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By applying Navier-

Stokes based 

models, two 

important forces are 

considered: fluid 

pressure and shear 

stress between the 

object and fluid. 

Frictional shear 

force is tangential to 

the immersed objects in the fluid (Anderson, 2005). Fluid immediately adjacent to the 

frictional surface is dominated by viscosity and has a no-slip condition (Tritton, 1988). 

This thin layer near the surface has zero velocity (Denny, 1993). A velocity gradient is 

shown in Figure 4, depicting the velocity increase in the direction perpendicular to the 

object’s surface (Denny, 1993). Flow velocity changes as a function of distance from zero 

at the surface (Tritton, 1988). This region is known as an object’s boundary layer and can 

be quantified by the logarithmic law of the wall equation (Zanoun, Durst, & Nagib, 2003). 

Within the boundary layer of a rigid impermeable wall, viscous stresses are exerted directly 

on the wall of the object. Transitioning away from the wall, Reynolds stresses become 

more dominant compared to the viscous stresses. Outside of the boundary layer in turbulent 

water, flow is inviscid and is governed by turbulent pressure forces. Boundary layer 

thickness is dependent on the fluid properties, velocity, wetted parameter and surface 

roughness (Denny, 1993).  In some cases, a surface is defined with a free slip condition. In 

this case, the boundary layer gradients are uniform with the mainstream velocity and 

replicate an open water scenario. 

As a hydrofoil increases the angle of attack, the flow boundary can separate from the 

surface. Flow separation occurs because of adverse pressure gradients and the velocity 

profile near boundary layers (Anderson, 2005). Near the trailing edge of a hydrofoil, at a 

high angle of attack, dP/dx is positive. This means that the fluid particles need to move to 

Figure 4: Velocity gradient from boundary layer effects 
(Image by author, 2015)  
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Figure 19: Experimental section (A) Plan view of surfboard and spring 
gauge- measuring lift force (B) Plan view of surfboard and spring gauge- 
measuring drag force (C) isometric view of the positioning system (Image by 
author, 2015)
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Pilot’s Handbook of Aeronautical Knowledge.
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Figure 100: Orthographic drawings of the fluid boundary box and fin positioning   
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Table 15: Refinement meshing test results using Orca fin at α=0°, U∞=10mps   

Table 16: Repeatability test results using SFPW fin at α=15°, U∞=0.5mps   
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Appendix B: Results for remaining nine fins 
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Figure 101: Coefficient of lift from laboratory and CFD data collected for the Blue 
Shark at ten angles of attack (0-45°)   

187
Figure 102: Coefficient of drag from laboratory and CFD data collected for the Blue 
Shark at ten angles of attack (0-45°)   

°)
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Table 17: CFD lift and drag data for the Blue Shark (0-45°)   

Table 18: Laboratory lift and drag data for the Blue Shark (0-45°)   
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Figure 103: Coefficient of lift from laboratory and CFD data collected for the Fin 
Whale at ten angles of attack (0-45°)   

°)
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Figure 104: Coefficient of drag from laboratory and CFD data collected for the Fin 
Whale at ten angles of attack (0-45°)   
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Table 19: CFD lift and drag data for the Fin Whale (0-45°)  

°

Table 20: Laboratory lift and drag data for the Fin Whale (0-45°)   
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Figure 105: Coefficient of lift from laboratory and CFD data collected for the Dall’s 
Porpoise at ten angles of attack (0-45°)   
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Figure 106: Coefficient of lift from laboratory and CFD data collected for the Dall’s 
Porpoise at ten angles of attack (0-45°)   
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Table 21: CFD lift and drag data for the Dall's Porpoise (0-45°)   

Table 22: Laboratory lift and drag data for the Dall's Porpoise (0-45°)   
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Figure 107: Coefficient of lift from laboratory and CFD data collected for the Spotted 
Dolphin at ten angles of attack (0-45°)   
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Figure 108: Coefficient of drag from laboratory and CFD data collected for the Spotted 
Dolphin at ten angles of attack (0-45°)   
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Table 23: CFD lift and drag data for the Spotted Dolphin (0-45°)   

°

Table 24: Laboratory lift and drag data for the Spotted Dolphin (0-45°)   
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Figure 109: Coefficient of lift from laboratory and CFD data collected for the Killer 
Whale at ten angles of attack (0-45°)   
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Figure 110: Coefficient of drag from laboratory and CFD data collected for the Killer 
Whale at ten angles of attack (0-45°)   
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Table 25: CFD lift and drag data for the Orca (0-45°)  

°

Table 26: Laboratory lift and drag data for the Orca (0-45°) 
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Figure 111: Coefficient of lift from laboratory and CFD data collected for the Shortfin 
Mako at ten angles of attack (0-45°)   
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Figure 112: Coefficient of drag from laboratory and CFD data collected for the Shortfin 
Mako at ten angles of attack (0-45°)   
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Table 27: CFD lift and drag data for the Shortfin Mako (0-45°) 

Table 28: Laboratory lift and drag data for the Shortfin Mako (0-45°) 
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Figure 113: Coefficient of lift from laboratory and CFD data collected for the Swordfish 
at ten angles of attack (0-45°)   
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Figure 114: Coefficient of drag from laboratory and CFD data collected for the 
Swordfish at ten angles of attack (0-45°)   
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 Table 29: CFD lift and drag data for the Swordfish (0-45°)  

Table 30: Laboratory lift and drag data for the Swordfish (0-45°)  
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Figure 115: Coefficient of lift from experimental and CFD data collected for the Marlin 
at ten angles of attack (0-45°)   
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Figure 116: Coefficient of drag from experimental and CFD data collected for the Marlin 
at ten angles of attack (0-45°)   
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Table 31: CFD lift and drag data for the Marlin (0-45°)  

Table 32: Laboratory lift and drag data for the Marlin (0-45°)  
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Table 33 Raw lift and drag data (minimum, maximum) collected from Trial 1 and Trial 2 
in the laboratory for all nine fins  
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