1, 1
3
< t < 2

3
,

0, otherwise.

The right hand side is given by g(s) =
exp(− 1

9
s)−exp(− 4

9
s)

2s
+ δz where z(s) is

z =

⎧⎪⎪⎨
⎪⎪⎩

s, 0 ≤ s ≤ 1
2
,

2− 2s, 1
2
< s ≤ 1.
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Table 4.2
Numerical results for the infinite-dimensional test problem “wing”

δ α ‖ŷ‖ ‖ŷ‖2
α

‖xα,y‖2
10−2 1.04525 · 10−4 1.5311 · 10−3 0.0224 0.2720
10−3 4.3871 · 10−7 1.5311 · 10−4 0.0534 0.2901
10−4 5.6356 · 10−9 1.5311 · 10−5 0.0416 0.22758
10−5 1.6054 · 10−11 1.5311 · 10−6 0.1460 0.32125
10−6 1.7762 · 10−13 1.5311 · 10−7 0.1320 0.27201
10−7 1.6345 · 10−15 ·1.531110−8 0.1434 0.2933
10−8 1.0048 · 10−17 1.5311 · 10−9 0.2333 0.3327
10−9 1.0623 · 10−21 1.5311 · 10−10 0.2206 0.2982
10−10 1.0555 · 10−21 1.5311 · 10−11 0.2221 0.2976
10−11 1.0281 · 10−23 1.5311 · 10−12 0.2280 0.3018
10−12 7.5070 · 10−26 1.5311 · 10−13 0.3123 0.3196

The equation is discretized by the Galerkin method with orthonormal box functions.

The dimension of the problem (n) is chosen to be 1000. The numerical results for

different noise levels are given in Table 4.3. The exact solution of the “wing” test

problem is ‖x∗‖2 = 0.3340. One more time as y → y∗, ‖ŷ‖2
α

appears to converge to

‖x0,y∗‖2.

Our last example is “deriv2” which is obtained from discretization of the first-kind

integral equation ∫ 1

0

k(s, t)f(t) dt = g(s), 0 ≤ s ≤ 1, (4.2.4)

where

k(s, t) =

⎧⎪⎪⎨
⎪⎪⎩

s(t− 1), s < t,

t(s− 1), otherwise,

and the exact solution is f(t) = t. The right hand side is g(s) = 1
6
(s3 − s) + δz. The
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Table 4.3
Numerical results for the infinite-dimensional test problem “deriv2”

δ α ‖ŷ‖ ‖ŷ‖2
α

‖xα,y‖2
10−2 4.5601 · 10−6 7.7204 · 10−5 0.0013 0.3380
10−3 5.8696 · 10−9 7.7204 · 10−6 0.0102 0.4763
10−4 1.1966 · 10−11 7.7204 · 10−7 0.0498 0.4957
10−5 1.5634 · 10−14 7.7204 · 10−8 0.3813 0.6055
10−6 1.7359 · 10−16 7.7206 · 10−9 0.3434 0.3435
10−7 1.7885 · 10−18 7.7224 · 10−10 0.3334 0.3334
10−8 1.8048 · 10−20 7.7563 · 10−11 0.3333 0.3333
10−9 2.6874 · 10−22 9.4647 · 10−12 0.3333 0.3333
10−10 8.4016 · 10−23 5.2920 · 10−12 0.3333 0.3333
10−11 8.1475 · 10−23 5.2114 · 10−12 0.3333 0.3333
10−12 1.2790 · 10−24 6.5295 · 10−13 0.3333 0.3333

function z(s) is given by

z =

⎧⎪⎪⎨
⎪⎪⎩

s, 0 ≤ s ≤ 1
2
,

2− 2s, 1
2
< s ≤ 1.

We discretize the equation by the Galerkin method with orthonormal box functions

to get Tmnxn = ym where Tmn ∈ R
m×n, ym ∈ R

m and xn ∈ R
n is to be estimated. For

this problem n is chosen to be 1000 and m = 2n. The numerical results are given in

Table 4.2. The exact solution of the “deriv2” test problem is ‖x∗‖2 = 0.3333. Clearly

as y → y∗, ‖ŷ‖2
α

→ ‖x0,y∗‖2. Notice that we do not expect multiplicative regularization

to work for “deriv2” (in finite dimensions) because R(T ) = Y . However, this example

suggests that, even for such a problem, multiplicative regularization might work if the

problem is discretized with m > n.
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4.3 Conclusions

Based on our numerical results, we can see that for each test problem, by constructing

a noisy data function y (where y /∈ D(T †), discretizing the problem Tx = y, choosing

n sufficiently large, we get to choose the accurate α and it appears that that as

y → y∗, ‖ŷ‖2
α

converges to ‖x0,y∗‖2.

Our special cases and numerical examples suggest that

y → y∗, ‖ŷ‖Y ≥ θ‖y − y∗‖Y ⇒ α(y) → 0 like ‖ŷ‖2Y . (4.3.1)

However we are not able to prove the important result (4.3.1) in general.
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Chapter 5

Conclusions

5.1 Summary and conclusions

Inverse problems arise in many branches of science and engineering. In order to get a

good approximation of the solution of this kind of problems, the use of regularization

methods is required. Tikhonov regularization is one of the best methods for estimating

the solutions of inverse problems. For a linear inverse problem Tx = y, the objective

function for Tikhonov regularization method is given by:

‖Tx− y‖2Y + α‖x‖2X .
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The quality of the approximate solution computed by Tikhonov regularization de-

pends on choosing a good regularization parameter α.

The L-curve criterion is a purely a posteriori parameter choice method for the

Tikhonov regularization method. This method works well most of the time, although

there exist some problems in which the L-curve criterion does not perform properly.

Because of difficulties associated with this method, for instance, we can not prove

that the L-curve always has a corner; indeed, we have seen examples in which it does

not. Therefore, we have investigated another parameter choice method.

Multiplicative regularization is a strategy for solving inverse problems. This method

does not require any parameter selection strategies and, at the same time, can be

considered as a parameter choice method for the Tikhonov regularization method.

Multiplicative regularization is not an expensive method and is guaranteed to define

a positive regularization parameter α provided provided A ∈ R
m×n, col(A) is a proper

subspace of Rm and b is sufficiently close to b∗. Under these conditions, multiplicative

regularization performs very similarly to the L-curve method. Moreover, α → 0 at

the same rate as ‖b̂‖2 as b → b∗.

We have presented some preliminary theoretical results for infinite-dimensional prob-

lems. For example, for all y ∈ Y sufficiently close to y∗, there exists a positive

regularization parameter α = α(y) and also as y → y∗, α(y) → 0.
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5.2 Future work: plans and goals

In general, for an infinite-dimensional inverse problem, a purely a posteriori parameter

choice method can not be convergent. However, if we conjecture that the results for

finite-dimensional problems extend to infinite dimensions, namely, that

y → y∗, ‖ŷ‖Y ≥ θ‖y − y∗‖Y ⇒ α(y) → 0 like ‖ŷ‖2Y . (5.2.1)

If our conjecture is true, then we obtain the weak convergence of xα,y to x∗ under

assumption (5.2.1).

We have not been able to prove (5.2.1), but we hope to prove this result in the future.

We also would like to study multiplicative regularization for nonlinear inverse prob-

lems.
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