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Preface 

Magnetic domain walls play very important role in magnetics, spintronics, and 

magnonics, and lots of domain-wall-based devices have been proposed and constructed in 

recent years. Structures, properties and functionalities of magnetic domain walls in thin 

film, nanowires and atomic chains are computationally studied in this dissertation. 

All the researches described in this dissertation were conducted under the 

supervision of Prof. Yongmei M. Jin in the Department of Materials Science and 

Engineering, Michigan Technological University, between September 2010 and August 

2015. In this dissertation, part of work has been published in 2 peer-reviewed papers: 

Section 4.2 is reprinted from the paper [Geng, Liwei D. and Jin, Yongmei M., Generation 

and storage of 360° domain walls in planar magnetic nanowires. Journal of Applied 

Physics, 2012. 112(8): p. 083903], and Section 4.3 is reprinted from the paper [Geng, 

Liwei D. and Jin, Yongmei M., Altering critical depinning current via domain wall pile-

up in magnetic nanowires. Journal of Magnetism and Magnetic Materials, 2015. 393(0): 

p. 121-126]. For those papers, I performed the simulation work, collected and analyzed 

the data, and prepared the draft, while Prof. Jin developed the simulation model, 

programmed the code, analyzed the simulation results, and revised the draft very 

carefully. The remained work is unpublished, but will be submitted for publication in the 

near future.  
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Abstract 

Structures, properties and functionalities of magnetic domain walls in thin film, 

nanowires and atomic chains are studied by micromagnetic simulations and ab initio 

calculations in this dissertation. For magnetic domain walls in thin films, we 

computationally investigated the dynamics of one-dimensional domain wall line in 

ultrathin ferromagnetic film, and the exponent  = 1.24  0.05 is obtained in the creep 

regime near depinning force, indicating the washboard potential model is supported by 

our simulations. Furthermore, the roughness, creep, depinning and flow of domain wall 

line with commonly existed substructures driven by magnetic field are also studied. Our 

simulation results demonstrate that substructures will decrease the roughness exponent    

, increase the critical depinning force, and reduce the effective creep energy barrier. 

Current induced domain-wall substructure motion is also studied, which is found quite 

different from current induced domain wall motion. 

For magnetic domain walls in nanowires, field and current induced domain wall 

motion is studied, and some relevant spintronic devices are proposed based on 

micromagnetic simulations. Novel nanometer transverse-domain-wall-based logic 

elements, 360  domain wall generator and shift register are proposed. When spin-

polarized current is applied, the critical current for domain wall depinning can be 

substantially reduced and conveniently tuned by controlling domain wall number in the 

pile-up at pinning site, in analogy to dislocation pile-up responsible for Hall-Petch effect 

in mechanical strength. Furthermore, threshold currents for domain wall depinning and 

transportation through circular geometry in planar nanowire induced by spin transfer 



xii 

 

torques and spin-orbit torques are theoretically calculated. In addition, magnetic vortex 

racetrack memory which combines both conceptions of magnetic vortex domain walls 

and racetrack is also proposed using micromagnetic simulations. 

For magnetic domain walls in Ni atomic chains, a truly magnetic domain wall 

structure and the single domain switching process are investigated by both ab initio 

studies and spin dynamics simulations. Spin moment softening effect caused by the 

hybridization effect between two spin channels is considered. The atomic domain wall as 

narrow as 4 atom-distance with slight spin moment softening effect indicates a relatively 

evident ballistic magnetoresistance effect, and the large BE  indicates the strong stability 

of single domain state.  
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Chapter 1. Introduction 

1.1 Magnetic Domain-Wall-based Devices 

Magnetic materials have been widely used as functional devices in a long history, 

such as recording devices including hard disk drives (HDDs), magnetoresistive random-

access memory (MRAM), bubble memory and thin-film memory, sensor devices, domain 

shift register devices and so on. [1] Most of those traditional functional devices are based 

on magnetic domains, for example, almost all the recording media use single domains 

with two opposite polarities or magnetizations to represent information bit 0 and 1. 

Magnetic domain walls which separate neighboring domains always influence some 

specific domain behaviors like domain nucleating, switching or stabilizing, and hence to 

directly or indirectly affect the relevant functionalities performed by magnetic domains. 

For example, the existence of domain walls for thin-film memory and bubble memory 

can affect the domain state as well as the domain propagation to somewhat large extent. 

[1] Therefore, besides of domain itself, magnetic domain wall is also very crucial. 

Unfortunately, the size of domain wall is usually much smaller compared to the domain, 

which traditionally made researches on domain walls, especially narrow domain walls, 

very difficult. However, the development of nanotechnology makes investigations on 

magnetic domain walls possible and much attention has been paid to the small size 

domain walls. Up to present, much progress on domain walls has been done and many 

unique properties accompany with the corresponding functionalities have also been 

revealed, which results in novel spintronic devices functioned by magnetic domain walls 

with miniaturized size, called domain-wall-based devices, for which magnetic domain 
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walls play very important role. [2-35] Briefly speaking, almost all of those novel 

functionalities in magnetics and spintronics are related to the static structure and dynamic 

behavior of domain walls, and the two factors will be briefly introduced in the following. 

As for the structure, since several different structure types can be occupied by 

magnetic domain walls and each type also occupies distinguishable spin textures, domain 

wall itself can also be treated as information carriers which might be distinguished by 

either domain wall chirality [36-39] or vortex core polarity [20, 40-45], or even by the 

present or absence of a domain wall [19, 21, 46, 47]. For instance, a 180o head-head or 

tail-tail transverse domain wall in a planar Permalloy nanowire can either point ‘upward’ 

or ‘downward’ determined by the magnetization rotation chirality, either 

counterclockwise or clockwise, while a vortex or antivortex domain wall in a relatively 

wider nanowire or a circular disk can also be distinguished by core polarity besides of the 

chirality. Such a flipping or switching between two states of a domain wall spin texture 

can be realized by applying an external stimuli such as magnetic field [40-42], spin-

polarized current [20, 36, 44], heat or laser pulses [48] and so on, indicating potential 

applications in domain-wall based recording media. 

Under proper external driving force, domain walls can be moved, and many 

appealing magnetic and spintronic devices have been proposed due to the movable 

domain walls. When both nanowire circuits with simple geometric design and rotation 

magnetic field which also acts as a clock signal simultaneously are applied, a complete 

logic architecture can be constructed, which is called magnetic domain-wall logic, with 

the advantages of great simplicity, low power consumption and potentiality to build 3D 

networks, promising an alternate route to traditional semiconductor electronics. [32, 34] 
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In particular, since the observation of spin-polarized current induced domain wall motion 

[3, 5, 6, 18] which will be introduced in detail in Sec. 1.2, many attracting novel 

operations have been proposed, such as current-controlled magnetic domain-wall 

nanowire shift register [19] and magnetic domain-wall racetrack memory [21]. The latter 

proposes a high density memory which can be realized by shifting domain walls stored in 

nanowries with in-plane magnetocrystalline anisotropy by applying current pulses, which 

is further developed by using nanowires with perpendicular magnetocrystalline 

anisotropy in order to reduce the required spin-polarized current density [46]. 

In addition to the above potential applications based on domain walls in 

magnetics and spintronics, domain wall is also of great significance in the field of 

magnonics. For example, domain wall can induce a phase shift in propagation spin  

waves, which promises a domain-wall based magnonic logic device performing as NOT 

or XOR Boolean operator. [49, 50] Besides, the ultrafast reversal of a domain wall or 

vortex core can induce strong spin wave radiation [20, 41], which will result in a domain-

wall based spin wave generator. Thus, due to the important role of domain wall in 

magnetics, spintronics and magnonics, the properties as well as the relevant 

functionalities of magnetic domain walls are focused in this dissertation. 

 

1.2 Current Induced Domain Wall Motion 

1.2.1 Spin Transfer Torques 

Generally speaking, magnetic domain walls can be controlled in four ways, 

magnetic field control, spin-polarized current control, electric field control and photonic 

field control. [23] In this dissertation, domain wall properties and corresponding 
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functionalities controlled by the former two ways are focused. Since the conventional 

magnetic-field-induced domain wall dynamics has been almost well understood in last 

century while the study on current-induced domain wall motion is relatively new, the 

domain wall motion behavior induced by intrinsic spin transfer torques and extrinsic 

interface-derived spin-orbit torques will be briefly introduced in Sec. 1.2.1 and 1.2.2, 

respectively. 

Conduction electrons carry not only charges, but also spins. Unlike normal metals 

like Cu or Au in which conduction electrons are not polarized when injected in, 

transporting conduction electrons in ferromagnetic transition-metals like Ni or Co will be 

spin-polarized due to the asymmetric majority and minority channels for d electrons. 

When the spin-polarized current passes across the domain wall, all the incident electrons’ 

spins will be flipped, i.e., a spin-up electron ends up with a spin-down state after crossing 

an 180o domain wall, which exerts a torque on the magnetizations within domain wall 

due to the angular momentum conservation effect, and such a torque is called adiabatic 

torque [3, 18, 51]. When the adiabatic torque is exerted on a domain wall, magnetizations 

with the domain wall will rotate due to the effect of Larmor precession, and hence such a 

torque is only able to tilt or flip a domain wall without really driving it to move steadily. 

Besides of adiabatic torque, the other kind of torque induced by spin-polarized current, 

nonadiabatic torque [8, 18, 51], also exists. The nonadiabatic torque is treated as 

corrections to ideal adiabaticity and pure local spin transfer and have been claimed the 

key mechanism to cause the steady motion of domain wall. Both the adiabatic and 

nonadiabatic torques can be expressed phenomenologically by inserted as two additional 

terms into the conventional Landau-Lifshitz-Gilbert (LLG) equation [3, 8, 51] (see details 
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in Sec. 2.1). Unlike the adiabatic term, the origin of the nonadiabatic term (also called -

term) is more controversial. Zhang and Li proposed that the nonadiabatic term is due to 

the spin-flip scattering [8], while Stiles etc. cast doubt on that statement by reporting the 

quantum and semiclassical calculations without treating scattering [52]. Although there is 

so much debate on the -term, a great deal of experimental [4, 6, 15, 16, 28, 29] and 

theoretical [3, 5, 52-56] investigations accompany with the computational studies [51, 57-

60] based on the modified LLG equation have been done and then the reasonability of 

that term is demonstrated. 

Actually, the above two spin transfer torques as well as the modified LLG 

equation is applied only to magnetic systems with relatively wide domain walls. When 

the domain wall becomes extremely narrow, momentum transfer [5] instead of spin 

transfer effect will be dominant to the current induced domain wall motion. 

Unfortunately, since the momentum-transfer torque is nonlocal unlike the spin transfer 

torques, it is difficult to be phenomenologically added as an individual term to the LLG 

equation, but in a certain approximation, such term can also be expressed in the same 

form with the -term and then only the nonadiabatic parameter  is required to be 

modified if momentum-transfer torque is also taken into account [61]. In this dissertation, 

all the domain walls we computationally studied are relatively wide, so that the 

momentum-transfer effect is ignored. 

 

1.2.2 Spin-Orbit Torques 

The conventional spin-transfer torques including both the adiabatic torque and the 

non-adiabatic torque are intrinsic and able to drive the DW moving in the direction of 
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conduction electrons. Unlike those conventional torques, there are also some other 

torques which are not directly due to the coupling of spin-polarized current and local 

magnetizations, which are usually called extrinsic torques. Among those extrinsic  

torques, spin-orbit torques which are derived from the interface between ferromagnetic 

layer and top/bottom layer have attracted much interest in recent years. Usually, there are 

two main effects, Rashba effect [62] and Spin-Hall effect [63], contributed to the spin-

orbit torques. Both effects require a nonmagnetic heavy metal layer with strong spin-orbit 

interactions. Since spin-orbit torques are interface-derived, one can expect that a thin 

ferromagnetic layer should be required to enhance the interface effect or spin-orbit 

torques effect. 

Rashba effect is usually arisen from a structure inversion asymmetry of two 

different interfaces, heavy-metal/ferromagnetic and ferromagnetic/oxide interface, and a 

typical system is the heavy-metal/ferromagnetic/oxide heterostructure like Pt/Co/AlO 

stack [37, 38]. The induction magnetic field caused by the spin-orbit interaction is given 

by 2/ 2SO cB v E , where VE  is the electric field originating from the 

asymmetric crystal field V  and v  is the electron’s velocity [64]. Since the interfacial 

electric field is usually perpendicular to the surface and electrons move within the surface 

plane, the effective field induced by Rashba effect will be ˆRH z j  which is 

perpendicular to both the surface and injected current direction. [37, 38, 65, 66] Since 

Rashba effect can give rise to an effective transverse field, the Rashba torque is also 

called field-like torque [67, 68]. Therefore, one can expect that Rashbe effect is able to 

either stabilize or flip a domain wall depending on the incident current direction, domain 
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wall chirality and the heterostructure layer arrangement, which have also been revealed 

by recent investigations [37, 38, 65-67, 69].  

For spin Hall effect, a typical system exhibiting strong spin-orbit torque effect 

usually includes the heavy-metal/ferromagnetic interface, and hence heterostructure 

stacks such as Pt/Co/Pt, Pt/CoFe/MgO, Ta/CoFe/MgO, and Ta/CoFeB/MgO are often 

experimentally adopted [70-72]. The strong spin-orbit effect makes spin-up and spin-

down electrons in the heavy-metal layer deflect in opposite directions toward the 

interface to form a transverse spin current which will be injected into the ferromagnetic 

layer to exert a torque. The spin-Hall torque is also called Slonczewski torque, which can 

act as an anti-damping torque and even able to make the DW move along the current 

direction, in contrary to the conventional spin transfer torque effect. [67, 68, 70-75] 

Precisely speaking, whether the domain wall moves in the electron direction or current 

direction depends on both domain wall chirality and spin-Hall angle. The spin-Hall angle 

denoted as the ratio of the spin current to the charge current densities can be either 

positive or negative depending on the substrate material [70, 71]. Extensive 

investigations on this interesting and unique effect have been done with a great deal of 

attractive potential applications in spintronics being proposed. [39, 67-76] 

One can expect that both the Rashba effect and spin Hall effect could significantly 

influence the domain wall dynamic properties. Like the conventional spin transfer  

torques, the spin-orbit torques excited by those two effects can be also 

phenomenologically added to the modified LLG equation, which will be discussed in  

Sec. 2.1. Actually, in addition to the above two effects, the Dzyaloshinskii-Moriya 

interaction (DMI) [77-80] which is also owing to the spin-orbit interaction effect plays an 
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important role in magnetic domain wall properties. Also derived from the interface, DMI 

arises from an interfacial anisotropic exchange effect which can be described by the DMI 

energy DMI ij i jE D S S , where ijD  is the Dzyaloshinskii vector. DMI makes the 

domain walls with different chiralities occupy different energy levels, so that domain 

wall structure with only one certain chirality is energetically preferred. In another word, 

DMI can stabilize the domain wall chirality, and that is why the domain wall in Pt/Co/Pt 

stack always moves in the current direction under the spin Hall effect. [39, 71, 75] 

 

1.3 Domain Wall Resistivity 

In analogy to the giant magnetoresistance (GMR) [81] which arises from the spin-

dependent scattering by the antiparallel adjacent ferromagnetic layers, magnetic domain 

wall separating adjacent antiparallel domains may also contribute a resistance which is 

usually called domain wall magneto-resistance (DWMR). In 1996, the first clear 

indication of giant GMR effects in a homogeneous magnetic system due to domain wall 

scattering was reported by Gregg et al. [82] After that, Levy and Zhang theoretically 

calculated the DWMR using the same Hamiltonian as used to explain GMR, and it is 

indicated that the amount of MR that is attributable to domain wall scattering for the 

current perpendicular to wall (CPW) configuration is between 2% and 11%, consistent 

with the 5% found by Gregg. [81] In contrary to the positive DWMR mentioned above, 

negative value was also reported [83], for which Tatara and Fukuyama also calculated 

the domain wall resistivity based on the linear response theory to show that the wall 

contributes to the decoherence of electrons and it is this quantum correction that leads to 
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a decrease of resistivity [84]. Although lots of experimental studies [85-89]  are made to 

measure the DWMR hereafter, both positive and negative values were still reported, 

revealing the difficulty to determine the sign as well as the exact physical origin of 

DWMR. Gorkom et al. attribute the DWMR to the spin-dependent scattering lifetimes 

which seems capable to explain both positive and negative results based on a 

semiclassical model [90], but Tang et al. pointed out such model cannot account for the 

relatively large negative magnitude of the intrinsic DWMR they observed [89]. Actually, 

the intrinsic DWMR is difficult to measure, not only due to the very small resistant value, 

but also the requirement to carefully exclude the effects of anisotropic magnetoresistance 

(AMR), Lorentz MR and eddy-like current [89, 91]. It is worth noted that, for domain 

wall in a Permalloy nanowire, the AMR with a negative value is dominant over all the 

other contributions [19]. 

Actually, both the uncertainty of DWMR values and the ambiguity of theoretical 

explanations stated above are only for wide domain walls, while for very sharp domain 

wall or ferromagnetic nanocontact, the conclusion will be clear and even universal [92-

94]. Unlike wide domain walls, the ballistic transport regime instead of diffuse transport 

regime will be considered for sharp domain walls, and the ballistic magneto-resistivity 

could be as high as 300% at room temperature which can be explained (based on a linear 

response theory) via scattering by the sharp domain wall constrained within the 

nanocontact [93]. Almost all the reported experimental measurements [92, 95, 96] and 

theoretical analysis [93, 97-100] demonstrate the same conclusion by showing the same 

universal scenery, the sharper the domain wall, the higher the magneto-resistivity, i.e., 

nanocontact actually can act as a spin valve, which makes sense since spin-dependent 
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scattering of incident electrons by sharper domain wall is more intensive than wide wall 

within which incident electrons can easily track local magnetizations. Besides, the 

magneto-resistivity also depends on current polarization P which is determined by the 

density of states of majority and minority channels at Fermi level. Highly spin-polarized 

current (with large P) can enhance the spin-dependent scattering by domain wall to 

exhibit a strong spin-valve effect. An extreme case is the half-metal for which the 

minority channel is empty at Fermi level and then P=1 representing the fully spin-

polarized current, so that half-metals play a very important role in spintronics. Therefore, 

huge DWMR can be expected for very sharp or absolutely abrupt domain wall in some 

certain ferromagnetic materials, for instance, magneto-resistivity ratio as huge as up to 

700% has been exhibited by a Ni-Ni nanocontact at room temperature [101], which can 

perform as a very good spin filter. Potential applications in spintronics can be proposed 

for domain walls with high DWMR which may be treated as the building block of novel 

MRAM. 

Once the nanocontacts shrink further, until only a few atoms or even one single 

atom are bridged between two magnetic domains, the MR will be quantized, which  

might lead to atomic-size devices in nanospintronics. Actually, DWMR for atomic-size 

contacts have also been investigated and quantized MR has also been observed [80, 102]. 

Extensive ab initio calculations using tight-binding model [103-105], nonequilibrium 

Green’s function (NEGF) formalism [106-108], or Korringa-Kohn-Rostoker (KKR) 

Green’s function method [109-111] have been made for various ferromagnetic systems to 

study the atomic-size contact transportation properties or the tunneling magnetoresistance 

(TMR) effect.  Therefore, for nanosized or atomic magnetic elements like molecular 
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devices or atomic devices, ab initio studies play a very important role in discovering 

novel functional magnetic systems and predicting unique spintronic properties, for which 

it is still challenging to do in experiment. ab initio studies show that monoatomic chains 

of certain transition-metals like Mn, Fe, Co or Ni exhibit nearly half-metallic properties 

[112] and atomic chains of carbon-transition-metal compounds like CnCr, CnTi or CnCo 

with specific n exhibit fully half-metallic behavior with pronounced DWMR ratio [106, 

113]. What’s more, DWMR for freestanding atomic nanowires or atomic chains of Fe, 

Co or Ni have been also calculated at an ab initio level [109]. All of those studies would 

open a new perspective in future nanospintronics devices. 

 

1.4 Magnetic Domain Walls in Thin Films, Nanowires and Atomic Chains 

Considering the great importance and potential applications of magnetic domain 

walls in magnetics, spintronics and magnonics, their properties and functionalities at 

three different scales, thin films, nanowires and atomic chains, will be studied by using 

micromagnetic simulations, theoretical analysis, numerical calculations and ab initio 

calculations in this dissertation. 

In thin films, since the static and dynamic properties of domain walls usually have 

a great impact on domain nucleation, switching and stabilization, the fundamental 

properties like roughness, creep or depinning of domain wall under random pinning 

potentials and thermal fluctuations driven by magnetic field are computationally studied 

combined with relevant theoretical analysis in Sec. 3.1. Since substructures (or Bloch 

lines) are usually existed within domain walls and their density can also be modulated by 

a certain means, the fundamental static and dynamic properties of domain wall with 
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substructures are also studied hereafter in Sec. 3.2 to demonstrate the effect of those 

dynamical topological defects (Bloch lines). As is similar with magnetic field, spin-

polarized current can also provide a domain wall a driving force, the fundamental static 

and dynamic properties in the creep, depinning and flow regimes of domain wall with 

and without substructures driven by spin-polarized current should be also studied, which 

will be our future work. Before that, Bloch line dynamics and current induced Bloch line 

motion properties in ideal thin film without thermal fluctuations are studied in Sec. 3.3. 

All the studies for domain walls in nanowires are presented in Chapter 4. For the 

ferromagnetic system, we choose the most widely investigated nanowire material, 

Permalloy, exhibiting very weak magnetocrystalline anisotropy, in the whole chapter 

except Sec. 4.5 in which cobalt nanowire is adopted. For domain walls in a planar 

Permalloy nanowire, we show transverse domain walls can exhibit broad potential 

applications in spintronics. In Sec. 4.1, we constructed novel nanometer transverse-

domain-wall-based logic elements including the data generator, NOT, AND and OR logic 

gates by combining both nanowire circuits loop and rotating magnetic field based on our 

micromagnetic simulations, which exhibits more advantages than the previously 

proposed submicrometer domain wall logic [34]. In Sec. 4.2, two devices based on 360o 

domain wall (combination of two 180o domain walls) are proposed, one is domain wall 

generator, and the other is domain wall shift register, and generation, storage and shifting 

of 360o domain walls in planar magnetic nanowires driven by rotating magnetic field are 

computationally studied. In Sec. 4.3, spin-polarized current instead of magnetic field is 

applied to the domain wall pile-up, and altering critical depinning current via domain 

wall pile-up in magnetic nanowires is investigated by our simulations. In Sec. 4.4, current 
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induced domain wall depinning and transportation through planar nanowire circular 

geometry by spin transfer torques and spin-orbit torques are theoretically analyzed and 

numerically calculated from the micromagnetic model. In Sec. 4.5, magnetic vortex 

racetrack memory is proposed by combining both the concepts of vortex domain wall and 

racetrack memory implemented in the Co nanowire with perpendicular 

magnetocrystalline anisotropy. In the future, the static and dynamic properties of domain 

wall under DMI effect driven by spin-polarized current including spin-orbit torque effect 

will be computationally studied. 

The properties of atomic domain wall in atomic chains are studied in Chapter 5. 

Since the magnetocrystalline anisotropy energy is a key factor in one-dimensional atomic 

chain system, Ni monoatomic chain is chosen as our ferromagnetic atomic chain system 

due to its high magnetocrystalline anisotropy energy. At atomic scale, the 

phenomenological micromagnetic model is failed, therefore, both ab initio studies and 

spin dynamics simulations are carried out in this chapter. All the relevant magnetic 

parameters are calculated at ab initio density function theory level at zero temperature, 

with the magnetic parameters at finite temperature calculated based on a DFT approach 

to the electronic free energy. Using an atomistic model combined with ab initio studies, a 

truly magnetic domain wall structure and the single domain switching process are 

investigated by our spin dynamics simulations. Similar studies on the 4-d transition-metal 

with high magnetocrystalline anisotropy energy deposited on proper substrate will be our 

future work, and other ab initio programs like SMEAGOL may be used. 
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Chapter 2. Computational Methods 

2.1 Micromagnetic Modeling 

In the micromagnetic model, the evolution of the magnetization field is described 

by the Landau-Lifshitz-Gilbert equation [114] 

 ( )d d
dt dteff

m(r) m(r)H r m(r) m(r) ,   (2.1.1)
 

where r  is the spatial position vector, m(r)  is the magnetization directional unit vector 

field,  is the gyromagnetic ratio,  is the damping parameter, and ( )effH r is the 

effective magnetic field.  

Although the spontaneous magnetization is contributed by both spin moment and 

orbital moment, only spin moment dominantly contributes the magnetization, since 

orbital moment is largely quenched by crystal field. The driving force of magnetization 

processes, ( )effH r , is calculated by variational derivative of the total system free energy 

E with respect to the magnetization,  

 ( )
s

E
MeffH r

m(r)
, (2.1.2) 

where sM  is the saturation magnetization. The total system free energy E  is given by 

 exch ani mag ext mag elast ext elastE E E E E E E , (2.1.3) 

where exchE  represents the exchange energy, aniE the magnetocrystalline anisotropy 

energy, magE the magnetostatic energy, elastE the elastic energy, ex magE the external 

magnetic energy, and ex elastE  the external elastic energy. 
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The exchange energy originated from the Heisenberg model dealing with the 

triplet state (parallel spins) and singlet state (antiparallel spins) [64] is the very heart of 

magnetic order origin. In the phenomenological model, it is given by 

 
2 3m(r)exchE A grad d r , (2.1.4)

 

where A  is the exchange stiffness constant, which can be used to determine the Curie 

temperature of ferromagnetic materials. The anisotropy energy is originated from spin-

orbit interaction effect, and its magnitude as well as its function form is dependent of 

specific lattice structure of certain ferromagnetic materials. Usually, most 3d transition-

metals often have weak magnetocrystalline anisotropy energy, while most 4d and 5d 

transition-metals have strong magnetocrystalline anisotropy effect. For uniaxial 

ferromagnetic systems, the anisotropy energy term is usually described by the following 

form 

 
22 2 3

1 2( ) ( 1 1 )r p(r) m(r) p(r) m(r)aniE K K d r , (2.1.5) 

where 1K and 2K are uniaxial magnetocrystalline anisotropy constants, and p(r) is the 

easy axis determined by the spin-orbit coupling. The magnetostatic energy can be 

presented in reciprocal space using the Fourier transform of the magnetization field, 

 
23

2 2
3 2

1 24
2 32

k m(k)
mag s s

d kE M VM
k

. (2.1.6) 

The external field energy which is due to Zeeman interactions is simply given by 

ext 3H m(r)ext sE M d r , (2.1.7) 
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where extH is the external magnetic field applied on the magnetizations. Magnetostriction 

is also related to the spin-orbit interaction effect and it arises from the strain dependence 

of the magnetocrystalline anisotropy constants. The elastic energy due to the 

magnetostrictive effect is  

 
3

0 0 *
3

1
2 (2 )elast ijkl p ijpq qr klrs s ij kl

d kE C n C C nn k k0 0 *
ij klij k k0 0 *

kl
0
ijij , (2.1.8) 

where 0( ) ( (ij pqrs k lm mr r) r) , pqrs  is the magnetostrictive coefficient tensor, and 

nij  is Green function tensor inverse to lkikjlij nnCn1 . The external elastic energy 

is given by 

 ext 0 3:extE d r(r) , (2.1.9) 

where ext  is the external stress. 

The total system energy is a functional of m(r) , and is evaluated by as a sum of 

the above six energy contributions, 

 

22 2 2 3
1 2

23
2 2 2 3

3 2

3
* ext 0 3

3

1 1

1 24
2 32

1 :
2 (2 )

0 0

m(r) p(r) m(r) p(r) m(r)

k m(k)
h m(r)

n k k (r)

s s s ext

ijkl p ijpq qr klrs s ij kl

E A grad K K d r

d kM VM M d r
k

d k C n C C n d r*0 0
ij kl

*0 0
klijij

*0 0 k*0 0kk0 k

.  (2.1.10) 

When spin-polarized current is applied, the evolution of magnetization field is 

described by the modified Landau-Lifshitz-Gilbert equation which includes the 

conventional spin transfer torques [3, 8, 51], 

  m m= H m+ m - u m+ m u md d
dt dt

,  (2.1.11) 
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where u is the electron motion velocity vector and  the nonadiabatic spin-transfer torque 

coefficient. The last two terms are adiabatic and nonadiabatic spin-transfer torque terms, 

respectively. The electron motion velocity vector proportional to the electrical current 

density J is determined by / 2u J B sx x Pg eM  where P is the polarization rate 

of the current and the factor / 2B sg eM =7 10-11 m3/C for Permalloy [51]. Usually, 

the magnitude of  is much less than unity and comparable to , the values for both  and 

 can be modulated by certain type of doping [115]. 

When interface-derived spin-orbit torques induced by Rashba effect and spin Hall 

effect are taken into account, the modified Landau-Lifshitz-Gilbert equation becomes  

[51, 69, 72, 76] 

 
ˆ

R

SH

t teff
m m= m H H m

u m m u m m m
, (2.1.12) 

where RH  is the Rashba effective field, SH  the parameter determining the amplitude of 

spin Hall effect, and ˆ  the unit vector denoting the spin Hall effect induced spin 

direction. The Rashba effective field is given by 

 2 2
0

2 2 ˆˆ ˆR R R
R

B s B B

P e e ux z x x z
M g g

H J u , (2.1.13) 

where R  is the Rashba parameter. The spin Hall effect related parameter SH  can be 

given by 

 
02

SH
SH

s z

J
e M L

SH J , (2.1.14) 
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where zL  is the ferromagnetic layer thickness and SH  is the spin-Hall angle whose value 

can be either positive or negative determined by the substrate layer material [70, 71]. 

 

2.2 Ab Initio Method 

In principle, the electronic structure of atoms, molecules and solids can be exactly 

calculated and the physical and chemical properties can be thereby predicted by solving 

many-particle Schrödinger equation. However, analytical or numerical solutions are 

possible only for very simple systems. Thanks to the density function theory (DFT) 

introduced in 1960s for which a lot of reasonable assumptions and approximations are 

used, the parameter-free ab initio calculations can be made. DFT is presently the most 

successful approach to compute the electronic structure of matter and predict a great 

variety of properties for systems of atoms, molecules and solids. Since there has been 

many review articles [116-119] and books [120-122] talking about DFT in detail, only a 

very brief introduction to DFT and the key milestones to develop DFT is presented  

herein. In order to approximate the solution of many-particle Schrodinger equation, 

Hartree-Fock approximation (or self-consistent field (SCF) method) based on Born–

Oppenheimer approximation is proposed to approximate the many-electron wave 

function as a product of single-particle functions or Slater determinant. In the Hartree-

Fock approximation, the mean field approximation is implied, i.e., effects of electron 

correlation are completely neglected, which leads to the post-Hartree-Fock approximation 

including the repulsions between electrons. Examples of post-Hartree-Fock 

approximation include configuration interaction (CI), quadratic configuration interaction 

(QCI) and so on. Although it is still challenging to extend to solid systems, the (post-



19 

 

)Hartree-Fock approximation is an indispensable benchmark in molecular physics. An 

alternate approach is to use electron density instead of wave function as the central 

quantity, resulting in the Thomas-Fermi model which is the first density functional  

theory. The Hohenberg-Kohn theorem demonstrates that the electron density uniquely 

determines the Hamiltonian operator and thus all the properties of the system. After that, 

Kohn-Sham replaced the original many-particle problem with an independent electron 

problem by proposing the Kohn-Sham equations that can be solved, which requires 

approximations for the exchange-correlation energy. If the exact forms of the exchange-

correlation energy were known, the Kohn-Sham strategy would lead to the exact energy, 

and for that issue, the local density approximation (LDA) and the generalized gradient 

approximation (GGA) are made. Lots of ab initio computer programs based on DFT have 

been developed, such as Vienna Ab initio simulation package (VASP), Spanish Initiative 

for Electronic Simulations with Thousands of Atoms (SIESTA), ABINIT, Quantum 

ESPRESSO and so on. For our magnetic system studies, we adopt VASP [123, 124] 

which uses a plane wave basis set to carry out our calculations. 

For spin-polarized calculations, the spin density function theory (SDFT) is used. 

Fully unconstrained noncollinear magnetism has been successfully implemented within 

VASP [125], and a brief introduction is presented herein. Compared to DFT, the 

wavefunction becomes a spinor  

 
|

|
|

,  (2.2.1) 

and the electron density becomes a 2 2 matrix,  



20 

 

 
| |

/ 2

n n n
n

Tr

n f

n

r r r

r m r
, (2.2.2) 

where nf  is the orbital occupation number,  the Pauli spin matrices, and 

nm r r  is the magnetization density. 

Therefore, the spin-polarized Kohn-Sham equation becomes 

 | |n n nH S , (2.2.3) 

with the Hamiltonian matrix given by 

 
'1 '

2 '
r

r r r r
r r
Tr

ext xc

n
H V d V n rr , (2.2.4) 

where extV r  is the effective one-electron potential and xcV n rn  is the exchange-

correlation potential. According to the 2 2 matrix in Eq. (2.2.4), H  and H  are the 

diagonal elements while xcV  and xcV  are nondiagonal elements. In the absence of those 

nondiagonal elements, the noncollinear case will fall into the collinear case. 

When considering spin-orbit interaction, the spin directions will be linked to the 

crystalline structure and the magneto-crystalline anisotropy can be calculated. The spin-

orbit Hamiltonian is given by 

 
2

2
,

1| | | |
2

spher
SOI i j i ij j

i je

dV
H p L p

r drm c

2

|| . (2.2.5) 

where ijLL  is angular momentum.

For the noncollinear calculations, spin spiral computation module is also 

implemented in VASP. The magnetization for spin spiral case is given by 
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cos sin
sin cos

x y

x y

z

m m
m m

m

r q R r q R
m r R r q R r q R

r
, (2.2.6) 

where q  is the spin spiral vector and R  is the spin spiral wave length. Then, the 

wavefunction spinor becomes 

 
/2

/2

0
0

i

i

e
e

q R
kk

q R
kk

r R

r R
, (2.2.7) 

and the 2 2 matrix becomes 

 
i

xc
i

xc

H V e
V e H

q r

q r . (2.2.8) 

The detailed introduction on the spin spiral calculations can be found in Ref. [126, 127]. 
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Chapter 3. Magnetic Domain Walls in Thin Films 

3.1 Domain Wall Creep in an Ultrathin Magnetic Film with a Driving Field near the 

Depinning Force 

3.1.1 Introduction 

The creep motion for a d-dimensional elastic manifold moving in a (d+1)-

dimensional random media can be found in many physical systems. Examples include 

vortices in type-II superconductors [128], charge density waves [129], ferroelectric 

domain walls [130, 131] and ferromagnetic domain walls [132-135]. The case of d=1 

relates to an elastic string moving in a random interface. Domain wall in ultrathin 

Pt/Co/Pt film which can be treated as a one-dimensional domain wall line is one example 

of such elastic strings. Both the experimental[134-137] and computational [138-140] 

studies have been made to better understand the dynamics of such domain wall line with 

driving magnetic field in the creep regime, as well as in the depinning and flow regimes. 

For the creep regime, however, most researches focused on the region where the external 

magnetic field is much smaller than the depinning force, i.e., H Hc, and the domain wall 

creep behavior in the region where the magnetic field is smaller than but rather close to 

the depinning force, i.e., H<Hc, was seldom investigated. In the creep regime, domain 

wall motion velocity obeys an Arrhenius law 0 exp( / )v v U kT , where ( / )c cU U H H  

with a universal constant exponent (2 1) / (2 )  for domain wall line ( 2 / 3 ) 

with H Hc, while (1 / )c cU U H H  with the exponent  not determined yet for 

domain wall line with H<Hc. Although there is no exact theory to determine the creep 

exponent  for H<Hc, there are actually three possible values existed. The first one is  = 
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 /  = 2.22 which is obtained just through simple phenomenological interpolation 

between regimes of creep, depinning and flow, [141] where  is the depinning exponent 

and  is the thermal rounding exponent with both of the values determined as 1/3 and 

0.15, respectively [132]. The second one is  = 1 which is calculated using dynamical 

renormalization group theory based on the short range correlated random potential or 

pointlike impurities and independent of dimensionality, [139] and is in accordance with 

Anderson’s original theory of classical creep [142]. The third one is  = (6-d) / 4 = 5/4 

which is based on washboard potential and depends on the dimensionality. [128, 143] 

The exact value of  strongly depends on the determination of depinning force Hc. 

The exact value of Hc, actually, can be obtained from the depinning regime, in which the 

velocity-field relationship is predicted[138] by ( / 1)cv H H , where the universal 

depinning exponent    1/3 is theoretically expected based on numerical simulations 

[144, 145] and has been further supported by recent experiments [132]. After determining 

the depinning force Hc, creep exponent  can be then obtained from the velocity-filed 

relationship exp{ (1 / ) / }c c Bv U H H k T . In this section, we use phase field model 

and micromagnetic simulations to obtain the domain wall velocities with a serious of 

external magnetic fields in the whole range, and then calculate the creep exponent , 

before which the depinning force is predetermined in the same way as in Ref. [132]. 

 

3.1.2 Micromagnetic Model 

The evolution of magnetization is described by the Landau-Lifshitz-Gilbert 

equation [51, 146] 
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t teff th

m m=- m H H + m , (3.1.1)
 

where m is a unit vector of magnetization, the gyromagnetic constant, the Gilbert 

damping constant, effH the effective magnetic field / (effH m)sE M , and thH the 

Gaussian distributed random fluctuating thermal field satisfying [146] 

 , , 0th iH tr  , (3.1.2) 

 , ,, , 2th i th j th ijH t H t D t tr r r r , (3.1.3) 

where thD  is temperature dependent of strength of the thermal field given by 

 3
0

B
th

s

k TD
M l

, (3.1.4) 

where Bk  is the Boltzmann constant, T  is the temperature, and l  the simulation grid size. 

For the parameters used in our simulations, we adopt the experimental measured values 

for domain wall in 0.6 nm thick ultrathin Pt/Co/Pt film with perpendicular anisotropy 

[134]: saturation magnetization 31130 emu / cmsM , uniaxial perpendicular 

magnetocrystalline anisotropy constant 7 31.25 10 erg / cmuK , exchange constant 

61.6 10 erg / cmA , and Gilbert damping constant  = 0.3. The statistical defects are 

realized by introducing a fluctuation of magnetocrystalline anisotropy obeying Gaussian 

distribution with an amplitude of K / Ku  0.055, and that type of defects is reported to 

be the main pinning source in ultrathin Pt/Co/Pt film with perpendicular anisotropy. [147] 

Large system size of 8.1 m  0.65 m with one grid size of 4.5 nm is used to reduce the 

long range interaction between neighboring domain walls. In our simulations, actually, 
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the distance between two neighbor domain walls is as large as 4 m, resulting in an 

ignorable maximum stray field range as small as 10-3 sM . 

 

3.1.3 Results and Discussion 

Unlike the ideal domain wall, the domain wall in a thin film with statistical 

defects pinning sites will become rough due to the competition between curved domain 

wall energy and pinning sites energy barrier. The random fluctuated thermal field with 

amplitude corresponding to the room temperature is applied in our simulation process, 

which makes the curved domain wall line profile different from time to time, and such a 

rough domain wall line is shown by the inset in Fig. 3.1 (a). The domain wall roughness 

can be characterized by a wandering exponent  which can be obtained from the 

transverse displacement correlation function obeying a scaling law [128]: 

 
2

2 2
0

c

Lu x L u x u
L

, (3.1.5) 

where u0 is a transverse scaling parameter and Lc a characteristic collective pinning 

length. The wandering exponent  can be obtained by making a linear fitting as shown in 

Fig. 3.1 (a), and its value =0.666 is consistent with the proved universal value  = 2/3 for 

one-dimensional elastic string in random media [128]. Therefore, the value of creep 

exponent  which depends on  is also determined, i.e., a universal creep exponent  = 

1/4 will be used for the analysis of velocity-field relationship in the creep regime for 

H Hc. 
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Figure 3.1 (a) Linear fitting of 1/22ln [ ( ) ( )]u x L u x vs. ln( / )cL L  for the domain wall line in 

ultrathin film with random pinning potential and thermal field as shown by the inset. (b) Whole 

range of domain wall velocity v under external magnetic field H normalized by Hc = 0.0095 Ms. 

Walker field HW  2.5 Hc, below which is the steady linear flow regime, while farther beyond 

which is the precessional linear flow regime. (c) Velocity-field relationship within the steady 

linear flow regime. Solid red curves are the fitting curves, dashed red line is the fitting curve. 
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The rough domain wall line will be moved under external magnetic field, and then 

the average motion velocity can be measured. For experimental observations [134], 

however, there is only one linear flow regime observed for domain wall moving in 

ultrathin Pt/Co/Pt film, which is explained by that the depinning force Hc is larger than 

the Walker field HW, i.e., only the precessional linear flow regime is experimentally 

observed. Our choice for the anisotropy fluctuation amplitude, i.e., K / Ku  0.055, 

which is used to introduce pinning effect, makes the depinning force Hc smaller than the 

Walker field HW  2.5Hc, and hence both the steady and precessional linear regimes can 

be observed, which is shown in Fig. 3.1 (b). Therefore, all the creep, depinning and flow 

regimes will fall into the steady linear flow regime in our simulations as shown in Fig. 

3.1 (c), which is different from the experimental case. The velocity in these two linear 

flow regimes can be fitted very well using v = m (H / Hc), where m is the domain wall 

mobility whose values are 34.2 m/s and 3.3 m/s in the steady linear flow regime and the 

precessional linear flow regime, respectively, based on our micromagnetic simulation 

results in Fig. 3.1 (b) and (c). Those values are consistent with the case of ideal domain 

wall in the thin film without any pinning defects or thermal fluctuations.  

The depinning force Hc can be determined from the velocity-field relationship in 

the depinning regime. In that regime, we use the same way as in Ref. [132] to obtain Hc, 

i.e., a serious of possible test values of Hc are used to fit the velocity-field relationship 

( / 1)cv H H  to obtain the corresponding , and only the depinning force 

corresponding to  =1/3 occupies the exact value of Hc, and all the test cases as well as 

the final result, Hc = 0.0095 sM , are shown in Fig. 3.2 (a). In addition, for the zero-
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temperature depinning case, our simulation results indicate a depinning force Hc in the 

range of (0.009 sM , 0.010 sM ), which supplies a further support for the above value. The 

curve using the obtained value Hc = 0.0095 sM  as well as =1/3 is plot in Fig. 3.1 (c) in 

the depinning regime. It is noted that such a depinning relationship is valid only for a 

small field range in the middle of the depinning regime, while for the field close to Hc or 

near the flow regime that relationship becomes invalid. 

After determining the depinning force Hc, the creep exponent  for H<Hc can be 

obtained through fitting the velocity-field relationship exp{ (1 / ) / }c c Bv U H H k T . 

The linear fitting is shown in Fig. 3.2 (b) with  = 1.24 for Hc = 0.0095 sM . The small 

error of ‘ 0.05’ is arisen from the fitting results using depinning force Hc in the 

maximum range of (0.009 sM , 0.010 sM ), i.e., Hc = 0.0095  0.0005 sM . It is obvious 

that the creep exponent for H<Hc,  = 1.24  0.05, based on our simulation results is 

pretty close to 5/4, the value theoretically calculated based on washboard potential model, 

and even the maximum error is still unable to bring it to the other two possible values,  

= 1 based on the short range correlated random potential or pointlike impurities and  = 

2.2 based on simple phenomenological interpolation between regimes. The curve using 

the obtained value  = 1.24 as well as Hc = 0.0095 sM  is plot in Fig. 3.1 (c) in the creep 

regime with H<Hc, which fits very well with the original data. Thus, our micromagnetic 

simulation results support the exponent value of  = 5/4 based on washboard potential 

model.  
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Figure 3.2 (a) Linear fittings for domain wall velocity with magnetic field according to 

( / 1)cv H H  with a serious of test depinning forces Hc = 0.007, 0.0075, 0.008, 0.0085, 0.009, 

0.0095, 0.010, 0.0105 and 0.011 Ms. The corresponding values of  for those fittings are shown 

by the inset, with the depinning force Hc = 0.0095 Ms corresponding to =1/3. (b) Linear fitting 

for domain wall velocity with magnetic field H<Hc according to exp{ (1 / ) / }c c Bv U H H k T . 

The fitting result, i.e., the creep exponent is  = 1.24  0.05 with ‘ 0.05’ arising from Hc = 

0.0095 ‘ 0.0005’ Ms. (c) Linear fitting for domain wall velocity with magnetic field H Hc 

according to 1/4exp{ ( / ) / }c c Bv U H H k T . 
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Figure 3.3 Linear fittings for domain wall velocity with magnetic field H<Hc according to 

exp{ (1 / ) / }c c Bv U H H k T . All the data are from Ref. [132], experimental measurement 

results for ultrathin Pt/Co/Pt films with thickness of 0.5, 0.6, 0.7 and 0.8 nm. 

 

 

Table 3.1 Creep exponents , pinning energies cH H
cU  in kBT for H Hc, pinning energies cH H

cU  

in kBT for H<Hc, as well as the ratios between the two types of pinning energies /c cH H H H
c cU U , 

obtained from our simulation results and the experimental results in Ref. [132] (marked by *). 
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U
U  

Present work 1.24 3.4 19.5 0.18 
0.5 nm * 1.23 3.2 8.2 0.39 
0.6 nm * 1.26 6.0 13.6 0.44 
0.7 nm * 1.24 9.6 21.6 0.44 
0.8 nm * 1.25 12.4 34.0 0.37 
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What’s more, the experimental data in Ref. [132] for which the depinning force 

Hc is beyond the Walker field HW can also be used to obtain the creep exponent  in the 

same way as what we have done, although that was not considered by them. Such linear 

fittings are shown in Fig. 3.3 with all the data from Ref. [132] for ultrathin Pt/Co/Pt films 

with thickness of 0.5~0.8nm, and all the exponent values are listed in Table I. It is noted 

that those values are also around 5/4, i.e., the exponent value of  = 5/4 based on 

washboard potential model is also supported by experimental results. 

Comparison of pinning energies Uc for both creep regimes, H<Hc and H Hc, is 

also meaningful. All the energy values as well as their ratios are listed in Table 3.1. It is 

noted that the values obtained from our simulations are in the same order with those from 

experimental measurements. Since the pinning energies for both creep regimes originate 

from different physics, their values are not required to be equal. Actually, Table 3.1 

shows that the pinning energies for H<Hc are smaller than those for H Hc. A brief 

analysis can be made for that. According to a phenomenological approach [128, 135], the 

total free energy for a domain wall line segment of length L is 

 

2
2 1/2( , ) ( ) 2

2
el

s
uF u L L M HtLu
L

, (3.1.6) 

where el  is the string elasticity,  the disorder pinning strength, t  the film thickness, 

and  is the character length of disorder potential. Therefore, the pinning energy 

calculated from Eq. (3.1.6) is 

 
3 1/22( )cH H

c el s cU M tH . (3.1.7) 

In the creep regime of H<Hc, domain wall line is embedded in the washboard potential 

( )V u , [128, 143] 
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 0 0( ) (1 cos ) 2 sV u V k u M Htu , (3.1.8) 

where 0k  is related to the washboard periodical length 0u  via 0 02 /k u  and 

0 0/s cV M tH k  characterizes the pinning potential strength. The calculated pinning 

energy for H<Hc is [128, 143] 

 
1/4 3 1/2

03/2

24 2 ( )
5

cH H
c el s cU u M tH . (3.1.9) 

Therefore, the ratio of the two pinning energies in Eq. (3.1.9) and (3.1.7) is 

 

3/2
00.5

c

c

H H
c
H H
c

U u
U

. (3.1.10) 

It can be noted from Eq. (3.1.10) that the ratio between the two pinning energies is 

related to the disorder lengths 0u  and  for the two different types of pinning potential. 

According to Eq. (3.1.10), these ratios in Table I indicate a close value between 0u  and  

, unlike vortices in superconductors [128] which suggests a much larger 0u , 

0 2 6u , based on the requirement that the length scales defined by the mean-to-

force ratio are the same for both potentials, and hence a much larger cH H
cU  which differs 

cH H
cU  by an order of 10. 

 

3.1.4 Conclusion 

In conclusion, the dynamics of one-dimensional domain wall line in ultrathin 

Pt/Co/Pt film with perpendicular anisotropy in the creep, depinning and flow regimes 

with all of them within the steady linear flow region is investigated using our 

micromagnetic simulations. In order to obtain the creep exponent , the depinning force 
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Hc is predetermined by fitting the velocity-field relationship ( / 1)cv H H  with  = 

1/3. The creep exponent  = 1.24  0.05 is determined by fitting 

exp{ (1 / ) / }c c Bv U H H k T  for H<Hc, pointing to the value  = 5/4 based on 

washboard potential model. The experimental data for ultrathin Pt/Co/Pt films with 

various thicknesses in Ref. [132] are also used by us to determine the relevant creep 

exponents, and all of the values are around 5/4, supplying a further support for the 

washboard model. The pinning energies Uc for both creep regimes, H<Hc and H Hc, are 

briefly analyzed by a phenomenological approach for two distinct pinning potentials. Our 

analysis indicates that the ratio between the two pinning energies are dependent of the 

disorder lengths 0u  and  for the two different types of pinning potentials, and both the 

simulations and experimental data indicate a close value between 0u  and . The 

determination of creep exponent  can help better understand the dynamics for domain 

wall line with driving field near the depinning force, and it can also be extended to many 

other areas in physics. 
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3.2 Roughness, Creep, Depinning and Flow of Domain Wall Line with 

Substructures in an Ultrathin Magnetic Film 

3.2.1 Introduction 

The statics and dynamics of elastic manifolds in random media is a very 

challenging problem which is relevant to many physical systems such as vortices in type-

II superconductors [128], charge density waves [129], fluid invasion of porous media 

[148], ferroelectric domain walls [130, 131] and ferromagnetic domain walls [132-135]. 

Among them, one dimensional domain wall (DW) line, as an elastic string, in ultrathin 

magnetic film like Pt/Co/Pt film attracts much interest, and lots of investigations on the 

statics and dynamics of such elastic string have been made both experimentally [132-137, 

149, 150] and computationally [140, 151, 152]. For statics, the roughness was 

experimentally studied, and reduced roughness or deroughening effect has been observed 

by dipolar repulsion [137] or by introducing linear defects [133, 136]for magnetic DW 

line. For dynamics, DW line behaviors in the creep, depinning and flow regimes have 

been studied [132-135]. In the creep regime with driving field much smaller than 

depinning field, i.e., cH H , DW motion velocity obeys the Arrhenius law

0 exp( / )v v U kT , where  ( / )c cU U H H  with a universal constant exponent 

(2 1) / (2 ) 1/ 4 for domain wall line whose roughness exponent is 2 / 3 , 

while for that of driving field smaller than but rather close to the depinning field, i.e.,

cH H , (1 / )c cU U H H with the exponent 5 / 4  which is theoretically 

calculated based on the washboard potential model [143] and has been computationally 

supported by our previous work in Sec. 3.1. In the depinning regime, the velocity-field 
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relationship is predicted [138] by ( / 1)cv H H , where the depinning exponent  

1/ 3  is expected by numerical simulations [144, 145] and has been further supported 

by recent experiments [132]. In the flow regime, the DW velocity is linearly related to the 

driving field, i.e., v mH , where m  is the mobility which has different values in steady 

and precessional linear flow regimes. 

In magnetic materials, DW substructures are commonly existed in many different 

forms, such as Bloch points, vortex/antivortex, and circular or cross Bloch lines. Those 

substructures are easy to be formed while somewhat hard to be removed. It is proposed 

that the existence of such substructures will affect drastically on the wall motion and 

domain nucleation [153]. On one hand, those substructures supply an additional freedom 

degree which allows them to move within DWs to reduce stored spin torques, and on the 

other hand, the small size of such substructures, which can be comparable to the defects 

in a thin film, makes them easily correlate with those defects, resulting in somewhat 

stronger pinning effect. Although much progress has been made for the statics and 

dynamics of DW line in ultrathin magnetic film, properties for DW line with 

substructures were rarely studied. Usually, the small size of substructures makes them 

difficult to be detected and modulated experimentally, what’s more, it’s also very hard 

for Mont Carlo simulations to implement so complicated substructures, both of which, 

therefore, make this problem very challenging and leave micromagnetic simulations 

perhaps the only method to study that challenging problem. For micromagnetic 

simulations, DW substructures can be introduced easily, and it can be proposed that the 

existence of substructures will affect the roughness, creep, depinning and flow of DW 
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lines in some manner, which may depend on the substructure density, supplying a novel 

way to modulate statics and dynamics of DW line.  

This section is organized as following. In Sec. 3.2.2, we show some basic features 

of the phase field modeling we employed and the key parameters of the micromagnetic 

simulations. In Sec. 3.2.3, the roughness exponents as well as roughness widths of DW 

lines with various substructure densities are studied, and in order to better understand the 

thermal effect, the roughness features of DW lines without substructures at different 

temperatures are also studied. In Sec. 3.2.4, the motion behaviors of DW lines with 

different substructures densities driven by magnetic field in the creep, depinning and flow 

regimes are investigated. Finally, all the key conclusions are summarized in Sec. 3.2.5. 

 

3.2.2 Micromagnetic Model 

The evolution of magnetization is described by the Landau-Lifshitz-Gilbert(LLG) 

equation including the thermal fluctuations realized by the random thermal field thH ,  

[51, 146] 

 eff th
m m=- m H H + m
t t

, (3.2.1)
 

where m is a unit vector of magnetization, the gyromagnetic constant, the Gilbert 

damping constant, effH the effective magnetic field obeying / (effH m)sE M , and thH

the Gaussian distributed random fluctuating thermal field satisfying [146] 

 , , 0rth iH t , (3.2.2) 

 2
, ,, , 2r r r rth i th j th ijH t H t t t , (3.2.3) 
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where 2
th  is temperature dependent of strength of the thermal field given by 

 2
3

0

B
th

s

k T
M l

, (3.2.4) 

where Bk  is the Boltzmann constant, T  is the temperature, and l  the simulation grid size.  

The parameters used to describe the magnetic system in our simulations are from 

the experimental results for a DW in 0.6 nm thick ultrathin Pt/Co/Pt film with 

perpendicular anisotropy [134]: saturation magnetization 31130 emu / cmsM , uniaxial 

perpendicular magnetocrystalline anisotropy constant 7 31.25 10 erg / cmuK , exchange 

constant 61.6 10 erg / cmA , and Gilbert damping constant =0.3. The statistical 

defects may originate from many sources, for example, the surface roughness [151], edge 

roughness [51, 154] and magnetocrystalline anisotropy fluctuations [155] were all used as 

the pinning sources. In this section, the defects are realized by introducing a fluctuation 

of magnetocrystalline anisotropy obeying Gaussian distribution with an amplitude of 

K/Ku  0.10, since that type of defects is reported to be the main pinning source in 

ultrathin Pt/Co/Pt film with perpendicular anisotropy. [147] 

For statics simulations, a DW line with length of 2.592 m with one grid size of 

3.0 nm is used, and a serious of substructure densities are considered, i.e., N=0, 2, 4, 6, 8, 

12, 18, 24, 36 and 48 per 2.592 m. For dynamics simulations, only three kind of 

substructures densities are considered, N=0, 2 and 4 per 0.288 m, which is just N=0, 18 

and 36 per 2.592 m for statics cases, and in the reminder part of this paper we will only 

use N=18 or 36 instead of N=2 or 4 to avoid confusion. For those three cases, since long 

range interaction between domains exists, large system size of 5.40 m 0.288 m with 
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one grid size of 3.0 nm is used to reduce the stray field effect acting on the DW. In our 

simulations, actually, the distance between two neighbor domain walls is always larger 

than 2.2 m, resulting in ignorable stray field acting on the DW. Fig. 3.4 shows the 

motion behavior of DW line with N=18 (i.e., N=2/0.288 m) substructures driven by the 

magnetic field of 0.0039 sM . It is noted that the thermal field as well as the statistical 

defects make the DW line roughened and that the long range interaction between DW 

lines is ignorable in this short moving range. 

 

Figure 3.4 Average position of DW line with substructure density N=18 per 2.592 m vs. time 

under magnetic field 0.0039 sM . The inset is the magnetization structure of moving DW line, and 

the color contour represents the magnetization component in X direction, xm . 

 

3.2.3 Statics of Domain Wall Lines with Substructures 

The magnetization structure of a substructure within Bloch type DW line is 

schematically shown in Fig. A1. In fact, if the DW line is analogy to a very narrow planer 

‘nanowire’, the substructure may be analogy to the Neel type transverse head-to-head(hh) 

or tail-to-tail (tt) ‘DW’ in the ‘nanowire’, and the charged ‘DW’ will result in higher 

magnetostatic energy in addition to the extra exchange energy caused by the extra 
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varying magnetization structure. Along X-direction, the magnetizations within DW can 

rotate clockwise (cw) or counterclockwise (ccw) across the substructures, i.e., with 

different chiralities, which will classify those substructures into four types, cw-hh, cw-tt, 

ccw-hh and ccw-tt. In the DW line, once the cw and ccw substructures meet together, 

they will be annihilated and then the substructure density will be decreased. In order to 

avoid such annihilations and keep the substructure density unchanged during the static 

and dynamical processes, only ccw type substructures are allowed in our cases, i.e., only 

the ccw-hh and ccw-tt type substructures are introduced within DW lines. 

 

 

Figure 3.5 Linear fitting of the total energy density  (divided by DW , the pure DW energy 

density) of DW with substructures vs. the substructure density N. Black points are simulated data 

and red line is the fitting curve. Two insets are the ideal magnetization structure of DW lines 

segments with substructure density N=18 and 36. 

 

Based on our simulation results, the substructures in ideal magnetic film, i.e., 

without any pinning sites or thermal fluctuations, have a length of 28.5nm along X-
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direction and a width along Y-direction of ~6nm which is almost the same with DW line 

width. Our calculated result according to Eq. (A4), actually, gives a somewhat smaller 

value, ~22.5nm. Since substructures possess more energy, the total DW energy density  

depends on substructures density N. Fig. 3.5 shows an almost linear dependent of DW 

energy density in unit of 4DW AK , the ideal pure DW energy density, on the 

substructures density N per 2.592 m, according to our simulation results.  Fitting the 

simulated data in Fig. 3.5 linearly, the relationship between  and N can be obtained, 

 / 1 0.0063DW N , (3.2.5) 

demonstrating a coefficient 1.57 , a little higher than the calculated value in Appendix 

A. Actually, by looking at the data in Fig. 3.5 carefully, it can be noted that the slop for 

lower substructure density range is a little bit lower while for higher substructure density 

the slop is higher, which should be due to the densely packing effect of high density 

substructures in a DW line. Both the calculated substructure length and energy density 

indicate that the simple approximation in Appendix A underestimates the complicated 

magnetostatic effect of substructures, i.e., the charged substructures possess larger length 

and energy than approximated. Since the elasticity of DW line el  is linearly dependent 

of DW energy [135], DW line with substructures will have higher elasticity according to 

el DW . Usually, higher elasticity can lead to DW line deroughening, and hence 

substructures can deroughen DW line in somewhat extent as discussed in the following, 

but it is obvious that more factors besides of elasticity should be considered for the 

roughness phenomenon because of the additional motion freedom degree via 

substructures. 
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Figure 3.6 (a) Transverse displacement correlation functions describing rough DW lines with 

different substructure density N=0, 2, 4, 6, 8, 12, 18, 24, 36 and 48 per 2.592 mat 300K 

calculated from Eq. (3.2.6). Inset is the corresponding characteristic collective pinning length Lc. 

(b) Roughness exponents  for DW lines with those different substructure densities. Insets are the 

simulated DW lines with substructure density N=0, 18 and 36 at 300K. (c) Roughness widths w 

obtained by Gaussian peak fitting for the Gaussian distributed lateral DW wandering u of DW 

lines with different substructure densities. Insets are two Gaussian peaks fitting for cases N=18 

and 36. 

 



42 

 

Starting with DW lines with different substructure densities at zero temperature, 

i.e., DW lines stabilized by the potential fluctuated pinning sites, the roughness of DW 

lines at 300K after a relative long time evolution ~300 ns is studied. The insets of Fig. 3.6 

(b) show the DW lines at 300K with different substructure densities, N=0, 18 and 36 per 

2.592 m. For roughness, the roughness exponents and the roughness widths, both of 

which are dependent of substructure density, are taken into account in this section. The 

roughness exponent  can be obtained from the transverse displacement correlation 

function [128]: 

 
2

2 2
0

c

Lu x L u x u
L

, (3.2.6) 

where u0 is the transverse scaling parameter and Lc is the characteristic collective pinning 

length or Larkin length. Fig. 3.6 (a) shows the correlation function described in Eq.(3.2.6) 

for DW lines with a set of substructure densities from N=0 to 48. The characteristic 

pinning lengths are shown in the inset of Fig. 3.6 (a). The roughness exponent  can be 

obtained by linearly fitting the initial linear part of correlation function in Fig. 3.6 (a),  

i.e., at short length scales (Regime I) the lines have reached equilibrium within the 

random pinning potential, and beyond that regime there exists a plateau which is growing 

with time [156] (Regime II). Length scales in Regime I can also grow with time. The 

fitted exponents  are shown in Fig. 3.6 (b) and all of them are very close to the well-

known value =2/3, but for N>12, those values are smaller than 2/3 with some of them 

even as low as ~0.6, indicating that substructures can more or less reduce roughness 

exponent in a certain manner, which will be discussed later. The roughness width can be 

described through the Gaussian distributed lateral DW wandering u, and the width of 
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such a Gaussian peak, w, is treated as the DW line roughness width [136]. The Gaussian 

peak fitting of lateral wanderings for N=18 and 36 are shown by the insets of Fig. 3.6 (c). 

All those roughness widths for DW lines with various substructure densities are shown in 

Fig. 3.6 (c). No evident roughening or deroughening effect can be seen from Fig. 3.6 (c), 

but a slight deroughening effect for DW line with high substructure density N>18 seems 

to be existed, which is also indicated by Fig. 3.6 (a), the reduced plateau values for 

increased substructure densities. Such a slight deroughening effect may be contributed by 

the substructure density dependent of elasticity el discussed above, but the increased 

elasticity is still unable to explain the reduced roughness exponents in Fig. 3.6 (b). 

Based on our calculated result in Eq. (B8), the thermal fluctuations at 

substructures are drastically enhanced up to ~12 times of that at DWs with =0.3, i.e., the 

effective temperature at substructures can be as large as ~12 times of applied temperature 

T=300K. Confined in the thin film, DW line can move in one dimension while 

substructures can move two dimensionally. For the transverse motion, i.e., in Y-direction, 

DW line has only one dimensional driving force according to Eq. (B7), while 

substructures have two dimensional driving forces according to Eq. (B6), and thus the 

fluctuated thermal field will attribute more to the substructures, which is why the thermal 

effect is enhanced at substructures. Actually, since our calculations in Appendix B 

ignored the interactions between the substructures and pure DW segments as well as 

between neighboring substructures, such a huge value sets the up limit of effective 

temperature, i.e., the real effective temperature should be smaller or perhaps even much 

smaller than the up limit value, ~12T, due to such interactions. To look into the 
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temperature effect on DW lines closely, pure DW lines at different temperatures are 

studied as following. 

Fig. 3.7 shows roughness exponents as well as roughness widths for pure DW 

lines at different temperatures increasing from T=0 to 1200K after ~100ns evolution 

starting from the initial state of zero temperature. The evolved rough DW lines at T=0, 

300 and 1200K are shown by the insets of Fig. 3.7 (b). Fitting linearly at Regime I 

according to Eq. (3.2.6) for all those rough DW lines at various temperatures as shown in 

Fig. 3.7 (a), the roughness exponents are obtained and shown in Fig. 3.7 (b). It is noted 

that for T 750K, the roughness exponents are in excellent agreement with the 

equilibrium value 2/3, while for T>750K, those values approach the thermal dominated 

roughness exponent value T=1/2 [128]. For example, the roughness exponent is 0.61 at 

T=900K and 0.54 at T=1200K, for which the thermal fluctuations are huge enough to 

influence the exponent value. Evidently, for T>1200K, the roughness exponent value will 

be around 1/2 since the thermal effect will be dominated for such high temperatures, 

while for temperatures between 750K and 1200K, the roughness exponent will be 

between those two characteristic values, i.e., (1/2, 2/3), which is consistent with other 

numerical simulations [152]. It is also noted that at low temperatures, even as low as 0K, 

the roughness exponent persists 2/3 in Fig. 3.7 (b), which is inconsistent with Ref. [152] 

in which a much higher roughness exponent has been found for the low temperature 

regime. The insets of Fig. 3.7 (a) show that the Larkin lengths are increased with 

increasing temperatures, in agreement with the theoretical expectation that strong thermal 

fluctuations can drastically increase the Larkin length of one dimensional elastic string in 

two dimensional random media [139]. Strong thermal fluctuations can not only increase 
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the Larkin length, but also increase the roughness width. Fig. 3.7 (c) shows the 

temperature dependent of roughness width obtained from the Gaussian distributed lateral 

wandering u. It is noted that the roughness widths are increased with temperatures, i.e., 

DW line roughening can be induced by thermal fluctuations. A simple scaling 0.5u T  

has been reported for elastic string roughening induced only by thermal effect [139], and 

our results show that for higher temperatures at which the thermal effect is stronger, those 

roughness width values are able to be better fitted by 0.5w T , consistent with the simple 

scaling law. 

As discussed above, thermal fluctuations can increase both the Larkin length and 

the roughness width, and strong thermal fluctuations (T>750K) can reduce the roughness 

exponent to as low as T=1/2 from =2/3. Since thermal fluctuations can be enhanced at 

substructures, thermal effect should be taken into account for the statics study of DW line 

with substructures. At T=300K, once the thermally enhanced temperature at substructures 

exceed 2.5T, much lower than the up limit value ~12T, the roughness exponent at 

substructure part will begin decreased, which causes the roughness exponent of the whole 

DW line lower than the equilibrium value =2/3. The higher the substructure density, the 

lower the roughness exponent value. For DW line with densely packed substructures, for 

example, substructures occupy one half of whole DW line length, which corresponds to 

N~45, the exponent value may be the average of T=1/2 and =2/3, i.e., ~0.58, in a simple 

approximation. Consequently, for N<45, the roughness exponent will be higher than 

~0.58. However, for densely packed substructures, their motion within DW line is 

partially restricted as shown by the insets of Fig. 3.6 (b) for cases N=18 and 36, i.e., one 

dimension freedom degree in X-direction is limited, and hence the thermal enhancement 
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is relatively weakened and the roughness exponent is relatively increased. Thinking of a 

DW line with most densely packed substructures, i.e., no pure DW segment exists, those 

substructure can’t move within DW line, and the DW line will be rather a pure DW line 

with higher elasticity, but still possesses a roughness exponent =2/3. In short, based on 

our analysis, for both low and high substructure density, the roughness exponent will be 

relatively high, i.e., slightly lower than =2/3, while for medium, the value will be 

relatively low, but not lower than ~0.58 according to the simple approximation, all of 

which are consistent with our simulated results shown in Fig. 3.6 (b). Besides, enhanced 

thermal effect can increase Larkin length, as shown by the inset of Fig. 3.6 (a), and the 

increased elasticity can also attribute to the Larkin length increment [139]. Although the 

thermal enhancement can increase roughness width of a DW line, it seems not a 

dominant effect, or at least not as competitively as elasticity which can decrease 

roughness widths, according to the roughness widths shown in Fig. 3.6 (c). As discussed 

above, thermal enhancement can be weakened for many reasons, and besides of them, the 

low mobility of substructures according to Eq. (B4) can also limit the transverse 

displacement of a DW line and weaken the thermal enhancement accordingly. 
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Figure 3.7 (a) Linear fitting for Regime I of transverse displacement correlation functions 

describing rough DW lines without substructures at different temperatures T=0, 100, 200, 300, 

450, 600, 750, 900 and 1200K calculated from Eq. (3.2.6). Inset is the corresponding 

characteristic collective pinning length Lc. (b) Roughness exponents  for DW lines at those 

different temperatures. Insets are the simulated DW lines at T=0, 300 and 1200K. (c) Roughness 

widths w obtained by Gaussian peak fitting for the Gaussian distributed lateral DW wandering u 

of DW lines at different temperatures, fitted by a function 0.5T . Insets are two Gaussian peaks 

fitting for cases T=0 and 1200K. 
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3.2.4 Dynamics of Domain Wall Lines with Substructures 

3.2.4.1 Flow Regime 

DW lines begin to move when external magnetic field is applied to the rough DW 

line with three different substructure densities, N=0, 18 and 36 per 2.592 m. Since the 

velocity is not uniform due to the thermal fluctuations and pinning sites as shown in Fig. 

3.4, the average velocity is measured. Fig. 3.8 (a) shows the velocity-field relationship in 

the whole regime with magnetic field increasing up to 0.2Ms (~2840 Oe). There are two 

types of flow regimes separated by the threshold HW, the Walker field, below which the 

steady linear flow regime exists while above the precessional linear flow regime exists, as 

shown in Fig. 3.8 (a) and (b).The Walker field values for the three cases are listed in Tab. 

3.2. It is noted that the existence of substructures increases the Walker field, for example, 

the Walker field is 0.015Ms for pure DW while 0.018Ms and 0.026Ms for DW with 

substructure density N=18 and 36, respectively. The spin torque generated by the applied 

magnetic field is stored at DW during the moving process, which can be described by the 

angle  mentioned in Appendix A. Increasing magnetic field will increase the spin  

torque, once the spin torque is too big or  is beyond a critical value, DW will not be 

stable anymore and that critical magnetic field is called Walker field. The substructures 

existed at DW will help reduce the generated spin torque by means of sliding within the 

DW, and almost all of the generated spin torque can be drained out in time by 

substructures in the ideal case that no pinning sites or thermal fluctuations are included, 

resulting in a very large Walker field. In real cases, however, only partial spin torque near 

the substructures can be effectively eliminated by the motion of substructures due to the 

obstruct of pinning sites, leading to larger but not so large Walker field. Higher 
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substructure density means higher spin torque elimination effect and hence larger Walker 

field.  

 

 

Figure 3.8 (a) Simulated velocity-field relationship of rough DW lines with substructure densities 

N=0, 18 and 36 at 300K. Dashed green line fits the precessional linear flow regime. (b) Simulated 

velocity-field relationship under Walker field for cases N=0, 18 and 36 at 300K. Dashed green 

lines fit the steady linear flow regime. 
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Once the magnetic field is beyond the Walker field, the DW become unstable and 

pairs of substructures may be generated in form of hh and tt types with opposite chirality 

which can be annihilated by each other easily. When more substructure pairs are 

generated, the difference of velocity-field relationship between DW line with and without 

substructures will be smeared into the uniform one, which can be shown by Fig. 3.8 (a) 

that the velocity-field relationship for the case of N=18 and N=36 begins to merge at 

~0.05Ms and ~0.07Ms, respectively. Therefore, all the cases for DW line with or without 

substructures will share the same motion mobility at the precessional linear flow regime 

well above the Walker field, 0.027 /prem m s Oe , much lower than that at steady linear 

flow regime. 
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Figure 3.9 Calculated (red curve according to Eq. (3.2.7)) and simulated (black points) mobility 

m of DW line with different substructure densities. 

 

For the steady linear flow regime slightly below Walker field, the existence of 

substructures can effectively decrease the DW line mobility or velocity by performing a 
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sliding motion along the DW line. For the ideal case discussed in Appendix A, the 

mobility for DW line with substructures is about only1/12 of that for pure DW line, 

which is almost independent of substructure density. For cases considering pinning sites 

and thermal fluctuations, since spin torque generated at DW can’t be eliminated 

completely as discussed above, the mobility magnitude of DW lines with substructures 

will be between that of ideal pure DW line and that of DW line with substructures, 

dependent of substructure density. All the three values of mobility for cases of N=0, 18 

and 36 are listed in Tab. 3.2 and shown in Fig. 3.9 as well, demonstrating that DW 

mobility can be reduced by increasing the substructure density. In an approximation, the 

DW mobility can be calculated by 

 11 sub sub

cal sub DW

w w
m m m

, (3.2.7) 

where 21subm  is the ideal substructure mobility, DWm  the ideal DW mobility, 

and subw  the substructure fraction which might be expressed by means of length, i.e., 

sub
sub

Nlw
L

, where 28.5subl nm is the substructure length. The calculated result is plot 

in Fig. 3.9, which is scaled with respect to the value of case N=0. Fig. 3.9 shows that the 

calculated result agrees well with the simulated result, although our approximation 

slightly underestimates the DW mobility. It is noted that DW mobility drops relatively 

drastically for low substructure density while slowly for high substructure density. 

 

3.2.4.2 Depinning Regime 
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In the depinning regime, it is assumed that the velocity-field relationship obeys 

the power law: [138] 

 ( / 1)cv H H , (3.2.8) 

where the depinning exponent  1/ 3  is expected by numerical simulations[144, 145] 

and has been further supported experimentally most recently [132]. A series of different 

test values of cH with interval of 0.0005Ms are used to make linear fittings according to 

Eq. (3.2.8), and the value corresponding to the exponent ~1/3 is determined as the critical 

depinning field cH . The linear fitting results for cases N=0, 18 and 36 with exponent 

~1/3 are shown in Fig. 3.10 (a), and the relevant determined depinning field values are 

listed in Tab. 3.2. Those depinning field values demonstrate that introducing 

substructures will increase the DW line pinning force and hence lead to a high depinning 

field. According to Eq. (B2) and (B3), the pinning force for substructure, 

1 2~ /subf f f , is higher than that for pure DW, 1~DWf f , and the additional force 2f   

is mostly corresponding to the sliding motion of substructures within DW line. In other 

words, in order to depin the DW line, the driving field need not only overcome the barrier 

preventing forward motion perpendicular to DW line, but also overcome the barrier 

preventing slide motion along DW line due to the existence of substructures, leading to 

higher pinning force which is also dependent of substructure density. It can be assumed 

further that the total pinning force f and the depinning field cH increases linearly with 

respect to the substructure density N. Based on those three calculated depinning field 

values, we have 

 (0.0095 0.00017 )c sH N M . (3.2.9) 
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Although it is hard to determine the exact magnitude of the pinning force 1f  and 2f , the 

ratio between them can be estimated according to Eq. (3.2.9), 2 1/ ~ 0.8f f , i.e., both of 

the forces are in the same order but the additional term 2 /f  will be larger due to the 

small .  

 

Figure 3.10 (a) Linear fittings for velocity-field relationship of cases N=0, 18 and 36 at the 

depinning regime with exponent ~1/3 according to Eq. (3.2.8). (b) Normalized velocity-field 

relationship under Walker fiend for cases N=0, 18 and 36, i.e., velocity is normalized by cmH  

and magnetic field is normalized by cH . 
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Since both the mobility at the steady linear flow regime and depinning field at the 

depinning regime are determined, the velocity-field relationship can be normalized, i.e., 

velocity is normalized by cmH  and magnetic field is normalized by cH , as shown by Fig. 

3.10 (b). Such normalization actually merged the data in the flow regime, leaving data in 

other regimes still unmerged. In the creep regime particularly, for / cH H  under ~0.6, the 

DW line with higher substructure density shows higher velocity, indicating smaller 

pinning barrier energy [132], which will be discussed in the following. 

 

3.2.4.3 Creep Regime 

There are two sub-regimes in the creep regime, one is for cH H (well below 

the depinning field) and the other is for cH H (slightly below the depinning field), 

which have been studied in Sec. 3.1. Both regimes can be described by the Arrhenius law 

[128] 

 0 exp( / )v v U kT ,  (3.2.10) 

where 1( / )c cU U H H  with a universal constant exponent 1/ 4  for cH H ,and

2(1 / )c cU U H H with the exponent 5 / 4  for cH H  obtained based on the 

washboard potential model [143]. Fitting the velocity-field relationship according to Eq. 

(3.2.10) with the above exponent for cH H , the pinning barrier energy 1cU  can be 

obtained. Fig. 3.11 (a) shows the linear fitting for the velocity-field relationship 

according to Eq. (3.2.10) at the regime cH H , and the three pinning energies divided 

by kT for cases N=0, 18 and 36 are listed in Tab. 3.2. 
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Figure 3.11 Linear fittings for velocity-field relationship of cases N=0, 18 and 36 at the creep 

regime with cH H  (a) and cH H  (b) according to Eq. (3.2.10) with two types of pinning 

energies. 

 

The three decreasing values of 1 /cU kT  which are also shown in Fig. 3.12, 

actually, explain the increasing velocities for increased substructure densities with 

/ cH H  under ~0.6 as shown in Fig. 3.10 (b), since either reducing the pinning barrier or 

increasing the temperature can speed up the DW line creep under small field. However, 
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the reason why the value of 1 /cU kT is decreased by increasing substructure density still 

needs to be analyzed. For pinning energy 1cU , we have 1( ) ( ) ( )c el cU N N H N , since 

both the string elasticity el  and depinning field cH  are linearly dependent of 

substructure density N according to Eq. (3.2.5) and (3.2.9), respectively. For temperature 

T, since the existence of substructures can enhance thermal fluctuations according to Eq. 

(B8) and hence drastically increase the temperature, the temperature T is also dependent 

of substructure density. At the substructure, the maximum enhanced temperature is 

2 2(1 ) / 12subT T T , but there is no obvious principle to tell how it contributes into 

the effective temperature of the whole DW line. In a simple approximation, we assume 

that the temperature is evenly distributed within the DW line, and then we have 

 (1 )eff sub sub subT w T w T , (3.2.11) 

where subw  is still the length fraction of substructures and proportional to substructure 

density. However, since the slide motion of substructure can be prevented by neighboring 

substructures as shown by the insets of Fig. 3.6 (b), such a drastic temperature 

enhancement can be reduced, which is more evident for DW line with higher substructure 

density, and hence the approximated calculation result according to Eq. (3.2.11) is 

actually the upper limit of the effective temperature. Therefore, the lower limit of 

1 /c effU kT  based on the above approximation can be calculated by scaled by the value of 

case N=0, which is shown in Fig. 3.12. It is noted that the simulated values for cases 

N=18 and 36 are higher than the calculated lower limit as expected. 
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Figure 3.12 Calculated lower limit (red curve) and simulated (black points) values of 1 /c effU kT  

for DW line with different substructure densities at the creep regime with cH H . 

 

In the creep regime with cH H , since the depinning field is determined yet, 

both the exponent  and pinning energy 2cU  can be obtained by fitting from our 

simulated results, just as what we did in Sec. 3.1. Fig. 3.11 (b) shows the fitting result for 

the field slightly below the depinning field, resulting in the exponent which can be 

found in Tab. 3.2 with all the values around 1.25, supplying a further support for the 

exponent value 4 / 5  calculated based on the washboard mode. All the three values 

of 2 /cU kT are also listed in Tab. 3.2, which indicate a decreasing trend along with 

increased substructure density. The ratio for both pinning energies, 2 1/c cU U , are also 

calculated and the results are listed in Tab. 3.2. In good agreement with our previous 

work in Sec. 3.1, the pinning energy ratios are smaller than unity and around 0.5, 

demonstrating close disorder lengths in the two sub-regimes.
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Table 3.2 Substructure density, N, Walker field, HW, DW line mobility at steady linear flow 

regime, m, depinning field, Hc, normalization parameter, mHc, 1 /cU kT at creep regime with 

cH H , 2 /cU kT at creep regime with cH H , the ratio for the two pinning energies,  

2 1/c cU U , and creep exponent with cH H , obtained from the dynamics study of DW lines. 

 

N 
(/2.592 m) 

HW 
(Ms) 

m 
(m/s Oe) 

Hc 
(Ms) 

mHc 
(m/s) 

Uc1/kT Uc2/kT Uc2/Uc1  

0 0.015 0.26 0.0095 35 13.4 5.5 0.41 1.26 
18 0.018 0.11 0.0125 20 8.0 4.4 0.55 1.25 
36 0.026 0.06 0.0155 12.7 6.8 2.7 0.40 1.23 

 

3.2.5 Conclusion 

To summarize, the statics and dynamics of DW line with substructures in ultrathin 

magnetic film at finite temperature are studied based on our micromagnetic simulations. 

For statics, the roughness widths and roughness exponents for DW line with different 

substructure densities are investigated. Mainly through increasing DW energy as well as 

the corresponding elasticity constant el , the existence of substructures can slightly 

reduce the roughness width and hence more or less deroughen the DW line. The 

roughness exponent can be also decreased by introducing substructures due to the thermal 

fluctuation enhancement at substructures. The thermal effect on the roughness width and 

roughness exponent for the pure DW line without substructures is also studied at various 

temperatures. Our simulated results show that DW can be roughened by thermal 

fluctuations, and the roughness exponent will be reduced when the temperature is 

beyond a critical value and finally approach T=1/2 at higher temperature, which explains 
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the reduction of roughness exponent for DW lines with substructures that cause the 

thermal enhancement. 

For dynamics, the motion behaviors of DW line with different substructures 

densities under external magnetic field at 300K in the creep, depinning and flow regimes 

are studied. At the flow regime, two linear flow regimes exist, the steady linear flow 

regime slightly below the Walker field and the precessional linear flow regime well 

above the Walker field. The Walker field can be increased by introducing substructures 

which will partially drain the field induced spin torque by means of their sliding motion 

within the DW. The DW line motion mobility at the precessional linear flow regime is 

not affected by substructure density, but at the steady linear flow regime it is dependent 

on the substructure density in a certain relationship according to which the mobility will 

be decreased by increasing the substructure density to efficiently eliminate the spin 

torque. At the depinning regime, since the additional pinning force exists due to the slide 

motion of substructures within the DW line, the depinning field will be increased almost 

linearly versus the substructure density, and our simulated results indicate that both 

pinning forces are in the same order. At the creep regime for cH H , the value of 

1 /cU kT will be reduced by increasing substructure density due to the thermal 

enhancement, while for cH H , the fitted exponent values of  are all around 1.25 

which is in good agreement with that based on washboard potential model, and the ratios 

2 1/c cU U  are also consistent with our previous work, indicating close disorder lengths in 

the two creep sub-regimes. 



60 

 

Besides of the driving magnetic field, the spin-polarized current [150] as well the 

strain field [157] or spin wave [158] can also drive magnetic DWs, and then this work for 

dynamical properties of DW with substructures can be extended to those above different 

kinds of driving forces. The magnetoelastic effect is ignored in this work, and it may be 

large for other ultrathin magnetic film like cobalt ferrite [159]. One can expect that the 

magnetoelastic energy at substructures will be very high due to the fast varying 

magnetizations, which can drastically affect the statics and dynamics of DW, for  

example, deroughen the DW and increase the depinning field. It has reported that the 

strain line defect in thin magnetic film can deroughen DW and affect its creep behavior 

[136]. Furthermore, substructure as an additional freedom degree can also existed in other 

type of elastic string such as ferroelectric DW, and thus this work can also shed a light on 

the challenging problem for other elastic strings with substructures. 
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3.3 Current Induced Bloch Line Motion and Ultrafast Core Reversal 

3.3.1 Introduction 

Domain wall substructures, as an internal freedom degree, can largely affect 

magnetic domain wall properties including the mobility, elasticity and so on as discussed 

in Sec. 3.2. Those substructures usually have many different magnetization forms as well 

as the corresponding names such as Bloch line, Neel line, vortex, and cross-tie, 

depending on the specific ferromagnetic material and the thickness. [153] For simplicity, 

we use the term Bloch line to generally treat all those substructures. Bloch lines 

structures in films have been widely investigated and lots of experimental observations 

for various magnetic systems by various methods have been reported, especially for 

ferromagnetic films with in-plane uniaxial magnetocrystalline anisotropy, such as Co 

[160], Fe [161], Permalloy [153], YIG [162, 163] and MnAs [164-166]. Actually, two 

types of domain walls, Bloch type and Neel type, either symmetric or asymmetric, are 

usually formed in films with in-plane uniaxial anisotropy. As the film thickness  

decreases, a wall type transition from Bloch to Neel type will take place, so that the 

Bloch line structure will be also transformed accordingly. The critical transition thickness 

is dependent of the anisotropy parameter Q=Ku/Kd, where Ku is the anisotropy constant 

and Kd =1/2 0Ms
2 is the demagnetization energy [153]. Below the critical thickness, 

symmetric Neel wall will be formed, while above the critical value, symmetric (for Q>1) 

or asymmetric (for Q<1) Bloch walls will be formed. For symmetric Bloch wall, the 

magnetizations within the domain wall point out of the surface, and the Bloch line 

structure in the bulk or in the surface doesn’t show much difference, and the Bloch line 

structure has been observed in MnAs film with strong in-plane anisotropy [164-166]. For 
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asymmetric Bloch wall, however, the magnetizations of the domain wall will prefer to lie 

within the surface by forming the so-called Neel caps which can form cap switches and 

make the Bloch line structures in the bulk and in the surface quite different [153], leading 

to relatively complex Bloch lines as reported for Co [160] and Fe [161]films. 

The magnetization processes of Bloch lines driven by magnetic field have been 

well studied several decades ago, and some applications based on Bloch lines have also 

been proposed, for example, vertical Bloch line memory that is based on the presence or 

absence of Bloch lines in band or bubble domain walls was proposed in 1980s [167-169]. 

In recent years, flux-closure magnetic dots based on cap switches motion in the thick Fe 

film surface [170] and vortex-core memory cell based on field driven ultrafast vortex 

core reversal in Permalloy nano-disk [40, 42, 171] accompany with strong spin wave 

radiation which plays a very important role in spin wave logics [172, 173] are also 

reported. Although lots of studies and applications have been made for magnetic field 

driven Bloch lines, Bloch lines motion induced by spin-polarized current which can act as 

an alternate way to drive domain walls [6, 18, 26, 174] was rarely investigated. Unlike 

those magnetic vortices constrained in nano-disks or nano-dots, Bloch lines in films can 

move more freely within domain walls, and in particular, all the Bloch lines can move in 

the same direction under current, which is quite different from the case driven by field. 

Therefore, understanding the unique properties of current induced Bloch line motion is 

fundamentally important and also crucial to future Bloch-line-based devices. In this 

section, current induced Bloch line motion in ideal magnetic film with relatively strong 

in-plane uniaxial anisotropy (Q=2) are studied by micromagnetic simulations and 

theoretical analysis. As mentioned above, two major Bloch line structures exist for films 
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with strong in-plane anisotropy, depending on the film thickness. For thick film or bulk 

(which can be treated as the extremely thick film), Bloch walls are preferred and the 

Bloch line structures are shown in Fig. 3.13 (a) and (b); for very thin film, Neel walls are 

favorable and the Bloch line structures are shown in Fig. 3.13 (c) and (d). For magnetic 

films with weak anisotropy, the Bloch lines for thin film also have similar structures as 

described by Fig. 3.13 (c) and (d), while for thick film, Bloch line structures are rather 

complex due to the existence of Neel caps, and then the studies of current induced motion 

properties for Bloch lines in thick films will be our future work and will not be present in 

this section.  

 

3.3.2 Current Induced Bloch Line Motion in Bulk 

The magnetization evolutions are described by the modified Landau-Lifshitz-

Gilbert equation, Eq. (2.1.11), including the conventional spin transfer torques as 

discussed in Sec. 2.1. Since it can be assumed that current induced Bloch lines motion in 

film or bulk is a universal behavior which should obey the same rule, artificial large 

magnetocrystalline anisotropy constant 2
0u sK M  (i.e., Q=2) is used for the 

ferromagnetic system with the other magnetic parameters set as: 58 10 /sM A m and 

111.3 10 /A J m . In order to systematically investigate that effect, we use a series of  

values in the range -0.02~0.04 with fixed =0.02. 
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Figure 3.13 Magnetization structures of Bloch lines in (a)-(b) bulk and (c)-(d) thin film 

ferromagnetic systems. Small black arrows and color contours represent magnetization direction.

 

Unlike current induced domain wall motion in one-dimensional nanowires, two-

dimensional thin film or bulk allows Bloch lines to move in two dimensions and also 

allows spin-polarized current injected in two main directions, perpendicular to (in Y-

direction) and parallel with (in Z-direction) the domain wall. Therefore, Bloch lines 

velocities under various spin-polarized currents applied in the two main directions with 

different values of /  that is assumed as a key factor to affect current induced Bloch 

lines motion behavior are computed from our micromagnetic simulations. Since Bloch 

line density in a domain wall is also an important factor to influence the Bloch lines’ 

behavior, two different Bloch line densities, 2 Bloch lines per 400nm and 4 Bloch lines 

per 400nm, are also considered. 

The Bloch lines structures in bulk are shown in Fig. 3.13 (a) and (b). Actually, 

Bloch line as a transition between two opposite orientated domain walls occupies two 
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types of chiralities as well as two types of polarities. Fig. 3.13 (a) and (b) show a pair of 

Bloch lines with the same chirality but opposite polarities, so do Fig. 3.13 (c) and (d). For 

the study of Bloch lines motion in bulk, the current is applied in three modes, 

perpendicular mode (current in Y-direction, Fig. 3.14), parallel mode (current in Z-

direction, Fig. 3.15) and mixed mode (current in YZ-direction, Fig. 3.16). 

Fig. 3.14 shows the Bloch line motion properties under current applied 

perpendicular to the domain wall. It is noted that Bloch lines can move in two directions, 

along with and perpendicular to the domain wall. Our simulation results shown in Fig. 

3.14 (b) and (c) indicate that these two components of Bloch line velocities, vy and vz, are 

almost linearly related to both the value of /  and the Bloch line density N/400nm, but 

with different extents: vy, which also presents the domain wall velocity due to the 

interaction between Bloch lines and domain wall, is nearly equal to the current density 

value u, almost independent of the above two factors; vz, however, shows a strong 

dependency on both factors, for instance, / =1 makes vz=0 while / >1 (or <1) makes 

vz<0 (or >0) with the sign determined by Bloch line chirality, and denser Bloch lines can 

reduce vz. Actually, both the weak and strong dependency of vy and vz on the two factors 

arise from the same fact that the current induced spin transfer torques generated on the 

domain wall are evenly transferred to the Bloch lines, so that almost no torques are left 

on the domain wall, which makes the domain wall velocity or vy a constant value. Since 

the generated torques are related to /  and will be evenly transferred to Bloch lines to 

drive them moving along the domain wall, the velocity component vz is dependent of /  

and N. 
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Figure 3.14 (a) Two Bloch lines motion induced by current u=283m/s applied perpendicular to 

the domain wall. Black big arrow represents the current direction and black small arrows 

represent Bloch line motion direction. (b) Linear fitting of Bloch line velocity in Y-direction vy  

vs. 1- / under Bloch line density N=2 and 4 /400nm. (c) Linear fitting of Bloch line relative 

velocity in Z-direction vz/u vs. 1- /  under Bloch line density N=2 and 4 /400nm. 
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The existence of Bloch lines which can purge all the torques generated at the 

domain wall through slide motion within the wall makes the current induced domain wall 

motion quite different from that of domain wall without Bloch lines. First, the steady 

motion velocity for pure domain walls are v=u / , while the velocity for domain wall 

with Bloch lines is always v=u, independent of /  values. Second, inertia effect exists 

for pure domain wall, i.e., acceleration or deceleration takes place when injecting or 

removing current, while for domain wall with Bloch lines, no inertia effect exists and the 

velocity always keeps constant until current is removed and then the velocity will 

suddenly drop to zero. Third, the Walker threshold for domain wall with Bloch lines is 

much larger than that of pure domain wall, because of the purge or weakening of current 

induced spin transfer torques on domain wall segments between Bloch lines. Besides, the 

domain wall segments are often bent due to the unsynchronization of domain wall and 

Bloch lines motion, but such a bending doesn’t take place for pure domain walls unless 

extrinsic pinning effect is included. In addition, spin waves can also be generated by the 

moving domain walls or Bloch lines, with the wavelength and frequency determined by 

the motion velocity. In spite of the small spin wave amplitude which is around 10-3 Ms, 

the wave propagation forms are also different: only plane waves propagate for pure 

domain wall, while circular waves generated from Bloch lines also have a contribution. 
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Figure 3.15 (a) Two Bloch lines motion induced by current u=707m/s applied parallel with the 

domain wall. Black big arrow represents the current direction and black small arrows represent 

Bloch line motion direction. (b) Linear fitting of Bloch line velocity in Z-direction vz vs. 1- /  

under Bloch line density N=2 and 4 /400nm. (c) Linear fitting of Bloch line relative velocity in Z-

direction vy/u vs. 1- /  under Bloch line density N=2 and 4 /400nm. 
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When the current is applied parallel with the domain wall (in Z-direction), Bloch 

lines will move along the domain wall in the velocity vz u with very small corrections 

dependent of / , as shown in Fig. 3.15 (b). Unlike the domain wall motion in a nanowire 

with a steady velocity of v=u /  accompany with an inertia effect, Bloch lines motion 

along a domain wall is almost independent of /  and without an inertia effect through 

smearing its current-induced spin torques by exerting a drag force on the domain wall. 

Such a dragging force can drive the domain wall to move a slight distance in Y-direction, 

so that the Bloch lines accompany with the domain wall will have a very small velocity  

vy, as shown in Fig. 3.15 (c). The value of vy is very small compared to u and the ratio,   

vy /u, is even less than 1%. It is noted that such a small value of vy /u is almost 

independent of Bloch line density but depends on /  very strongly. It should be also 

noted that for the parallel mode, the main motion velocity of Bloch lines, vz, is 

independent of Bloch line chirality, but the moving direction perpendicular to the domain 

wall or the sign of the small motion velocity, vy, is determined by the Bloch line chirality. 

When the Bloch line moves, circular spin waves are generated (see Fig. 3.15 (a)), but 

with an ignorable amplitude, ~10-6 Ms. 

After obtaining the main behavior of current induced Bloch line motion with the 

two current injection modes discussed above, the mixed mode, i.e., current is applied in 

both Y and Z-direction simultaneously, is also computationally studied. Fig. 3.16 shows 

the Bloch line velocities for the mixed current mode, where uz is fixed to 141m/s and uy is 

varied in a certain range. For the velocity component in Y-direction, vy, its value is 

mainly determined by the current component uy, as shown in Fig. 3.16 (b), and these 

values are almost independent of / . For the velocity component in Z-direction, vz, its 
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value is contributed by both uy and uz, as shown in Fig. 3.16 (c), and these values are 

explicitly dependent of / . The dependency of vz on uy, which can be represented by the 

slop A shown in Fig. 3.16 (d), is the same with the case of perpendicular mode. All the 

above results demonstrate that for an arbitrary current (the mixed mode), the Bloch lines 

motion velocities are actually a linear superposition of the effect of uy (the perpendicular 

mode) and uz (the parallel mode). 

 

Figure 3.16 (a) Two Bloch lines motion induced by current applied in the mixed mode. Black big 

arrow represents the current direction and black small arrows represent Bloch line motion 

direction. (b) Linear fitting of Bloch line velocity in Y-direction vy vs. the current density in Y-

direction uy with =0.04, 0.02, 0 and -0.02. (c) Linear fitting of Bloch line relative velocity in Z-

direction uz with =0.04, 0.02, 0 and -0.02. (d) Linear fitting of the parameter A vs. 1- /  

according to the fitting results of (c).  
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3.3.3 Current Induced Bloch Line Motion in Thin Film 

Fig. 3.13 (c) and (d) show a pair of Bloch lines with the same chirality but 

opposite polarities in thin film, in analogy to the antivortex and vortex in nano-disk, 

respectively. For the computational study of current induced Bloch lines motion in thin 

film, similar simulation procedure as made for the above bulk cases is adopted, i.e., both 

the perpendicular and parallel current modes with the two key factors, /  and Bloch line 

density, are taken into account. As expected, similar conclusions are obtained. 

For the current applied perpendicular to the domain wall, as shown in Fig. 3.17, 

the perpendicular velocity of Bloch lines, vy, which is also the domain wall velocity, is 

determined approximately by vy u, while the parallel velocity of Bloch lines, vz, is 

strongly related to both /  and Bloch line density denoted as N/400nm as well as the 

Bloch line chirality. For the current applied parallel with the domain wall, as shown in 

Fig. 3.18, the parallel velocity of Bloch lines, vz, is determined approximately by vz u, 

while the perpendicular velocity of Bloch lines, vy, which is also the domain wall  

velocity, is very small and strongly related to /  and Bloch line chirality but almost 

independent of Bloch line density. One can expect that for the Bloch lines motion under 

an arbitrary applied current (mixed mode), the velocity components can be obtained by 

dealing with the above two modes individually.  
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Figure 3.17 (a) Two Bloch lines motion induced by current applied perpendicular to the domain 

wall. Black big arrow represents the current direction and black small arrows represent Bloch line 

motion direction. (b) Linear fitting of Bloch line velocity in Y-direction vy vs. 1- /  under Bloch 

line density N=2 or 4/400nm and u=141 or 283m/s. (c) Linear fitting of Bloch line relative 

velocity in Z-direction vz/u vs. 1- /  under Bloch line density N=2 or 4 /400nm and u=141 or 

283m/s. 
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Figure 3.18 (a) Two Bloch lines motion induced by current applied parallel with the domain  

wall. Black big arrow represents the current direction and black small arrows represent Bloch line 

motion direction. (b) Linear fitting of Bloch line velocity in Z-direction vz vs. 1- /  under Bloch 

line density N=2 or 4/400nm and u=141 or 283m/s. (c) Linear fitting of Bloch line relative 

velocity in Z-direction vy/u vs. 1- /  under Bloch line density N=2 or 4/400nm and u=141 or 

283m/s. 
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3.3.4 Theoretical Analysis 

In order to better understand the current induced Bloch lines motion behaviors 

revealed by the above simulation results, theoretical analysis based on the modified 

Landau-Lifshitz-Gilbert equation is needed. As is indicated by the above results, the 

Bloch line behaviors in bulk and thin film are almost the same, and hence our theoretical 

analysis for understanding the universal properties focuses on the thin film system only. 

 

 

Figure 3.19 The cross type Bloch line structure and polar coordinate system with two main 

variables  and . 

 

Based on the polar coordinate where  and  are two main variables as shown in 

Fig. 3.19, the total energy consisting of exchange energy, shape anisotropy energy and 

magnetocrystalline anisotropy energy can be given by 

 
2 2

2 2 2sin sin sinu dE A K K dydz
y z

, (3.3.1) 
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which is based on a certain approximation [153] stating that  is y-dependent only and  

is z-dependent only, with both of their values varying from 0o to 180o. The variation of 

total energy density with respect to  and  can be written as  

 

22
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2

2
2

2

2 2sin cos sin

2sin sin cos

tot
u d

tot
d
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y z

e K A
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. (3.3.2) 

The domain wall structure can be obtained by solving both / 0tote and 

/ 0tote , and then we have 
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Y u d

Z d

A K K

A K
, (3.3.3) 

where Y and Z are Bloch line width parameters along Y and Z directions, respectively. 

When =0o or 180o, we can obtain the domain wall width parameter /DW uA K . The 

Bloch line energy is hence obtained by the integration in Y and Z-direction, 

 

2 2
2 2 2

2

sin sin sin

24 1 sech

u d

d
u

u Z

E A K K dydz
y z

K zAK dz
K

. (3.3.4) 

Since Q=2 for our thin film system, we have 2 2Z DW Y , indicating that Bloch 

line is narrower than domain wall, which is consistent with our simulation results. The 

Bloch line energy is 8 sinh 1 9.4Z u Z uE AK AK  for ,Z Z . For current 
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induced Bloch line motion, the two main current modes, perpendicular mode with u=[0, 

u, 0] and parallel mode with u=[0, 0, u], are considered.  

For the perpendicular mode with u= [0, u, 0], the modified Landau-Liffshitz-

Gilbert equation in the polar coordinate can be written as 

 

sin sin
sin

sin sin

tot

s

tot

s

e u u
M y y

e u u
M y y

isinsinsine
M

. (3.3.5) 

Since Bloch lines can move in two dimensions unlike domain walls, it can be assumed 

that the structures of Bloch lines will not be change during the motion process, i.e., the 

conditions of / 0tote and / 0tote  are always kept. Under that assumption, 

both Bloch line and domain wall will have the same velocity, and we have 

 

2 2

2 2
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1 sin 1 sin
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. (3.3.6) 

Therefore, the velocity of Bloch line or domain wall in Y-direction is 2

1
1yv u u , 

which is consistent with our simulation results shown by Fig. 3.14 (b), Fig. 3.16 (b), and 

Fig. 3.17 (b) for both the bulk and thin film system. Obviously, the velocity is also 

independent of Bloch line types and polarities. For the Bloch line velocity in Z-direction, 

since we have sin

Yy
 and sin

Zz
, the velocity is given by 21 sin

Z
z

Y

v u  

which is -dependent. However, such a velocity is not correct for the ignorance of spin 
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torques purge effect, i.e., the current induced spin torques 21 Y

u
21 2  generated at 

domain wall segments between Bloch lines will be almost absolutely transferred to Bloch 

lines in order to keep the structure unchanged and then the velocity of Bloch lines in Z-

direction will be higher due to the additional torques. Therefore, the torques along the 

domain wall will be redistributed by introducing a distribution function P( ), i.e., 

21 Y

uP
1

PP , and then the velocity will be 21 sin
Z

z
Y

v P u . Since vz 

must be constant and independent of , we have sinY

Z

P . By introducing a 

dimensionless coefficient , we have sinY

Z

P . According to the conservation 

of spin transfer torques, P must satisfy 

 2 2
2 2

2 21 1

L L
N N
L L

Y YN N

u uP dz dz , (3.3.7) 

where L is the total domain wall length, N the total Bloch lines number and then L/N the 

average domain wall length occupied by one Bloch line. Therefore, we have 
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where 2u

d

KQ
K

, 
Z

zZ and 
2 Z

LL
N
LL . For our thin film system, 18L 18L and 

16.6  for N=2, while 9L 9L and 8.5  for N=4. Therefore, the corrected velocity is 
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given by 2 1
1zv u , which is consistent with our simulation results 

shown by Fig. 3.14 (c), Fig. 3.16 (c)-(d), and Fig. 3.17 (c) for both the bulk and thin film 

system. In fact, for large Q or LL , 2 / 1/L Q N///// ,and then 1/zv N . It is noted 

that the velocity zv  depends on the value of / , and its sign depends on Bloch line 

chirality. 

All the above analysis are based on the ideal assumption that all the spin transfer 

torques generated at domain walls are transferred to Bloch lines so that Bloch lines are 

shifted along domain walls with higher velocity while the domain wall velocity will be 

kept at a constant. In another word, the part of torques which should be used to accelerate 

or decelerate the domain wall velocity from u to u /  are now used to shift Bloch lines 

along the domain wall. Actually, the torques are partially transferred to Bloch lines rather 

than fully transferred, which causes the domain wall bended a little bit. By considering 

the small correction which represents the fraction of torques not fully transferred, denoted 

as o1, we have 12 1 ,
1 Y

u o N u21 2 , where 1 ,o N u  may depend on various 

factors like Bloch line density represented by N, or current density u , and such a small 

correction is introduced to deal with the velocity deviation from the ideal case. Under the 

above assumption, the velocity in Y-direction will be 1 1yv u o u , which is 

linearly related with 1- / , consistent with the simulation results shown by Fig. 3.14 (b) 

and Fig. 3.17 (b). The small fractions o1 obtained by the linear fitting are so small (less 

than 1%) that they can be ignored. Since uncompleted torques transfer can cause a 
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domain wall bending which may change the Bloch line structure and its width parameter 

Z , the values of  from the simulation results in Tab. 3.3 will be deviated from our 

calculated values using Eq. (3.3.8) in a certain manner.  

For the parallel mode with u= [0, 0, u], similar analysis process with the 

perpendicular mode can be made. The modified Landau-Lifshitz-Gilbert equation in the 

polar coordinate can be written as 
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. (3.3.9) 

Under the same assumption that the Bloch lines structures are unchanged during the 

motion process, we have 
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. (3.3.10) 

Therefore, the Bloch line velocity in Z-direction described by zv u  is consistent with 

our simulation results shown by Fig. 3.15 (b) and Fig. 3.18 (b) for the bulk and thin film 

system, respectively. The velocity derivation from u can also be treated by introducing a 

small correction 2 ,o N u  as what we did above for the perpendicular mode, and then we 

have 2 1zv u o u , where 2o  is around 1% according to our simulation results. 

For the Bloch line velocity in Y-direction, if the torque redistribution effect is further 

considered as the perpendicular mode, i.e., the torques generated at Bloch lines are 
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completely transferred to domain walls, the velocity will be 1 1yv u , where  

is described by Eq. (3.3.8). Since  is a relatively large value, the velocity vy is therefore 

ignorable, which, however, is inconsistent with our simulation results. For that reason, we 

use a general form 1yv u . It is noted from Tab. I that the values of  is much 

larger than -1, indicating that the Bloch line motion in Y-direction or the Bloch line 

induced domain wall motion is not mainly due to the spin torques transfer effect, and the 

drag force exerted by Bloch lines on domain wall segments seems more important. Once 

the domain wall segment is bent by the drag effect, the intensive string vibration takes 

place on the domain wall segment which is thereafter dragged to the new position.  Since 

there is an up limit for the Bloch line velocity in Y-direction according to Eq. (3.3.10),  

will also have an up limit value, max=0.5.  

 

Table 3.3  and  values under Bloch line density N=2 and 4 /400nm  for bulk and thin film 

systems obtained from the simulation results. 

 N=2 N=4 

Bulk  17.0 8.5 

 0.38 0.38 

Film  17.0 8.5 

 0.31 0.32 
 

Finally, the main conclusion obtained from our theoretical analysis is summarized 

in the following. For the perpendicular mode with current applied in Y-direction, the 

current induced Bloch line velocity is given by 
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where  is given by Eq. (3.3.8) and strongly dependent of Bloch line density. For the 

perpendicular mode with current applied in Y-direction, the current induced Bloch line 

velocity is given by 

 
1y

z

v u

v u
, (3.3.12) 

where  is less than 0.5 and weakly dependent of Bloch line density. All the calculated 

results are in good agreements with our simulation results. 

 

3.3.5 Ultrafast Reversal of Bloch lines in Thin Film 

Circular and cross type Bloch lines in thin film can also be treated as vortex or 

antivortex confined within the domain wall according to their structures shown by Fig. 

3.13 (c) and (d). Similar structures usually promise similar properties. Especially for the 

ultrafast reversal of core polarity manifested by vortex/antivortex in soft magnetic nano-

disk under field or current pulse [40, 42, 171], the Bloch line polarity may also be 

reversed by applying current or field pulse. Compared with vortex/antivortex , Bloch 

lines seem to have more advantages, for example, unlike the vortex/antivortex in isolated 

nano-disk which can only be located in the center of the disk, Bloch lines which can be 

moved by current or field will have more freedom, and also the size of Bloch line is 

smaller due to the high in-plane uniaxial anisotropy. Therefore, the computational study 

of Bloch line reversal behavior stimulated by field and current is meaningful. In the 
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following, the Bloch line reversal under magnetic field pulse in both perpendicular and 

parallel modes as well as under current pulse in perpendicular mode is presented based on 

our micromagnetic simulations. 

Once the large magnetic field is applied perpendicular to the domain wall, a new 

pair of Bloch lines with opposite polarity will be created shortly near the original Bloch 

line. Fig. 3.20 shows the cross type Bloch line reversal process under a large magnetic 

field pulse. It is noted that a new pair of Bloch lines, a circular type and a cross type 

Bloch line, both with positive polarity, are created beside the original cross type Bloch 

line with negative polarity in 120ps, as shown in Fig. 3.20 (b). After that, the original 

cross type Bloch line is annihilated by the adjacent circular type new Bloch line, 

accompany with strong spin waves generated by the annihilation process, as shown in  

Fig. 3.20 (c). In the end, only the new cross type Bloch line with positive polarity is left, 

which is shown by Fig. 3.20 (d). Thus, only the polarity of the Bloch line is reversed 

under the field pulse perpendicular to the domain wall, which is quite similar with the 

reversal process for vortex/antivortex in nano-disk. 

For the large magnetic field applied parallel with the domain wall, the reversal 

process seems different. Fig. 3.21 (b) shows that such a large field is able to flip the 

magnetization at the domain wall, and then a different type Bloch line with the same 

polarity can be created beside of the original Bloch line. Fig. 3.21 (c) shows a new 

circular type Bloch line with positive polarity is created at the adjacent of the original 

cross type Bloch line with positive polarity, and then the two Bloch lines will annihilate 

each other to finally preserve the circular Bloch line with negative polarity at the other 

side of the original one, as shown by Fig. 3.21 (d). Thus, both the Bloch type and its 
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polarity will be reversed by the field applied parallel with the domain wall, which is quite 

different from the reversal process for the perpendicular case and the vortex/antivortex 

case. It is worth noted that the Bloch line chirality is not change during such reversal 

process. 

In addition to the magnetic field, the spin-polarized current can also reverse Bloch 

lines. Fig. 3.22 shows the reversal process of a cross type Bloch line with positive 

polarity under the current pulse applied perpendicular to the wall. It can be noted that 

such a reversal mechanism is similar with the parallel field case described in Fig. 3.21, 

which makes much sense because the magnetization of domain wall will be flipped in 

both cases. Thus, both the Bloch type and its polarity will be reversed by the current 

pulse applied perpendicular with the domain wall, different from the field induced 

ultrafast reversal of vortex/antivortex in nano-disk. 

 

 

Figure 3.20 Magnetization structure for the ultrafast reversal process of the cross type Bloch line 

with negative polarity in (a) t=0, (b) t=120ps, (c) t=160ps and (d) t=220ps under the magnetic 

field pulse with amplitude 2000Oe and duration 160ps applied perpendicular to the domain wall. 

Small black arrows and color contours represent magnetization direction. 
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Figure 3.21 Magnetization structure for the ultrafast reversal process of the cross type Bloch line 

with positive polarity in (a) t=0, (b) t=30ps, (c) t=60ps and (d) t=180ps under the magnetic field 

pulse with amplitude 2000Oe and duration 80ps applied parallel with the domain wall. Small 

black arrows and color contours represent magnetization direction. 

 

 

Figure 3.22 Magnetization structure for the ultrafast reversal process of the cross type Bloch line 

with positive polarity in (a) t=0, (b) t=15ps, (c) t=25ps and (d) t=70ps under the spin-polarized 

current pulse with amplitude u=2000m/s and duration 60ps applied perpendicular to the domain 

wall. Small black arrows and color contours represent magnetization direction. 
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For the current pulse applied parallel with domain wall, our simulation results 

show that the Bloch lines are difficult to be reversed, although the reversal mechanism is 

similar with the perpendicular field case shown in Fig. 3.20. Thus, in analogy to the 

ultrafast reversal of vortex/antivortex in nano-disk, Bloch lines in thin film can also be 

ultrafast reversed by magnetic field and spin-polarized current, but according to two 

different mechanisms. 

 

3.3.6 Conclusion 

In conclusion, current induced Bloch line motion in bulk and thin film with high 

in-plane uniaxial anisotropy has been investigated by both theoretical calculations and 

micromagnetic simulations in this section. Two main current modes are considered, one 

is for current applied perpendicular to the domain wall with u= [0, u, 0], the other is for 

current applied parallel with the domain wall u= [0, 0, u]. Both the bulk and thin film 

systems exhibit almost the same properties of current induced Bloch line motion. The 

Bloch line velocity parallel with current u for both modes is ||v u , which is independent 

of Bloch line types and densities, while the Bloch line velocity perpendicular with u is 

v u  for the perpendicular current mode and v u  for the parallel 

current mode, where is almost inversely proportional to Bloch line density and  is 

weakly dependent of Bloch line density. Both the theoretical calculations and 

micromagnetic simulations agree with each other very well. Besides, ultrafast reversal of 

Bloch line in thin film is also computationally investigated. Our simulation results show 

that, in analogy to the ultrafast reversal of vortex/antivortex in nano-disk, Bloch lines in 
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thin film can also be ultrafast reversed by magnetic field and spin-polarized current, but 

with two different mechanisms. Our study on current induced Bloch lines motion as well 

as the ultrafast Bloch line reversal can shed a light on future Bloch-line-based devices in 

spintronics. 
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3.4 Future Research 

1. Like magnetic field, spin-polarized current can also act as a driving force to make a 

one-dimensional domain wall line creep, depin and flow in thin film. Especially for the 

current induced domain wall creep near the depinning force, the creep exponent  is still 

not determined. Since the determination of  depends on the exact value of the depinning 

force which must be determined from the depinning regime, the current induced 

depinning behavior should be investigated first. Therefore, we will employ 

micromagnetic modeling to computationally study the current induced domain wall line 

behaviors in creep and depinning regime and then determine both the depinning exponent 

 and creep exponent  which we suppose are the same with the magnetic field case. 

Experimental studies for those topics are still lacking, since the joule effect caused by the 

current have a great influence on the system temperature. 

 

 2. For domain wall line with substructures, the roughness, creep, depinning and flow 

behaviors under spin-polarized current are rarely studied either experimentally or 

computationally. We will use micromagnetic simulations to study those topics just like 

what we did in Sec. 3.2 for the magnetic field case. 

 

3. Since domain all substructures usually exhibit strong elastic energy due to the 

magnetostriction effect, which results in a strong coupling between substructures and 

pinning sites and then makes the domain wall line more roughened, we will use 

micromagnetic simulations to study the roughening effect caused by elastically coupled 

substructures. 
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4. Current induced Bloch line and cap switches motion for film with weak in-plane 

anisotropy will be also computationally studied. 
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Chapter 4. Magnetic Domain Walls in Nanowires§ 

4.1 Nanometer Magnetic Transverse Domain Wall Logic 

4.1.1 Introduction 

Magnetic field or spin-polarized current induced magnetic domain wall (DW) 

motion and DW transformation in planar magnetic wires plays a crucial role in the 

development of magnetic memory and logic elements. [19, 21, 34] Two types of DWs 

exist in planar soft magnetic wires, vortex DWs and transverse DWs, both of which can 

be treated as information carriers due to their modulatable chiralities or polarities. For 

vortex DWs, it has been reported that the vortex core polarity can be reversed by spin-

polarized current [20] and the vortex DWs can also be transformed into transverse DWs 

[13, 175]. Usually, vortex DWs as well as the relevant transformations are existed in 

relatively wide wires, and in very narrow wires, the transverse DWs are stable. For 

transverse DWs, two kinds of chiralities exist and it has been observed that the chirality 

reversal can be induced by a proper stimuli, such as external magnetic field [16], spin-

polarized current [36] and current induced Oersted field [176]. It has also been reported 

that the spin-orbit torque effect or Rashba effect, besides of the spin transfer torque  

effect, can also lead to a transverse DW flipping. [29] The controllable chirality 

combined with the small size of transverse DWs in very narrow wires not only provide 

potential applications to achieve high density information storage, but also reveal the 

possibility to develop nanometer magnetic DW logic based on transverse DWs. 

§ The material contained in Section 4.2 of this chapter was previously partially published in Journal of Applied Physics, 2012. 112(8): 
p. 083903 by Geng, Liwei D. and Jin, Yongmei M.. The material contained in Section 4.3 of this chapter was previously published in 
Journal of Magnetism and Magnetic Materials, 2015. 393(0): p. 121-126 by Geng, Liwei D. and Jin, Yongmei M.. See Appendix C 
and D for documentations of permission to republish this material. 
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Submicrometer magnetic logic circuits including NOT and AND gates based on 

DW propagation around a planar wire loop under rotating magnetic field taken also as the 

clock signal have been reported. [32, 34] However, it seems that such submicrometer 

logic elements can’t be directly miniaturized and applied to nanometer wires or 

nanowires in which only transverse DWs exist. Rather than annihilating each other, 

winding transverse DWs prefer to pile up in a nanowire, according to our results in Sec. 

4.2. Since all the transverse DWs generated by the NOT gate [34] with an enlarged 

central stub are winding DWs, they will be piled up together when encountering in 

nanowires, unlike the relatively wide wires in which DWs annihilation always happens. 

As is expected, those transverse DWs will be pinned and piled up at the junctions of 

AND or Cross-over circuit and will even accumulate further under the rotating field to 

eventually invalidate the functions of such logic circuits. Besides, the non-annihilation 

nature of winding transverse DWs also forbids the data clear-up process in the nanowire 

circuits. Take the NOT-based shift register [32] for example, our simulation results show 

that when two winding transverse DWs meet at the junction of a NOT gate in the 

nanowire, a 360o DW forms in the data clear-up process, as shown in Fig. 4.1.1 (a). Since 

unwinding transverse DWs will always annihilate each other in nanowires, all the above 

problems can be solved by introducing them. Thus, a novel data generator which 

generates unwinding transverse DWs is needed for miniaturized circuits. 

Regardless of the above limitations in nanometer circuits, there are also other 

disadvantages for those submicrometer logic circuits [34]. For example, an inherent T/2 

delay for DW propagation is associated with all NOT gates, resulting in a non-

synchronized signal when integrated with other circuits like AND or OR, which makes 
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the external rotating field unable to be taken as a clock signal. [177] Besides, the 

information bit definitions for ‘0’ and ‘1’ are different for the logic gates and data input 

generator [34], and such a dual definition makes the integration of circuits difficult. 

Actually, both of the above bit definitions are based on domain magnetization rather than 

DW chirality. Since the chirality of a transverse DW can be modulated by some proper 

stimuli which does not require T/2 delay, a novel transverse DW-based logic at nanoscale 

may avoid such above disadvantages existed in submicrometer magnetic logic. This 

paper will employ micromagnetic simulations based on Landau-Lifshitz-Gilbert 

equations to propose novel nanometer logic elements based on transverse DWs by 

attempting avoiding the above  disadvantages existed for submicrometer magnetic DW 

logic [175]. 

 

4.1.2 Micromagnetic Modeling 

According to our micromagnetic model, magnetic domain structure in nanowires 

is described by magnetization field M(r)=Msm(r), where Ms is saturation magnetization 

and m(r) is the magnetization directional unit vector field whose value is 0 outside 

nanowire circuits. The total system free energy is a functional of m(r) and is evaluated as 

a sum of magnetic anisotropy energy, exchange energy, magnetostatic energy, and 

external magnetic energy, [178] where the long-range magnetostatic energy is calculated 

in reciprocal space using the Fourier transform of the magnetization field: [178] 
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where K is the magnetocrystalline anisotropy constant, p(r) the magnetic easy direction, 

A the exchange stiffness constant, 0  the vacuum permeability, exth the external magnetic 

field, is evaluated as a principal value excluding the point k 0 , 

3( ) ( ) ie d rk rM k M r( )M( )) , and kn k  is a unit directional vector in reciprocal space. The 

evolution of magnetic domain structure is driven by the thermodynamic driving force  

Heff = E/ M, the variational derivative of the free energy in Eq. (4.1.1) with respect to 

the magnetization field variable, and is described by the Landau-Lifshitz-Gilbert  

equation, [178] 

( , ) ( , )t t
t teff

m r m rH m m     (4.1.2) 

where   is the gyromagnetic ratio, and  is the damping parameter. 

Equation (4.1.2) is numerically solved for all the given nanowire geometries in 

this paper. Nanowire thickness is 4nm. The width of nanowire loop used to transport 

DWs is 80nm. The sizes and structures for the transverse DW-based logic elements are 

shown in Tab. I. The material parameters of Permalloy Ni80Fe20 are used in the 

simulations: Ms=860 kA/m, magnetocrystalline anisotropy K=0, and exchange constant 

A=1.3 10-11 J/m. [179] An elliptical counterclockwise rotating magnetic field 

cos 2 * ,/ sin 2 *x ysM h t h tH   is applied to the circuits. 
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4.1.3 Results and Discussion 

4.1.3.1 Data Generator 

Magnetic DWs, either transverse or vortex type, can be generated by rotating 

magnetic field acting on a large, magnetically soft region [34] or by current-pulse-

carrying wire injected at the end of a magnetic wire [19, 180]. Good data selectivity has 

been achieved by the former method. Reliable generating of winding transverse DWs 

from large hexagonal generator under rotating magnetic field cycles was demonstrated by 

our previous work [179]. As mentioned above, unwinding transverse DWs generation is 

required for nanometer logic circuits, or the DWs will be piled up at the element junction 

to affect corresponding functions. Fig. 4.1.1 (a) shows the formation of one 360o DW 

from two winding transverse 180o DWs at the junction of a NOT gate in the data clear-up 

process of the miniaturized shift register based on NOT gates [32], i.e., the unwanted 

transverse DWs pile-up makes the clear-up process failed. However, unwinding 

transverse DW pair will be annihilated instead of piled up, which can be shown by Fig. 

4.1.1 (b). Thus, in order to avoid DWs pile-up, the unwinding DW generator is needed. 

 

Figure 4.1.1 (a) Simulated domain structure of two winding transverse DWs piled up at the 

junction of one NOT gate by forming a 360o DW. (b) Simulated domain structure of two 

unwinding transverse DWs annihilated at the junction due to the opposite chirality. Small white 

arrows and color contours within the nanowire represent magnetization direction. 
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Since shape-isotropic wall generator always produce winding DWs due to the 

large soft region in which magnetizations prefer to follow external rotating magnetic field 

to output winding DWs, a shape-anisotropic wall generator may help produce unwinding 

transverse DWs. Fig. 4.1.2 shows a bar-shaped wall generator with magnetization within 

the bar always pointing ‘down’. Unlike the shape-isotropic wall generator, the bar-shaped 

design actually restricts the magnetization responding under rotating field, i.e., the 

magnetization within the bar will never follow the rotating field unless very large field is 

applied. Fig. 4.1.2 (a)-(e) show the process of a pair of unwinding transverse DWs 

generated by a bar-shaped wall generator under rotating field with amplitude of 0.06xh

and 0.03yh  in one cycle. In the first half cycle (Fig. 4.1.2 (a)-(b)), the ‘down’ 

magnetization within the bar doesn’t follow the rotating driving field, which forces the 

first transverse DW to point ‘down’ at the junction B between the bar and nanowire 

conduit, generating a counterclockwise (ccw) head-to-head (hh) transverse DW, denoted 

as W1, pushed out from B by the field after the first half cycle, unlike the shape-isotropic 

one which will produce a clockwise (cw) hh transverse DW after the first half cycle  

[179]. In the second half cycle (Fig. 4.1.2 (c)-(e)), W1 pinned at corner C will be 

transported along the nanowire loop by passing through corner D, and the second wall 

W2 which is cw tail-to-tail (tt) transverse DW is generated from B and eventually pinned 

at corner C after the second half cycle. Therefore, a pair of unwinding transverse DWs, 

W1 and W2, are generated in one rotating cycle from the bar-shaped wall generator. 

When the rotating field amplitude 0.048xh , no any DWs will be generated. The 

modulation of presence and absence of DW pairs makes the bar-shaped wall generator a 
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data generator which is in good agreement with the submicrometer data generator [34] 

while still valid in nanowires. Based on our simulation results, adjusting the width of the 

bar can modulate the critical rotating field to generate or not generate DWs, for example, 

DWs can be generated by lower field for wider bar. As is expected, if the magnetization 

within the bar points ‘up’, a cw-hh and a ccw-tt transverse DW will be generated in one 

cycle. 

 

 

Figure 4.1.2 Simulated magnetic domain structure evolution and unwinding transverse DW 

generation from the bar-shaped wall generator in one loading cycle of ccw rotating magnetic field 

with amplitude of 0.06xh and 0.03yh  at (a) t*=1/3, (b) t*=1/2, (c) t*=2/3, (d) t*=5/6, and  

(e) t*=1. The white solid arrow indicates the elliptical rotating field direction. A labels the bar, B 

labels the junction, and C-D label the nanowire corners. W1 and W2 are the two unwinding 

transverse DWs, ccw-hh DW and cw-tt DW, respectively. 

 

Although the bar-shaped data generator producing unwinding transverse DW 

pairs has been proposed above, the bit definition for generator is still inconsistent with 

that for logic gates, and then new bit definition applied for both generator and logic gates 

is needed. Considering there are two types of transverse DW pairs existed, one is the 

ccw-hh and cw-tt DW pair and the other is the cw-hh and ccw-tt DW pair, new bit 
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definition based on those two types of DW pairs can be applied, i.e., the pair of ccw-hh 

and cw-tt DW is defined as ‘1’(DW magnetization points ‘up’) while the other pair of 

cw-hh and ccw-tt DW is defined as ‘0’ (DW magnetization points ‘down’), arbitrarily, as 

shown in Tab. 4.1 As is discussed later, such a new definition can be applied for both 

data generator and logic gates. 

To generate ‘0’, i.e., the cw-hh and ccw-tt transverse DW pair, without reversing 

the magnetization direction of the bar, the bar-shaped wall generator should be modified. 

Our simulations show that a ‘horn’ associated bar-shaped wall generator, shown in Tab. I 

with two types of ‘horns’ (triangle shape and square shape), can produce ‘0’ DW pairs. 

Fig. 4.1.3 shows the generation process of a cw-hh and ccw-tt transverse DW pair from a 

square shape ‘horn’ in one cycle of ccw rotating field with amplitude of 0.066xh  and 

0.04yh . In the first half cycle (Fig. 4.1.3 (a)-(c)), magnetizations within ‘horn’ C prefer 

to follow the rotating field due to its relatively larger region (Fig. 4.1.3 (b)), and 

eventually produces a cw-hh W1 pushed forward to corner D and a ccw-tt W2 pushed 

backward to junction B after the first half rotating cycle (Fig. 4.1.3 (c)). In the second 

half cycle (Fig. 4.1.3 (d)-(f)), W1 is transported around the nanowire loop, and W2 is also 

driven by the rotating field to pass through ‘horn’ C (Fig. 4.1.3 (e)) and arrive at corner D 

(Fig. 4.1.3 (f)) at the end. Our simulated results show that the critical field to generate ‘1’ 

or ‘0’ strongly depends on the ‘horn’ shape and its size, which can also be noted from  

Fig. 4.1.7-4.1.10 for triangle-shaped ‘horns’ of different sizes as discussed later. Thus, 

two types of transverse DW pairs, presented as ‘1’ and ‘0’ respectively, can be generated 

by a ‘horn’ associated bar-shaped wall generator under ccw rotating magnetic field. 
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Table 4.1 Schematic drawing of nanometer transverse DW logic elements, including the new bit 

definition of ‘1’ and ‘0’, the bar-shaped data generator associated with a triangle or square shape 

‘horn’, the T/2 delay or no-delay NOT gate, the AND gate, and the OR gate. 
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Figure 4.1.3 Simulated magnetic domain structure evolution and unwinding transverse DW 

generation from the bar-shaped data generator associated with a square shape ‘horn’ in one 

loading cycle of ccw rotating magnetic field with amplitude of 0.066xh and 0.04yh  at (a) 

t*=1/4, (b) t*=5/12, (c) t*=1/2, (d) t*=3/4, (e) t*=5/6, and (f) t*=1. A labels the bar, B labels the 

junction, C labels the square shape ‘horn’, and D labels the nanowire corner. W1 and W2 are the 

two unwinding transverse DWs, cw-hh DW and ccw-tt DW, respectively. 

 

4.1.3.2 NOT

Based on our new definition for information bits, the cusp-shaped NOT gate can 

also be used to switch between the two types of DW pairs. Fig. 4.1.4 shows ‘0’ DW pair 

is transformed into ‘1’ DW pair by passing through the NOT gate after one cycle (if 

counted starting from t*=1/2). In the first half cycle (Fig. 4.1.4 (a)-(d)), the cw-hh DW 

W1 is transformed into a cw-tt DW W1’, while in the second half cycle (Fig. 4.1.4 (e)-

(h)), the ccw-tt DW W2 is transformed into a ccw-hh DW W2’. Pinning effect and 

pinning strength introduced by the junction and corner are different for different DW 

chiralities, for example, W1 is more easily to be transported through the NOT gate than 
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W2, as shown by Fig. 4.1.4. Definitely, W1’ and W2’ are ‘1’ type DWs, with only the 

sequence inverted. It is noted that the cusp-shaped NOT gate doesn’t change the DW 

chirality (i.e., cw (ccw) is still cw (ccw) after transformation), but only makes a T/2 delay 

(i.e., hh (tt) is transformed to tt (hh)). Like the submicrometer NOT gate [32, 177], such a 

T/2 delay makes it difficult to be directly integrated with other logic circuits like AND or 

OR. In order to avoid the T/2 delay, direct DW chirality flipping between ‘up’ and  

‘down’ is required. 

 

 

Figure 4.1.4 Simulated magnetic domain structure evolution and unwinding transverse DW pair 

passing through the NOT gate in 1.5 loading cycles of ccw rotating magnetic field with amplitude 

of 0.066xh and 0.04yh  at (a) t*=3/4, (b) t*=5/6, (c) t*=11/12, (d) t*=1, (e) t*=5/4, (f) 

t*=4/3, (g) t*=17/12, and (h) t*=3/2. A and C label the input and output branch of NOT gate, 

respectively, and B labels the NOT gate head. W1 (cw-hh) and W2 (ccw-tt) are the two input 

unwinding transverse DWs, while W1’ (cw-tt) and W2’ (ccw-hh) are the corresponding two 

output unwinding transverse DWs. 

 

As theoretically predicted, periodical chirality flipping associated with velocity 

oscillation due to the spin precession for transverse DWs can be realized by applying 
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external magnetic field or spin-polarized current beyond the Walker threshold. [1, 51] 

Direct observation for the flipping or oscillation for transverse DWs under magnetic field 

[16] or spin-polarized current [36] has been reported. Besides, it is observed recently that 

the chirality of a transverse DW can also be reversed by applying a nanosecond current 

pulse which induces an Oersted field. [176] The transverse DW flipping realized by the 

above three methods can be directly used to switch DW pair types between ‘1’ and ‘0’ 

without causing a T/2 delay. Fig. 4.1.5 shows one example based on our micromagnetic 

simulations, the spin-polarized current induced transverse DW flipping in the nanowire. 

By applying a large current u=2000m/s well above the Walker field, an antivortex with 

large out-of-plane magnetization component at the core begins formed from the bottom 

of the transverse DW (Fig. 4.1.5 (b)), and then moves continuously to the up (Fig. 4.1.5 

(c)-(d)), eventually eliminated at the nanowire edge associated with strong spin wave 

propagation caused by the annihilation of out-of-plane magnetization at the core (Fig. 

4.1.5 (e)), leaving a reversed transverse DW after 1.15ns. 

The proposed NOT gate without T/2 delay requires the current or field pulse to be 

applied to the nanowire circuit, either at the straight conduit or at the loop corner, as 

shown in Tab. 4.1 If applied to the loop corner, the threshold values for DWs with 

different chiralities are also different due to the different pinning effects and pinning 

strengths, but the DW is localized at the corner, which makes the current or field pulse 

applied easily. 
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Figure 4.1.5 Simulated spin-polarized current induced transverse DW flipping process by 

applying a current of u=2000m/s at (a) t=0ns, (b) t=0.41ns, (c) t=0.58ns, (d) t=0.92ns, and (e) 

t=1.15ns. The out-of-plane magnetization component is plot using 3D visualization shown by (a-

2)-(e-2).  

 

4.1.3.3 AND/OR 

For the AND gate, two input branches carrying transverse DW pairs will be joint 

for just one output. Since the ‘1’ and ‘0’ DWs are equivalent, direct use of the ‘Y’-shaped 

AND gate [34] can’t function AND when ‘1’ and ‘0’ meet. Therefore, a bar with 
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magnetization pointing ‘down’ is added to the ‘Y’-shaped gate to break the equivalence. 

Actually, this ‘down’-pointed bar performs a ‘0’-bias to the input DWs, implementing the 

novel AND gate shown in Tab. 4.1 The left-pointing corner at the top end of the bar 

actually prevents the reversal of magnetization within the bar under the rotating field. A 

test circuit is designed for the AND gate by using two data generators associated with 

two different sizes of triangle shape ‘horns’ to write data ‘11’, ‘00’, ‘01’ and ‘10’ as the 

inputs of AND gate. Fig. 4.1.6 shows the resetting process for the initial test circuit state. 

At first, a saturation field along [110]  indicated by the white arrow is applied to the test 

circuit and then removed, and the relaxed magnetic domain structure is shown by Fig. 

4.1.6 (a). It is noted that the magnetization for bar A1 and A2 points ‘down’ as expected, 

but two additional DWs stay at corner C1 and C2. In order to clear the two unwanted 

DWs, a half cycle of ccw rotating field is applied (Fig. 4.1.6 (b)-(c)) to transport them out 

of the circuit, but the magnetization within bar F is reversed shown in Fig. 4.1.6 (c). To 

reverse back the magnetization of bar F without creating unwanted DWs, a moderate 

field along [001] is applied, and finally, the reset process is finished by making 

magnetizations of bar A1, A2 and F point ‘down’, as shown in Fig. 4.1.6 (d). 

For the test of ‘1’ AND ‘1’ ‘1’, ccw rotating field with amplitude of 0.054xh

and 0.04yh  is applied to generate ‘1’ DW pairs from both data generators, as shown by 

Fig. 4.1.7. At first, the ccw-hh DWs W1-1 and W2-1 are generated from bar A1 and A2, 

as shown in Fig. 4.1.7 (b). They are transported around the loop to branch D1 and D2 of 

the AND gate (Fig. 4.1.7 (c)) and meet at the junction E to merge into a whole ccw-hh 

DW which will be transported through E and out of G at the end, as shown in Fig. 4.1.7 
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(d)-(e). After that, the cw-tt DWs W1-2 and W2-2 (Fig. 4.1.7 (e)) are also generated and 

brought to D1 and D2 (Fig. 4.1.7 (f)) to meet and merge into a whole cw-tt DW (Fig. 

4.1.7 (g)) transported through the AND gate at the end (Fig. 4.1.7 (h)). Finally, the 

process for ‘1’ AND ‘1’  ‘1’ is confirmed for the novel AND gate based on our 

simulation results. Since the bar F is ‘0’-bias, magnetization of F is partially reversed 

after the first DW transported through E, but further reversing is prevented by the pinning 

effect of the left-pointing corner at the top end. It is noted that the ‘0’ and ‘1’ DWs are 

generated from B1 and A2, respectively, by applying a rotating field with amplitude of 

0.064xh and 0.04yh  in the last half cycle (Fig. 4.1.7 (e)-(h)) to prepare input DWs 

for the process of ‘0’ AND ‘1’  ‘0’ discussed later. 

 

Figure 4.1.6 (a) The relaxed magnetic domain structure upon removal of a saturating magnetic 

field (white dashed arrow). (b)-(c) Clear-up process in one half loading cycle of ccw rotating 

magnetic field. (d) The relaxed magnetic domain structure upon removal of a magnetic field [0.0, 

-0.065] (white dashed arrow). A1 (A2), B1 (B2) and C1 (C2) label the bar, ‘horn’ and corner of 

the first (second) data generator, respectively. D1 and D2 label the two input branches, E labels 

the junction, F labels the ‘0’-bias bar, and G labels the output of the AND gate. 
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Figure 4.1.7 Simulated process for ‘1’ AND ‘1’ ‘1’ in 1.5 loading cycles of ccw rotating 

magnetic field at (a) t*=1/4, (b) t*=1/2, (c) t*=3/4, (d) t*=8/9, (e) t*=1, (f) t*=5/4, (g) t*=47/36, 

and (h) t*=3/2. W1-1 and W1-2 are the ‘1’ DW pair generated from the first generator, while W2-

1 and W2-2 are the ‘1’ DW pair generated from the second generator.

 

The process for ‘0’ AND ‘0’  ‘0’, as shown by Fig. 4.1.8, is similar with that of 

‘1’ AND ‘1’  ‘1’. Under rotating field with amplitude of 0.07xh and 0.04yh , ‘0’ 

DW pair, cw-hh W1-1 (W2-1) and ccw-tt W1-2 (W2-2), is generated from the triangle 

‘horn’ B1 (B2), as shown by Fig. 4.1.8 (b). W1-1 (W1-2) and W2-1 (W2-2) are driven by 

the rotating field to meet at the junction E and merge into a whole cw-hh (ccw-tt) DW to 

pass through E, as shown by Fig. 4.1.8 (d) (Fig. 4.1.8 (g)). Unlike the process for ‘1’ 

AND ‘1’  ‘1’, the ‘0’-bias bar F is not partially reversed. Rotating field with amplitude 

of 0.07xh and 0.033yh  is applied in the last half cycle (Fig. 4.1.8 (e)-(h)) to prepare 

input DWs for the process of ‘1’ AND ‘0’  ‘0’ discussed later.
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Figure 4.1.8 Simulated process for ‘0’ AND ‘0’ ‘0’ in 1.5 loading cycles of ccw rotating 

magnetic field at (a) t*=5/12, (b) t*=1/2, (c) t*=3/4, (d) t*=31/36, (e) t*=1, (f) t*=5/4, (g) 

t*=17/12, and (h) t*=3/2. W1-1 and W1-2 are the ‘0’ DW pair generated from the first generator, 

while W2-1 and W2-2 are the ‘0’ DW pair generated from the second generator. 

 

For the process of ‘0’ AND ‘1’  ‘0’, as shown in Fig. 4.1.9, the generation of 

input DWs are shown in Fig. 4.1.7 (e)-(h). W1-1 and W2-1 are transported to D1 and D2 

(Fig. 4.1.9 (a)), and then W1-1 passes through the junction E due to the ‘0’-bias of bar F 

(Fig. 4.1.9 (b)), leaving W2-1 pinned at the end of branch D2 by forming a 360o DW  

(Fig. 4.1.9 (c)). After the second DWs W1-2 and W2-2 enter D1 and D2 (Fig. 4.1.9 (d)), 

W2-2 meets the previously pinned W2-1 and annihilates each other (Fig. 4.1.9 (e)), while 

W1-2 passes through the junction E (Fig. 4.1.9 (f)). The whole process indicates that the 

‘0’ DW pair can transport through AND gate due to the ‘0’-bias nature of bar F while the 

‘1’ DW pair will be pinned and finally annihilated in one cycle, confirming the function 

of  ‘0’ AND ‘1’  ‘0’. 
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Figure 4.1.9 Simulated process for ‘0’ AND ‘1’ ‘0’ in 1.5 loading cycles of ccw rotating 

magnetic field at (a) t*=3/4, (b) t*=5/6, (c) t*=1, (d) t*=5/4, (e) t*=47/36, and (f) t*=49/36. W1-1 

and W1-2 are the ‘0’ DW pair, while W2-1 and W2-2 are the ‘1’ DW pair. 

.

Figure 4.1.10 Simulated process for ‘1’ AND ‘0’ ‘0’ in 1.5 loading cycles of ccw rotating 

magnetic field at (a) t*=3/4, (b) t*=5/6, (c) t*=1, (d) t*=5/4, (e) t*=49/36, and (f) t*=3/2. W1-1 

and W1-2 are the ‘1’ DW pair, while W2-1 and W2-2 are the ‘0’ DW pair. 

 

For the process of ‘1’ AND ‘0’  ‘0’, as shown in Fig. 4.1.10, the generation of 

input DWs are shown by Fig. 4.1.8 (e)-(h). Similarly, the ‘0’ DW pair, W2-1 and W2-2, 

can transport through the AND gate due to the ‘0’-bias bar F while the ‘1’ DW pair, W1-

1 and W1-2, will be pinned and finally annihilated in one cycle, confirming the function 

of ‘1’ AND ‘0’  ‘0’ 

Thus, the function of AND has been confirmed by the above four simulation cases 

shown by Fig. 4.1.7-4.1.10, where the ‘0’-bias bar F plays an important role. Since the 

magnetization within the ‘0’-bias bar can be partially reversed, as shown by Fig. 4.1.7 (f), 
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and may be even totally reversed by larger field, in that case, the ‘0’-bias is not 

guaranteed and hence the AND function will be influenced. To absolutely avoid the 

totally reversal under rotating field as to ensure the ‘0’-bias, an ‘S’-shaped bar can be 

introduced. Fig. 4.1.11 (a) shows the steadied AND gate associated with an ‘S’-shaped 

‘0’-bias bar. Fig. 4.1.11 (b)-(e) show the DW propagation around the ‘S’-shaped bar 

under one cycle of ccw rotating field. It is noted that two corners, A and B, with different 

conduct directions, effectively prevent the DW transported out through B under rotating 

field. Therefore, the steadied AND gate associated with an ‘S’-shaped bar will absolutely 

avoid the totally reversal of magnetizations within the bar and hence the ‘0’-bias will be 

always ensured. 

The OR gate shares the same design with AND gate, only with a 180o angle 

rotation, as shown in Tab.4.1 Therefore, there is always a /2 phase difference between 

OR and AND gates. For the OR gate, the magnetization within the bar should still point 

‘down’ to ensure ‘1’-bias instead, which can be realized in the initial reset process the 

same with AND gate shown by Fig. 4.1.6. As is expected, the four processes for ‘0’ OR 

‘0’  ‘0’, ‘1’ OR ‘1’  ‘1’, ‘1’ OR ‘0’  ‘1’, and ‘0’ OR ‘1’  ‘1’ will be the same 

with those for AND gate shown in Fig. 4.1.7-4.1.10, respectively. 
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Figure 4.1.11 (a) Schematic drawing of steadied AND gate with ‘S’-shaped ‘0’-bias bar. 

Simulated transverse DW propagation around the ‘S’-shaped nanowire in one loading cycle of 

ccw rotating magnetic field at (a) t*=1/4, (b) t*=1/2, (c) t*=3/4, and (d) t*=1. A and B label the 

two round corners. 

 

4.1.4 Conclusion 

In conclusion, nanometer transverse-DW-based logic devices have been proposed 

and tested by our micromagnetic simulations. The bar-shaped transverse DW generator 

which produces unwinding DW pairs under rotating magnetic field is introduced to make 

the miniaturized submicrometer logic devices [34] feasible in nanowire circuits by 

avoiding the DW pile-up effect. Adding a triangle or square shape ‘horn’ to the 

transverse DW generator, two types of unwinding DW pairs can be generated and hence 

the information bit ‘1’ and ‘0’ can be defined accordingly, i.e., ‘1’ corresponds to the DW 

pair with their wall magnetizations point ‘up’ (or ‘left’ with respect to the propagation 

direction) while ‘0’ corresponds to the DW pair with their wall magnetizations point 

‘down’ (or ‘right’ with respect to the propagation direction). Based on the new definition, 

NOT and AND/OR gates are proposed. The miniaturized submicrometer cusp-shaped 

NOT gate can also perform NOT function for the new bit definition, but there is still a 

T/2 signal delay which limits its further application. Since magnetic field, spin-polarized 
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current as well as current induced Oersted field are observed to be able to flip the 

chirality of transverse DWs, [16, 36, 176] the no-delay current/field assistant NOT gate 

has been proposed, which can be connected to other logic circuits easily without T/2 

delay. The AND gate is realized by adding a ‘0’-bias bar whose magnetization always 

points ‘down’ to the ‘Y’-shaped nanowire fork. This ‘0’-bias bar prefers ‘0’ DW pair to 

transport but prevents ‘1’ DW pair unless two ‘1’ DW pairs in both branches meet and 

transport together, leading to the AND function confirmed by our simulated results. The 

OR gate is easily implemented just by rotating 180o angle of AND gate, i.e., a /2 phase 

difference between AND and OR exists, but the magnetization with the bar should still 

point ‘down’ to perform a ‘1’-bias instead. The same bit definition is used for our 

nanometer data generator and logic gates including NOT and AND/OR, unlike the 

submicrometer DW logic [34] for which different bit definitions are used for data 

generator and logic gates. Thus, the nanometer magnetic transverse-DW-based logic 

elements present more advantages than the submicrometer DW logic, and provide an 

alternate route to traditional electronics logic. 
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4.2 Generator and Shift Register Based on 360  Domain Walls 

4.2.1 Introduction 

360  domain walls are common in magnetic thin films and were observed as early 

as in 1960s in both single- and multi-layer films. [181-183] 360  domain walls were 

considered troublesome in magnetic films because they significantly influence 

magnetization processes while are difficult to remove due to their stability. [184-187] 

However, the usually unwanted 360  domain walls in magnetic films recently attract 

attentions for their potential new functionalities in miniaturized devices, for example, 

sensor application in patterned magnetic films, [188] magnetic random access memory 

cell in nanorings, [189, 190] and magnetic memory and logic device in multilayer stripes. 

[191] For the applications of 360  domain walls, reliable production and accurate control 

of them are necessary. This paper presents a micromagnetic simulation study of 360  

domain wall behaviors in planar nanowire loops. In particular, it is shown that a nanowire 

loop with a shape-isotropic (round-shaped) wall generator at one end and a shape-

anisotropic (bar-shaped) wall stopper at the other end functions like a data storage stack: 

360  domain walls are generated and pushed into stack under rotating field before 

overflow, while popped out and annihilated when field rotating direction is inverted until 

underflow. The stack capacity is determined by the total length of the nanowire loop.  

A 360  domain wall generator was previously designed by spin valve patterning, 

which is composed of a circle or octagon-shaped generator, a wedge-shaped stripe, and a 

long and thin stripe with fixed magnetization. [188] The generation of one 360  domain 

wall is demonstrated, while to produce more walls, a shielding layer is required for some 
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part of the generator, which limits its applications. [188] In this section, a simple wall 

generator and storage stack is designed in the form of a nanowire loop with a shape-

isotropic (round or hexagonal) wall generator at one end and a shape-anisotropic (bar-

shaped) wall stopper at the other end as shown in Fig. 4.2.1, which can generate, store 

and annihilate multiple 360  domain walls simply via in-plane rotating magnetic field. 

The round-shaped generator serves as a nucleation site for domain walls under rotating 

field due to its shape isotropy, while the bar-shaped stopper functions as a barrier to 

domain walls due to its shape anisotropy. Such a nanowire loop generates one 360  

domain wall per loading cycle of the counterclockwise-rotating magnetic field; the 

generated 360  domain walls are pushed into the nanowire loop and stored together, 

coexisting stably; the stored 360  domain walls can be annihilated one by one simply by 

inverting the magnetic field rotation direction to clockwise. The simulation results of 

detailed 360  domain wall behaviors in the nanowire are discussed in next section. 

Besides, enlightened by the design of 360  domain wall generator operated by continuous 

rotating field, a shift register based on the presence and absence of a 360  domain wall in 

a winding planar nanowire operated by more complicated rotating field paths is proposed, 

which will be discussed in Sec. 4.2.3. All the simulation details for the two proposed 

devices can be found in Sec. 4.1. 

 

4.2.2 360  Domain Wall Generator 

The simulation starts with the magnetic domain structure in Fig. 4.2.1 (b), which 

is the relaxed state after removal of a saturating magnetic field H/Ms=(0.15, -0.15) as 
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shown by the white dashed arrow. As expected, the magnetization vectors in the 

nanowire loop align along the length direction of the wire sections complying with the 

shape anisotropy, pointing to right in horizontal sections and down in vertical sections as 

well as in the wall stopper J, as preferred by the pre-applied saturating magnetic field. As 

a result, four 180  Néel walls are formed respectively at corners B, D, F and H. It is noted 

that these 180  domain walls in the nanowire loop fall into two types based on 

magnetization vector direction in the wall center: pointing inward towards the loop center 

(at B and F) or outward (at D and H), which are respectively of tail-to-tail and head-to-

head configuration; for convenience the former will be called (-) type while the latter (+) 

type It is also noted that two 180  domain walls of different types combine to form one 

360  domain wall. Therefore, to form a 360  domain wall, two 180  domain walls of 

different types must be generated in sequence and subsequently brought into contact, as 

the designed unit in Fig. 4.2.1(a) does under rotating field. Now an elliptical 

counterclockwise rotating magnetic field H/Ms=[0.04cos(2 t*), 0.016sin(2 t*)] is 

applied to the initial domain structure in Fig. 4.2.1(b). For the given design, a 

counterclockwise rotating field nucleates a pair of (+) and (-) 180  domain walls per 

cycle from the hexagonal wall generator A and transports them away around the bending 

corner B into the nanowire loop. An elliptical rotating field with a smaller vertical 

component is used in order to prevent domain switching in the wall stopper J, which 

ensures to block domain walls arriving along the nanowire section IJ. For clarity, the 

domain walls generated during the nth loading cycle will be called (n+) and (n-) with +/- 
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signs indicating the wall types. The four pre-existing domain walls at corners B, D, F and 

H are therefore (0-), (0+), (0-) and (0+), respectively. 

 

 

Figure 4.2.1 (a) Planar nanowire loop with a hexagonal wall generator and a bar-shaped wall 

stopper, as patterned from a magnetic thin film on nonmagnetic substrate, under in-plane rotating 

magnetic field Hex. (b) The relaxed magnetic domain structure upon removal of a saturating 

magnetic field (white dashed arrow). Small white arrows and color contours within the nanowire 

represent magnetization direction. A and J label the wall generator and stopper, respectively, and 

B-I label the eight bending corners of the nanowire in the order from the wall generator to the 

wall stopper. 

 

Fig. 4.2.2 shows detailed magnetization process during the first two loading 

cycles (t*=0-2), generating two 360  domain walls that are pushed into the nanowire and 

stored there. Consider the first loading cycle (t*=0-1) in Fig. 4.2.2(a)-(d). In the first 

quarter of the loading cycle (t*=0-0.25) in Fig. 4.2.1(b) and Fig. 4.2.2(a), the four pre-

existing 180  domain walls at B, D, F and H move counterclockwise to the next corners 

C, E, G and I. In the second quarter of the loading cycle (t*=0.25-0.5) in Fig. 4.2.2(a) and 

(b), in addition to the further counterclockwise transportation of the four pre-existing 



114 

 

180  domain walls to the next corners D, F, H and the wall stopper J, a new 180  domain 

wall (1+) is formed by the generator A and pushed to corner B. In the third quarter of the 

loading cycle (t*=0.5-0.75) in Fig. 4.2.2(b) and (c), the existing 180  domain walls keep 

moving to the next corners towards the wall stopper J. In the fourth quarter of the loading 

cycle (t*=0.75-1) in Fig. 4.2.2(c) and (d), in addition to continuous movement of existing 

180  domain walls to the next corners, a new 180  domain wall (1-) is formed by the 

generator A and pushed to corner B. Therefore, during the first loading cycle, a pair of 

(1+) and (1-) 180  domain walls are generated, which together with the pre-existing 

domain walls move in the nanowire loop in the same counterclockwise direction as the 

rotating field, and the pre-existing (0+) and (0-) 180  domain walls hit the wall stopper J 

in sequence and combine there to form the first 360  domain wall. As a net result of the 

first loading cycle, one 360  domain wall is generated, and the unit is ready to repeat the 

same operations for the second loading cycle shown in Fig. 4.2.2(e)-(h). It is  noted that 

during the fourth quarter of the loading cycle, while the (0-) domain wall at corner I in 

Fig. 4.2.2(c) moves counterclockwise towards the wall stopper J, the (0+) domain wall 

blocked by the wall stopper J moves clockwise in opposite direction towards corner I, 

leading to a collision between a pair of (0+) and (0-) domain walls and their combination 

to form the first 360  domain wall in the nanowire loop that is stored in section IJ in Fig. 

4.2.2(d). The bar-shaped wall stopper J does not undergo domain switching under the 

elliptical rotating magnetic field due to its shape anisotropy. It thus stops domain wall 

motion in the second and third quarters of the loading cycle while repels domain wall in 
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the fourth quarter, as shown in Fig. 4.2.2(b)-(d), facilitating 180 domain wall 

combination and thus 360  domain wall formation.  

 

Figure 4.2.2 Simulated magnetic domain structure evolution and domain wall generation for the 

first two loading cycles of counterclockwise rotating magnetic field at (a) t*=0.25, (b) t*=0.5, (c) 

t*=0.75, (d) t*=1, (e) t*=1.25, (f) t*=1.5, (g) t*=1.75, and (h) t*=2.0. The white solid arrow 

indicates the elliptical rotating field direction. Small white arrows and color contours within the 

nanowire represent magnetization direction. N indicates the number of 360  domain walls stored 

in the nanowire. 

 

The second loading cycle (t*=1-2), as shown in Fig. 4.2.2(e)-(h), repeats the same 

magnetization process as in the first loading cycle (t*=0-1): two 180  domain walls 2(+) 

and 2(-) are generated respectively in the second quarter in Fig. 4.2.2(f) and the fourth 

quarter in Fig. 4.2.2(h) of the loading cycle, and the second 360  domain wall is formed 

in Fig. 4.2.2(h). Such a process can be repeated under continuous operation of rotating 

magnetic field to form multiple 360  domain walls. Simulation examples of the generated 

and stored five, ten and twenty-eight 360  domain walls are shown in Fig. 4.2.3. It is 
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found that one loading cycle generates one new 360 domain wall if the domain wall 

density is not high thus the nanowire loop still has free space for a newly formed domain 

wall to be pushed in; once full, a newly generated domain wall cannot be transported 

away from the generator A because it is blocked by a full array of domain walls stored in 

the nanowire loop. Such a situation resembles an overflow status of a data storage stack. 

The stack capacity is determined by the total length of the nanowire loop. Just like in the 

above discussed fourth quarter of the loading cycle in Fig. 4.2.2(d), the blocked domain 

walls would move backwards under the rotating magnetic field towards the generator A 

thus interfering with the generation of the next domain wall; as a result, formation of a 

new 360  domain wall requires increasingly more loading cycles, and finally reaches 

saturation state shown in Fig. 4.2.3(c), where twenty-eight 360  domain walls are densely 

stored in the nanowire loop between the wall generator A and wall stopper J. In addition 

to an effective generation and storage of 360  domain walls as demonstrated in Figs. 

4.2.2 and 3, annihilation of 360  domain walls in the nanowire loop can be performed by 

simply inverting the magnetic field rotation direction to clockwise, as shown in Fig.  

4.2.4. 

 

Figure 4.2.3 Simulated generation and storage of multiple 360  domain walls under multiple 

cycles of counterclockwise rotating magnetic field at (a) t*=5, (b) t*=10, and (c) t*=59.75.  
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By inverting the rotating magnetic field to clockwise direction, 

H/Ms=[0.04cos(2 t*), -0.016sin(2 t*)] is now applied to the nanowire loop containing 

ten 360  domain walls in Fig. 4.2.3(b). The simulated magnetic domain evolution and 

domain wall annihilation after the first, fifth and ninth loading cycles are shown in Fig. 

4.2.4. Comparing with the initial domain structure in Fig. 4.2.3(b), each loading cycle 

annihilates one 360  domain wall from the nanowire loop. Detailed domain evolution 

reveals that, under clockwise rotating magnetic field, the wall generator A does not 

generate new domain walls; instead it annihilates the arriving domain walls transported 

along the nanowire section BA. Unlike counterclockwise rotating field that combines 

180  domain walls to form new 360  domain walls, clockwise rotating field dissociates 

360  domain walls into 180  domain walls and releases one 180  domain wall per half 

loading cycle (thus a whole pair per loading cycle). The released 180  domain walls 

move clockwise towards the wall generator A and are annihilated there. This behavior 

resembles the pop out of data from a storage stack; domain walls are popped out of the 

nanowire and annihilated at the wall generator when field rotating direction is inverted 

until underflow.  

Simulation results show that by switching the rotation direction of the magnetic 

field between counterclockwise and clockwise, generation, storage and annihilation of 

360  domain walls can be easily performed with the designed nanowire loop. Such a unit 

behaves like a data generator and storage stack. The shape isotropy of the wall generator 

(round shape) facilitates magnetization rotation to generate new domain walls under 

counterclockwise rotating field or annihilate existing domain walls under clockwise 
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rotating field. The shape anisotropy of the wall stopper (bar shape) prevents domain 

switching under rotating magnetic field to block domain walls in the nanowire loop. 

Thus, domain walls are confined within the nanowire loop to participate in the 

association (combining) and dissociation reactions to form or annihilate 360  domain 

walls. The nanowire bending corner B adjacent to the wall generator A plays an 

important role in pushing domain walls into the nanowire loop and storing multiple 360  

domain walls, while the maximum number of 360  domain walls stored in the unit is 

limited by the total length of the nanowire loop. 

 

Figure 4.2.4 Simulated annihilation of 360  domain walls under clockwise rotating magnetic 

field at (a) t*=1.25, (b) t*=5.25, and (c) t*=9.25.  

 

4.2.3 360  Domain Wall Shift Register 

As discussed in Sec. 4.2.2, 360  domain walls can be generated from the isotropic 

wall generator under counterclockwise rotating magnetic field while eliminated under 

clockwise field. If the generated 360  domain walls can be steadily shifted one by one 

under the external field, the shift register can be therefore constructed. Unfortunately, it is 
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even impossible for a 360 domain wall to move a net distance in a straight nanowire 

under external magnetic field of any form. However, our simulation results show that the 

winding nanowire geometry makes the shifting of 360  domain walls possible. Fig. 4.2.5 

(a) shows the nanowire geometry of our 360  domain wall shift register design which 

includes an isotropic wall generator followed by a long winding nanowire which will 

store the 360  domain walls generated by the wall generator. The information state ‘0’ 

and ‘1’ are defined by the absence and present of a 360  domain wall stored in the 

nanowire corner, as shown by Fig. 4.2.5 (b) and (c), respectively. 

 

 

Figure 4.2.5 (a) The relaxed magnetic domain structure upon removal of a saturating magnetic 

field (white dashed arrow). (b) Definition of state ‘0’ (without 360o domain wall) and ‘1’ (with 

360o domain wall). 

 

The data writing process can be completed by applying the magnetic field in a 

complicated operation path described in Fig. 4.2.6. It is noted that the operation paths 

actually include a circular path and an ellipse path, and the only difference between 

writing ‘0’ and ‘1’ is attributed to the circular path, i.e., larger field amplitude is required 
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to generate the 360 domain wall. In spite of writing ‘1’ or ‘0’, both operation paths 

ensure that the stored 360  domain walls will be shifted to the next corner after one 

operation cycle. 

 

 

Figure 4.2.6 Applied magnetic field amplitudes and the operation paths to write ‘0’ and ‘1’. 

 

Fig. 4.2.7 shows the magnetization process of writing three information bits ‘1-1-

0’ to the shift register under three operation cycles of magnetic field applied in a certain 

path described by Fig. 4.2.6. For the initial empty state shown in Fig. 4.2.7 (a), it can be 

realized by initially applying a saturation field pointing downward and then removing it, 

as shown in Fig. 4.2.5 (a). It is noted that the corner adjacent to the wall generator is not 

used as information storage. 

Besides of the writing process, the erasing process can also be realized by 

applying the magnetic field according to the path described in Fig. 4.2.8 (a). For the 

elimination path, the amplitude is the same with that to write ‘0’, but the rotating 
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direction is quite different. Fig. 4.2.8 (b) and (c) show the magnetization process of 

erasing bit ‘0’ from ‘1-1-0’ stored in the shift register. 

 

Figure 4.2.7 The magnetization process of writing ‘1-1-0’ into the empty shift register according 

to the magnetic field operation paths in Fig. 4.2.6.

 

 

Figure 4.2.8 (a) Applied magnetic field amplitudes and the operation paths to eliminate data from 

shift register. (b)-(c) The magnetization process of erasing the bit ‘0’ from the shift register 

storing ‘1-1-0’ under the magnetic field operation paths in (a). 



122 

 

4.2.4 Conclusion 

In summary, micromagnetic simulation study demonstrates that a planar magnetic 

nanowire loop with a shape-isotropic wall generator at one end and a shape-anisotropic 

wall stopper at the other end functions like a data storage stack: 360  domain walls are 

generated and pushed into stack under rotating field before overflow while popped out 

and annihilated when field rotating direction is inverted until underflow. The stack 

capacity is determined by the total nanowire loop length. Enlightened by the 360  domain 

wall generator, the 360  domain wall shift register incorporating a shape-isotropic wall 

generator and a winding nanowire is also proposed with its function confirmed by our 

simulation results. Unlike the nanowire loop, 360  domain walls generated by the wall 

generator are stored within the nanowire corner, which makes the subsequent reading 

operation easier to be implemented. In addition to providing insights into 360  domain 

wall behaviors in planar magnetic nanowires, the simple nanowire structures can be 

integrated into magnetic circuits as an operation unit for 360  domain wall generation and 

storage, with potential applications in miniaturized magnetoelectric devices.  
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4.3 Altering Critical Depinning Current via Domain Wall Pile-up in Magnetic 

Nanowires 

4.3.1 Introduction 

Domain walls in magnetic nanowires attract great attentions for their applications 

in advanced logic and memory devices [21, 34]. Manipulation of domain walls by 

electric current is an essential component of domain wall devices and is under intensive 

study [19, 192]. Pinning and depinning of domain walls is a critical issue for domain wall 

manipulation where pinning sites are usually turning corners, bends, joints, and notches 

in magnetic circuits [193, 194]. Reducing the critical depinning current is important for 

technological application, in order to lower the power and to avoid increased nanowire 

temperature hindering reliable domain wall manipulation [195]. Finding an effective 

means to reduce and tune the critical depinning current will have a significant impact on 

the operation of domain wall devices. In this paper we present a micromagnetic 

simulation study of current-driven domain wall behaviors in thin film-patterned planar 

magnetic nanowires, which demonstrates a new mechanism for substantial reduction and 

effective tuning of the critical current for depinning domain walls in magnetic circuit. It 

is worth noting that micromagnetic simulation has been widely used to understand 

various factors that affect the critical current for domain wall depinning in magnetic 

nanowires, including edge roughness [196, 197], thermal perturbation [198], magnetic 

anisotropy [155] and saturation magnetization [199], applied magnetic field [200], and 

notch shape [201]. The new mechanism revealed in this work is based on domain wall 



124 

 

pile-up, in analogy to the well-known dislocation pile-up mechanism responsible for the 

Hall-Petch effect in mechanical strength. 

Since the pinning strength of a pinning site depends on its geometrical shape, the 

depinning current can be modified by changing the geometrical shape of the pinning site. 

For example, decreasing the curvature of a bend would reduce its pinning strength [194] 

and thus lower the critical depinning current. However, changing geometrical shape is 

constrained by other functional requirements of the pinning site being a part of the 

magnetic circuit, thus the changeable range of the critical depinning current is limited. 

Here we show that utilizing domain wall pile-up enables not only a drastic reduction in 

the critical depinning current but also an effective programing of the current-driven 

pinning and depinning operations of domain walls. As shown in Fig. 4.3.1(a), a domain 

wall pile-up is formed in magnetic nanowire when a set of 180  and/or 360  domain 

walls of the same chirality are pushed against a barrier (an s-shape pinning site here). For 

convenience of discussion, such a domain wall pile-up will be named after its total 

magnetization rotation angle, n -pileup, where n is an integer greater than 2 (n=1 and 2 

correspond respectively to 180  and 360  domain wall). A 360  domain wall is highly 

stable [186] unless an antiparallel magnetic field is applied, under which it dissociates 

into two 180  domain walls. Unlike stable 180  domain wall and relatively stable 360  

domain wall [191], an n -pileup is not stable under magnetic field, dissociating into a set 

of discrete 360  and 180  domain walls, as exemplified in Fig. 4.3.1(b). However, an n -

pileup under spin-polarized current does not dissociate, but instead moves as a whole in 

the nanowire, as demonstrated in Fig. 4.3.1(c). When the current-driven motion of an n -
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pileup encounters a barrier in its moving direction, interesting domain wall pinning and 

depinning phenomena take place, as will be discussed in the following. It is worth noting 

that a set of 180  and/or 360  domain walls of the same chirality (needed for formation of 

domain wall pile-up) can be conveniently generated in magnetic nanowires [202-204]. 

 

 

Figure 4.3.1 Micromagnetic simulation of domain wall pile-up. (a) A 6 -pileup near an s-shape 

bend. (b) Dissociation of 6 -pileup into two 180  and two 360  domain walls under magnetic 

field. (c) Current-driven motion of 6 -pileup under spin-polarized current. Small white arrows 

and color contours within the nanowire represent magnetization direction.  

 

4.3.2 Micromagnetic modeling 

Before discussing the important role of domain wall pile-up in current-driven 

domain wall depinning in nanowires, we first describe the micromagnetic simulation 

method used in this study. In micromagnetic modeling, magnetic domain structure is 
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described by the magnetization direction unit vector field m(r), which is set to zero 

outside the magnetic nanowire. The evolution of the magnetic domain structure driven by 

spin-polarized current and magnetic field is described by the modified Landau-Lifshitz-

Gilbert equation [196]:  

eff ( ) ( )m H m m m u m m u m( )eff ( )eff ( )( )m eff ( )eff ( ) ,   (4.3.1) 

where  is the gyromagnetic ratio,  the damping parameter,  the nonadiabatic spin-

transfer torque coefficient, Heff the effective magnetic field, and u the electron motion 

velocity vector. The effective magnetic field is determined by the variational derivative 

of the free energy with respect to the magnetization vector field (i.e., Heff=dF/dm), which 

is a sum of exchange energy, magnetostatic energy, and external magnetic energy [20]:  

2 3( )F A grad d rm r +
2 3

20
3 ( )

2 (2 )
sM d k n m k 2( )m( ex 3

0 ( )sM d rH m r , (4.3.2) 

where A is the exchange stiffness constant, 0  the permeability of vacuum, Ms the 

saturation magnetization, Hex the external magnetic field,  the principal value integral 

excluding the point 0k , 3( ) ( ) ie d rk rm k m r( )( )m( ) , and kkn . The electron motion 

velocity vector is proportional to the electrical current density J and determined by 

u(r)=J(r)Pg B/2eMs, where P is the polarization rate of the current and the factor 

g B/2eMs=7 10-11 m3/C for permalloy [196]. In the simulations, Eq. (4.3.1) is 

numerically solved for a given magnetic field and electric current condition in a magnetic 

nanowire of given geometry. A 432 432 1 computational cell with grid size of 4nm is 

used for the patterned thin film of thickness D=4nm, and nanowires with width W=80nm 

are considered in the simulations. The material parameters of permalloy Ni80Fe20 are used 
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in the simulations: Ms=860kA/m and A=1.3 10-11 J/m [191], and =0.02 and =0.04 

[196].  

 

4.3.3 Results and Discussion 

 

 

Figure 4.3.2 (a) Planar nanowire of patterned magnetic thin film on nonmagnetic substrate. 

Simulated generation of 360  domain walls after (b) 1 cycle and (c) 10 cycles of in-plane 

counterclockwise rotating magnetic field Hex. 

 

Computer simulation starts from the generation of multiple domain walls of the 

same chirality to be used for formation of domain wall pile-up. A magnetic nanowire 

shown in Fig. 4.3.2(a) is considered, which combines an s-shape bend as pinning site and 

a nanowire loop as domain wall generator [196]. Under counterclockwise rotating 

magnetic field, one 180  domain wall is generated per half cycle in the alternating 

sequence of head-to-head and tail-to-tail types. All the generated domain walls possess 

the same chirality (counterclockwise) which is determined by the rotating direction of the 

applied magnetic field. Under continuously rotating magnetic field, the generated 180  

domain walls propagate along the nanowire loop away from the wall generating element 

in the center toward the s-shape bend which stops them from propagating further. This 
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process leads to the formation of one 360  domain wall per full cycle of the rotating 

magnetic field by conjoining a pair of neighboring 180  domain walls. The number of 

360  domain walls increases with the number of magnetic field cycles as shown in Fig. 

4.3.2(b) and (c) respectively for one loading cycle (generating one 360  domain wall) and 

ten loading cycles (generating ten 360  domain walls). Reversing the magnetic field 

rotating direction reduces the number of domain walls in the nanowire loop by one 360  

domain wall per full cycle of clockwise rotating magnetic field, providing an effective 

means to control the number of domain walls in the nanowire [196]. The detailed 

mechanism of domain wall generation, annihilation and storage in such a nanowire 

design has been studied in our previous work[196]. With a set of domain walls of the 

same chirality in the nanowire, we consider next the formation of domain wall pile-up at 

pinning site via current-driven domain wall motion. 

 

 

Figure 4.3.3 (a) Current crowding in s-shape bend; magnitude and direction of electron motion 

velocity vector are visualized by color contours and streamlines. (b) 6 -pileup formed from three 

separated 360  domain walls under uappl=100m/s (top) and its relaxation at uappl=0m/s (bottom); 

W1-W6 label the six wall elements each providing 180  magnetization rotation within the pile- 

up. 
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Fig. 4.3.3(a) shows a section of the nanowire near the s-shape bend where the 

current-driven domain wall pinning and depinning behaviors are to be studied. Electrons 

enter the nanowire at position A and exit at position B, passing through the s-shape bend. 

The current density distribution is solved using the phase field method reported 

previously [205]. The corresponding electron motion velocity vector field is shown by 

color contours for the magnitude and streamlines for the direction. An inhomogeneous 

current density distribution develops in a non-straight conducting nanowire. Fig. 4.3.3(a) 

shows the simulated current crowding at the s-shape bend. Current crowding would 

influence domain wall depinning behavior as will be analyzed later. Under the applied 

spin-polarized current that yields electron motion velocity uappl=100m/s with the local 

distribution u(r)/uappl shown in Fig. 4.3.3(a), Eq. (4.3.1) is solved for the magnetic 

nanowire holding three separated 360  magnetic domain walls generated by rotating 

magnetic field as in Fig. 4.3.2(c). Hereafter, the current-driven domain wall motions are 

studied under zero external magnetic field. The simulation results show that all three 

360  magnetic domain walls are driven by current to move toward the s-shape bend then 

are stopped there (i.e., pinning), and eventually collide into a 6 -pileup pushing against 

the s-shape bend as shown in the upper part of Fig. 4.3.3(b). The individual wall elements 

each providing 180  magnetization rotation within the pile-up are labeled W1 to W6 in 

the order of their positions. When the current is removed, the 6 -pileup remains but 

relaxes and becomes wider, as shown in Fig. 4.3.1(a) and also in the lower part of Fig. 

4.3.3(b) for comparison. As aforementioned, the 6 -pileup dissociates under magnetic 

field while moves away from the s-shape bend as a whole upon reversal of the current 
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direction, as shown in Figs. 4.3.1(b) and (c), respectively. To push domain walls through 

the s-shape bend (i.e., depinning), a higher electric current must be applied, leading to 

complicated pinning and depinning domain wall behaviors as discussed next. 

 

 

Figure 4.3.4 Simulated domain wall pinning and depinning process at the s-shape bend under 

increasing current: (a) uappl=150m/s, (b) uappl=175m/s, (c) uappl=200m/s, (d) uappl=250m/s, (e) 

uappl=350m/s, and (f) uappl=500m/s. (g) Dependence of the critical depinning current ucr on the 

number of domain walls n in the pile-up. 

 

Fig. 4.3.4 shows the simulated domain wall pinning and depinning behaviors as 

the current increases. The s-shape bend is composed of two oppositely curved segments: 

the lower segment turns clockwise while the upper segment counterclockwise. As will be 

explained, the lower segment acts as a potential barrier to block domain walls from 

entering the s-shape bend while the upper segment acts as a potential well that retains 

domain walls from exiting the bend. At uappl=150m/s shown in Fig. 4.3.4(a), the first wall 

(W1) enters the bend leaving behind the rest of walls (W2-W6) in the pile-up; it passes 

through the lower segment to reach the upper segment and is pinned there. At 

uappl=175m/s in Fig. 4.3.4(b), the second wall (W2) follows the same path into the s-

shape bend and joins W1. At uappl=200m/s in Fig. 4.3.4(c), the third wall (W3) follows 

again the same path into the s-shape bend and joins W2 while W1 is pushed out of the 
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bend into the upper straight segment beyond the s-shape bend. In the same manner, when 

the current is further increased to uappl=250m/s and 350m/s in Fig. 4.3.4(d) and (e), the 

fourth wall (W4) and fifth wall (W5) respectively enter the s-shape bend while W2 and 

W3 are pushed out of the bend into the upper straight segment. Now three walls (W1,  

W2, W3) have been transported into the upper straight segment after passing through the 

s-shape bend, and the rest two walls (W4, W5) are pinned inside the s-shape bend while 

the last wall (W6) remains blocked from entering the s-shape bend. When the current is 

further increased to 500m/s in Fig. 4.3.4(f), W4 is pushed out of the s-shape bend while 

W5 is still pinned inside and W6 is still blocked from entering the s-shape bend. This 

process demonstrates that the critical current for depinning domain walls of an n -pileup 

strongly depends on the number of domain walls, n, in the pile-up. For example, 

depinning wall W1 to enter the s-shape bend requires uappl=150m/s for n=6 in Fig. 4.3.4 

(a) while uappl=500m/s is not high enough for depinning wall W6 for n=1 in Fig. 4.3.4(f). 

To depin a wall to exit the s-shape bend, it requires two walls inside the s-shape bend. 

For example, uappl=200m/s can push W1 out when there is another wall behind inside the 

s-shape bend as shown in Fig. 4.3.4(c) while uappl=500m/s is not high enough to push 

wall W5 out when it is the only wall pinned inside the s-shape bend as shown in Fig. 

4.3.4(f).  

To quantitatively determine the dependence of the critical current (ucr) on the 

number of walls (n) in the pile-up, systematic simulations are performed by considering 

six cases of different domain wall pile-ups with n=1, 2, …, 6, respectively. Fig. 4.3.4(g) 

presents the simulation results of ucr that is required to depin the first wall of the pile-up 

to enter the s-shape bend. It is shown that the dependence of the critical current on the 
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number of walls in the pile-up approximately follows an inverse linear relationship of ucr 

~ 1/n (or 1/ucr ~ n). This result can also be understood by analyzing the pinning force to 

the pile-up and the interaction forces among the individual domain walls in the pile-up, 

using the force balance equation pin 0u f  from the simple one-dimensional 

domain wall motion model [197] where the driving force from the current is balanced by 

the pinning force pinf  for one static domain wall with width parameter of . For the case 

of n=1 in Fig. 4.3.4(f), W6 experiences the current-induced driving force u  to the 

left, which is balanced by the pinning force caused by the barrier at the entrance of the s-

shape bend. When the current is increased to overcome the barrier of strength 0f , W6 

would be depinned and move into the s-shape bend, and the critical current is 

cr 0( 1)u n f  as determined by the force balance equation. For the case of n=2 in 

Fig. 4.3.4(d), W6 experiences the current-induced driving force u  to the left and 

the balancing wall-wall interaction force W6f u  to the right exerted by W5; on 

the other hand, W5 experiences the current-induced driving force u  to the left and 

the wall-wall interaction force W6f u  to the left exerted by W6, and their sum is 

balanced by the pinning force pinf  from the barrier. Therefore, the critical current 

required to overcome the barrier of strength 0f  is now cr 0( 2) 2u n f , one half  

of cr ( 1)u n . Following the same procedure, it is shown that the critical current for an n -

pileup is cr 0( ) ~1u n n f n , in agreement with the simulation results shown in Fig. 

4.3.4(g). In other words, each individual domain wall in the n -pileup contributes to the 
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front domain wall a current-induced driving force of u  through wall-wall 

interaction force, which effectively reduces the critical current by a factor of n. Such a 

strong dependence of ucr ~1/n offers an effective means to drastically reduce and tune the 

depinning current by simply controlling the number of walls in a pile-up. 

As the pinning strength of a curved nanowire segment depends on its curvature 

[194], the curvatures of the lower and upper segments of the s-shape bend can be 

respectively modified to further tailor its pinning effect. Fig. 4.3.5(a) shows the domain 

wall structures of head-to-head and tail-to-tail 180  domain walls of counterclockwise 

chirality in straight nanowire segment, as generated by the rotating magnetic field in Fig. 

4.3.2. For both types, domain wall width is not uniform across the planar nanowire: wider 

on the upper edge and narrower on the lower edge, exhibiting an upright bowl shape 

[206]. Due to such asymmetric domain wall structure, curving the nanowire upward and 

downward would result in different changes in domain wall structure and energy. For 

example, upward curvature shortens the upper edge and lengthens the lower edge 

opposing the natural bowl-shaped domain wall, while downward curvature lengthens the 

upper edge and shortens the lower edge accommodating the natural bowl-shaped domain 

wall. The former case corresponds to an increased magnetization rotation angle ( + ) 

and increased domain wall energy ( E>0), as shown in Fig. 4.3.5(b) compared to Fig. 

4.3.5(a); the latter case, on the other hand, corresponds to a decreased magnetization 

rotation angle ( - ) and decreased domain wall energy ( E<0), as shown in Fig. 4.3.5(c) 

compared to Fig. 4.3.5(a). While Fig. 4.3.5(b) and (c) show the effects of nanowire 
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curvature on domain wall structure and energy of head-to-head type of counterclockwise 

chirality, the same effects are also observed in tail-to-tail type of the same chirality. 

 

 

Figure 4.3.5 Domain wall structures in a straight nanowire segment (a), and two oppositely 

curved nanowire segments with (b) increased domain wall width and energy and (c) reduced 

domain wall width and energy. Small white arrows represent magnetization vectors and color 

contours represent their components parallel to the domain wall. 

 

Due to an increased domain wall energy ( E>0) shown in Fig. 4.3.5(b), the lower 

segment of the s-shape bend in Fig. 4.3.4 acts as a potential barrier [194], blocking 

domain walls in the lower straight nanowire from entering the bend; and due to a 

decreased domain wall energy ( E<0) shown in Fig. 4.3.5(c), the upper segment of the s-

shape bend in Fig. 4.3.4 acts as a potential well [194], pinning domain walls inside the 

bend from exiting into the upper straight nanowire. Therefore, with the lower segment 

being a potential barrier and the upper segment being a potential well, the s-shape bend 

serves as pinning element to domain wall motions in the nanowire, as observed in Fig. 
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4.3.4. Domain wall energy depends on both the curvature and the width of the nanowire. 

When the nanowire width is much smaller than the radius of curvature, the dependence of 

domain wall energy on the curvature can be described by a simple relationship 

| E|~2 A/R, where A is the exchange stiffness constant and R the radius of curvature. 

Correspondingly, the critical depinning current required to overcome such an energy 

barrier would show a similar proportional dependence on the curvature, Jcr~1/R. When 

the radius of curvature is comparable to the width of the nanowire, the domain wall 

energy change and the critical depinning current would deviate from this simple linear 

dependence on the curvature 1/R, which can be evaluated numerically by computer 

simulations; nevertheless, the critical depinning current would increase when the 

curvature increases. Figure 4.3.6 shows the influence of the bend curvature on domain 

wall pinning strength by considering two s-shape bends of different curvatures, 

1/R=1/80nm-1 and 1/160nm-1 (R being the radius of the nanowire centerline); the former 

has a higher curvature and is the same as in Fig. 4.3.4, while the latter has a smaller 

curvature thus is bigger in size. The simulation starts with a pinned 360  domain wall in 

the lower straight nanowire which consists of two wall elements, W5 and W6, as shown 

in Fig. 4.3.4(d), and uappl=400m/s is applied. For the smaller s-shape bend in Fig. 4.3.6(a), 

as expected from the results in Figs. 4.3. 4(e) and (f), the first wall passes through the 

lower segment to enter the s-shape bend and is subsequently pinned inside by the upper 

segment, while the second wall remains blocked in the lower straight nanowire. For the 

larger s-shape bend in Fig. 4.3.6(b), both walls pass through the lower and upper 

segments of the s-shape bend and move into the upper straight nanowire. It shows that the 
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critical depinning current for the larger s-shape bend is lower than 400m/s, compared 

with that higher than 500m/s for the smaller s-shape bend.  

 

 

Figure 4.3.6 Domain wall behaviors under uappl=400m/s at two s-shape bends of different 

curvatures: (a) 1/R=1/80nm-1 and (b) 1/R=1/160nm-1. 

 

Finally, pinning sites (turning corners, bends, joints, and notches) involve certain 

geometrical shape changes that usually cause current crowding (heterogeneous current 

density distribution). For example, the current density is high near D and G while low 

near E and F positions in the s-shape bend in Fig. 4.3.3(a). Based on Eq. (4.3.1), the 

nonuniformity in current density distribution would influence the current-driven domain 

wall behaviors. To distinguish the effects of the current density distribution from that of 

the geometrical shape of the pinning site (e.g., the curvature) on domain wall behaviors, a 

head-to-head domain wall in a straight nanowire under different current density 
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distribution conditions is simulated. Under given average value of uapp=300m/s, three 

artificial current density distribution conditions are considered as shown in Fig. 4.3.7: 

case I with uniform current density, case II with higher current density on the lower edge 

(the narrow side of the domain wall) and case III with higher current density on the upper 

edge (the wide side of domain wall) that linearly decreases to zero across the nanowire 

width. The simulation results show that, in all three cases, the domain wall moves to the 

right as expected, but with different speeds. The domain wall moves at higher speed in 

case II (645m/s) while at lower speed in case III (537m/s) than in case I (600m/s). 

Moreover, changes in domain wall structure due to different current density distributions 

are also observed. Three snapshots of the moving domain walls in the three cases are 

shown in Fig. 4.3.7. The upright bowl-shaped domain wall structure in case I shown in 

Fig. 4.3.7(a) is skewed to the left in case II in Fig. 4.3.7(b) while to the right in case III in 

Fig. 4.3.7(c), complying with the simple idea that the part of a wall under higher current 

density is pushed more than the part under lower current density. The observed 

differences in domain wall speed in the three cases (III, I, II in an increasing order) 

indicate that the current provides a greater driving force to the wall motion as a whole 

when the current density is higher at the narrow side than at the wide side of the domain 

wall. It is because the narrow side possesses a greater magnetization gradient ( m) thus 

experiences a higher driving force to the current-driven domain wall motion, since the 

driving force is proportional to the product of the current density and the magnetization 

gradient as shown in Eq. (4.3.1). Therefore, locally distributing a higher current density at 

the narrow part (with greater magnetization gradient) of the domain wall would increase 

the driving force to the domain wall motion and thus reduce the critical depinning current 
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as an average current density. Moreover, as different types of domain walls possess 

different wall structures, the same current density would affect different types of domain 

walls differently. For example, if the chirality of the domain wall in Fig. 4.3.7 is switched 

to the opposite (clockwise), the domain wall structure changes to upside-down bowl 

shape and the domain wall speed would be higher in case III than in case II instead. Since 

the current crowding is always present at a pinning site and the current density 

distribution is determined by the shape of the pinning site, the effects of the current 

crowding can be utilized by appropriate design of the pinning site geometry and choice of 

domain wall chirality.  

 

Figure 4.3.7 Simulated domain wall structure and motion under (a) uniform, (b) linearly 

increasing, and (c) linearly decreasing current density across the width of the nanowire. 
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4.3.4 Conclusion 

In summary, this paper reports an important role of magnetic domain wall pile-up 

in current-driven domain wall depinning behaviors in magnetic nanowires, which is 

analogous to the crucial role of dislocation pile-up in determining the mechanical strength 

of polycrystalline materials (Hall-Petch effect). The critical current for domain wall 

depinning can be drastically reduced and effectively tuned by simply controlling the 

number of domain walls in the pile-up. It is shown that domain wall pile-up can be 

formed by conjoining multiple domain walls of the same chirality, which can be 

conveniently generated, as exemplified in a magnetic nanowire loop under rotating 

magnetic field. An s-shape bend functions as a pinning site in the simulations, which 

consists of two oppositely turning curved segments that respectively serve as potential 

barrier and potential well. The dependence of the pinning strength on the curvature of the 

bend and the effects of the heterogeneous current density distribution at the pinning site 

on the domain wall behaviors are discussed.  
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4.4 Current Induced Domain Wall Depinning and Transportation through Planar 

Nanowire Circular Geometry by Spin Transfer Torques and Spin-orbit Torques 

4.4.1 Introduction 

Pinning effects which are commonly existed in magnetic materials may 

significantly influence the domain wall (DW) motion behaviors driven by magnetic field 

or spin-polarized current. Among those pinning effects, artificially introduced 

geometrical pinning sites, such as notches [21, 22, 180, 193, 207], protrusions [193, 208, 

209], cross- or T-shaped traps [35, 210, 211], zigzag corners [36, 212-214] and loop 

corners [32-34, 215, 216], play a very important role in magnetic planar nanowires and 

DW-based devices. For the zigzag nanowire or nanowire circuits in particular, circular 

geometries like round corners always exist, especially for the most widely studied 

Permalloy planar nanowires. [32-34, 47, 175, 194, 211, 215-218] Unlike other pinning 

sites, a corner with circular geometry often keeps the same width with the straight 

nanowire part, and it usually performs as either a pinning barrier or a pinning well which 

depends on the chirality of a transverse DW, and DW depinning and transportation 

through those round corners are crucial for DW-based memory and logic elements [21, 

32, 34]. Thus, current induced depinning and transportation of transverse DWs through 

round corners will be focused in this paper. 

The conventional spin-transfer torques (STTs) include both adiabatic and non-

adiabatic torques [3, 5, 8], which are due to the coupling between magnetizations and 

spin-polarized current and able to drive the DW moving in the direction of conduction 

electrons, i.e., the opposite direction of current. An alternative way to manipulate 
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magnetization dynamics is through the current induced spin-orbit torques (SOTs) which 

are usually contributed by two main effects, Rashba effect (RE) [62] and Spin-Hall effect 

(SHE) [63]. Both effects are derived from a nonmagnetic heavy metal layer with strong 

SO interactions. For RE, a typical system is composed by SO/ferromagnetic (FM)/oxide, 

and the RE is caused by the interfacial electric field which is usually perpendicular to the 

surface due to the symmetry breaking at the interface. [37, 38, 65, 66] Since RE can give 

rise to an effective transverse field perpendicular to both electric field and injected 

current directions, the RE related torque is also called field-like torque [67, 68]. For SHE, 

the spin up and spin down electrons in the SO layer will deflect in opposite directions 

toward the interface to form a transverse spin current which will be injected into the FM 

layer to exert a torque. The SHE related torque is also called Slonczewski torque, which 

can act as an anti-damping torque to make the DW move along the current direction. [67, 

68, 70-75] Therefore, the interface-derived SOTs can significantly influence the DW 

motion behaviors, and then DW depinning and transporation from round corners by 

SOTs besides of STTs will also be taken into account in this paper. 

In this paper, we will theoretically analyze the critical current for the DW to depin 

or transport through round corners by STTs and SOTs based on the one-dimensional (1D) 

model combining with the numerical calculations. Although some theoretical calculations 

for current induced DW depinning from extrinsic pinning sites of general form have been 

done [61, 74, 76, 197], detailed calculations for specific pinning sites like round corners 

are still lacking. Our calculations can provide an approach to analyze the DW depinning 

and transportation behaviors through pinning sites with circular geometry. 
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4.4.2 Theory 

The magnetization dynamics driven by spin-polarized current can be described by 

the modified Landau-Lifshitz-Gilbert equation including both STTs and SOTs              

[51, 69, 72, 76]:  

ˆeff
m m= m H H m u m m u m m mR SHt t

, 

(4.4.1) 

where  is the gyromagnetic ratio,  the damping parameter,  the nonadiabatic spin-

transfer torque coefficient, Heff the effective magnetic field, HR the Rashba effective  

field, u the electron motion velocity vector, SH the parameter determining the amplitude 

of SHE, and ˆ  the unit vector denoting the SHE spin direction as shown in Fig. 4.4.1. 

The effective magnetic field is determined by the variational derivative of the free energy 

with respect to the magnetization vector field, Heff= F/ m.  The electron motion velocity 

vector proportional to the electrical current density J is determined by 

/ 2u J B sx x Pg eM  where P is the polarization rate of the current and the 

factor g B/2eMs=7 10-11 m3/C for Permalloy [51]. The Rashba effective field is given by 

 2 2
0

2 2 ˆˆ ˆH J uR R R
R

B s B B

P e e ux z x x z
M g g

, (4.4.2) 

where R  is the Rashba parameter. SH is given by 

 
02

SH
SH

s z

J
e M L

SH J , (4.4.3) 
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where zL  is the FM layer thickness and SH  is the Spin-Hall angle denoted as the ratio of 

the spin current to the charge current densities and its value can be either positive or 

negative depending on the SO layer material [70, 71]. 

 

 

Figure 4.4.1 Schematics of a planar FM nanowire (yellow color) with a round corner of circular 

geometry deposited on the SO layer (gray color). The average radius of the round corner is 

denoted as R. The red line represents the trace of the effective injected current density u. Blue 

arrows represent the SHE spin directions denoted as ˆ . The inset at the upper left shows a 

cylindrical coordinate used to describe the magnetization system within round corner, where ẑ  

axis is perpendicular to the nanowire surface. 

 

Fig. 4.4.1 shows schematically the planar FM nanowire with a round corner of 

circular geometry deposited on the SO layer. R denotes the radius of the round corner. 

Although the distribution of the current density is not homogeneous within the corner, an 

effective current density along the nanowire geometry can be assumed for relatively large 

R (much larger than DW width and nanowire width), which is shown by the red line in 

Fig. 4.4.1. For the calculations in the following sections, magnetic parameters of 
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Permalloy material are adopted [179]: 860 /sM kA m , magnetocrystalline anisotropy 

1 0K , exchange constant 111.3 10 /A J m , damping parameter =0.02. The planar 

nanowire with thickness of 4 nm and width of 80 nm is considered, and then the shape 

anisotropy energies can be approximated as 0.9z dK K  and 0.1 dK K , where 

2
00.5d sK M . [1] 

 

4.4.3 Results and Discussion 

4.4.3.1 Spin Transfer Torques 

In order to study the current induced DW depinning or transportation through 

round corners, the pinning effect of the round corner should be studied first. A round 

corner with / 2  and radius R is taken into account. The total free energy density 

including exchange and shape anisotropy energies for magnetizations within the 

nanowire is 

 2 21/ sintote A R K , (4.4.4) 

where K K  and  is the magnetization angle with respect to the nanowire geometry 

trace as shown in Fig. 4.4.1. It is noted that Eq. (4.4.4) will fall into the case of straight 

nanowire at R . The DW structure can be obtained by solving / 0tote , and then 

we have 

 sin / , (4.4.5) 

where /A K  is the DW width parameter which is independent of R and DW 

chirality. The total energy is given by 
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 2 2

1 1
/ 2 cos 2 /totE e dx A R AK A R . (4.4.6) 

Fig. 4.4.2 (a)-(f) show the total energies of magnetization structures within either straight 

or circular nanowire geometries. Obviously, the curve effect alone will increase the total 

energy and the energy increase is proportional to the angle change , as shown in Fig. 

4.4.2 (a) and (d). It is worth noted that the DW energies within the straight wire and the 

round corner are quite different, and their dependences on DW chirality are also different, 

i.e., the DW energy for the straight geometry is independent of DW chirality (Fig. 4.4.2 

(b) and (c)) while for the corner geometry it depends on DW chirality (Fig. 4.4.2 (e) and 

(f)). When both the magnetization and round corner rotate in the same sense, either 

clockwise (cw) or counterclockwise (ccw), the DW energy is higher than in the straight 

wire and the round corner acts as a pinning barrier, which can be denoted as Type I DW 

(Fig. 4.4.2 (e)). On the contrary, when they rotate in the opposite senses, the DW energy 

is lower and the round corner acts as a pinning well, which can be denoted as Type II 

DW (Fig. 4.4.2 (f)).  

As for such a pinning barrier or pinning well, the energy change for the DW from 

straight wire to round corner can be described by 

 2AE x x
R

, (4.4.7) 

as shown in Fig. 4.4.3 (a) and (c) for Type I and II, respectively. For either Type I or 

Type II, in order to transport through the round corner, the DW has to overcome a 

potential rising and also experience a potential falling (A and B), and the velocity will be 

either decelerated or accelerated. Fig. 4.4.3 (b) and (d) show the DW transportation 

process under u=225m/s with 2 0.04  and 8R  for Type I and Type II DW, 
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Figure 4.4.2 Schematics of magnetic domain and DW structures in nanowire with (a)-(c) straight 

and (d)-(f) circular geometries. The corresponding total energies calculated according to Eq. 

(4.4.6) are shown in each figure’s bottom.  

 

respectively. As is expected, the time window for the DW to overcome the rising edge is 

larger than the falling edge, and the Type II DW can transport through the corner more 

easily than Type I due to the relatively short corner length. One can expect that, when the 

corner radius R is large enough, the DW will have enough time to restore the previous 

steady motion state after passing corner edge A, and then both Type I and II DWs will 

have the same critical current uc to transport through the whole corner, whose value is 

determined by the rising edge, i.e., uc is determined by edge A for Type I DW while by 

edge B for Type II DW. For the following calculations, therefore, only the rising edge or 

the energy barrier is considered in order to calculate the threshold current for the 

depinning and transportation of DW. 
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Figure 4.4.3 The pinning potential profiles for (a) Type I and (b) Type II DW across the round 

corner, where A and B represent the potential rising or falling edge. The DW transportation 

process under u=225m/s with 2 0.04  and 8R  for (b) Type I and (d) Type II DW, 

where the black line and the blue line represent the DW position and velocity, respectively. 

 

Since the energy barrier in the form of Eq. (4.4.7) is difficult to make an 

analytical derivation for the DW motion behavior, an approximation extended to the 

second order is made, i.e., the pinning force in the form extended to the first order is 

considered. In that approximation, the maximum energy barrier 0V  is kept, and then the 

energy barrier will be 

        
2

0

2
V xV x  for [0, ]x , 

    
2

0
0 2

2
V xV x V  for ( , 2 ]x , (4.4.8) 
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while the corresponding pinning force is given by 

0
2 2pin
Vf x x  for [0, ]x , 

 0
2 2 2pin
Vf x x  for ( , 2 ]x , (4.4.9) 

where 0 2 /V A R , and both the approximated pinning force and pinning barrier are 

plot as red dot-dashed lines in Fig. 4.4.4 (a) and (b), respectively. Good agreement has 

been achieved between calculated and approximated function forms, so that the DW 

motion behaviors can be analyzed based on Eqs. (4.4.8) and (4.4.9) by solving the 

following equations of motion derived from Eq. (4.4.1) with only STTs taken into 

account 

sin 2
s

Kx u
M

x siiiK
M
K isi  

 
2 pin

s

x u f
M

x ux
2

uu , (4.4.10) 

where zK K K QK  with / 8Q K K . 

Two main cases are considered to calculate the relevant threshold current. For the 

depinning case, the DW is pinned by an energy barrier in the initial state, and then 

depinned by a current pulse with amplitude of u, i.e., the critical current uc to depin a 

motionless DW will be calculated, which usually happens in the racetrack memory 

process [21] implemented in zigzag nanowires. For the transportation case, the DW is 

moving steadily under constant current before transporting the barrier, i.e., the critical 

current uc to transport a steady motion DW will be calculated, which usually happens in 

nanowire circuits of DW based devices. Since our aforementioned assumptions require 
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that the corner radius R shouldn’t be too small, we only consider corners with 4R  

which indicates a relatively weak pinning regime and then threshold currents at Regime I 

[61] with very small  will be mainly calculated but threshold values at Regime II 

(intermediate pinning regime) [61] will be also briefly discussed. 

 

Figure 4.4.4 Calculated (solid blue lines, derived from Eq. (4.4.7)) and approximated (dot-dashed 

red lines, described by Eq. (4.4.8) and (4.4.9)) profiles of (a) pinning force and (b) pinning 

potential. 

For the depinning case, at Regime I for [0, ]x , a simple equation can be 

obtained from Eq. (4.4.10),

 2 211 2x x x u21 u2 22x x xx 22 , (4.4.11) 

where 0
2

2 21 1
4s s

VK K
M K M

, 
2

2 0
2 2

s

V K
M

, and 
s

Ku u
M
Ku u

M
K . With the 

initial condition 0x x  and x x ux x u , Eq. (4.4.11) can be solved and the solution is 

given by 
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 2 2
2

2 11 cos sin sin
2

t tu ux t e t t e tu t
221 21 221 221 2 , (4.4.12) 

where 2 21/ 4 . Let’s assume a weak damping limit, which requires 

/ 1c  where 1
2c RQ

, and then . Under that limit, for c  

(Regime I-a), we have 

 2

2 1 cos a
ux 1u , (4.4.13) 

 2 sin a
ux u2 siux iu ; (4.4.14) 

while for c  (Regime I-b), we have 

 sin b
ux , (4.4.15) 

 cos bx u cos bx u  . (4.4.16) 

When ( , 2 ]x , Eq. (4.4.11) is replaced by  

 2 211 2 2x x x u21 u2 2 22x x xx 2222 222 , (4.4.17) 

and the corresponding solution under the weak damping limit is also modified by 

 2

22 t tux t Ae Betu Au ttA t . (4.4.18) 

At Regime I-a, the initial conditions satisfy 

 2 2

2 20 2 1 cos a
u ux A B u2 u2 1u22 1 , (4.4.19) 

 20 sin a
ux B A u i0x 0 . (4.4.20) 
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The only required condition for DW depinning to occur (i.e., 2x ) is 0B  which 

requires cos 1/ 2a , and therefore the critical current at Regime I-a is 

 0

2 1 1/ 2 1 1/ 2
I a
c

s s

V Au
M M R

. (4.4.21) 

Similarly, the critical current at Regime I-b is 

 0 2I b
c

s c cs

V K A K
u f f

M M R
. (4.4.22) 

Where 
2

2

/ 2 /c c c

f  and for c , 2f , so that Eq. (4.4.22) 

will be 

 
2I b

c
s

A K
u

M R
. (4.4.23) 

It is noted that for c , the threshold current 1I I a
c cu u R  which is 

dependent of  and has a relatively small value due to large , while for c , 

1/2I I b
c cu u R  which is weakly dependent of  and has a relatively large value due to 

the tiny , and the main characteristics manifested by those conclusions are in a good 

agreement with Ref. [61] although the pinning effects are different. For arbitrary , the 

threshold current steers between I a
cu  and I b

cu . Fig. 4.4.5 (a) shows the threshold 

currents cu  vs. 1/R  under different values of  for the depinning case. Solid lines 

are calculated results according to Eq. (4.4.21) and (4.4.23), while dot-dashed lines are 

numerically calculated results based on the 1D model according to Eq. (4.4.10). It is clear 
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that cases of large  fall into Regime I-a while cases of small  fall into Regime I-b as 

stated above. It is noted that for / R  up to 0.25, almost all that cases are in Regime I 

except the case 0.01  for which the depinning process happens in Regime II for 

5.7R . At Regime II, the threshold current can be determined by  

 II
c

s

Ku
M

, (4.4.24) 

which is ~600 m/s for the depinning case and independent of both R and , consistent 

with our numerical results shown in Fig. 4.4.5 (a). Unlike Regime I, once the depinning 

process is happened at Regime II, the DW will be flipped and its chirality will also be 

reversed. 

Actually, the above calculations for the depinning case are based on the 

absolutely abrupt current pulse with the rising edge jumping from 0 to u directly. 

However, once the time window for the rising edge is relatively large, lager than ~1 ns 

for instance, since the DW can response the stimuli very fast, the inertia effect  

disappears, and the threshold current will be determined by the pinning force maximum, 

which is given by 

 1 1/ 2I I a
c c

s

Au u
M R

. (4.4.25) 

Eq. (4.4.25) indicates that for the current pulse with slowly rising edge, the threshold 

depinning current at Regime I only depends on  and R in a linear relationship just like 

at Regime I-a, and Regime I-b is omitted for lacking of inertia effect. 
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Figure 4.4.5 The threshold currents cu  vs. 1/R  under different values of  for (a) the 

depinning case and (b) the transportation case induced by STTs. Red solid lines represent the 

calculated results according to Eq. (4.4.21), (4.4.23) and (4.4.29), while dot-dashed lines are 

numerically calculated results from the 1D model according to Eq. (4.4.10). 
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For the transportation case, at Regime I, the only difference from the above 

depinning case is the initial DW velocity which is the steady motion velocity 

0 /x u0x 0 , and then the solution becomes  

 2 2
2

2 11 cos sin sin
2

t tu ux t e t t e tu tt
221 21 221 221 2 . (4.4.26) 

Under the weak damping limit, the second term is dominated, and for [0, ]x we 

have 

 sinux , (4.4.27) 

 cosx u cosx u . (4.4.28) 

When ( , 2 ]x , the motion of DW is described by Eq. (4.4.18) , and the threshold 

current is therefore given by 

 0 2I
c

s c cs

V K A K
u f f

M M R
, (4.4.29) 

where 
2

2 2
/ 2 /c c c

f  at weak damping limit. Fig. 4.4.5 (b) 

shows the threshold currents under different values of  for the transportation case. 

Good agreement between the 1D numerical results and the calculated results described by 

Eq. (4.4.29) has been achieved for cases of . For 0.01, Regime II begins to 

emerge for 8.5R . The threshold current at Regime II is also described by Eq.  

(4.4.24). It is noted from Fig. 4.4.5 that the critical currents for the transportation case are 

always lower than those of the depinning case when , otherwise they are higher 
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when , and both cases share the same value when , all of which are 

determined by the initial velocity. 

As for the steady motion of DW at Regime I for the transportation case, however, 

there is an additional critical value given by 

 max
s

Ku
M

, (4.4.30) 

beyond which the steady motion will be destroyed, i.e., the following condition 

 
max

2 1 1
I
c

c
d

u f
u

 (4.4.31) 

should be satisfied to make sure Regime I is existed for the transportation case. It can be 

expected that  is not favored by Regime I steady transportation process.  

The velocity for the DW that just escapes the barrier (i.e., 2x ) under 

threshold current for both depinning and transportation cases can be calculated from Eq. 

(4.4.18) in the conditions of 1B  and 1t ,   

 /es c cv u , (4.4.32) 

where cu  represents the corresponding threshold current described by Eq. (4.4.21), 

(4.4.22), (4.4.25) or (4.4.29) at Regime I. For the depinning case, 1/2
esv R  at Regime I-

a, while esv  at Regime I-b. For the transportation case, .esv cons  at weak damping 

limit. 

 

4.4.3.2 Spin-orbit Torques 

4.4.3.2.1 Rashba Effect 
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The current induced DW motion for both depinning and transportation cases will 

be affected in some certain manner once spin-orbit torques are taken into account. RE can 

contribute an effective in-plane transverse field perpendicular to the current direction as 

described by Eq. (4.4.2), and such a field will definitely change the magnetization 

structure as well as the relevant pinning effect. For small , the DW structure can be 

described by  

 0sin sin / , (4.4.33) 

where 0sin / 2s RM H K  and 0  represents the tilt angle of magnetization at domain 

state induced by the Rashba effective field. For relative small RE, i.e., 0  is small, we 

have 0 0sin , which corresponds to a relative small Rashba parameter 1210R eVm . 

Since the Rashba effective field is proportional to the current according to Eq. (4.4.2), the 

RE induced tilt angle can be described by 0 Ru , where the Rashba effective 

coefficient R  is given by 

 s R
R

B

M e
g K

, (4.4.34) 

which can be either positive or negative depending on the layout of SO layer and oxide 

layer as well as the DW types, and hence both the positive and negative values of R  or 

0  will be considered in this section. Fig. 4.4.6 (a) shows the energy barrier profiles 

under RE with different values of 0 . For positive 0 , the barrier height is reduced, while 

for negative 0 , the barrier is even higher. As is expected, the sign of 0  doesn’t depend 

on DW chirality, it depends on the magnetization direction of DW: if the DW 
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magnetization direction is the same with Rashba effective field, 0  will be positive; 

otherwise, negative. Take an 180o DW for example, when the Rashba field is applied in 

the same direction of DW magnetization, the rotation angle will be smaller than 180o, 

resulting in a reduced barrier, where an ultimate case is achieved when the field is so 

huge that 0 90o and DW barrier disappears; when the Rashba field applied in the 

opposite direction, the rotation angle will be larger than 180o, resulting in higher barrier, 

and when the field is large enough the DW will be flipped.  

The pinning barrier height under RE is 0 01 2 / V  and the corresponding 

maximum pinning force is 0 01 f . In the same approximation made in Sec. IIIA, the 

pinning force will have the following form 

2 2
R

pinR
Vf x x  for 0, 1x , 

 2 2 2 1R
pinR

Vf x x  for 1 , 2 1x , (4.4.35) 

where 01 2 / , and 1
02 1 2 2 /RV AR  is the Rashba effective 

pinning barrier height. The pinning force approximated according to Eq. (4.4.35) is 

shown in Fig. 4.4.6 (b). The equations of motion derived from Eq. (4.4.1) with RE taken 

into account are given by 

0 0

sin 2
1 1

R

s

Kx u
M

KKx  

 
01 2 pinR

s

x u f
M

uxx . (4.4.36) 
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where 1 1
0 01 / cos 1RK K Q K Q , and actually, since Q is large and 0  

is small, the difference between K  and RK  can be ignored in our following cases. 

 

Figure 4.4.6 (a) Calculated pinning potential profiles for 0 0 , 0 0  and 0 0 . (b) 

Calculated (solid blue line) and approximated (dot-dashed red line) profiles for the pinning force 

under RE. 

 

The DW depinning and transportation by RE can also be analyzed in the similar 

procedure as made in Sec. IIIA. For both depinning and transportation cases, the DW 

motion at Regime I with 0, 1x  can also be described by Eq. (4.4.11) with 

only replacing K  and 0V  by RK  and RV , respectively, while for 

1 , 2 1x , the equation will be 

 2 211 2 1 2x x x uu2221 22x x 2 2 112 12 112 12 12 1xxxx 2 112 12 12 12 112 12 12 12 1 , (4.4.37) 
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which is quite similar with Eq. (4.4.17). By solving both Eq. (4.4.11) and (4.4.37) with 

corresponding initial conditions, threshold currents for both cases can be calculated. 

For the depinning case, the threshold current at Regime I-a and Regime I-b at 

weak damping limit are given by 

 01

1 1/ 2
I a
cR

s

A
u

M R
, (4.4.38) 

 1
0

2
1 1/ 0.5I b

cR
cs

A K
u f Q

M R
. (4.4.39) 

Considering 0  is dependent of current by 0 Ru , Eq. (4.4.38) and (4.4.39) should be 

rewritten in the following forms 

 
1

I a
I a c
cR I a

R c

uu
u

, (4.4.40) 

 11 1/ 0.5

I b
I b c
cR I b

R c

uu
Q u

, (4.4.41) 

where I a
cu  and I b

cu  are threshold currents for STT cases in Sec. IIIA, which are 

described by Eq. (4.4.21) and (4.4.22), respectively. Fig. 4.4.7 (a) shows the critical 

currents for depinning case by RE with different values of R  at 0.08  which roughly 

falls into Regime I-a as noted in Fig. 4.4.5 (a). For positive R , those critical values are 

reduced compared to the STT case of 0R , and larger R  will result in smaller cRu . 

The calculation results at Regime I-a described by Eq. (4.4.40) are shown by solid lines 

in Fig. 4.4.7 (a), which manifests the same trend with the numerical results. For negative 

R , the critical values are higher than the STT case of 0R  as expected, but the values 
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for larger R  (for example, 0.001R ) are somewhat depressed instead, which seems 

due to the reduced threshold current at Regime II (relative large ) given by 

 11 1

II
II c
cR II

R c

uu
Q u

, (4.4.42) 

which is ~350 m/s for 0.001R  and such a kind of depression can be also found in 

STT cases when the critical current is close to Regime II. It can be briefly concluded for 

the depinning case that RE can effectively reduce the threshold current for positive R , 

but it is difficult to increase the threshold value for negative R  due to the depression of 

Regime II. 

For the transportation case, the threshold current at Regime I under weak damping 

limit can be given by 

 11 1/ 0.5

I
I c
cR I

R c

uu
Q u

, (4.4.43) 

where I
cu  is the threshold current for STT case in Sec. IIIA described by Eq. (4.4.29). 

Both the calculation (Eq. (4.4.43)) and numerical results for this transportation case by 

RE with different values of R  at 0.08  are shown in Fig. 4.4.7 (b). Although the 

critical values as well as their deviation amplitude due to RE for the transportation case 

are smaller than that for the depinning case as expected for , the general trend for 

both cases is similar. For positive R , those critical values are smaller than the STT case, 

while for negative R , the critical values are depressed especially for large pinning 

barrier. 
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Figure 4.4.7 The threshold currents cu  vs. 1/R  under different values of Rashba effective 

coefficient R  at 0.08  for (a) the depinning case and (b) the transportation case induced by 

RE. Solid lines represent the calculated results according to Eq. (4.4.40) and (4.4.43), while dot-

dashed lines are numerically calculated results from the 1D model according to Eq. (4.4.36). 
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Based on the above results which only consider weak RE, general conclusions 

with strong RE (for example, 1110R eVm  or ~ 0.1R ) can also be predicted: for 

positive R , both the pinning barrier and the threshold current will be significantly 

reduced, and the process for depinning or transportation will take place at Regime I, since 

the threshold current at Regime II is significantly increased; for negative R , the 

depinning or transportation process usually happens at Regime II and still with a 

drastically reduced critical current, but the DW will be flipped. 

 

4.4.3.2.2 Spin-Hall Effect 

Unlike RE which manifests a field-like effect, the SHE rather modifies the 

damping effect, and hence the energy barrier as well as the corresponding pinning force 

will be exactly the same with the STT case described by Eq. (4.4.8) and (4.4.9). 

Therefore, the equations of motion of DW derived from Eq. (4.4.1) with SHE taken into 

account will be 

sin 2
s

Kx u
M

x siiiK
M
K isi  

 sin
2SH pin

s

x u f
M

x ux uuuu . (4.4.44) 

In this section, both the depinning and the transportation cases are also taken into account 

for the calculation of threshold currents induced by SHE. 

For the depinning case, at Regime I, for [0, ]x , a simple equation similar 

with Eq. (4.4.11) can be obtained from Eq. (4.4.44), 
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 2 211 2
SH

x x x u21 u2 22x x xx 22 u , (4.4.45) 

where 21 1
SH

SH s

K
M

KK , and the SH induced effective parameters  and  are 

given by 

 SHSH , (4.4.46) 

 SHSHSH , (4.4.47) 

where 
2

SH s
SH

M
K2

SH
SH

M
K

 is denoted as the SH effective damping parameter correction. Since 

SH  is proportional to the current according to Eq. (4.4.3), the damping correction can 

also be described by SH SHuSH SHuSH  with coefficient SH  that can also be either positive or 

negative depending on the SO layers (the thickness and material of the top and bottom 

layers) as well as the DW types, and hence both the positive and negative values of SH  

or SHSH  will be considered in this section. For ( , 2 ]x , an equation similar with Eq. 

(4.4.17) is given by  

 2 211 2 2
SH

x x x u21 u2 2 22x x xx 2222 222 u . (4.4.48) 

For positive SHSH  or SH , by applying relevant initial conditions, critical currents at 

Regime I-a ( c ) and Regime I-b ( c ) under weak damping limit satisfying 

/ 1SH c 1  can be obtained by solving Eq. (4.4.45) and (4.4.48) in the same 

procedure stated in Sec. IIIA, which are given by 
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Considering SHSH  is dependent of current by SH SHuSH SHuSH , Eq. (4.4.49) should be rewritten 

in the following form 

 2 41
2 1 1/ 2

I a SH
cSH

SH s

Au
M R

. (4.4.51) 

For negative SHSH  or SH , there is a special regime, denoted as Regime I-c, which 

depends on the sign of SH . According to the solution of Eq. (4.4.45), 

 2 2
2

2 11 cos sin sin
2

SH SH

t t

SH

u ux t e t t e tu t

1 221 221 21 2222 , (4.4.52) 

once SH  becomes negative, the oscillation amplitude of DW velocity x tx t  will be 

dominated by the divergent exponential function, i.e., the velocity can become larger and 

larger until it is large enough to depin from the pinning barrier although the current might 

be much smaller than the required depinning value for the STT case. In another word, it 

is 0SH  or 00  that determines the critical value at Regime I-c which is given by 

 I c
cSH

SH

u . (4.4.53) 

Both the numerical and calculation results at Regime I-c agree with each other very well 

as shown in Fig. 4.4.8 (a) for negative SH . It is noted that SHE with negative SH  can 
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effectively reduce the depinning current especially for large SH  and small  as 

expected by Eq. (4.4.53), and the DW will not be flipped during the depinning process at 

Regime I-c. But for very long current pulse, the DW will be flipped after depinning from 

the barrier, and then SH  becomes positive resulting in a steady motion of DW. It is also 

noted from Fig. 4.4.8 (a) that for positive SH , the threshold currents are also reduced due 

to the increased parameter , which can be roughly described by Eq. (4.4.49) or  

(4.4.51). Both equations that obtained under weak damping limit, however, underestimate 

the threshold currents. Actually, positive SH  might result in a very large effective 

damping parameter , which can break the weak damping limit so that the attenuating 

exponential function should be considered and then larger current is required for the 

depinning process to occur, and that is why the numerical results are larger than our 

calculated results described by Eq. (4.4.51).  

For the transportation case, at Regime I, the DW motion behavior can be obtained 

by solving Eq. (4.4.45) using a different initial DW velocity, the steady motion velocity 

0 /x u /0x 0 , and then the solution is  

 2 2
2

2 11 cos sin sin
2

SH SH

t t

SH

u ux t e t t e t2
tuut 11111 22u 1 221 221 21 2

tt
222 ss . (4.4.54) 

Under the weak damping limit, the threshold current is therefore calculated in the same 

procedure stated in Sec. IIIA, which is given by 
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. (4.4.55) 
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where 2
c

f 2  at weak damping limit. Considering SH SHuSH SHuSH , Eq. (4.4.55) is 

therefore given in the following form 

 
21 4

2
I I b I b I b
cSH SH c SH c SH c

SH

u u u u , (4.4.56) 

where I b
cu  is given by Eq. (4.4.23). Fig. 4.4.5 (b) shows the threshold currents under 

different values of SH  for the transportation case. Good agreement between the 1D 

numerical results and the calculated results described by Eq. (4.4.56) has been achieved 

for cases of negative SH . The threshold currents are effectively reduced for negative 

SH . For positive SH , the threshold current is higher than the STT case, which can be 

roughly approximated by Eq. (4.4.55) but the weak damping limit is broken for large 

current. It is also noted that for very large SH , the transportation case will coincide with 

the depinning case for relative large current, because the initial velocity for the 

transportation case approaches to the depinning case with large , i.e.,  

0 /x u u/// uu0x 0 . 

Unlike RE, the SHE will not modify the threshold current at Regime II for both 

depinning and transportation cases, but the maximum current to maintain steady motion 

of DW at Regime I for the transportation case is changed, which is given by 

 max SH
s

Ku
M

KKK
, (4.4.57) 
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beyond which the steady motion will be destroyed. At Regime I-c for the depinning case 

where 00, and then we have max 0SHu  according to Eq. (4.4.57), that is why the 

DW will be flipped after depinning under a very long current pulse as mentioned above. 

 

Figure 4.4.8 The threshold currents cu  vs. 1/R  under different values of SH effective 

coefficient SH  at 0.08  for (a) the depinning case and (b) the transportation case induced by 

SHE. Solid lines represent the calculated results according to Eq. (4.4.53) and (4.4.56), while dot-

dashed lines are numerically calculated results from the 1D model according to Eq. (4.4.44). 
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4.4.4 Conclusion 

In conclusion, current induced transverse DW depinning and transportation 

through circular geometry in planar nanowire by the conventional STTs and the interface-

derived SOTs have been theoretically calculated, and those calculated results are also 

supported by our numerical results based on the 1D model. For STTs, both the depinning 

and transportation cases fall into Regime I for 0.02  up to large pinning effect of 

4R  while partially fall into Regime II for . Under weak damping limit, the 

threshold current is 1I a
cu R for c  and 1/2I b

cu R  for c  in the 

depinning case, while in the transportation case the threshold current is 1 1/2I
cu R , 

and the threshold values for the latter case are smaller than the former one for  

while larger for . For SOTs, the RE and SHE are considered separately for both 

depinning and transportation cases with 0.08 4 . As for RE, the DW 

magnetization structure can be modulated by the Rashba effective transverse fiend and 

hence the pinning effect can be either reduced or increased depending on the sign of 

Rashba effective coefficient R  which is determined by the interface and DW type. For 

positive R , the pinning effect becomes smaller and then the threshold currents are 

reduced for both depinning and transportation cases; for negative R , the pinning effect 

is larger, but the threshold currents are not evidently increased for both cases, because of 

the reduced threshold current at Regime II. As for SHE, the DW motion is modulated by 

the SH effective damping parameter correction SHSH  which can also be either positive or 

negative depending on the sign of SH effective coefficient SH . For negative SH , the 
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threshold currents are effectively reduced for both cases, and constant critical current 

/I c
cSH SHu exists at a special regime denoted as Regime I-c for the depinning case; 

for positive SH , the threshold currents are also reduced for the depinning case due to the 

larger value of , while for the transportation case, those values are larger than the STT 

transportation case, but will coincide with the SOT depinning case for large SH . Our 

calculations for the SOTs demonstrate novel means to effectively reduce the threshold 

current and modulate the current induced DW depinning or transportation process. Since 

DW depinning and transportation processes through planar nanowire circular geometry 

are very important for magnetic memory and logic circuits, our work will shed a light on 

the developing of future DW-based devices. 
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4.5 Magnetic Vortex Racetrack Memory 

4.5.1 Introduction 

Racetrack memory which is based on spin-polarized current induced domain wall 

(DW) motion was proposed in recent years in order to build up a novel non-volatile 

device with ultrahigh storage density [21]. The first demonstration of CMOS-integrated 

racetrack memory with a small capacity of 256 bits was reported by using Permalloy 

nanowires which has in-plane magnetic anisotropy (IMA) [219]. Recently, racetrack 

memory built on CoFeB/MgO structures with perpendicular magnetic anisotropy (PMA) 

is also proposed with advantages of long data retention and smaller depinning current 

density [46, 220, 221]. For nanowires either with IMA or PMA, the information carrier is 

magnetic domain whose direction defines the bit instead of DW itself. Actually, a DW 

with modulatable freedom degrees such as the magnetization rotation sense or 

magnetization direction for transverse DWs and the core polarity for vortex DWs [13, 14, 

20, 43, 45, 57, 175, 222] can also be treated as an information carrier. In particular, 

magnetic vortices, either in nanowires [14, 20] or in circular magnetic disks [40-42, 171, 

223, 224], attract much more interest due to the nanosized vortex core (10~20nm 

diameter in Permalloy film), the distinct core polarity (p=+1 for core magnetization 

pointing out of the vortex plane or p=-1 pointing into the vortex plane), and the ultrafast 

core reversal dynamic by application of pulsed magnetic field [40-42, 171, 223, 224], 

alternating spin-polarized current [20, 44], or even circularly polarized light [48]. All 

above unique properties of vortex demonstrate potential application for non-volatile 

memory with bits manifested by the core polarity. Due to the existence of such additional 

freedom degree (the vortex core polarity), as well as its movability driven by spin-
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polarized current, a combination of both racetrack memory and magnetic vortices, called 

magnetic vortex racetrack memory (VRM), can be proposed to not only provide a way to 

approach high vortex storage density, but also indicate different behaviors from DW 

racetrack memory (DWRM). 

However, the novel VRM seems to require some other forms of vortices rather 

than the above two existent forms studied by most people, vortices either centered in 

isolated micro- or nano-disks or confined by notches in nanowires. It is because that 1) 

vortices in individual disks can’t be transported, and 2) the vortex DWs in nanowires are 

easily transformed into transverse DWs under the stimuli of spin-polarized current [13, 

45, 175], and 3) moreover, densely packed vortex DWs are easily to be annihilated. 

Therefore, a proper form of vortex that can’t be removed or annihilated by current or 

densely packed neighbor vortices in a nanowire is required for VRM. As is known that 

densely packed domain stripes with obvious vortex structures through the cross section 

can be spontaneously formed in a thin film with weak perpendicular anisotropy [225], 

and then we can suppose that densely packed vortices may also be formed in nanowires 

with weak perpendicular anisotropy and such vortices may not be easily annihilated by 

current due to their lower energy. Thus, this paper employs phase field modeling and 

micromagnetic simulations to obtain densely packed vortices in the nanowire with weak 

perpendicular anisotropy at first, and then demonstrate two simple models of magnetic 

VRM to study current induced vortex motion behaviors in the nanowire to explore the 

unique properties of VRM. 

 

4.5.2 Micromagnetic Model 
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In our micromagnetic model, the local magnetization is described by 

magnetization field ( ) ( ) ( )M r m r rsM , where sM is the saturation magnetization, ( )m r

is a unit vector field for magnetization normalized by sM , and ( )r is shape function 

characterizing the geometry of the nanowires. ( )r =1 means inside magnetic material 

and 0 outside. The evolution of magnetization is described by the modified Landau-

Lifshitz-Gilbert equation including spin transfer torque terms [51] 

 eff
m m= H m+ m - u m+ m u m
t t

, (4.5.1)
 

where / 2u J B sPg eM is a vector along the direction of electrons motion, J the 

current density, P the polarization rate of current density, the gyromagnetic constant, 

the Gilbert damping constant, and effH the effective magnetic field or thermodynamic 

driving force / (effH m)sE M , the variational derivative of the free energy with 

respect to the magnetization field variable. The last two terms on the right are usually 

called adiabatic and  nonadiabatic spin transfer torques, respectively [3, 5, 8].  

The total system free energy is a functional of ( )m r and is evaluated as a sum of 

magnetic anisotropy energy, exchange energy, magnetostatic energy, and external 

magnetic energy [178], where the long-range magnetostatic energy is calculated in 

reciprocal space using the Fourier transform of the magnetization field [178] 
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where uK is the magnetocrystalline anisotropy constant, ( )p r the magnetic easy direction, 

A  the exchange stiffness constant, andhext  the external magnetic field.  

In this paper, parameters of Co bulk material are used in our simulations for its 

relative weak anisotropic constant. These parameters are: 31400 emu / cmsM , 

magnetocrystalline anisotropy constant 6 35.2 10 erg / cmuK , exchange constant

63 10 erg / cmA  [226], =0.2, and =0.4. The grid size is 2 nm. 

 

4.5.3 Densely Packed Magnetic Vortices 

Strip domains are very common in thin films with weak perpendicular anisotropy 

[225], and usually / 1u dK K Q , where uK is uniaxial anisotropy constant with the easy 

axis perpendicular to the film and 00.5d sK M is stray field energy density. When

u dK K , all the magnetizations prefer to lie in the plane for very thin film due to the 

large stray field energy, but for film thickness beyond one critical value crD , 

magnetizations will begin oscillating periodically out of the plane to save part of 

anisotropy energy. It is such periodical oscillation that results in a series of vortices 

which can be seen from the cross section of film. According to the rigorous theory of 

strip domain nucleation [225], for very small Q  (usually Q  <0.1), the critical film 

thickness crD  and strip domain width crW  will be 

2 / ,cr u cr crD A K W D . 

It indicates that such densely packed stripe domains can exist when film thickness is 

larger than a critical value crD , which is just twice the width of DW in the bulk, and the 
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stipe domain width at critical film thickness is equal to the critical thickness, i.e., twice of 

DW width. For largerQ , crD becomes smaller, and whenQ  is large enough to approach 

the value of unity, the critical film thickness decreases to zero but the stripe domain width 

diverges. 

For nanowire with weak perpendicular anisotropy, we propose that similar 

behaviors may also take place for the same reason, competition between stray field 

energy (although it is reduced in nanowire) and anisotropy energy. Therefore, densely 

packed magnetic vortices instead of stripe domains may be formed in the nanowire. 

Though it can’t be exactly explained by the rigorous theory of stripe domain nucleation in 

thin film, some predictions can also be made for that in a nanowire. Using the anisotropy 

constant of Co, we can estimate the critical thickness 2 / 48cr uD A K nm  for thin 

film, with very smallQ  assumed. Actually, the value of 0.4Q  for Co is not so small, 

and for Co nanowire, this effective value can be somewhat large due to the reduced value 

of dK  caused by the shape effect, and hence the exact critical thickness or nanowire width 

will be less than 48nm for the Co nanowire, which has been confirmed by our simulations 

results, as shown in Fig. 4.5.1 (a) and (b) with square cross sections (a=b) of 

48nm 48nm and 40nm 40nm, respectively. All the domain structures shown in Fig. 

4.5.1 are obtained by applying a saturated magnetic field pointing +X-direction at first 

and then removing it, and after that magnetic vortices begin nucleated by thermal 

fluctuation which is effectively introduced by randomized magnetic field with proper 

amplitude in our simulations. It is noted that the shape of vortex core is rather ellipse than 

circular due to the anisotropy along Z-direction. Our simulations results indicate that for 
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Co nanowire with square cross section, when the nanowire width is 40nm or larger, 

densely packed vortices can be formed spontaneously after removing the field, but for the 

width less than 40nm, vortices can’t be formed any more, which means the critical 

nanowire width for densely packed vortices nucleation is about 40nm for the Co 

nanowire with square cross section. However, the exact critical vortex width can’t be 

given from our simulations as easily as the critical nanowire width due to the periodical 

conditions, but it seems that 48nm is more or less a reasonable value for vortex width for 

both Fig. 4.5.1 (a) and (b). Besides of square cross sections, Fig. 4.5.1 (c) and (d) also 

show the cases of a>b (48nm 36nm) and a<b (24nm 48nm), respectively, and both 

cases show nucleated densely packed vortices, but with different vortex widths. For the 

case a>b, it more or less resembles that of thin film, and when a approaches infinity, 

densely packed stripe domains are restored. For the case of a<b, however, it resembles 

the Permalloy thin film or nanowire with IMA but with additional IMA component along 

Z-direction, and hence these vortex cores may perform similar distinct dynamic 

properties. It is noted that for the case of a<b, the vortex width is 72nm, as shown in Fig. 

4.5.1 (d). All the above cases indicate that densely packed magnetic vortices can be 

formed in Co nanowires.  

The existence of densely packed vortices also indicates that vortices won’t 

annihilate each other, nor reverse the polarity of the neighbor vortex. All the vortices in 

Fig. 4.5.1 show positive core polarity (p=+1), while since racetrack memory requires two 

types of information carriers, vortices with negative core polarity (p=-1) are also 

considered, and the relative energy are also compared, which is shown in Fig. 4.5.2. 



176 

 

According to Fig. 4.5.2, all the cases with densely packed vortices have lower energy 

than single domain, which further explains the existence of densely packed vortices 

 

Figure 4.5.1 Domain structures of densely packed vortices formed in nanowires with cross 

sections (a b) of (a) 48nm 48nm, (b) 40nm 40nm, (c) 48nm 36nm, and (d) 24nm 48nm. The 

easy axis is along Z-direction and Nanowire with length of 48nm 6=288nm is periodically 

repeated along Y-direction. White arrows indicate magnetizations and the color indicates the 

value of Mx. All the vortices are obtained by applying a saturated magnetic field pointing +X-

direction at first and then removing it. 

 

discussed above. Although the single domain has larger energy, it can’t be treated as 

unstable phase, and actually, it is very difficult to be destroyed by the thermal fluctuation 

and behaves somewhat large stability according to our simulations study. After all, our 

densely packed vortices are not made from such kind of single domain state. Energy of 

nanowires with six vortices consisting of 0, 1, 2 and 3 vortices with p=-1 are plot as four 
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points almost in the same level as shown in Fig. 4.5.2. Pairs of vortices cores with 

positive and negative polarity can lower the energy by reducing the stray field energy, 

and then vortices with uniform core polarity have the largest energy, vortices with mixed 

core polarity have lower energy, and the ones with arranged p=+1 and p=-1 core pairs 

will have the lowest energy. The energy difference between these vortices cases is within 

0.1eV, very small energy if portioned to a single vortex, and such a small value is just in 

the same order with thermal fluctuation which is too small to reverse core polarity, 

indicating the good stability of core polarity that can be used as information bit to realize 

magnetic nonvolatile random access memory and VRM. 

 

Figure 4.5.2 Domain structures as well as their total energy for one nanowire of single domain 

with magnetizations along easy axis and four nanowires of six densely packed vortices with N=0, 

1, 2 and 3 cores of negative polarity (p=-1, indicated by blue color). The size of these nanowires 

are 48nm 48nm 288nm. The energy for single domain with magnetization along the easy axis is 

treated as reference with its energy set to zero. 

 

4.5.4 Magnetic Vortex Racetrack Memory 
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The good stability of both the densely packed vortices and their core polarity 

makes themselves good candidate as information carriers of magnetic nonvolatile random 

access memory. If current induced magnetic vortex motion is taken into account [57, 

222], a novel racetrack memory can be proposed based on densely packed vortices 

instead of traditional DWRM, and such magnetic VRM will have unique properties 

different from DWRM. 

 

Figure 4.5.3 Critical current density uc for a single vortex depinned from the notch of 

48nm 48nm d in the nanowire with cross section 48nm 48nm, where d (about 2~10nm) is 

depth of the notch. For type I, the notch crosses the vortex core, while for type II, the notch 

crosses from the outside of the core. 

 

Pinning sites are always required for positioning and transportation of magnetic 

carriers driven by spin-polarized current in racetrack memory process, so we start with 

the determination of the critical current density for a vortex depinned from two types of 

pinning notches, as shown in Fig. 4.5.3. For type I, the notch crosses vortex core, while 

for type II, the notch crosses from the outside of the core. Various values of d are 
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considered to determine the critical depinning current density uc. It is noted from Fig. 

4.5.3 that for the same d, Type I has stronger pinning effect and higher uc than Type II. 

The reason for that is obvious. The energy for a vortex is concentrated within the core 

due to the fast varying spin texture, while the outer part contributes less to the energy. 

Therefore, for Type I notch, the energy barrier to be overcome for depinning is higher 

than Type II. In addition, the critical depinning current density uc seems to change 

linearly with the notch depth d for Type I while shows an exponent-like relationship for 

Type II, both of which are for the same reason. Since Type I notch can effectively pin the 

vortex, we will use that type of notch for the design of our VRM. 

Unlike DWRM, for which each bit or domain magnetization should be confined 

and distinguished by notches that are used to pin DWs, VRM does not require such a 

confinement for each vortex since it is vortices instead of domain magnetizations that 

carry the bits and those vortices can be packed densely without annihilated. Of course, 

one can also confine each vortex by a notch for VRM design, but such design will not 

show its unique property different from DWRM, and more pinning sites will need larger 

current density. Although it is not necessary to confine every vortex, at least one notch is 

needed to confine the vortex that is chosen to read and write its bit information shown by 

the core polarity. Therefore, two designs are proposed for VRM, one with only one notch 

positioned at the nanotrack center, and the other with a half number of notches used in 

DWRM positioned in the right half-track, which are shown in Fig. 4.5.4 (a) and Fig. 4.5.5 

(a), respectively. All the notches are Type I notches with depth of 4nm. Five bits ‘11001’ 

are artificially written in our simulation, and these bits are stored in the left half-track 

while no any bits stored in the right half-track. The bit confined by the notch centered in 
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the track is the one to be read and written, but the implement of bit reading and writing 

for vortex core is not considered in this paper, and only the concept of VRM and its 

unique transportation properties under spin-polarized current are focused. The general 

process for the VRM is: only the vortex trapped in the central notch can be read and 

written, so any target vortex prepared to read or write should be moved into the central 

notch at first; each target vortex can be driven to the central notch at one time by 

applying a proper current; remove the applied current to read or write for the target 

vortex; after finishing reading or writing, a large current with opposite direction (for 

Design I, u=-87m/s, while for Design II, u=-130m/s) is applied in order to restore the 

initial state.

 

Figure 5.4.4 (a) Design I for the VRM in a nanowire with total length of 720nm and square cross 

section 48nm 48nm for the main part while 48nm 72nm for the edge. The only notch is 

48nm 48nm 4nm, located at the center of the nanotrack. For the initial state, five bits ‘11001’ 

are in the left half-track while no any bits stored in the right half-track. All the domain structures 

are obtained by applying a current of u=0, 31, 50, 68 or 87m/s at first to shift the first, second, 

third, fourth or fifth vortex to the central notch and then removing the current to make the domain 

structures fully relaxed. (b) Simulated (black squares) and calculated (red line) critical currents 

required to move the Nth vortex in or move the (N+1)th vortex out of the notch. uc=148.5m/s. 



181 

 

For Design I, there is only one notch which is located at the center of the whole 

nanotrack. For the initial state or the state without current applied, five densely packed 

vortices are stored in the left half-track with one of them trapped within the central notch, 

but for the right half-track, there is only single domain state without any vortices stored  

in, and the domain structure is shown by the case of u=0 in Fig. 4.5.4 (a). The stray field 

generated by the single domain at the right half-track will push the first vortex to move to 

the right, and since it is easier for a vortex to move into a notch than to move out of it, the 

first vortex will be moved into and trapped by the notch, i.e., the reading and writing for 

the first vortex doesn’t need current applied. In order to read or write for the second 

vortex, the first one must be moved out of the notch to allow the second one move in. The 

critical current to move the first vortex out or move the second one in is u=31m/s, which 

is much smaller than the critical depinning current (~150m/s) for a single vortex trapped 

in the notch. The reduced depinning critical current is due to the vortex pile-up effect 

discussed in Sec. 4.3, and each of the packed vortices contributes a driving force caused 

by spin transfer torque effect, i.e., in additional to its own driving force which is caused 

directly by the current, all the other vortices behind it can also push it with each one 

supplying the same driving force, and hence the critical current for vortex depinning is 

reduced. The more the vortices behind, the smaller the critical depinning current required. 

Both the simulated and calculated critical currents required to move the Nth vortex in or 

move the (N+1)th vortex out of the notch are plot in Fig. 4.5.4 (b). Since the calculated 

results are based on analysis for the ideal pile-up effect without taking notches and stray 

field into account, there are some deviations between these two set of results. Actually, 

the existence of a notch usually prevents the behind vortex approaching to the one 
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trapped in the notch due to the relatively small energy barrier caused by the left edge of 

the notch, which means higher current is required to overcome the additional energy 

barrier. The stray field effect seems somewhat complex. Briefly speaking, the stray field 

tends to make the vortices distributed evenly, as shown in Fig. 4.5.4 (a). Therefore, for 

the cases of u=0, 31 and 50m/s, the stray field at the right prefers to depin the trapped 

vortex, while for the cases of u=68 and 87m/s, the stray field at the left prefers to draw 

the trapped vortex back. But for the current induced vortex motion existed in all cases, 

the piled vortices before the notch will become denser, and the stray field prefers to 

evenly distribute those vortices, which reduces the pile-up effect and makes the critical 

depinning current higher. Although it is difficult to quantitatively define these effects, it 

is known that the total effect makes the critical current higher than the calculated ideal 

case according to Fig. 4.5.4 (b).  

For Design II, five notches are introduced in the right half-track to trap depinned 

vortices. All the relaxed domain structures after applying critical current u=0, 50, 74, 105 

and 130m/s are shown in Fig. 4.5.5 (a). Both the simulated and calculated critical currents 

required to move the Nth vortex in or move the (N+1)th vortex out of the notch are plot 

in Fig. 4.5.5 (b). The calculated results are obtained considering the ideal vortex pile-up 

effect, and hence manifesting a linear relationship unlike that for Design I. It is noted that 

the simulated value of uc is larger than the calculated one, and just like Design I, such a 

deviation is caused by the effects of notches and stray field. Comparing the two designs, 

we found that the critical depinning current uc for Design II is larger than Design I due to 

its more notches, but a linear relationship is predicted based on the ideal pile-up 
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assumption unlike that of predicted for Design I. For the simulation results, however, 

both cases show not bad linearity by including those complex effects. 

 

 

Figure 4.5.5 (a) Design II for the VRM in a nanowire with total length of 720nm and square 

cross section 48nm 48nm for the main part while 48nm 72nm for the edge. All the five notches 

are 48nm 48nm 4nm, located at the right half of the nanotrack. For the initial state, five bits 

‘11001’ are in the left half-track while no any bits stored in the right half-track. All the domain 

structures are obtained by applying a current of u=0, 50, 74, 105 or 130m/s at first to shift the  

first, second, third, fourth or fifth vortex to the central notch and then removing the current to 

make the domain structures fully relaxed. (b) Simulated (black squares) and calculated (red line) 

critical currents required to move the Nth vortex in or move the (N+1)th vortex out of the central 

notch. uc=148.5m/s. 

 

Based on these two types of designs for VRM, some unique properties different 

from DWRM can be demonstrated: 1) the bit carriers for VRM are vortices with size 

twice of the DW width while for DWRM are domains with size much larger than the DW 

width, which indicates potential higher density storage for VRM; 2) it is not required to 

confine every bit carrier using a notch for VRM, because, unlike DWs, densely packed 

vortices won’t annihilate each other and those individual vortex cores don’t need to be 
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distinguished by notches; 3) for DWRM, multiple current pulses should be applied to 

shift the target DW to the specified location, while for VRM, only one constant current is 

required to shift the target vortex to such location because of the vortex pile-up effect; 4) 

for DWRM, the critical depinning current can be reduced by using nanowire with PMA, 

while for VRM, the critical depinning current is reduced due to the pile-up effect and can 

be further reduced by adding some null vortices to each side of nanotrack. 

 

4.5.5 Conclusion 

Racetrack memory which is based on current induced DW motion was proposed 

to have ultrahigh density storage, while magnetic vortex also reveals attractive static and 

dynamic properties manifested by its core polarity, and their combination, VRM, will be 

proposed to possess unique properties which must be different from traditional DWRM. 

However, most of the researches are focused on magnetic vortices in Permalloy nano-

disk or nanowires which are improper to be employed for the implement of VRM. 

Therefore, densely packed vortices in Co nanowire is proposed based on the notion of 

densely packed stripe domains which can be spontaneously formed in a thin film with 

weak perpendicular anisotropy. Our simulation results have confirmed the existence of 

such densely packed vortices in Co nanowire as well as the good stability of these 

vortices and their core polarity. These densely packed vortices may also be potential 

candidate for magnetic nonvolatile random access memory except the VRM. Two 

designs of VRM which are based on densely packed vortices and current induced vortex 

motion are demonstrated to study current induced vortex motion behaviors in the 

nanowire. According to our simulations results, the novel VRM shows unique properties 
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different from DWRM, such as the small vortex width (only twice of DW width), the less 

notches requirement, the one-time constant current transportation, and the reduced 

depinning critical current due to the pile-up effect. Such unique properties of VRM will 

have potential applications in the field of spintronics. 
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4.6 Future Research 

1. Researches on domain wall structures as well as the current induced properties in 

nanowire systems including DMI effect will be carried out by employing the phase filed 

model and micromagnetic simulations in the future, and the related novel functionalities 

based on these spin-orbit torques will also be explored. 

 

2. Since the magnetocrystalline anisotropy of a ferromagnetic system can be modulated 

by the electric field, the domain wall structure and properties which strongly depend on 

the anisotropy might be affected indirectly by the electric field. Since the quantitative 

respond of the anisotropy constant with respect to external electric field can be calculated 

by ab initio method,  the electric field modulated structures, properties and functionalities 

of domain walls can be studied by us through combining both ab initio calculations and 

micromagnetic simulations. 

 

3. Rather than magnetic field and spin-polarized current, stress or strain field can also 

provide a driving force for domain walls in nanowires, and therefore, stress/strain 

induced domain wall motion will be also studied by us in the future. 

4. Spin waves propagation can also drive domain walls to move in some manner, and 

then we will use micromagnetic simulations to investigate the spin-wave induced domain 

wall motion under DMI effect. 
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Chapter 5. Magnetic Domain Walls in Atomic Chains 

5.1 Introduction 

Low-dimensional magnetic systems such as ultrathin films, nanowires and 

nanostructures have attracted much interest in recent years because of their unique 

properties which conventional two-dimensional (2D) and 3D magnetic systems don’t 

occupy. In particular, intensive investigations have been done on 1D atomic chain 

magnetic systems which play an important role in nanomagnetism and nanospintronics 

for the attractive potential applications in high-density recording devices, spin-based 

logic elements, and spin-transport devices. [80, 106, 227-231] All of those will ultimately 

relate to the magnetic domain and domain wall in the atomic chain. For example, the 

ballistic magnetoresistance is strongly dependent of domain wall size and also affected by 

the magnetic moment softening within domain wall [93, 104]; data recording can be 

realized by single domain finite atomic chain deposited on surface and its stability 

depends on the energy barrier which relates to the magnetocrystalline anisotropy energy 

(MAE) [227, 228]. MAE is an utmost important factor in 1D atomic chain system, 

without which an infinite atomic chain even can’t maintain ferromagnetism according to 

the isotropic Heisenberg model [232]. What’s more, MAE directly affects the domain 

wall width and energy barrier. Higher MAE usually leads to narrower domain wall and 

higher energy barrier, and hence able to enhance the corresponding ballistic 

magnetoresistance and domain stability to improve device performance while reducing its 

size. Thus, it is of fundamental importance to study the atomic domain wall structure and 

domain stability of a truly 1D magnetic atomic chain with relatively higher MAE.  
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A great deal of theoretical calculations at ab initio DFT level for 3d, 4d and 5d 

transition-metal atomic chains, either freestanding [103, 112, 233-240] or supported [233, 

241-246], have been reported. Although usually only 4d and 5d transition-metal 

monoatomic chains are thought to have large MAE, some 3d transition-metal like Ni 

freestanding monoatomic chain for instance has been reported to also have giant MAE 

(~12meV/atom [112]) which is comparable with those of 4d transition-metal chains 

(6~12meV/atom [237]). What’s more, the ferromagnetic state of monoatomic chain of  

Ni, as well as other 3d transition-metals such as Fe, Co and V, have been reported almost 

half-metalic[112], a fascinating perspective for spin-dependent transport device, and 

suspended Co monoatomic chain with a fully polarized conductance channel has been 

experimentally observed [247]. Large magnetoresistance can be expected for the nearly 

half-metalic Ni atomic chain when the domain wall is narrow enough, and such a ballistic 

magnetoresistance has been theoretically calculated for atomic-size Ni nanowires with 

width-fixed domain wall of spin-spiral structure [103, 104] and experimentally observed 

for nano/atomic contacts of Ni nanowires [93, 96]. Magnetic moment softening in 

artificially confined narrow domain wall of Ni atomic nanowire, which is due to the 

hybridization between noncollinear spin states, was also reported to be able to enhance 

the ballistic magnetoresistance [104]. However, the domain wall for a truly magnetic 

monoatomic chain has deterministic wall width and its structure will not be as simple as 

spin-spiral since the MAE and shape anisotropy will apply. For those reasons, the 

freestanding Ni monoatomic chain is focused in this paper and the truly domain wall 

structure will be investigated. 
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For the itinerant ferromagnets like Ni, the hybridization effect between two spin 

channels usually exists, while for the ferromagnets with well localized d electrons like Fe 

or most of 4d transition-metals, that effect is weak. Although the spin moment softening 

effect is universally existed in itinerant ferromagnetic materials, it is rarely investigated 

by most ab initio studies. It can be expected that some magnetic parameters, such as 

exchange interaction parameters and MAE constants, might be affected by the spin 

moment softening effect. Although such softening is ignorable for slowly varying spin 

textures or wide domain walls, for the magnetic system with larger MAE, like Ni atomic 

chain, the domain wall will be very narrow and the spin moment softening effect might 

be relatively evident. Especially for the spin dynamics process with intense thermal 

fluctuations, the softening effect might exist everywhere, which may affect spin 

dynamics behaviors in a certain manner. Therefore, for the truly domain wall structure of 

the freestanding Ni monoatomic chain, both MAE and spin moment softening effects 

should be considered. Since the ab initio method alone is powerless to obtain accurate 

domain wall structure but able to obtain corresponding magnetic parameters, we will 

employ the atomistic model by using parametrized Hamiltonian terms. 

Theoretical details for the ab initio adiabatic spin dynamics in magnets can be 

found in Ref. [248], in which the evolution is described by the time dependent 

orientational configurations determined by the equation of motion considering thermal 

effects with the form coinciding with the stochastic Landau-Lifshitz-Gilbert (LLG) 

equation [153]. The atomistic model based on stochastic LLG equation can successfully 

describe the spin dynamics under thermal fluctuations and/or external magnetic field, and 

lots of atomistic spin dynamics simulations have been done for atomistic magnetic 



190 

 

systems [249-253]. However, most atomistic spin dynamics simulations are applied to 

systems in which the spin moment magnitude is conserved and the orbital moment is very 

small compared with the spin moment. For the 1D Ni atomic chain system in which both 

the spin moment softening effect and the orbital moment should be considered, this paper 

shows that such atomistic model is still valid and both the spin and orbital moments can 

be obtained through the spin orientation configurations. Thus, the domain wall structure 

and the spin dynamics under thermal effect can be understood through the atomistic 

model. Since for magnetic recording, the ferromagnetic single domain stability against 

thermal fluctuations is quite essential, and high MAE can increase the stability while 

shortening the required chain length, this paper also focuses on the ferromagnetic single 

domain stability and switching process of 1D freestanding Ni monoatomic chain with 

finite length at finite temperature by employing that atomistic model. Although some 

magnetic properties for Ni atomic chains which are deposited on substrates [241, 242, 

245] or encapsulated inside nanotubes [107] might be different, the underlying spin 

dynamics behaviors would share the same mechanism, so that the present work can also 

shed a light on other magnetic atomic chain systems with high MAE. 

We organize this paper as follows. In Sec. II, we use ab initio technique to 

calculate relevant magnetic parameters for the freestanding Ni monoatomic chain at zero 

temperature, and the parameters at finite temperature are also calculated based on a DFT 

approach to the electronic free energy. In the front of those calculations, the 

computational details are presented first. In Sec. III, an atomistic magnetic model for the 

Ni monoatomic chain is introduced and spin dynamics simulations based on that model 

are performed to study the magnetic domain wall structure as well as the ferromagnetic 
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single domain stability and switching behaviors under thermal fluctuations. In Sec. IV, 

the main conclusions in this paper are summarized. 

 

5.2 Ab initio Studies 

5.2.1 Computational Details 

First-principles calculations within the framework of DFT are done with the 

Vienna ab initio simulation package (VASP 5.2) [124, 254-256]. For such calculations, 

the plane-wave basis projector augmented wave (PAW) method [257, 258] was used in 

the framework of the spin polarized generalized gradient approximation (GGA) in the 

Perdew-Burke-Ernzerhof form [259, 260]. The plane-wave cutoff energy of 500 eV is 

used, and the total energy convergence criterion is 10-5 eV. The distance for the neighbor 

Ni atomic chains is as large as 20 Å to avoid the interactions between each other. The 

Monkhorst-Pack k-point scheme of 1×1×101 is used. 

Noncollinear magnetism calculations [125] in the PAW formalism are performed 

for the relevant parameters of Ni atomic chain. For the calculations of exchange 

interaction parameters as well as the relevant spin moment softening coefficients, the 

spin-spiral states with propagation vector q in the frozen-magnon approach are 

considered. For the calculations of MAE constants and orbital moments with respect to 

the angle  between the spin orientation and easy axis, the spin-orbit coupling (SOC) is 

included and a series of  are considered. Because of the spin moment softening effect, 

MAE values with constrained spin moments are also calculated. 
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5.2.2 Magnetic Parameters at Zero Temperature 

Based on our ab initio calculations, the structurally optimized atomic bond length 

for the equilibrium ferromagnetic Ni chain is d = 2.18Å. Noncollinear magnetic 

calculations of Ni monoatomic chain at several different bond lengths around the 

equilibrium value are also taken into account. Spin-spiral magnetic structures of 

propagation vector q along [001] direction with different q values up to 0.3 (2 /d) are 

applied to calculate the corresponding spin moments and total energies, as shown in Fig. 

5.1 and Fig. 5.2, respectively. The case of q=0 corresponds to the collinear ferromagnetic 

state and q=0.25 corresponds to the state for which the angle between neighbor spins is 

90o. According to Fig. 5.1 (a), it is clear that the spin moment is reduced with increased 

spiral angles due to the hybridization between noncollinear spin states. The larger the 

angle, the stronger the hybridization effect, the smaller the spin moment. It is noted from 

Fig. 5.1 (a) that the spin moment is only slightly reduced for small q while evidently 

reduced for somewhat larger q. For example, it is only ~5% reduction when q=0.1 (or 

spiral angle is 36o), but 33% reduction for q=0.25 (or spiral angle is 90o). Such a spin 

moment softening effect was also reported for other itinerant magnetic systems with spin-

spiral states. [248] In order to study the q dependent of spin moment softening effect, we 

assume that the atomic spin moment is affected only by the spin orientations of near 

atoms according to  

 0 - 0 0
1

n

S i i i
i

M M a m m m m  , (5.1) 
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where SM  is the atomic spin moment, 0M  and ia  are the spin moment softening 

coefficients, 0m  and im  are the spin orientations of the atom and its ith nearest atoms, 

respectively. For the spin-spiral state, Eq. (5.1) reads 

 0
1

2 cos(2 )
n

S i
i

M M a iq . (5.2) 

Fig. 5.1 (a) shows the well fitted curve for the ab initio calculated spin moments 

according to Eq. (5.2) up to n=3, and the fitting coefficients are shown in Fig. 5.1 (b). 

Atom chains with bond lengths of d= 2.15 ~ 2.20 Å are considered, and all the 

corresponding fitting coefficients are shown in Fig. 5.1 (b). It is noted that those 

coefficients don’t change much with the variation of bond length d, and both 0M  and 1a  

contribute most to the spin moment softening effect while higher order coefficients 2a  

and 3a  play a minor effect due to their small magnitude. Based on those four coefficients, 

nearly zero spin moment can be expected for q=0.5, the antiferromagnetic state, which 

will manifest the most significant hybridization effect. 

The total energies for the spin-spiral state with different q values of Ni 

monoatomic chain with d = 2.18 Å are shown in Fig. 5.2 (a), which is in good agreement 

with Ref. [235]. Larger q results in higher energy, indicating ferromagnetic state is the 

stable state for Ni atomic chain. The full expansion for the effective Heisenberg 

Hamiltonian is given by [261] 
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where ijJ is the bilinear exchange interaction parameter, (2)
ijJ  the biquadratic exchange 

interaction parameter, ijklJ  the four site exchange interaction parameter, and ( )n
ijJ  the 

higher order exchange interaction parameter. Although the bilinear exchange term is 

important, the biquadratic exchange term is also though as important as the bilinear term 

[262, 263]. It has been reported for fcc Ni that both the bilinear and biquadratic exchange 

terms for first nearest atoms are dominant [264], and we assume that the case for Ni 

atomic chain is also similar. Therefore, based on our assumption, only the first two terms 

of Eq. (5.3) for just the first nearest atoms are considered, i.e., 

 
2(2)

1 1

1 1
2 2exch Si Sj Si Sj

i j i j
H J JM M M M . (5.4) 

According to Eq. (5.4), the q-dependent total energy for the spin-spiral state will be 

22 2 4 2 40 0 cos 2 0 cos 2S S S SE q E J M q M q J M q M q , (5.5) 

where ( )SM q  is the q-dependent spin moment obtained from Eq. (5.2). Fig. 5.2 (a) 

shows that our ab initio calculated total energy values are fitted very well according to  

Eq. (5.5) and both the bilinear and biquadratic exchange interaction parameters for d = 

2.18 Å are shown in Fig. 5.2 (b). According to the fitting results, the magnitude for the 

biquadratic exchange parameter is about 1/4 of that for the bilinear one but with an 

opposite sign, indicating that the biquadratic term can’t be ignored, consistent with our 
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above assumption. Exchange parameters for Ni atomic chain with different bond lengths 

are also shown in Fig. 5.2 (b). Interestingly, both J  and (2)J  decrease almost linearly by 

increasing the bond length, which indicates weakened exchange interactions for 

lengthened bonds, and such a linearship has been reported due to the magnetoelastic 

effect [265]. 

 

Figure 5.1 (a) Spin moments for spin-spiral state with different propagation q values for bond 

length d = 2.18 Å. Red curve represents the fitting for those spin moments according to Eq. (5.2) 

up to n=3. (b) The relevant fitting coefficients, 0M , 1a , 2a  and 3a , for Ni atomic chain with 

different bond lengths from d = 2.15 Å to 2.20 Å. 
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Figure 5.2 (a) Total energies for spin-spiral state with different propagation q values for bond 

length d = 2.18 Å. Red curve represents the fitting for those energies according to Eq. (5.5). (b) 

The bilinear and biquadratic exchange interaction parameters, J and (2)J , for Ni atomic chain 

with different bond lengths from d = 2.15 Å to 2.20 Å. Both sets of parameters are linearly fitted 

vs. d. 
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In order to calculate the MAE as well as the orbital moment, SOC is included in 

our ab initio calculations. For the Ni atomic chain, MAE is the energy difference between 

two magnetic moment directions, [100] and [001], where [001] is the chain direction and 

also the easy axis in our case. Based on our calculated energies shown in Fig. 5.3 (a), 

MAE in a form expended to the second order has been considered, i.e., 

 2 4
0 1 2sin sinE E K K , (5.6) 

where 1K  and 2K  are the first and second order MAE constants, and  is the angle 

between the spin moment direction and easy axis. Curve fitting according to Eq. (5.6) has 

been made as shown in Fig. 5.3 (a) with the fitted values of 1K  and 2K  for the 

equilibrium bond length as well as the other bond lengths shown in Fig. 5.3 (b). For the 

equilibrium case, K1=10.8meV and K2=3.2meV, and then the total MAE can be described 

as K1+ K2=14meV, very close to the value obtained in Ref. [112], and such a large MAE 

usually lead to a very narrow domain wall. Similar with the above exchange interaction 

parameters, a linear trend is also observed for the MAE constants with a variation of bond 

length. By increasing bond length, 1K  decreases but 2K  increases, which indicates that 

the high order effect becomes more evident for elongated bond, although 1K  is still 

dominant. 
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Figure 5.3 (a) Total energies with different spin angles  for bond length d = 2.18 Å. Red curve 

represents the fitting for those energies according to Eq. (5.6). (b) The first and second order 

MAE constants, 1K  and 2K , for Ni atomic chain with different bond lengths from d = 2.15 Å to 

2.20 Å. Both sets of constants are linearly fitted vs. d. 
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For the above MAE calculations, although  is varied, the spin moment is almost 

constant ( 0 1.135S BM ), i.e., the introduction of SOC doesn’t affect much on the spin 

moment. However, since spin moment softening effect always exists in statics and 

dynamics process, which would quite probably influence the MAE constants, the MS-

dependent MAE constants should also be calculated. It has been reported that MAE 

constant for FePt obeys the rule of 2
SK M  [266], and we assume that the same rule also 

exists in our Ni atomic chain system, based on which MAE with constrained spin 

moment MS has been calculated. Fig. 5.4 shows two sets of energies with varied 

constrained MS in [100] and [001] directions, respectively, and both of them vary linearly 

with respect to 2
SM . It can be assumed that such a linearship is also shared by the 

energies with other , and all those energies will converge to the same point for 0SM  

while restore to the original picture as shown in Fig. 5.3 (a) for 0S SM M . Since our 

MAE constants are obtained from the energies of varied , both 1K  and 2K  will obey 

the same rule in the following form: 

 2
1,2 0 1,2 0/S S S SK M M M K M . (5.7) 

In order to further confirm it, we use the values obtained from Fig. 5.4,

2MAE [100] [001] 11meV SE E M , and for 0S SM M , we have MAE = 14meV = 

K1+ K2, consistent with our previous comments. 
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Figure 5.4 Total energies for various constrained spin moments SM  which are either 

perpendicular ([100]) or parallel ([001]) with the atomic chain. Both sets of values are linearly 

fitted, represented by blue and red curve, respectively. 

 

Ni atomic orbital moments LM with varied  are also obtained, but there are no 

obvious relationship between LM  and or 2sin . However, evident linear relationship 

between LM  and spin moment SM  is shown in Fig. 5.5. SM  ( LM ) and ||
SM  ( ||

LM ) are 

the spin (orbital) moment components perpendicular and parallel with the chain direction, 

respectively. It is worth noted that the parallel orbital moment component is much larger 

than the perpendicular component, indicating a strong SOC effect when spin is along the 

chain direction and the magnitude for orbital moment is comparable with that of spin 

moment. It is also noted that there are two piecewise linear regions separated by an angle 

constant around 48.2o, i.e., 
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 || ||0.14 0.48 0.114L S B SM MM m m  (5.8) 

for o48.2 , and  

 || ||0.79 0.091 0.019L S S BM MM m m  (5.9) 

for o48.2 , where ||m  and m  only represent the direction parallel and perpendicular 

with the chain, respectively. Although a good linearship can be achieved for the two 

regions, the reason for the existence of such a separating angle constant is unclear. Based 

on the above analysis, it can be expected that the orbital moment within the domain wall 

will be smaller than that in the domain, resulting in a domain wall with reduced atomic 

moments even without considering the spin moment softening effect, which will 

therefore lead to a deviation between the directions of spin moment and atomic moment 

(the sum of spin and orbital moment). 

Although atomic bond length can affect magnetic parameters such as exchange 

and MAE constants, the exchange interaction and SOC effect can also influence the bond 

length. For the spin-spiral state with q 0, the equilibrium bond length will deviate from 

its origin value. Based on our calculation results, new equilibrium bond length of 

d 0.005 Å ( 0.2% of d) for q up to 0.2 has been achieved. For the case considering SOC 

effect, the difference for the equilibrium bond lengths with spin along [100] and [001] 

direction is 0.0005 Å, i.e., there is a magnetostriction as small as 0.2‰. Thus, the 

equilibrium bond length deviation due to either exchange interaction or SOC is so small 

that it can be ignored. 
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Figure 5.5 Orbital moments vs. spin moments at various spin angles , with their components 

either perpendicular (a) or parallel (b) with the atomic chain direction. Both sets of values are 

linearly fitted piecewisely by an angle constant 48.2o. 
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Based on all the above calculations, we found that the exchange energy, MAE, 

and orbital moment are all dependent of the spin moment which is determined by the 

configuration of spin orientation m , and hence m is the essential order parameter to 

determine the Ni atomic chain magnetic system, which might make the LLG equation 

valid for the atomistic model to be discussed in Sec. III. Since some magnetic parameters 

might be modified by the temperature effect, the temperature-dependent magnetic 

parameters should also be calculated. 

 

5.2.3 Magnetic Parameters at Finite Temperature 

For the temperature dependent of Ni atomic chain magnetic properties, we adopt 

the approach employed in Ref. [267]. Based on that approach, the electronic free energy 

at finite temperature is approximated, and the magnetic parameters such as exchange and 

MAE constants will be modified from the temperature-dependent electronic free energy, 

with the atomic moment not significantly changed [236]. The electronic free energy is 

given by [267] 

 0F T E E T TS T , (5.10) 

where T  is the temperature, 0E  is the ab initio calculated energy at zero temperature, 

E T  and S T  are the temperature dependent of electronic energy difference and 

electronic entropy, respectively, both of which are caused by the effect of thermally 

induced electronic excitation. In order to determine the electronic free energy, E T  

and S T should be calculated first in some proper approximations. According to 

Wolverton and Zunger, there are three levels of approximations (Level 1, 2 and 3) to 
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consider the energy and entropy associated with electronic excitations [267]. For our 

ferromagnetic system, we choose Level 2 by which both terms can be determined from 

ab initio electronic structure calculations, i.e., from the density of states (DOS) which has 

no explicit temperature dependence. Therefore, the two terms will be 

 , 0 , , 0FE T D T f T d D T d , (5.11) 

, 0 , ln , 1 , ln 1 ,S T D T f T f T f T f T d , (5.12) 

where , 0D T  is the DOS at zero temperature, F  the Fermi energy, and ,f T  

the Fermi-Dirac distribution /, 1/ 1kTf T e  with  the chemical potential 

which is dependent of temperature and can be determined by the following condition, 

 , 0 , 10eD T f T d N . (5.13) 

After determining the chemical potential, the electronic energy difference E T , 

electronic entropy S T , and finally the electronic free energy F T  will be obtained. 

For the spin-spiral cases, the electronic free energies based on the approximation 

of Level 2 at different temperatures up to 100meVBk T have been calculated and shown 

in Fig. 5.6 (a). Fig. 5.6 (b) shows the corresponding exchange parameters obtained by 

fitting the electronic free energies according to Eq. (5.5). It is noted that both the bilinear 

and biquadratic exchange parameters are decreased with increased temperature, and such 

a decreasing trend is in good agreement with Ref. [236]. A simple estimation can be 

made here in order to explain the behavior by introducing D , an effective average for 

DOS around  within a few meV. Therefore, the estimated results will fall into the 
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approximation of Level 3 (Sommerfeld approximation) [267] by giving 

2 2 2 / 6E T Dk T
 
and 2 2 2 / 3TS T Dk T . Then, the free energy difference will be

2 2 20 / 6F T E Dk T , a 2T -dependent behavior which explains the tiny change 

for the exchange parameters at low temperatures as shown in Fig. 5.6 (b). For larger q, 

the hybridization between two spin channels is stronger, and then the DOS around Fermi 

energy is usually enhanced [104], i.e., D  is larger for larger q, resulting in a relatively 

lower free energy for q>0 at finite temperatures, which explain why the exchange 

parameters of finite temperatures are smaller than that of zero temperature and also why 

these parameters will decrease at higher temperatures. 

The electronic free energies for the cases of MAE calculations by the 

approximation of Level 2 at different temperatures are also calculated as shown in Fig. 

5.7 (a), and the corresponding temperature dependent of MAE constants 1K  and 2K  

obtained by fitting the electronic free energies according to Eq. (5.6) are shown in Fig. 

5.7 (b). Like the above exchange parameters, the MAE constants also behave a 

decreasing trend by increasing the temperature except the case of 100meVBk T  for 

which higher MAE orders might be considered. Anyway, it can be concluded that the 

temperature is destroying the magnetocrystalline anisotropy effect. 

 

 



206 

 

 

Figure 5.6 (a) Total electronic free energies for spin-spiral state with different propagation q 

values at different temperatures from 0 to 100meV. Curves represent the fitting according to Eq. 

(5.5). (b) The bilinear and biquadratic exchange interaction parameters, J and (2)J , for Ni atomic 

chain at different temperatures from 0 to 100meV.  
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Figure 5.7 (a) Total electronic free energies with different spin angles  at different temperatures 

from 0 to 100meV. Curves represent the fitting according to Eq. (5.6). (b) The first and second 

order MAE constants, 1K  and 2K , for Ni atomic chain at different temperatures from 0 to 

100meV. 

 

For all the above cases, the thermal effect acting on magnetic parameters is 

considered only in a static or nonvibrating lattice. Since atom oscillations always exist 
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due to thermal fluctuations, magnetic parameters will be changing all the time, but the 

average effect can be roughly approximated. The oscillation amplitude within the 

temperature range discussed in this paper is about several times of 0.01Å.  Actually, due 

to the linear relationship between magnetic parameters and bond lengths (Fig. 5.2 (b) for 

exchange interaction parameters and Fig. 5.3 (b) for MAE constants), the average values 

can be assumed to be those at equilibrium bond length, d = 2.18 Å. Thus, the values of 

magnetic parameters for Ni atomic chain at equilibrium bond length can also be roughly 

used as the effective parameters although the thermal induced lattice vibration effect is 

taken into account, but for the accurate description of lattice vibrations, complex phonon 

modes should be considered and the spin-phonon interactions will also play a role. 

 

5.3 Spin Dynamics Simulations 

5.3.1 Atomistic Model 

Based on the above ab initio studies for Ni monoatomic chain ferromagnetic system, 

we found that the exchange interactions, the MAE, as well as the orbital moment LM , all 

of them can be expressed in a function of spin moment SM  with certain coefficients. 

Besides, the other two Hamiltonian terms considering dipolar interactions and external 

field, involving both spin and orbital moments, can be also determined only by the single 

variable SM . Since the spin moment SM  can be obtained from m , the orientations of 

SM , the total moment for the ith atom in Ni monoatomic chain with length N (number of 

atoms), 

 i Si LiM M M , (5.14) 
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will be determined by the configurations of m . As to the orbital moment, 

 ˆ ˆ0.114 0.026 0.433M M M p pLi Si Si SiM  (5.15) 

for o48.2  or ˆ 0.6665im p , and  

 
2 2

0.017 0.017 ˆ ˆ0.091 0.699
ˆ ˆ1 1

M M M p p
m p m p

Li Si Si

i i

 (5.16) 

for o48.2  or ˆ 0.6665im p . For the spin moment, 

 Si Si iMM m . (5.17) 

Within Eq. (5.15)-(5.17), ˆ [100]p=  is the chain direction which is also the easy axis in our 

spin dynamics simulation cases, im  is the spin orientation for the ith atom, and SiM  is 

the magnitude of spin moment and can be determined according to Eq. (5.1) which can 

be rewritten as 

 
3

0 -
1

Si n i n i i i n
n

M M a m m m m , (5.18) 

up to the third nearest atoms. Since 2a  and 3a  are very small compared with the other 

two coefficients according to Fig. 5.1 (b), actually, only the first nearest atoms play an 

important role in spin moment softening effect.  

The total Hamiltonian is composed of four terms given by 

 exch MAE dd extH H H H H , (5.19) 

and all of the terms can be parametrized based on our ab initio studies in Sec. II. For the 

exchange interactions, the Heisenberg Hamiltonian exchH  is given by Eq. (5.4) with two 
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ab initio calculated exchange parameters J and (2)J . The parametrized MAE term MAEH  

is described by 

 
2

22 2
1 2

0

ˆ ˆ1 1m p m pSi
MAE i i

i

MH K K
M

, (5.20) 

where p̂  is the easy axis, 1K  and 2K  are the two ab initio calculated MAE constants. For 

the dipole-dipole interaction Hamiltonian, we have 

 1 ˆ
2dd i ij j

i j
H M Q M , (5.21) 

where the elements of ˆ
ijQ are given by 

2
0

5

3
4

ij ij ij
ij

ij

r r r
Q

r
 with ij i jr r r  and , 

 representing x, y and z direction. The fourth one, Zeeman term extH  is given by 

 ext ext i
i

H B M , (5.22) 

where extB  is the external magnetic field. It is noted that both the dipolar interaction term 

and the Zeeman term relate to the total atomic moment directly. At finite temperature, the 

values shown in Fig. 5.6 (b) and Fig. 5.7 (b) should be used as the exchange and MAE 

parameters, and for an arbitrary temperature between kBT=0~100meV, an interpolation 

can be made to obtain the corresponding parameters. 

The spin dynamics can be described by the evolution of spin orientation im  

which is determined by the stochastic LLG equation [153]

 i
i i i i it

m m B m m Bi im B m m Bi iii i i iii i , (5.23) 
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where 2
0/ 1 SM// 1// 11111  with  the gyromagnetic ratio,  is the damping  

parameter, and iB  is the effective local magnetic field including the thermal effect given 

by 

 i i
i

H h tB
m

, (5.24) 

where ih t is the temperature-dependent random field which is assumed to be a 

Gaussian stochastic process and fulfills the following statistical properties, [146] 

 20,i i i ijh t h t h t t t , (5.25) 

with 2 /Bk T . Following Langevin dynamics, the stochastic field introduced here 

makes the dynamics behaviors satisfy Boltzmann statistics. Since the accurate value of 

damping parameter  for Ni atomic chain is unknown, 0.1 is used in this paper and 

the spin dynamics behavior with other damping parameter values is also discussed in this 

paper. The time step is 10-5ps for the spin dynamics simulations, which is much lower 

than the moment relaxation time. 

5.3.2 Magnetic Domain Wall 

As discussed above, a very narrow domain wall is expected due to the large MAE. 

Now the truly atomic magnetic domain wall structure can be understood by our spin 

dynamics simulations based on the atomistic model. Fig. 5.8 (a)-(c) show the magnetic 

atomic moment structure as well as the spin moment structure of a domain wall in an 

infinite Ni chain at temperature kBT=0, 15 and 25meV (room temperature), respectively. 

Obviously, the domain wall width is only of a few atom-distance and the atomic moment 
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‘length’ within domain wall is smaller than that in the domain region. The domain wall 

profiles for the atomic moment M , spin moment SM , and orbital moment LM  at zero 

temperature are shown in Fig. 5.9 (a). It is noted that the atomic moment in the 

homogenous domain region is larger than that within the domain wall, which is mainly 

due to the orbital moment, since the orbital component parallel with the chain direction is 

larger than that perpendicular to the chain direction due to SOC as mentioned in Sec. II. 

Therefore, the direction for the spin moment will be not exactly the same with that for the 

atomic moment, especially within the domain wall or under intensive thermal  

fluctuations, as shown in Fig. 5.8. The angle  for the spin moment direction deviated 

from the chain direction is larger than that for the atomic moment. 

 

 

Figure 5.8 The magnetic atomic moment M  as well as the spin moment MS  structure for a 

domain wall in an infinite Ni atomic chain at temperature(a) kBT=0meV, (b) 15meV and (c) 

25meV. 
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Usually, the domain wall width can be described by the width parameter  which 

satisfies the wall profile function as tanh( / )xM x , as shown by Fig. 5.9 (a) in which 

the atomic moment component xM  is fitted by that function and the corresponding 

atomic moment domain wall width is defined as 2 Mw . However, since the profile for 

the spin orientations xm   shown in Fig. 5.9 (b) is different from that for xM , there is a 

different width parameter m  and hence different domain wall width 2 mw . Both 

kinds of wall width at various temperatures without including thermal fluctuation field 

are shown in Fig. 5.9 (c). As expected, the spin orientation width 2 m  is larger than the 

atomic moment width 2 M  due to the orbital moment effect discussed above. Both types 

of wall widths are of around 4 atom-distance with about half an atom-distance between 

them. Besides, the wall energies are also shown in Fig. 5.9 (c). Usually, the domain wall 

width and domain wall energy can be roughly approximated as 2 /w d J K and 

2 2DWE JK , respectively, and thus the slight increase for wall width and the slight 

decrease for wall energy with increased temperatures as shown in Fig. 5.9 (c) are due to 

the temperature dependent of exchange parameters and MAE constants as shown in Fig. 

5.6 (b) and Fig. 5.7 (b). Both the domain wall width and the domain wall energy are key 

factors for the thermally induced domain switching process, which will be discussed in 

Sec. IIIC as following. 

Unlike the atomic moment wall width, the spin orientation wall width is directly 

related to the ballistic magnetoresistance effect which will be more obvious for narrower 

domain wall, i.e., with smaller m . For a narrow domain wall, the spins vary fast and the 
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varying angle between neighbor spins is large. In our case, the largest varying angle for 

Ni atomic chain at zero temperature is around 30o, as shown in Fig. 5.9 (b), and usually, 

the largest spin varying angle within the domain wall can be approximated as 180 / m
o . 

Relatively large magnetoresistance ratio has been reported for Ni atomic chain with spin-

spiral domain wall structure with varying angle of 30o based on theoretical calculations 

[103], and hence relatively evident ballistic magnetoresistance effect may be expected for 

our Ni atomic chain with truly domain wall structure.  

Not only the large spin varying angles, but the spin moment softening effect can 

also enhance the ballistic magnetoresistance effect. At zero temperature, the spin moment 

at domain wall center is ~3% reduced. Actually, the spin moment softening is dependent 

of spin varying angles, as stated in Sec. II. Large spin varying can lead to large softening 

effect, for example, 180o spin varying will lead to an almost zero spin moment. Such an 

effect can be evident when the thermal fluctuations are introduced, and the varying angle 

can be very large sometimes, which can be found in Fig. 5.8 (b) and (c). For Fig. 5.8 (b), 

thermal fluctuation field of kBT=15meV is applied, the spin varying angle is as large as 

50o at domain wall while 30o at domain region, leading to a spin moment softening as 

large as ~8%. For Fig. 5.8 (c), thermal fluctuation field of kBT=25meV is applied, the 

spin varying angle is as large as 80o at domain wall while 50o at domain region, leading 

to a spin moment softening as large as ~20%. According to our atomistic model, such a 

reduction for spin moment can almost quadratically reduce the exchange interactions, 

MAE and even the dipolar interactions, while linearly reduce the orbital moment as well 

as the external field effect. For instance, a ~8% spin moment softening will lead to a   

~16% reduction for MAE, relatively more evident than the linear effect. Thus, the spin 
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moment softening effect will definitely affect the spin dynamics behavior especially 

under intensive thermal fluctuations. 

 

Figure 5.9 (a) The atomic moment M , spin moment MS  and orbital moment ML  components 

profiles of the domain wall at zero temperature shown in Fig. 5.8 (a). x-components are fitted by 

tanh( / )x , with 2 Mw corresponding to the atomic moment domain wall width. (b) Spin 

orientation profile and its fitting curve (blue color), with 2 mw  corresponding to the spin 

orientation domain wall width. Atomic moment angle M  and spin orientation angle m  across 

the domain wall (black color). (c) Spin orientation domain wall widths 2 m  and atomic moment 

domain wall widths 2 M (black color) as well as domain wall energies (blue color) at various 

temperatures from 0 to 25meV. 
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5.3.3 Magnetic Domain Stability and Switching 

Due to the large MAE, short atomic chain can also maintain ferromagnetic 

domain very well, and hence the single domain state of Ni monoatomic chains with finite 

and relatively short length are focused in this section for the spin dynamics study. At zero 

temperature, all the atomic moments exactly point along the chain direction and will 

never be switched unless driven by an external field. Once thermal fluctuations are 

included, those atomic moments, with either the directions or magnitudes, will be 

fluctuated, and the domain state can also be switched within a certain time window, but 

the ferromagnetic state will maintain until the temperature beyond a critical value, Tc, the 

Curie temperature. Above the Curie temperature, the ferromagnetic state disappears and 

the average atomic moment approaches to zero. Thus, the Curie temperature Tc for the 

finite length atomic chain should be determined at first. Fig. 5.10 shows the average 

atomic moment component xM  at different temperatures for a chain of 12-atom length. It 

is noted that the average moment approaches to zero at kBT=60meV, indicating that kBTc 

is around 60meV, i.e., Tc~700K for the 12-atom Ni chain. As is expected, the Curie 

temperature for atomic chain with a different length will also be different. Our simulation 

results show that for the 30-atom length chain, Tc~460K (kBTc ~40meV), which is lower 

than that for the 12-atom chain. Actually, according to the simple theoretical argument 

[227], the Curie temperature for 1D finite atomic chain can be determined by 

2 / ( ln( 1))c BT J k N , where N  is the chain length, demonstrating that shorter chains 

usually have larger Tc, in a good agreement with our simulation results. Since all the 

atomic chains in this section are shorter than 30-atom, they will all maintain 
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ferromagnetic state for kBT<40meV. One can expect that the existence of spin moment 

softening effect can decrease the Curie temperature in a certain manner. Actually, our 

simulations results show that for conserved spin moment (without spin moment softening 

effect) of a 12-atom chain, the Curie temperature is Tc~810K (kBTc ~70meV), slightly 

higher than the softening case. 
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Figure 5.10 Average atomic moment component xM  for a chain of 12-atom length at different 

temperatures. 

 

For finite temperature T<Tc, domain switching process will happen. Fig. 5.11 (a) 

shows a serious of switching events for the domain of 12-atom chain under kBT=15meV 

in 1000ps. It is noted that a total of 28 switching events have happened during 1000ps, 

and hence the average lifetime for each switching is around ~34ps. Fig. 5.11 (b) shows 
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the detailed dynamics process for the average atomic moment in one single switching 

event as marked in Fig. 5.11 (a). The switching process is shown to be very fast due to 

the relative short chain length. What’s more, the existence of the aforementioned 

anisotropic orbital moment effect makes the atomic moment motion trace within an 

ellipsoid rather than a sphere. 

It is expected the lifetime  is dependent of both the temperature T and chain 

length by obeying an Arrhenius law, [253] 

 0 exp /B BE k T , (5.26) 

where BE  is the activation energy barrier and the prefactor 0 is called the attempt time 

or attempt period. It is the lifetime  that tells the stability of a single ferromagnetic 

domain state which can be treated as an information carrier. Since  is determined by 

both BE  and 0, those two key factors should be determined by our simulations. The 

average lifetimes  for atomic chains of different lengths from 6- to 26-atom within a 

temperature range of kBT=13~25meV are calculated from our simulated results. By fitting 

those values in a linear manner according to Eq. (5.26) as shown by the inset of Fig. 5.12 

(a) for a 6-atom chain, both factors can be obtained. Fig. 5.12 (a) and (b) show the fitted 

values of BE  and 0 for Ni atomic chains with different lengths, respectively.  
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Figure 5.11 (a) Average atomic moment component xM for a chain of 12-atom length at 

kBT=15meV in 1000ps duration. A total of 28 switching events can be found. (b) Detailed 

dynamics process for the average atomic moment M  in one single switching event as marked in 

(a) by the blue dash square. 
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For the activation energy BE , our simulated results indicate an almost constant 

value, ~96.3meV, for the chains whose length are no shorter than 14-atom. It has been 

reported that two regimes exist for the domain switching process [253]. For a chain with 

the length much smaller than domain wall width (Regime I), the switching is realized by 

the single domain rotation with the activation energy BE NK  which is determined by 

the MAE and dependent on the chain length N. For the chain much longer than domain 

wall width (Regime II), the switching process is mostly realized by the domain wall 

motion, for which the domain wall is usually nucleated at the chain edge and then driven 

by the fluctuating field along the chain to reverse the domain state, with the activation 

energy the same with domain wall energy B DWE E  which is constant and not dependent 

on the chain length. Of course, the domain wall can also be nucleated in the chain  

interior, but the activation energy should be doubled since a domain wall pair is required 

to be nucleated together, which makes the latter case a low-probability event but that 

must be considered for the infinite chain system [268]. It is not difficult to predict that the 

activation energy at Regime II will be always larger than that at Regime I. According to 

Fig. 5.12 (a), since all the chain lengths are larger than the domain wall width which is 

nearly 4-atom as shown in Fig. 5.9 (c), all the cases we considered are at Regime II, and 

the activation energy 96.3meV is also in the vicinity of the domain wall energy which is 

around 100meV as shown in Fig. 5.9 (c). Precisely speaking, the domain wall width used 

to distinguish Regime I and II mustn’t be the aforementioned wall width 2w , but the 

effective wall width DWN  discussed in following content which seems more proper for 

current discussions. The tiny reducing for the activation energy 96.3meV with respect to 
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the ideal domain wall energy seems due to the fact that the domain wall nucleated at the 

chain edge is not exactly the same as the ideal one, and the spin moment softening effect 

might also reduce the domain wall energy a little bit. For the chains with lengths smaller 

than 14-atom, the activation energies are smaller than the constant value since the chain 

is not long enough for an intact domain wall, which agrees very well with the results in 

Ref. [253]. 

At Regime II, the lifetime is determined by the thermally induced domain wall 

motion, and once the domain wall propagation process is complete, the switching process 

is finished. Since it is thought that the domain wall propagates only between 0.5 DWN  and 

0.5 DWN N , the attempt time 0 is proposed to obey a linear rule as [125] 

 0 DWN N , (5.27) 

where DWN  is the effective domain wall width. According to Fig. 5.12 (b), such a 

linearship is observed when the chain length is no less than 14-atom, the same condition 

for constant BE . For chain lengths less than 14-atom, the attempt time is enhanced by 

decreasing the chain length. It is noted that for the linear part the effective domain wall 

width is 8DWN atom which is about twice of the actual domain wall width shown by 

Fig. 5.9 (c), indicating that the effective width required to maintain the nucleated domain 

wall state without annihilated back at the edge is about 8-atom which is larger than the 

commonly defined wall width 2 4 atom. Since both the activation energy BE  and 

attempt time 0 have been determined, the lifetime  for finite chain length and finite 

temperature therefore can be calculated according to Eq. (5.2). 
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Figure 5.12 (a) Activation energies BE  for Ni atomic chain with various lengths from 6-atom to 

26-atom. The inset of (a) shows the linear fitting according to Eq. (5.26) for a 6-atom chain. (b) 

Attempt times 0 for Ni atomic chain with various lengths from 6-atom to 26-atom. The red dash-

dot line represents a linear fitting for 14N . (c) The lifetimes for atomic chains with different 

lengths at kBT=15meV. The red dash-dot line represents a linear fitting for 14N . The inset of 

(c) shows a linear fitting between -1 and  for a 6-aotm chain at kBT=15meV. 
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Fig. 5.12 (c) shows the lifetimes for atomic chains with different lengths at kBT=15meV, 

from which a lifetime enhancement is observed for longer chains. Since BE  is constant at 

a region where the chain length is no less than 14-atom, 0  is satisfied at that region 

at constant temperature kBT=15meV, and hence there is also a linear relationship noted in 

Fig. 5.12 (c) with the effective wall width also pretty close to 8-atom. At kBT=15meV, the 

thermal fluctuations are so strong that the single domain state lifetime is quite short, in 

the order of 100ps according to Fig. 5.12 (c). In order for more stable domain state, lower 

temperature is required. For example, for a chain with 6-atom length, the temperature as 

low as T=14K is required for the ferromagnetic single domain state staying as long as 10 

years, while for a 12-atom chain the corresponding temperature is T=24K. One can 

expect that for ferromagnetic transition-metal atomic chain with smaller MAE, since the 

activation energy BE  will be smaller, the required temperature will be even much lower. 

All the above results are corresponding to damping parameter 0.1 used in our 

simulations, however, the actual value of  for Ni atomic chain is unknown while the 

lifetime  or attempt time 0 are usually  dependent, so that the relationship between  

(or 0) and  should be investigated. The inset of Fig. 5.12 (c) shows a linear 

relationship between -1 and  for a 6-aotm chain at kBT=15meV, i.e.,  (or 0) -1. 

Usually, one can expect the actual value of  is in the range of (0.01, 1.0), and then the 

actual attempt time 0 will be in the range of (0.1 0, 10 0) where 0 is the attempt time 

corresponding to 0.1 as shown in Fig. 5.12 (b). 
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Figure 5.13 M-B hysteresis loops with external field of (-50T, 50T) and measurement period of 

60ps for a 12-atom chain at temperatures (a) kBT =5meV, (b) 10meV, (c) 15meV, (d) 25meV, (e) 

35meV, (f) 40meV, (g) 60meV, and (h) 70meV. 
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The ferromagnetic single domain switching under external magnetic field is quite 

essential for the magnetic recording. For finite Ni atomic chain, it is paramagnetic state 

above the Curie temperature Tc (kBTc=60meV), while below Tc, the state depends on both 

the measurement time and temperature. At constant measurement time, there is a 

blocking temperature TB below which it is ferromagnetic state while above it is 

superparamagnetic state. A magnetic field loop of (-50T, 50T) within a 60ps period is 

applied to a 12-atom chain at different temperatures, and all the corresponding hysteresis 

loops are shown in Fig. 5.13. It is noted that atomic moment fluctuations become more 

pronounced at higher temperatures. At relatively low temperature, ferromagnetic state 

maintains at zero external field and the hysteresis loop is very sharp with the coercivity 

field continuously reduced at increased temperatures until kBT=35meV at which the 

hysteresis disappears (Fig. 5.13 (e)), indicating a transition from the ferromagnetic state 

to the superparamagnetic state, and that transition temperature is the blocking 

temperature kBTB=35meV (TB~400K). At temperature between TB and Tc (Fig. 5.13 (f)), 

although there is no hysteresis any more, the ferromagnetic single domain state can also 

maintain due to the external field and the transition at zero field is still relatively sharp 

compared with the paramagnetic state shown in Fig. 5.13 (g)-(h) in which the M-B curves 

are very soft. Those M-B curves for Ni monoatomic chains below and above blocking 

temperature TB are in good agreement with those for the 50-atom Co monoatomic chain 

[227], but with a relatively sharp transition manner caused by the larger MAE.  

Obviously, our simulation results show that higher MAE can help enhance the 

ferromagnetic single domain stability, increase the operation temperature, and shorten the 

required chain length. 
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5.4 Conclusion 

In conclusion, freestanding Ni monoatomic chain with high MAE at finite 

temperature has been investigated by both ab initio studies and spin dynamics 

simulations. All the fundamental magnetic parameters, such as exchange interaction 

parameters, uniaxial MAE constants, and magnetic orbital moments are calculated at ab 

initio DFT level at zero temperature. Since the spin moment softening effect caused by 

the hybridization effect between two spin channels are universally existed for itinerant 

ferromagnets like Ni, the relevant softening coefficients as well as the relationships 

between spin moment and those fundamental parameters are also investigated. The finite 

temperature effect is taken into account by employing an approach to the electronic free 

energy, and the exchange interaction parameters as well as the MAE constants at various 

finite temperatures are obtained from the temperature-dependent electronic free energies. 

In order to understand the domain and domain wall properties of Ni monoatomic chain 

which are quite essential for 1D nanomagnetism and nanospintronics, an atomistic model 

using parametrized Hamiltonians which are provided by the above ab initio studies is 

employed. Our study shows that both the atomic moment and the parametrized 

Hamiltonian are determined by the spin orientations m  of the Ni atomic chain, and 

therefore the whole spin dynamics can be determined by the spin orientations evolution 

described by the stochastic LLG equation. For the domain wall of Ni atomic chain, our 

simulation results show that the atomic wall is as narrow as around 4 atom-distance at 

zero temperature, indicating a relatively evident ballistic magnetoresistance effect. The 

spin moment softening effect is small at zero temperature, but it can become more 

pronounced once thermal fluctuations are included, which will significantly soften the 
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atomic moment as well as the relevant Hamiltonian like exchange interactions or MAE 

and hence influence the spin dynamics behaviors like reducing the Curie temperature 

according to our simulation results. For the ferromagnetic single domain stability and 

switching, two key factors of the Arrhenius law, the activation energy BE  and the attempt 

time 0 , are quantitatively studied for finite Ni atomic chain with different lengths. For 

chains of no less than 14-atom length, BE  will be almost constant with the magnitude 

almost the same with domain wall energy, while 0  performs a linear relationship with 

chain length. M-B hysteresis loops at fixed measurement time are given to show the 

transition between ferromagnetic state and superparamagnetic state separated by the 

blocking temperature, and both the sharp switching and large coercivity indicate potential 

applications in magnetic recording. Thus, all the above results show that for Ni 

monoatomic chain, the high MAE can help shrink the domain wall size, shorten the 

required chain length, enhance the ferromagnetic single domain stability, and increase the 

operation temperature to improve performance in 1D nanomagnetism and 

nanospintronics. Our studies can shed a light on other high MAE 1D transition-metal 

monoatomic chain systems. 

 

5.5 Future Research 

1. 3d or 4d transition-metal monoatomic chains in Zigzag from instead of straight form 

will be taken into account in the future. Their magnetic parameters, especially the MAE, 

will be calculated based on the ab initio method, while the domain wall structure or spin 

texture will be investigated based our atomistic model. 
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2. If deposited on substrate, the magnetic properties might be very different from those of 

freestanding systems. Therefore, some monoatomic chain systems with high MAE 

deposited on certain substrate will be also considered for the future ab initio and spin 

dynamic studies. 

 

3. Since magnetoresistance for sharp domain wall or fast varying spin textures is a key 

factor in spintronics, we will use another ab initio program called SMEAGOL to study 

this topic.  

 

4. Atomic logic element based on single atoms or atomic clusters might be also studied 

by using our spin dynamics simulations and ab initio calculations. 
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Chapter 6. Summary§ 

6.1 Magnetic Domain Walls in Thin Films 

Static and dynamic properties of domain wall with or without substructures in thin 

films driven by magnetic field or spin-polarized current are focused in Chapter 3. For the 

case of domain wall without substructures driven by magnetic field, we have investigated 

the dynamics of one-dimensional domain wall line in ultrathin Pt/Co/Pt film with 

perpendicular anisotropy in the creep, depinning and flow regimes using our 

micromagnetic simulations. The creep exponent  = 1.24  0.05 is determined by fitting 

exp{ (1 / ) / }c c Bv U H H k T  for driving field near the depinning force, indicating 

that the value  = 5/4 based on washboard potential model is supported by our simulation 

results. A brief analysis based on a phenomenological approach was made for the pinning 

energies Uc in both creep regimes, H<Hc and H Hc, and our analysis indicates a close 

value for the disorder lengths 0u  and  which are related to two distinct type of pinning 

potentials. Such a determination for the creep exponent  can also be extended to many 

other areas in physics. 

Since substructures are commonly existed in magnetic domain walls, we also 

studied the statics and dynamics of domain wall line with substructures in ultrathin 

magnetic film at finite temperature by micromagnetic simulations. For statics, the 

roughness exponent  of domain wall line can be slightly decreased by substructures due 

to the enhanced thermal fluctuations at substructures, and the domain wall line can also 

§ The material contained in Section 6.2 of this chapter was previously partially published in Journal of Applied Physics, 2012. 112(8): 
p. 083903 and Journal of Magnetism and Magnetic Materials, 2015. 393(0): p. 121-126 by Geng, Liwei D. and Jin, Yongmei M.. See 
Appendix C and D for documentations of permission to republish this material. 
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be deroughened by substructures mainly due to the increased elasticity. For dynamics, the 

wall motion behaviors driven by magnetic field in the creep, depinning and flow regimes 

have been studied. At the steady linear flow regime, the Walker field is increased but the 

mobility is decreased, both of which are due to the additional motion freedom degree of 

substructures sliding within the domain wall line by draining the field-induced spin 

torque at the domain wall, leaving the mobility at the precessional linear flow regime 

unchanged. At the depinning regime, since one more pinning barrier needs to be 

overcome due to the slide motion of substructures, the depinning field is increased 

linearly with the substructure density. At the creep regime for cH H , 1 /cU kT is 

reduced, mainly due to the thermal enhancement at substructures, while for cH H , the 

ratios 2 1/c cU U  are all around ~0.5,  indicating close disorder lengths in the two field 

ranges. This work can also be extended to other kinds of elastic strings with  

substructures. 

Like magnetic field, spin-polarized current can also provide a driving force for 

domain walls, and statics and dynamics properties of domain wall line with an without 

substructures in thin film with random pinning sites and thermal fluctuations will be also 

studied, which are our future researches. Before that, current induced substructure motion 

in ideal magnetic systems without pinning and thermal effect should be studied first. 

Therefore, current induced Bloch line motion in bulk and thin film with high in-plane 

uniaxial anisotropy has been investigated by both theoretical calculations and 

micromagnetic simulations in this section. Both the bulk and thin film systems exhibit 

almost the same properties for current induced Bloch line motion. The Bloch line velocity 
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parallel with current u is ||v u , which is independent of Bloch line types and densities, 

while the Bloch line velocity perpendicular with u is v u for the current 

applied perpendicular to the domain wall  and v u for the current parallel 

with the domain wall, where is more or less inversely proportional to Bloch line 

density and  is weakly dependent of Bloch line density. Both the theoretical calculations 

and micromagnetic simulations agree with each other very well. Besides, ultrafast 

reversal of Bloch line in thin film is also computationally investigated. Our simulation 

results indicate that Bloch lines in thin film can be ultrafast reversed by magnetic field 

and spin-polarized current, but with two different mechanisms. Our study on current 

induced Bloch lines motion as well as the ultrafast Bloch line reversal can shed a light on 

future Bloch-line based devices in spintronics. 

 

6.2 Magnetic Domain Walls in Nanowires 

Structures, properties, functionalities as well as some relevant spintronic devices 

based on field or current driven magnetic domain walls in nanowires are studied or 

explored in Chapter 4. First, novel nanometer transverse-domain-wall-based logic 

elements are proposed based on micromagnetic simulations. Unwinding transverse 

domain walls are generated to avoid the domain wall pile-up effect existed at 

miniaturized circuits. Since two types of unwinding transverse domain wall pairs can be 

generated by our novel data generator, new bit definition for ‘1’ and ‘0’ is presented 

accordingly. The logic gates, NOT, AND and OR, are proposed based on the new bit 

definition and tested by the simulation process. The proposed current/field assistant NOT 
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gate performs a no-delay feature. Based on our simulations, more advantages are 

performed by the nanometer magnetic transverse domain wall logic than the previously 

proposed submicrometer domain wall logic [34]. 

Second, 360  domain walls in planar magnetic nanowires are studied by 

micromagnetic simulations, and 360  domain wall generator and shifter register are 

proposed. It is shown that a nanowire loop with a shape-isotropic wall generator at one 

end and a shape-anisotropic wall stopper at the other end functions like a data storage 

stack: 360  domain walls are generated and pushed into stack under rotating field before 

overflow while popped out and annihilated when field rotating direction is inverted until 

underflow. The stack capacity is determined by total nanowire loop length. The 360  

domain wall shift register is constructed by incorporating a shape-isotropic wall generator 

and a winding nanowire with all the information carriers, 360  domain walls, stored 

within the nanowire corners. These simple nanowire structures can be integrated into 

magnetic circuits as an operation unit for 360  domain wall generation and storage. 

Third, when spin-polarized current is applied to those packed domain walls, an 

important role of domain wall pile-up in current-driven domain wall depinning in 

magnetic nanowires is revealed using micromagnetic simulations. It is found that the 

critical current for domain wall depinning can be substantially reduced and conveniently 

tuned by controlling domain wall number in the pile-up at pinning site, in analogy to 

dislocation pile-up responsible for Hall-Petch effect in mechanical strength. Domain wall 

pinning and depinning at an s-shape bend is considered, and the effects of curvature and 

current crowding in magnetic circuit on domain wall behaviors are discussed. 
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Furthermore, since current induced domain wall depinning and transportation 

through circular geometry in planar nanowire are crucial for domain-wall-based memory 

or logic devices, threshold currents for the two processes induced by the conventional 

spin-transfer torques and the interface-derived spin-orbit torques are theoretically 

calculated, and those calculated results are also supported by our numerical results based 

on the 1D model. For spin-orbit torques, the Rashba effect and Spin-Hall effect are taken 

into account separately for both depinning and transportation cases. Our calculations 

demonstrate novel means to effectively reduce the threshold current and modulate the 

current induced transverse DW depinning or transportation process occurred at nanowire 

circular geometry by Rashba or Spin-Hall effect.  

In addition, the magnetic vortex racetrack memory combining both the vortex 

domain walls realized in nanowire with perpendicular anisotropy and the racetrack 

conception is proposed using micromagnetic simulations. Racetrack memory and 

magnetic vortex attract much interest due to the proposed ultrahigh storage density and 

the distinct static and dynamic properties manifested by its core polarity, respectively. 

Magnetic vortex racetrack memory (VRM), a combination of both of them, based on 

densely packed vortices and current induced vortex motion in nanowires, has been 

proposed to have unique properties different from the domain wall racetrack memory 

(DWRM). Densely packed vortices in nanowires aroused from the notion of densely 

packed stripe domains in the thin film with weak perpendicular anisotropy are carried  

out, and the stability for such vortices as well as their core polarity is studied by our 

simulations. Two simple designs are demonstrated for the novel VRM, and some of its 

unique properties, like the current induced vortices transportation behaviors in particular, 
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are explored based on our simulation results. Such a VRM may have potential 

applications in the field of spintronics. 

 

6.3 Magnetic Domain Walls in Atomic Chains 

Static and dynamic properties of atomic chain are studied by both ab initio 

calculations and spin dynamic simulations in Chapter 5. Since magnetocrystalline 

anisotropy energy (MAE) is a key factor in one-dimensional (1D) atomic chain system, 

freestanding Ni monoatomic chain with high MAE at finite temperature is investigated by 

both ab initio studies and spin dynamics simulations. All the relevant magnetic 

parameters are calculated at ab initio density function theory (DFT) level at zero 

temperature. Magnetic parameters at finite temperature are also calculated based on a 

DFT approach to the electronic free energy. The spin moment softening effect caused by 

the hybridization effect between two spin channels are also considered. Based on an 

atomistic model using parametrized Hamiltonians which are provided by the above ab 

initio studies, a truly magnetic domain wall structure and the single domain switching 

process are investigated by our spin dynamics simulations. An atomic domain wall as 

narrow as 4 atom-distance with slight spin moment softening effect is obtained at zero 

temperature, which indicates a relatively evident ballistic magnetoresistance effect. For 

the ferromagnetic single domain switching process, both the activation energy BE  and 

the attempt time 0 in the Arrhenius law are quantitatively studied for finite Ni atomic 

chains with different lengths, and the large BE  indicates the strong stability of single 

domain state, which is also confirmed by the M-B hysteresis loops at fixed measurement 
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time by both the sharp switching and large coercivity below the blocking temperature. 

Our studies can shed a light on other high MAE transition-metal monoatomic chain 

systems. 

  



236 

 

References 

1. Hubert, A. and R. Schafer, Magnetic Domains: The Analysis of Magnetic 
Microstructures, 2000. 

2. Nakatani, Y., A. Thiaville, and J. Miltat, Faster magnetic walls in rough wires. 
Nat Mater, 2003. 2(8): p. 521-523. 

3. Li, Z. and S. Zhang, Domain-Wall Dynamics and Spin-Wave Excitations with 
Spin-Transfer Torques. Physical Review Letters, 2004. 92(20): p. 207203. 

4. Saitoh, E., et al., Current-induced resonance and mass determination of a single 
magnetic domain wall. Nature, 2004. 432(7014): p. 203-206. 

5. Tatara, G. and H. Kohno, Theory of Current-Driven Domain Wall Motion: Spin 
Transfer versus Momentum Transfer. Physical Review Letters, 2004. 92(8): p. 
086601. 

6. Yamaguchi, A., et al., Real-Space Observation of Current-Driven Domain Wall 
Motion in Submicron Magnetic Wires. Physical Review Letters, 2004. 92(7): p. 
077205. 

7. Yamanouchi, M., et al., Current-induced domain-wall switching in a 
ferromagnetic semiconductor structure. Nature, 2004. 428(6982): p. 539-542. 

8. Zhang, S. and Z. Li, Roles of Nonequilibrium Conduction Electrons on the 
Magnetization Dynamics of Ferromagnets. Physical Review Letters, 2004. 93 
(12): p. 127204. 

9. Barnes, S.E. and S. Maekawa, Current-Spin Coupling for Ferromagnetic Domain 
Walls in Fine Wires. Physical Review Letters, 2005. 95(10): p. 107204. 

10. Beach, G.S.D., et al., Dynamics of field-driven domain-wall propagation in 
ferromagnetic nanowires. Nat Mater, 2005. 4(10): p. 741-744. 

11. Ravelosona, D., et al., Nanometer Scale Observation of High Efficiency 
Thermally Assisted Current-Driven Domain Wall Depinning. Physical Review 
Letters, 2005. 95(11): p. 117203. 

12. Hayashi, M., et al., Influence of Current on Field-Driven Domain Wall Motion in 
Permalloy Nanowires from Time Resolved Measurements of Anisotropic 
Magnetoresistance. Physical Review Letters, 2006. 96(19): p. 197207. 

13. Hayashi, M., et al., Dependence of Current and Field Driven Depinning of 
Domain Walls on Their Structure and Chirality in Permalloy Nanowires. Physical 
Review Letters, 2006. 97(20): p. 207205. 

14. Thomas, L., et al., Oscillatory dependence of current-driven magnetic domain 
wall motion on current pulse length. Nature, 2006. 443(7108): p. 197-200. 

15. Yamanouchi, M., et al., Velocity of Domain-Wall Motion Induced by Electrical 
Current in the Ferromagnetic Semiconductor (Ga,Mn)As. Physical Review 
Letters, 2006. 96(9): p. 096601. 

16. Hayashi, M., et al., Direct observation of the coherent precession of magnetic 
domain walls propagating along permalloy nanowires. Nat Phys, 2007. 3(1): p. 
21-25. 

17. Meier, G., et al., Current-induced domain-wall motion in permalloy semi rings. 
Journal of Magnetism and Magnetic Materials, 2007. 316(2): p. e966-e968. 



237 

 

18. Beach, G.S.D., M. Tsoi, and J.L. Erskine, Current-induced domain wall motion. 
Journal of Magnetism and Magnetic Materials, 2008. 320(7): p. 1272-1281. 

19. Hayashi, M., et al., Current-Controlled Magnetic Domain-Wall Nanowire Shift 
Register. Science, 2008. 320(5873): p. 209-211. 

20. Moriya, R., et al., Probing vortex-core dynamics using current-induced resonant 
excitation of a trapped domain wall. Nat Phys, 2008. 4(5): p. 368-372. 

21. Parkin, S.S.P., M. Hayashi, and L. Thomas, Magnetic Domain-Wall Racetrack 
Memory. Science, 2008. 320(5873): p. 190-194. 

22. Youngman, J., et al., Current-induced domain wall nucleation and its pinning 
characteristics at a notch in a spin-valve nanowire. Nanotechnology, 2009. 
20(12): p. 125401. 

23. Bader, S.D. and S.S.P. Parkin, Spintronics. Annual Review of Condensed Matter 
Physics, 2010. 1(1): p. 71-88. 

24. Burrowes, C., et al., Non-adiabatic spin-torques in narrow magnetic domain 
walls. Nat Phys, 2010. 6(1): p. 17-21. 

25. Jiang, X., et al., Enhanced stochasticity of domain wall motion in magnetic 
racetracks due to dynamic pinning. Nat Commun, 2010. 1: p. 25. 

26. Thomas, L., et al., Dynamics of Magnetic Domain Walls Under Their Own Inertia. 
Science, 2010. 330(6012): p. 1810-1813. 

27. Junya, S., T. Gen, and K. Hiroshi, A brief review of field- and current-driven 
domain-wall motion. Journal of Physics D: Applied Physics, 2011. 44(38): p. 
384004. 

28. Koyama, T., et al., Observation of the intrinsic pinning of a magnetic domain wall 
in a ferromagnetic nanowire. Nat Mater, 2011. 10(3): p. 194-197. 

29. Miron, I.M., et al., Fast current-induced domain-wall motion controlled by the 
Rashba effect. Nat Mater, 2011. 10(6): p. 419-423. 

30. Haazen, P.P.J., et al., Domain wall depinning governed by the spin Hall effect. 
Nat Mater, 2013. 12(4): p. 299-303. 

31. O'Brien, L., et al., Tunable Remote Pinning of Domain Walls in Magnetic 
Nanowires. Physical Review Letters. 106(8). 

32. Allwood, D.A., et al., Submicrometer Ferromagnetic NOT Gate and Shift 
Register. Science, 2002. 296(5575): p. 2003-2006. 

33. Atkinson, D., et al., Magnetic domain-wall dynamics in a submicrometre 
ferromagnetic structure. Nat Mater, 2003. 2(2): p. 85-7. 

34. Allwood, D.A., et al., Magnetic domain-wall logic. Science, 2005. 309(5741): p. 
1688-1692. 

35. Lewis, E.R., et al., Fast domain wall motion in magnetic comb structures. Nat 
Mater, 2010. 9(12): p. 980-983. 

36. Vanhaverbeke, A., A. Bischof, and R. Allenspach, Control of Domain Wall 
Polarity by Current Pulses. Physical Review Letters, 2008. 101(10). 

37. Miron, I.M., et al., Current-driven spin torque induced by the Rashba effect in a 
ferromagnetic metal layer. Nat Mater, 2010. 9(3): p. 230-4. 

38. Miron, I.M., et al., Fast current-induced domain-wall motion controlled by the 
Rashba effect. Nat Mater, 2011. 10(6): p. 419-23. 



238 

 

39. Ryu, K.S., et al., Chiral spin torque at magnetic domain walls. Nat Nanotechnol, 
2013. 8(7): p. 527-33. 

40. Choi, S., et al., Strong Radiation of Spin Waves by Core Reversal of a Magnetic 
Vortex and Their Wave Behaviors in Magnetic Nanowire Waveguides. Physical 
Review Letters, 2007. 98(8): p. 087205. 

41. Guslienko, K.Y., K.-S. Lee, and S.-K. Kim, Dynamic Origin of Vortex Core 
Switching in Soft Magnetic Nanodots. Physical Review Letters, 2008. 100(2): p. 
027203. 

42. Hertel, R., et al., Ultrafast Nanomagnetic Toggle Switching of Vortex Cores. 
Physical Review Letters, 2007. 98(11): p. 117201. 

43. Janutka, A., Externally driven transformations of vortex textures in flat 
submicrometer magnets. Physical Review B, 2012. 85(18): p. 184421. 

44. Kamionka, T., et al., Magnetic Antivortex-Core Reversal by Circular-Rotational 
Spin Currents. Physical Review Letters, 2010. 105(13): p. 137204. 

45. Kläui, M., et al., Current-induced vortex nucleation and annihilation in vortex 
domain walls. Applied Physics Letters, 2006. 88(23): p. -. 

46. Zhang, Y., et al., Perpendicular-magnetic-anisotropy CoFeB racetrack memory. 
Journal of Applied Physics, 2012. 111(9): p. -. 

47. Muratov, C.B. and V.V. Osipov, Bit Storage by 360o Domain Walls in 
Ferromagnetic Nanorings. Magnetics, IEEE Transactions on, 2009. 45(8): p. 
3207-3209. 

48. Taguchi, K., J.-i. Ohe, and G. Tatara, Ultrafast Magnetic Vortex Core Switching 
Driven by the Topological Inverse Faraday Effect. Physical Review Letters, 2012. 
109(12): p. 127204. 

49. Bayer, C., et al. Phase shift of spin waves traveling through a 180&deg; Bloch 
domain wall. in Magnetics Conference, 2005. INTERMAG Asia 2005. Digests of 
the IEEE International. 2005. 

50. Hertel, R., W. Wulfhekel, and J. Kirschner, Domain-Wall Induced Phase Shifts in 
Spin Waves. Physical Review Letters, 2004. 93(25): p. 257202. 

51. Thiaville, A., et al., Micromagnetic understanding of current-driven domain wall 
motion in patterned nanowires. EPL (Europhysics Letters), 2005. 69(6): p. 990. 

52. Xiao, J., A. Zangwill, and M.D. Stiles, Spin-transfer torque for continuously 
variable magnetization. Physical Review B, 2006. 73(5): p. 054428. 

53. Li, Z. and S. Zhang, Domain-wall dynamics driven by adiabatic spin-transfer 
torques. Physical Review B, 2004. 70(2): p. 024417. 

54. Thiaville, A., et al., Domain wall motion by spin-polarized current: a 
micromagnetic study. Journal of Applied Physics, 2004. 95(11): p. 7049-7051. 

55. Waintal, X. and M. Viret, Current-induced distortion of a magnetic domain wall. 
EPL (Europhysics Letters), 2004. 65(3): p. 427. 

56. Carva, K. and I. Turek, Ab initio theory of spin-transfer torques. Journal of 
Magnetism and Magnetic Materials, 2007. 316(2): p. e926-e929. 

57. He, J., Z. Li, and S. Zhang, Current-driven vortex domain wall dynamics by 
micromagnetic simulations. Physical Review B, 2006. 73(18): p. 184408. 

58. Hiroshi Kohno, G.T., Junya Shibata, Microscopic Calculation of Spin Torques in 
Disordered Ferromagnets. Journal of the Physical Society of Japan, 2006. 75(11). 



239 

 

59. Berkov, D.V. and J. Miltat, Spin-torque driven magnetization dynamics: 
Micromagnetic modeling. Journal of Magnetism and Magnetic Materials, 2008. 
320(7): p. 1238-1259. 

60. Jung, S.-W., et al., Current-induced domain wall motion in a nanowire with 
perpendicular magnetic anisotropy. Applied Physics Letters, 2008. 92(20): p. -. 

61. Gen TATARA, T.T., Hiroshi KOHNO, Junya SHIBATA, and Y.N.a.H. 
FUKUYAMA, Threshold Current of Domain Wall Motion under Extrinsic 
Pinning, b-Term and Non-Adiabaticity. Journal of the Physical Society of Japan, 
2006. 75(6). 

62. Dresselhaus, G., Spin-Orbit Coupling Effects in Zinc Blende Structures. Physical 
Review, 1955. 100(2): p. 580-586. 

63. Dyakonov, M.I. and V.I. Perel, Current-induced spin orientation of electrons in 
semiconductors. Physics Letters A, 1971. 35(6): p. 459-460. 

64. Stöhr, J. and H.C. Siegmann, Magnetism: From Fundamentals to Nanoscale 
Dynamics. 2006. 

65. Gambardella, P. and I.M. Miron, Current-induced spin-orbit torques. Philos 
Trans A Math Phys Eng Sci, 2011. 369(1948): p. 3175-97. 

66. Tsutsui, K., et al., Spin Currents Induced by Nonuniform Rashba-Type Spin–Orbit 
Field. Journal of the Physical Society of Japan, 2011. 80(8): p. 084701. 

67. Khvalkovskiy, A.V., et al., Matching domain-wall configuration and spin-orbit 
torques for efficient domain-wall motion. Physical Review B, 2013. 87(2). 

68. Avci, C.O., et al., Fieldlike and antidamping spin-orbit torques in as-grown and 
annealed Ta/CoFeB/MgO layers. Physical Review B, 2014. 89(21). 

69. Martinez, E., S. Emori, and G.S.D. Beach, Current-driven domain wall motion 
along high perpendicular anisotropy multilayers: The role of the Rashba field, the 
spin Hall effect, and the Dzyaloshinskii-Moriya interaction. Applied Physics 
Letters, 2013. 103(7): p. 072406. 

70. Liu, L., et al., Spin-torque switching with the giant spin Hall effect of tantalum. 
Science, 2012. 336(6081): p. 555-8. 

71. Emori, S., et al., Current-driven dynamics of chiral ferromagnetic domain walls. 
Nat Mater, 2013. 12(7): p. 611-6. 

72. Haazen, P.P., et al., Domain wall depinning governed by the spin Hall effect. Nat 
Mater, 2013. 12(4): p. 299-303. 

73. Jungwirth, T., J. Wunderlich, and K. Olejnik, Spin Hall effect devices. Nat Mater, 
2012. 11(5): p. 382-90. 

74. Ryu, J., K.-J. Lee, and H.-W. Lee, Current-driven domain wall motion with spin 
Hall effect: Reduction of threshold current density. Applied Physics Letters, 2013. 
102(17): p. 172404. 

75. Perez, N., et al., Chiral magnetization textures stabilized by the Dzyaloshinskii-
Moriya interaction during spin-orbit torque switching. Applied Physics Letters, 
2014. 104(9): p. 092403. 

76. Seo, S.-M., et al., Current-induced motion of a transverse magnetic domain wall 
in the presence of spin Hall effect. Applied Physics Letters, 2012. 101(2): p. 
022405. 



240 

 

77. Moriya, T., New Mechanism of Anisotropic Superexchange Interaction. Physical 
Review Letters, 1960. 4(5): p. 228-230. 

78. Bode, M., et al., Atomic spin structure of antiferromagnetic domain walls. Nat 
Mater, 2006. 5(6): p. 477-481. 

79. Uchida, M., et al., Real-Space Observation of Helical Spin Order. Science, 2006. 
311(5759): p. 359-361. 

80. Bode, M., et al., Chiral magnetic order at surfaces driven by inversion asymmetry. 
Nature, 2007. 447(7141): p. 190-193. 

81. Levy, P.M. and S. Zhang, Resistivity due to Domain Wall Scattering. Physical 
Review Letters, 1997. 79(25): p. 5110-5113. 

82. Gregg, J.F., et al., Giant Magnetoresistive Effects in a Single Element Magnetic 
Thin Film. Physical Review Letters, 1996. 77(8): p. 1580-1583. 

83. Hong, K. and N. Giordano, Approach to mesoscopic magnetic measurements. 
Physical Review B, 1995. 51(15): p. 9855-9862. 

84. Tatara, G. and H. Fukuyama, Resistivity due to a Domain Wall in Ferromagnetic 
Metal. Physical Review Letters, 1997. 78(19): p. 3773-3776. 

85. Ebels, U., et al., Spin Accumulation and Domain Wall Magnetoresistance in 35 
nm Co Wires. Physical Review Letters, 2000. 84(5): p. 983-986. 

86. Xu, Y.B., et al., Magnetoresistance of a domain wall at a submicron junction. 
Physical Review B, 2000. 61(22): p. R14901-R14904. 

87. Çetin, B. and N. Giordano, Domain wall resistance in narrow Co wires. physica 
status solidi (b), 2004. 241(10): p. 2410-2414. 

88. Lepadatu, S. and Y.B. Xu, Direct Observation of Domain Wall Scattering in 
Patterned Ni80Fe20 and Ni Nanowires by Current-Voltage Measurements. 
Physical Review Letters, 2004. 92(12): p. 127201. 

89. Tang, H.X., et al., Negative intrinsic resistivity of an individual domain wall in 
epitaxial (Ga,Mn)As microdevices. Nature, 2004. 431(7004): p. 52-56. 

90. van Gorkom, R.P., A. Brataas, and G.E.W. Bauer, Negative Domain Wall 
Resistance in Ferromagnets. Physical Review Letters, 1999. 83(21): p. 4401- 
4404. 

91. Elefant, D. and R. Schäfer, Giant negative domain wall resistance in iron. 
Physical Review B, 2010. 82(13). 

92. García, N., M. Muñoz, and Y.W. Zhao, Magnetoresistance in excess of 200% in 
Ballistic Ni Nanocontacts at Room Temperature and 100 Oe. Physical Review 
Letters, 1999. 82(14): p. 2923-2926. 

93. Tatara, G., et al., Domain Wall Scattering Explains 300% Ballistic 
Magnetoconductance of Nanocontacts. Physical Review Letters, 1999. 83(10): p. 
2030-2033. 

94. Chung, S.H., et al., Universal Scaling of Ballistic Magnetoresistance in Magnetic 
Nanocontacts. Physical Review Letters, 2002. 89(28). 

95. Chung, S.H., et al., Universal Scaling of Ballistic Magnetoresistance in Magnetic 
Nanocontacts. Physical Review Letters, 2002. 89(28): p. 287203. 

96. Sullivan, M.R., et al., Ballistic magnetoresistance in nickel single-atom 
conductors without magnetostriction. Physical Review B, 2005. 71(2): p. 024412. 



241 

 

97. Tatara, G., Domain Wall Resistance Based on Landauer's Formula. J. Phys. Soc. 
Jpn., 2000. 69(9). 

98. Faleev, S.V., et al., Ab initio tight-binding LMTO method for nonequilibrium 
electron transport in nanosystems. Physical Review B, 2005. 71(19): p. 195422. 

99. Sabirianov, R.F., et al., Domain-wall magnetoresistance of Co nanowires. 
Physical Review B, 2005. 72(5): p. 054443. 

100. Burton, J.D., et al., Magnetic Moment Softening and Domain Wall Resistance in 
Ni Nanowires. Physical Review Letters, 2006. 97(7): p. 077204. 

101. Garc a, N., et al., Ballistic magnetoresistance in a magnetic nanometer sized 
contact: An effective gate for spintronics. Applied Physics Letters, 2001. 79(27): 
p. 4550. 

102. Chopra, H.D., et al., The quantum spin-valve in cobalt atomic point contacts. Nat 
Mater, 2005. 4(11): p. 832-837. 

103. Velev, J. and W.H. Butler, Domain-wall resistance in metal nanocontacts. 
Physical Review B, 2004. 69(9): p. 094425. 

104. Burton, J., et al., Magnetic Moment Softening and Domain Wall Resistance in Ni 
Nanowires. Physical Review Letters, 2006. 97(7): p. 077204. 

105. Yavorsky, B.Y., et al., Giant magnetoresistance due to a domain wall in Fe:Ab 
initiostudy. Physical Review B, 2002. 66(17). 

106. Durgun, E., et al., Nanospintronic properties of carbon-cobalt atomic chains. 
Europhys. Lett., 2006. 73(4): p. 642-648. 

107. Stavros, A., et al., Giant magnetoresistance of nickel-contacted carbon nanotubes. 
Journal of Physics: Condensed Matter, 2007. 19(4): p. 042201. 

108. Durgun, E., et al., Spintronic properties of carbon-based one-dimensional 
molecular structures. Physical Review B, 2006. 74(23). 

109. Czerner, M., B.Y. Yavorsky, and I. Mertig, Magnetic order in geometrically 
constrained domain walls. Journal of Applied Physics, 2008. 103(7): p. 07F304. 

110. Mavropoulos, P., N. Papanikolaou, and P.H. Dederichs, Korringa-Kohn-Rostoker 
Green-function formalism for ballistic transport. Physical Review B, 2004. 
69(12). 

111. Bagrets, A., N. Papanikolaou, and I. Mertig, Magnetoresistance of atomic-sized 
contacts: Anab initiostudy. Physical Review B, 2004. 70(6). 

112. Tung, J.C. and G.Y. Guo, Systematic ab initio study of the magnetic and 
electronic properties of all 3d transition metal linear and zigzag nanowires. 
Physical Review B, 2007. 76(9): p. 094413. 

113. Dag, S., et al., Half-metallic properties of atomic chains of carbon–transition-
metal compounds. Physical Review B, 2005. 72(15). 

114. Graham, B.D.C.a.C.D., Introduction to Magnetic Materials (Wiley, New York, 
2009). 

115. Moore, T.A., et al., Scaling of spin relaxation and angular momentum dissipation 
in permalloy nanowires. Physical Review B, 2009. 80(13): p. 132403. 

116. Bamzai, A.S. and B.M. Deb, The role of single-particle density in chemistry. 
Reviews of Modern Physics, 1981. 53(1): p. 95-126. 

117. Parr, R.G., Density Functional Theory. Annual Review of Physical Chemistry, 
1983. 34(1): p. 631-656. 



242 

 

118. Callaway, J. and N.H. March, Density Functional Methods:Theory and 
Applications, in Solid State Physics, D.T. Henry Ehrenreich and S. Frederick, 
Editors. 1984, Academic Press. p. 135-221. 

119. Jones, R.O. and O. Gunnarsson, The density functional formalism, its applications 
and prospects. Reviews of Modern Physics, 1989. 61(3): p. 689-746. 

120. Martin, R.M., Electronic Structure: Basic Theory and Practical Methods. 2008. 
121. Sholl, D. and J.A. Steckel, Density Functional Theory: A Practical Introduction 

2009. 
122. Giustino, F., Materials Modelling using Density Functional Theory: Properties 

and Predictions. 2014. 
123. Kresse, G. and J. Hafner, Ab initio molecular dynamics for open-shell transition 

metals. Physical Review B, 1993. 48(17): p. 13115-13118. 
124. Kresse, G. and J. Furthmüller, Efficiency of ab-initio total energy calculations for 

metals and semiconductors using a plane-wave basis set. Computational 
Materials Science, 1996. 6(1): p. 15-50. 

125. Hobbs, D., G. Kresse, and J. Hafner, Fully unconstrained noncollinear magnetism 
within the projector augmented-wave method. Physical Review B, 2000. 62(17):  
p. 11556-11570. 

126. Sandratskii, L.M., Symmetry analysis of electronic states for crystals with spiral 
magnetic order. I. General properties. Journal of Physics: Condensed Matter, 
1991. 3(44): p. 8565. 

127. Sandratskii, L.M., Symmetry analysis of electronic states for crystals with spiral 
magnetic order. II. Connection with limiting cases. Journal of Physics: Condensed 
Matter, 1991. 3(44): p. 8587. 

128. Blatter, G., et al., Vortices in high-temperature superconductors. Reviews of 
Modern Physics, 1994. 66(4): p. 1125-1388. 

129. Fukuyama, H. and P.A. Lee, Dynamics of the charge-density wave. I. Impurity 
pinning in a single chain. Physical Review B, 1978. 17(2): p. 535-541. 

130. Paruch, P., T. Giamarchi, and J.M. Triscone, Domain Wall Roughness in 
Epitaxial Ferroelectric PbZr0.2Ti0.8O3 Thin Films. Physical Review Letters, 2005. 
94(19): p. 197601. 

131. Tybell, T., et al., Domain Wall Creep in Epitaxial Ferroelectric Pb(Zr0.2Ti0.8)O3 
Thin Films. Physical Review Letters, 2002. 89(9): p. 097601. 

132. Bustingorry, S., A.B. Kolton, and T. Giamarchi, Thermal rounding of the 
depinning transition in ultrathin Pt/Co/Pt films. Physical Review B, 2012. 85(21): 
p. 214416. 

133. Krusin-Elbaum, L., et al., Stable ultrahigh-density magneto-optical recordings 
using introduced linear defects. Nature, 2001. 410(6827): p. 444-446. 

134. Metaxas, P.J., et al., Creep and Flow Regimes of Magnetic Domain-Wall Motion 
in Ultrathin Pt/Co/Pt Films with Perpendicular Anisotropy. Physical Review 
Letters, 2007. 99(21): p. 217208. 

135. Lemerle, S., et al., Domain Wall Creep in an Ising Ultrathin Magnetic Film. 
Physical Review Letters, 1998. 80(4): p. 849-852. 



243 

 

136. Shibauchi, T., et al., Deroughening of a 1D Domain Wall in an Ultrathin 
Magnetic Film by a Correlated Defect. Physical Review Letters, 2001. 87(26): p. 
267201. 

137. Bauer, M., et al., Deroughening of Domain Wall Pairs by Dipolar Repulsion. 
Physical Review Letters, 2005. 94(20): p. 207211. 

138. Chauve, P., T. Giamarchi, and P. Le Doussal, Creep and depinning in disordered 
media. Physical Review B, 2000. 62(10): p. 6241-6267. 

139. Müller, M., D.A. Gorokhov, and G. Blatter, Velocity-force characteristics of a 
driven interface in a disordered medium. Physical Review B, 2001. 63(18): p. 
184305. 

140. Bustingorry, S., A.B. Kolton, and T. Giamarchi, Thermal rounding exponent of 
the depinning transition of an elastic string in a random medium. Physical 
Review E, 2012. 85(2): p. 021144. 

141. Nattermann, T., V. Pokrovsky, and V.M. Vinokur, Hysteretic Dynamics of 
Domain Walls at Finite Temperatures. Physical Review Letters, 2001. 87(19): p. 
197005. 

142. Anderson, P.W., Theory of Flux Creep in Hard Superconductors. Physical 
Review Letters, 1962. 9(7): p. 309-311. 

143. Büttiker, M. and R. Landauer, Nucleation theory of overdamped soliton motion. 
Physical Review A, 1981. 23(3): p. 1397-1410. 

144. Nowak, U. and K.D. Usadel, Influence of temperature on the depinning transition 
of driven interfaces. EPL (Europhysics Letters), 1998. 44(5): p. 634. 

145. Duemmer, O. and W. Krauth, Critical exponents of the driven elastic string in a 
disordered medium. Physical Review E, 2005. 71(6): p. 061601. 

146. Brown, W.F., Jr., Thermal Fluctuations of a Single-Domain Particle. Physical 
Review, 1963. 130(5): p. 1677-1686. 

147. Thomson, T., G. Hu, and B.D. Terris, Intrinsic Distribution of Magnetic 
Anisotropy in Thin Films Probed by Patterned Nanostructures. Physical Review 
Letters, 2006. 96(25): p. 257204. 

148. Martys, N., M. Cieplak, and M.O. Robbins, Critical phenomena in fluid invasion 
of porous media. Physical Review Letters, 1991. 66(8): p. 1058-1061. 

149. Kim, K.-J., et al., Interdimensional universality of dynamic interfaces. Nature, 
2009. 458(7239): p. 740-742. 

150. Lee, J.-C., et al., Universality Classes of Magnetic Domain Wall Motion. Physical 
Review Letters, 2011. 107(6): p. 067201. 

151. Eduardo, M., The stochastic nature of the domain wall motion along high 
perpendicular anisotropy strips with surface roughness. Journal of Physics: 
Condensed Matter, 2012. 24(2): p. 024206. 

152. Kolton, A.B., A. Rosso, and T. Giamarchi, Creep Motion of an Elastic String in a 
Random Potential. Physical Review Letters, 2005. 94(4): p. 047002. 

153. Hubert, A. and R. Schäfer, Magnetic Domains: The Analysis of Magnetic 
Microstructures. 1998: Springer. 

154. Martinez, E., et al., Thermal effects in domain wall motion: Micromagnetic 
simulations and analytical model. Physical Review B, 2007. 75(17): p. 174409. 



244 

 

155. Jung, S.-W., et al., Current-induced domain wall motion in a nanowire with 
perpendicular magnetic anisotropy. Applied Physics Letters, 2008. 92(20): p. 
202508-3. 

156. Kolton, A.B., A. Rosso, and T. Giamarchi, Nonequilibrium Relaxation of an 
Elastic String in a Random Potential. Physical Review Letters, 2005. 95(18): p. 
180604. 

157. Bryan, M.T., J. Dean, and D.A. Allwood, Dynamics of stress-induced domain 
wall motion. Physical Review B, 2012. 85(14): p. 144411. 

158. Le Maho, Y., J.-V. Kim, and G. Tatara, Spin-wave contributions to current-
induced domain wall dynamics. Physical Review B, 2009. 79(17): p. 174404. 

159. Lisfi, A., et al., Reorientation of magnetic anisotropy in epitaxial cobalt ferrite 
thin films. Physical Review B, 2007. 76(5): p. 054405. 

160. Prejbeanu, I.L., et al., Observation of asymmetric Bloch walls in epitaxial Co 
films with strong in-plane uniaxial anisotropy. Applied Physics Letters, 2000. 
77(19): p. 3066-3068. 

161. Schneider, M., S. Müller-Pfeiffer, and W. Zinn, Magnetic force microscopy of 
domain wall fine structures in iron films. Journal of Applied Physics, 1996. 
79(11): p. 8578. 

162. Basterfield, J., Domain Structure and the Influence of Growth Defects in Single 
Crystals of Yttrium Iron Garnet. Journal of Applied Physics, 1968. 39(12): p. 
5521. 

163. Vlasko-Vlasov, V.K., l.M. Dedukh, and V.I. Nikitenko, Domain structure of 
yttrium iron garnet single crystals. Zh. Eksp. Teor. Fiz., 1976. 71: p. 2291-2304. 

164. Schippan, F., et al., Magnetic structure of epitaxially grown MnAs on GaAs(001). 
Journal of Applied Physics, 2000. 88(5): p. 2766. 

165. Engel-Herbert, R., et al., Understanding the submicron domain structure of MnAs 
thin films on GaAs(001): Magnetic force microscopy measurements and 
simulations. Applied Physics Letters, 2004. 84(7): p. 1132. 

166. Kim, J., H. Akinaga, and J. Kim, Direct observation of the spin configurations of 
vertical Bloch line. Applied Physics Letters, 2011. 98(5): p. 052510. 

167. Konishi, S., A new-ultra-density solid state memory: Bloch line memory. 
Magnetics, IEEE Transactions on, 1983. 19(5): p. 1838-1840. 

168. Humphrey, F.B. and J.C. Wu, Vertical bloch line memory. Magnetics, IEEE 
Transactions on, 1985. 21(5): p. 1762-1766. 

169. Engemann, J. Vertical Bloch line memory: state of the art and future prospect. in 
CompEuro '89., 'VLSI and Computer Peripherals. VLSI and Microelectronic 
Applications in Intelligent Peripherals and their Interconnection Networks', 
Proceedings. 1989. 

170. Cheynis, F., et al., Controlled Switching of Néel Caps in Flux-Closure Magnetic 
Dots. Physical Review Letters, 2009. 102(10). 

171. Yamada, K., et al., Electrical switching of the vortex core in a magnetic disk. Nat 
Mater, 2007. 6(4): p. 270-273. 

172. Lee, K.-S. and S.-K. Kim, Conceptual design of spin wave logic gates based on a 
Mach--Zehnder-type spin wave interferometer for universal logic functions. 
Journal of Applied Physics, 2008. 104(5): p. 053909-4. 



245 

 

173. Schneider, T., et al., Realization of spin-wave logic gates. Applied Physics Letters, 
2008. 92(2): p. 022505-3. 

174. Parkin, S.S., M. Hayashi, and L. Thomas, Magnetic domain-wall racetrack 
memory. Science, 2008. 320(5873): p. 190-4. 

175. Kläui, M., et al., Direct Observation of Domain-Wall Configurations Transformed 
by Spin Currents. Physical Review Letters, 2005. 95(2): p. 026601. 

176. Ishaque, Z., et al., Manipulating domain wall chirality by current pulses in 
Permalloy/Ir nanostrips. arXiv preprint arXiv:1312.4918, 2013. 

177. Klein, J.O., et al., VHDL simulation of magnetic domain wall logic. Ieee 
Transactions on Magnetics, 2006. 42(10): p. 2754-2756. 

178. Jin, Y.M., et al., Magnetic structure and hysteresis in hard magnetic 
nanocrystalline film: Computer simulation. Journal of Applied Physics, 2002. 
92(10): p. 6172-6181. 

179. Geng, L.D. and Y.M. Jin, Generation and storage of 360° domain walls in planar 
magnetic nanowires. Journal of Applied Physics, 2012. 112(8): p. -. 

180. Himeno, A., et al., Dynamics of a magnetic domain wall in magnetic wires with 
an artificial neck. Journal of Applied Physics, 2003. 93(10): p. 8430-8432. 

181. Smith, D.O. and K.J. Harte, Noncoherent Switching in Permalloy Films. Journal 
of Applied Physics, 1962. 33(4): p. 1399-1413. 

182. Middelhoek, S., PERTURBATION WALLS IN THIN MAGNETIC DOUBLE 
PERMALLOY (Ni–Fe) FILMS. Applied Physics Letters, 1964. 5(4): p. 70-72. 

183. Feldtkeller, E., Coupled Walls in Multilayer Films. Journal of Applied Physics, 
1968. 39(2): p. 1181-1190. 

184. Schafer, R., A. Hubert, and S.S.P. Parkin, Domain and domain wall observations 
in sputtered exchange-biased wedges. Magnetics, IEEE Transactions on, 1993. 
29(6): p. 2738-2740. 

185. McCord, J., et al., Magnetization processes in exchange biased giant 
magnetoresistive multilayer elements. Magnetics, IEEE Transactions on, 1996. 
32(5): p. 4803-4805. 

186. Portier, X. and A.K. Petford-Long, The formation of 360° domain walls in 
magnetic tunnel junction elements. Applied Physics Letters, 2000. 76(6): p. 754-
756. 

187. Muratov, C.B. and V.V. Osipov, Theory of 360° domain walls in thin 
ferromagnetic films. Journal of Applied Physics, 2008. 104(5): p. 053908. 

188. Diegel, M., R. Mattheis, and E. Halder, 360o domain wall investigation for sensor 
applications. Magnetics, IEEE Transactions on, 2004. 40(4): p. 2655-2657. 

189. Castaño, F.J., et al., Metastable states in magnetic nanorings. Physical Review B, 
2003. 67(18): p. 184425. 

190. Muratov, C.B. and V.V. Osipov, Bit Storage by 360o Domain Walls in 
Ferromagnetic Nanorings. Magnetics, IEEE Transactions on, 2009. 45(8): p. 
3207-3209. 

191. Mascaro, M.D., C. Nam, and C.A. Ross, Interactions between 180° and 360° 
domain walls in magnetic multilayer stripes. Applied Physics Letters, 2010. 
96(16): p. 162501. 



246 

 

192. Marrows, C.H., Spin-polarised currents and magnetic domain walls. Advances in 
Physics, 2005. 54(8): p. 585-713. 

193. Petit, D., et al., Domain wall pinning and potential landscapes created by 
constrictions and protrusions in ferromagnetic nanowires. Journal of Applied 
Physics, 2008. 103(11). 

194. Lewis, E.R., et al., Magnetic domain wall pinning by a curved conduit. Applied 
Physics Letters, 2009. 95(15). 

195. Yamaguchi, A., et al., Effect of Joule heating in current-driven domain wall 
motion. Applied Physics Letters, 2005. 86(1): p. 012511. 

196. Thiaville, A., et al., Micromagnetic understanding of current-driven domain wall 
motion in patterned nanowires. Europhysics Letters (EPL), 2005. 69(6): p. 990-
996. 

197. Ryu, J. and H.-W. Lee, Current-induced domain wall motion: Domain wall 
velocity fluctuations. Journal of Applied Physics, 2009. 105(9): p. 093929. 

198. Martinez, E., et al., Thermal effects in domain wall motion: Micromagnetic 
simulations and analytical model. Physical Review B, 2007. 75(17). 

199. Komine, T., et al., Reduction of intrinsic critical current density for current-
induced domain wall motion by using a ferrimagnetic nanowire with 
perpendicular magnetic anisotropy. Journal of Applied Physics, 2011. 109(7): p. 
07D503. 

200. Mascaro, M.D. and C.A. Ross, ac and dc current-induced motion of a 360o 
domain wall. Physical Review B, 2010. 82(21): p. 214411. 

201. Noh, S.J., et al., Effects of notch shape on the magnetic domain wall motion in 
nanowires with in-plane or perpendicular magnetic anisotropy. Journal of 
Applied Physics, 2012. 111(7): p. 07D123. 

202. Kunz, A. and S.C. Reiff, Dependence of domain wall structure for low field 
injection into magnetic nanowires. Applied Physics Letters, 2009. 94(19): p. 
192504. 

203. Jang, Y., et al., Formation and structure of 360 and 540 degree domain walls in 
thin magnetic stripes. Applied Physics Letters, 2012. 100(6): p. 062407. 

204. Geng, L.D. and Y.M. Jin, Generation and storage of 360° domain walls in planar 
magnetic nanowires. Journal of Applied Physics, 2012. 112(8): p. 083903. 

205. Jin, Y.M., Phase field modeling of current density distribution and effective 
electrical conductivity in complex microstructures. Applied Physics Letters, 2013. 
103(2): p. 021906. 

206. Zeng, H.T., et al., The influence of wire width on the charge distribution of 
transverse domain walls and their stray field interactions. Journal of Magnetism 
and Magnetic Materials, 2010. 322(14): p. 2010-2014. 

207. Faulkner, C.C., Artificial domain wall nanotraps in Ni81Fe19 wires. Journal of 
Applied Physics, 2004. 95(11): p. 6717. 

208. Petit, D., et al., Magnetic imaging of the pinning mechanism of asymmetric 
transverse domain walls in ferromagnetic nanowires. Applied Physics Letters, 
2010. 97(23): p. 233102. 



247 

 

209. Zeng, H.T., et al., Combined electrical and magneto-optical measurements of the 
magnetization reversal process at a domain wall trap. Applied Physics Letters, 
2009. 94(10). 

210. Petit, D., et al., High efficiency domain wall gate in ferromagnetic nanowires. 
Applied Physics Letters, 2008. 93(16). 

211. Lewis, E.R., et al., Measuring Domain Wall Fidelity Lengths Using a Chirality 
Filter. Physical Review Letters, 2009. 102(5). 

212. Moore, T.A., et al., Domain wall velocity measurement in permalloy nanowires 
with X-ray magnetic circular dichroism imaging and single shot Kerr microscopy. 
Journal of Magnetism and Magnetic Materials, 2010. 322(9–12): p. 1347-1352. 

213. Moore, T.A., et al., Magnetic-field-induced domain-wall motion in permalloy 
nanowires with modified Gilbert damping. Physical Review B, 2010. 82(9): p. 
094445. 

214. Kläui, M., et al., Current-induced vortex nucleation and annihilation in vortex 
domain walls. Applied Physics Letters, 2006. 88(23): p. 232507. 

215. Fernandez-Pacheco, A., et al., Domain wall conduit behavior in cobalt nanowires 
grown by focused electron beam induced deposition. Applied Physics Letters, 
2009. 94(19). 

216. Yamaguchi, A., et al., Temperature estimation in a ferromagnetic Fe-Ni nanowire 
involving a current-driven domain wall motion. Journal of Physics: Condensed 
Matter, 2012. 24(2): p. 024201. 

217. Allwood, D.A., G. Xiong, and R.P. Cowburn, Writing and erasing data in 
magnetic domain wall logic systems. Journal of Applied Physics, 2006. 100(12). 

218. Jamali, M., K.-J. Lee, and H. Yang, Effect of nonadiabatic spin transfer torque on 
domain wall resonance frequency and mass. Applied Physics Letters, 2011. 98  
(9): p. 092501. 

219. Annunziata, A.J., et al. Racetrack memory cell array with integrated magnetic 
tunnel junction readout. in Electron Devices Meeting (IEDM), 2011 IEEE 
International. 2011. 

220. Weisheng, Z., et al. Racetrack memory based reconfigurable computing. in Faible 
Tension Faible Consommation (FTFC), 2013 IEEE. 2013. 

221. Zhao, W.S., et al. Magnetic domain-wall racetrack memory for high density and 
fast data storage. in Solid-State and Integrated Circuit Technology (ICSICT), 
2012 IEEE 11th International Conference on. 2012. 

222. Shibata, J., et al., Current-induced magnetic vortex motion by spin-transfer torque. 
Physical Review B, 2006. 73(2): p. 020403. 

223. Lee, K.-S., et al., Universal Criterion and Phase Diagram for Switching a 
Magnetic Vortex Core in Soft Magnetic Nanodots. Physical Review Letters, 2008. 
101(26): p. 267206. 

224. Kammerer, M., et al., Magnetic vortex core reversal by excitation of spin waves. 
Nat Commun, 2011. 2: p. 279. 

225. Schafer, A.H.a.R., Magnetic Domains: The Analysis of Magnetic Microstructures, 
2000. 

226. Mascaro, M.D., Interactions between 180° and 360° domain walls in magnetic 
multilayer stripes. Appl. Phys. Lett., 2010. 96(16): p. 162501. 



248 

 

227. Gambardella, P., et al., Ferromagnetism in one-dimensional monatomic metal 
chains. Nature, 2002. 416(6878): p. 301-304. 

228. Gambardella, P., et al., Giant Magnetic Anisotropy of Single Cobalt Atoms and 
Nanoparticles. Science, 2003. 300(5622): p. 1130-1133. 

229. Khajetoorians, A.A., et al., Realizing All-Spin–Based Logic Operations Atom by 
Atom. Science, 2011. 332(6033): p. 1062-1064. 

230. Menzel, M., et al., Information Transfer by Vector Spin Chirality in Finite 
Magnetic Chains. Physical Review Letters, 2012. 108(19): p. 197204. 

231. Wei, D., et al., Pd Atomic Chain Formation as a Result of Submonolayer 
Deposition of 3d Metals on Pd(110). Physical Review Letters, 2009. 103(22): p. 
225504. 

232. Mermin, N. and H. Wagner, Absence of Ferromagnetism or Antiferromagnetism 
in One- or Two-Dimensional Isotropic Heisenberg Models. Physical Review 
Letters, 1966. 17(22): p. 1133-1136. 

233. Spišák, D. and J. Hafner, Magnetism of ultrathin wires suspended in free space 
and adsorbed on vicinal surfaces. Physical Review B, 2003. 67(21): p. 214416. 

234. Mahdi, S. and S.S. Ataee, First principles study on spin and orbital magnetism of 
3d transition metal monatomic nanowires (Mn, Fe and Co). Journal of Physics: 
Condensed Matter, 2011. 23(12): p. 125301. 

235. Tung, J.C. and G.Y. Guo, Ab initio studies of spin-spiral waves and exchange 
interactions in 3d transition metal atomic chains. Physical Review B, 2011. 
83(14): p. 144403. 

236. Töws, W. and G.M. Pastor, Theoretical study of the temperature dependence of 
the magnon dispersion relation in transition-metal wires and monolayers. 
Physical Review B, 2012. 86(5): p. 054443. 

237. Mokrousov, Y., et al., Giant Magnetocrystalline Anisotropies of 4d Transition-
Metal Monowires. Physical Review Letters, 2006. 96(14): p. 147201. 

238. Tung, J.C. and Y.K. Wang, The structural, electronic, and magnetic properties of 
Fe–Ir, Co–Ir and Ni–Ir linear and zigzag nanowires: First-principles  
calculations. Journal of Magnetism and Magnetic Materials, 2011. 323(15): p. 
2032-2036. 

239. Ataca, C., et al., Structural, electronic, and magnetic properties of 3d transition 
metal monatomic chains: First-principles calculations. Physical Review B, 2008. 
77(21): p. 214413. 

240. Nautiyal, T., T.H. Rho, and K.S. Kim, Nanowires for spintronics: A study of 
transition-metal elements of groups 8-10. Physical Review B, 2004. 69(19): p. 
193404. 

241. Hashemi, H., W. Hergert, and V.S. Stepanyuk, Magnetic states of M-Fe wires 
(M=Sc-Ni) on vicinal Cu(111) from first principles. Physical Review B, 2010. 
81(10): p. 104418. 

242. Tung, J.C. and G.Y. Guo, An ab initio study of the magnetic and electronic 
properties of Fe, Co, and Ni nanowires on Cu(001) surface. Computer Physics 
Communications, 2011. 182(1): p. 84-86. 



249 

 

243. Tung, J.C., Y.K. Wang, and G.Y. Guo, Magnetic anisotropy and spin-spiral wave 
in V, Cr and Mn atomic chains on Cu(0 0 1) surface: first principles calculations. 
Journal of Physics D: Applied Physics, 2011. 44(20): p. 205003. 

244. Hashemi, H., W. Hergert, and V.S. Stepanyuk, Magnetic properties of 3d 
transition metal chains on vicinal surface. Journal of Magnetism and Magnetic 
Materials, 2010. 322(9–12): p. 1296-1299. 

245. Luo, S.J., G.Y. Guo, and A. Laref, Magnetism of 3d-Transition Metal (Fe, Co, 
and Ni) Nanowires on w-BN (0001). The Journal of Physical Chemistry C, 2009. 
113(33): p. 14615-14622. 

246. Dallmeyer, A., et al., Electronic states and magnetism of monatomic Co and Cu 
wires. Physical Review B, 2000. 61(8): p. R5133-R5136. 

247. Rodrigues, V., et al., Evidence for Spontaneous Spin-Polarized Transport in 
Magnetic Nanowires. Physical Review Letters, 2003. 91(9): p. 096801. 

248. Antropov, V.P., et al., Spin dynamics in magnets: Equation of motion and finite 
temperature effects. Physical Review B, 1996. 54(2): p. 1019-1035. 

249. Böttcher, D., A. Ernst, and J. Henk, Atomistic magnetization dynamics in 
nanostructures based on first principles calculations: application to Co 
nanoislands on Cu(111). Journal of Physics: Condensed Matter, 2011. 23(29): p. 
296003. 

250. Skubic, B., et al., A method for atomistic spin dynamics simulations: 
implementation and examples. Journal of Physics: Condensed Matter, 2008. 
20(31): p. 315203. 

251. Magiera, M.P., et al., Spin waves cause non-linear friction. EPL (Europhysics 
Letters), 2011. 95(1): p. 17010. 

252. Kazantseva, N., et al., Towards multiscale modeling of magnetic materials: 
Simulations of FePt. Physical Review B, 2008. 77(18): p. 184428. 

253. David, S.G.B., et al., Thermally activated magnetization reversal in monatomic 
magnetic chains on surfaces studied by classical atomistic spin-dynamics 
simulations. Journal of Physics: Condensed Matter, 2011. 23(39): p. 394204. 

254. Kresse, G. and J. Furthmüller, Efficient iterative schemes for ab initio total-
energy calculations using a plane-wave basis set. Physical Review B, 1996. 
54(16): p. 11169-11186. 

255. Kresse, G. and J. Hafner, Ab initio molecular dynamics for liquid metals. Physical 
Review B, 1993. 47(1): p. 558-561. 

256. Kresse, G. and J. Hafner, Ab initio molecular-dynamics simulation of the liquid-
metal–amorphous-semiconductor transition in germanium. Physical Review B, 
1994. 49(20): p. 14251-14269. 

257. Blöchl, P.E., Projector augmented-wave method. Physical Review B, 1994. 
50(24): p. 17953-17979. 

258. Kresse, G. and D. Joubert, From ultrasoft pseudopotentials to the projector 
augmented-wave method. Physical Review B, 1999. 59(3): p. 1758-1775. 

259. Perdew, J.P., K. Burke, and M. Ernzerhof, Generalized Gradient Approximation 
Made Simple. Physical Review Letters, 1996. 77(18): p. 3865-3868. 



250 

 

260. Perdew, J.P., K. Burke, and M. Ernzerhof, Generalized Gradient Approximation 
Made Simple [Phys. Rev. Lett. 77, 3865 (1996)]. Physical Review Letters, 1997. 
78(7): p. 1396-1396. 

261. Shallcross, S., et al., An ab initio effective Hamiltonian for magnetism including 
longitudinal spin fluctuations. Physical Review B, 2005. 72(10): p. 104437. 

262. Kittel, C., Model of Exchange-Inversion Magnetization. Physical Review, 1960. 
120(2): p. 335-342. 

263. Harris, E.A. and J. Owen, Biquadratic Exchange Between Mn2+ Ions in MgO. 
Physical Review Letters, 1963. 11(1): p. 9-10. 

264. Rosengaard, N.M. and B. Johansson, Finite-temperature study of itinerant 
ferromagnetism in Fe, Co, and Ni. Physical Review B, 1997. 55(22): p. 14975-
14986. 

265. Iwashita, T. and N. Uryu, The Curie temperature of the Ising ferromagnet with 
higher-order exchange interaction. Journal of Physics C: Solid State Physics, 
1984. 17(5): p. 855. 

266. Mryasov, O.N., et al., Temperature-dependent magnetic properties of FePt: 
Effective spin Hamiltonian model. EPL (Europhysics Letters), 2005. 69(5): p. 805. 

267. Wolverton, C. and A. Zunger, First-principles theory of short-range order, 
electronic excitations, and spin polarization in Ni-V and Pd-V alloys. Physical 
Review B, 1995. 52(12): p. 8813-8828. 

268. Vindigni, A., et al., Fast switching of bistable magnetic nanowires through 
collective spin reversal. Applied Physics Letters, 2005. 87(7): p. -. 

269. Deeley, E.M. and B. Saha, Neel wall energy in thin films for unequal 
magnetization angles. Magnetics, IEEE Transactions on, 1988. 24(6): p. 2383-
2385. 

 

  



251 

 

Appendix A: Domain Wall with Substructures in Ideal 

Magnetic Film 

The complete analytical calculations for domain wall with substructures are 

difficult, so that some approximations should be made. At first, in a reasonable 

approximation,  mainly depends on y while  mainly depends on x, as schematically 

shown by Fig. A1. Besides, magnetic charges will be generated due to the formation of 

substructures of Neel type, which will result in higher magnetostatic energy. Such 

additional magnetiostatic energy makes the analytical calculation complicated, but in a 

nonrigid approximation, the energy can be treated as anisotropy energy of some kind, 

noted by yK which is applied only to substructures, just like the shape anisotropy. The 

value of yK can be approximated by[269] 

 2
08y s

tK M
t w

, (A1) 

where t  is the film thickness and w  is the DW width which can be given by 2 DWw

with DW  the DW parameter. As for those material parameters used in this paper, it can 

be approximated that 2
00.079y sK M .Thus, the total energy including exchange   

energy, magnetocrystalline anisotropy energy, and magnetostatic energy will be 
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y x
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where u dK K K  with uK  the magnetocrystalline anisotropy constant and 

2
00.5d sK M  the demagnetization energy of thin film. 

 

Figure A1 Schematic diagram for the magnetization structure of a substructure within a DW. 

 

The DW substructure can be obtained by 
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, (A3) 

from which one can obtain the substructure width parameters X  and Y , along X and Y, 

respectively, as well as DW width parameter DW , 
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The total energy for substructurewith length 2X Xw  is given by 
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where 
1 2

0

2
1 sech 1yK

xdx
K

1 is a coefficient multiplied on the DW energy density 

4DW AK . It is approximated that 1.20  with substructure length 22.5Xw nm  . 

When a magnetic field H  along Z-direction is applied, there will be an additional 

energy term in Eq. (A2), cosH se HM . The LLG equation will be

2

2
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y s
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M x
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M y x

2 sin2 sin
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(A6) 

Using the same assumption in Sec. 3.3, we can calculate the substructure velocities in X 

and Y-direction, 

2

2

(1 )

1

X

Y
Y

LHv
N

Hv
, (A7)

where L  is the DW length and N  is the number of substructures. It is noted that both Xv  

and Yv  are linearly related to magnetic field H , while for Xv , it is also inversely 
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proportional to the substructure density /N L  and moves along –X direction for the 

ccw-hh substructure shown in Fig. A1. 

For DW without substructures, with applied field H , the DW velocity is given by  

 
sin 2y

s

KHv
M

, (A8) 

with 2/ ( sin )yA K K . 
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Appendix B: Domain Wall with Substructures in 

Defective Magnetic Film 

In real magnetic films, since imperfections exist, pinning sites should be taken 

into account for DW motion, and pinning barriers ( , , , )pinV x y  should be added to the 

total energy. Then, we have 

2

22

22
2

12

sin 2 2 sin cos sin

sin 2 2sin cos sin sin

y
s

y s
s

A K f
M x

A K K A HM f
M y x

sinsin

M

,  

(B1) 

where the pinning forces are 1 /pinf V  and 2 /pinf V . Since the exact form 

of pinning forces is unknown, in an approximation, at wall center, i.e., / 2 , we 

have the substructure velocity along Y-direction by ignoring the drag effect of DW 

segments, 

 1 2
2

/
1

Y
Y

s

f fv H
M

, (B2) 

which can be compared with the DW velocity, 

 1

s

fv H
M

.  (B3) 

It is noted that substructures will overcome larger pinning force than DWs due to the 

additional motion freedom degree in X-direction. It is also noted that the mobility for 

substructure Ym  is much lower than that for DW m , and their ratio is  
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For finite temperature, the thermal effect is effectively introduced by the Gaussian 

distributed fluctuation field thH  with certain amplitude, and hence the corresponding 

energy term will be 

 , , ,cos sin sin sin costh th z s th y s th x se H M H M H M . (B5) 

In an approximation, at wall center, without considering the pinning effect or external 

magnetic field, we have the substructure velocity along Y-direction by ignoring the drag 

effect of DW segments, 

 ,
,21

th xY
Y th z

H
v H ,  (B6) 

which can be compared with the DW velocity, 

 ,th zv H . (B7) 

It is noted that the thermal field will have an enhanced effect on substructures, and the 

averaged amplitude is 

 
2

2 2
2

1
Y , (B8) 

much larger than the thermal effect on DW. 
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