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Abstract 
 

In this study, chemically crosslinked gelatin microgels were incorporated into 

dopamine-modified poly (ethylene glycol) (PEGDM) adhesive to form composite 

bioadhesive with simultaneously improved adhesive property and bioactivity. Gelatin 

microgel, with an average diameter of 53.6±14.2μm, was prepared with water in oil 

emulsification method and chemically crosslinked with 

1-ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride (EDC) and 

N-hydroxysuccinimide (NHS). Gelatin microgels were incorporated into PEGDM 

adhesive precursor solution at 1.5wt%, 3.75wt% and 7.5wt%. The cure time of adhesive 

reduced from 54 seconds to 37 seconds with increasing gelatin microgel content. 

Additionally, the incorporation of the gelatin microgel also increased the crosslinking 

density of the adhesive network as indicated by the reduced equilibrium water content 

and increased elastic modulus based on compression testing. The compliance of 

adhesive was not compromised with the increased crosslinking density, as the failure 

strain showed no significant decrease from the compression testing result. Results from 

oscillator rheometry indicated that both the storage and loss moduli of the adhesive 

increased with increasing microgel content, which suggested that the microgels 

increased both chemical and physical crosslinks in the adhesive architecture. The 

increased physical crosslink indicated increased energy dissipation ability of the 
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adhesive. Lap shear adhesive test demonstrated that the addition of gelatin microgel 

enhanced the adhesive property of adhesive. The adhesive property was increased 1.5-2 

fold after the addition of gelatin microgel. In the in vitro degradation test, samples of 

different formulation groups degraded gradually under a similar rate after soaked in the 

phosphate buffer solution (pH=7.4) and incubated at 37 . After 8 weeks samples were 

completely degraded. The in vitro cell viability was tested with L929 mouse fibroblast 

and the results showed no cytotoxicity in each test formulation. The in vitro cell 

attachment experiment revealed an enhanced cell attachment and spreading of primary 

rat dermal fibroblast on gelatin microgel containing PEGDM adhesive compared to the 

adhesive without gelatin microgel. The results of rat subcutaneous implantation revealed 

higher cell recruitment and collagen deposition compared with control adhesive group 

which has no gelatin microgel in structure. Cell infiltration was found in the pocket 

structure formed by the degradation of gelatin microgel. In conclusion, the incorporation 

of gelatin microgel presents a simple method to simultaneously enhance the adhesive 

property and bioactivity of bioadhesive. 
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1. Introduction
 

Surgical sutures, staples and clips are traditionally used in wound closure and tissue 

reconstruction. But these methods present many drawbacks such as causing chronic pain 

and additional damage to wound.[1] Bioadhesives as an alternative choice has attracted 

more and more attention during the past decades. It can be delivered with minimally 

invasive method and gel in situ. The bioadhesives adhere to the native tissue and hold 

the edges of the wound together to promote wound closure without introducing extra 

damage and pain suffering. However, bioadhesives in the current market present many 

limitations, such as the risk of disease transmission, poor adhesive strength (e.g., fibrin 

glue)[2], cytotoxicity (e.g., cyanoacrylate adhesive) and lacking bioactivity 

(poly(ethylene glycol) (PEG)-based adhesive). 

 

Poly (ethylene glycol) (PEG)-based bioadhesives have been widely investigated due to 

their tunable properties, cytocompatibility and bioinert property as well as high water 

content which is similar to the extracellular environment of tissue.[3] However, the 

bioinert property makes PEG-based adhesives resisting to the cell adhesion and lacking 

interaction with surrounding cells to regulate the cell function.[4] Many studies have 

been performed to investigate the method to improve the interaction between cell and 

adhesives. For example, bioligands, such as cysteine-containing peptides or proteins, 
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have been tethered on the PEG structure to mimic the extracelluar matrix (ECM) and 

interact with cell membrane receptor to modulate cell morphogenesis.[5] Other short 

peptide sequences presenting in ECM protein, such as Arg-Gly-Asp (RGD)[6] and 

Arg-Glu-Asp-Val (REDV)[7], are also used to promote cell adhesion and proliferation. 

However, functionalizing PEG with bioactive peptide sequences requires multi-step 

chemical synthetic approach, which is associated with low yield and high cost. Most 

importantly, peptide-functionalization does not increase the mechanical properties of 

these materials. 

 

Gelatin is hydrolyzed from collagen which is the main component of ECM and contains 

RGD sequence to promote cell adhesion, migration and proliferation.[8-11] Since it is 

derived from ECM, it shows nontoxicity and biodegradability.[12] The physical network 

of gelatin gel can easily break down at a higher temperature but the thermal and 

mechanical stability can be improved through chemical crosslinking.[13] The application 

of gelatin microgel has been reported in drug delivery[14] and tissue engineering[15]. Drug 

molecule was loaded in the gelatin microgel and released after delivered into 

physiological environment. Growth factor was also entrapped within the structure of 

gelatin microgel to promote the tissue regeneration. 
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In this project, we combined biomimetic PEG-based adhesive with gelatin microgel to 

prepare a novel bioadhesive with enhanced adhesive property and bioactivity. PEG is a 

hydrophilic and biocompatible polymer that serves as the backbone of the adhesive. The 

glutaric acid was linked with PEG through ester bond, which can be hydrolyzed in the 

presence of water. Dopamine was modified on the end of PEGGlu structure. The 

catechol groups can be oxidized by NaIO4 to form highly reactive quinones. The 

quinones subsequently react with each other to form covalent bonds completing the 

polymerization of adhesive (Figure 1-1A). Other quinones will react with amine groups 

in the gelatin microgel structure to form covalent bonds (Figure 1-1B) or with other 

functional groups in the tissue to form covalent bonds completing the adhesion to tissue 

surface (Figure 1-1C). 

 

 
Figure 1-1.1Schematic illustration of the reactions between dopamine-modified PEG and gelatin 
microgelor native tissue. Catechol groups are oxidized to form reactive quinines A) the highly 
reactive quinones interact with each other to complete the polymerization of adhesive; B) highly 
reactive quinones interact with gelatin microgel to form covalent bonds; C) highly reactive quinones 



15 
 
 

interact with native tissue and form covalent bond. 

 

1.1 Tissue adhesive 

 

The application of tissue adhesive for wound closure can minimize the trauma, reduce 

the operation time and effectively stop the leakage of body fluid. An ideal tissue 

adhesive is expected to possess following properties.[16] First, an ideal tissue adhesive 

should present sufficient flow characteristic when it is in the liquid state so that it can be 

applied easily on the tissue surface. Second, the ideal tissue adhesive should be able to 

solidify from liquid state rapidly under mild physiological condition. Third, after the 

gelation the adhesive should maintain strong adhesion to the tissue and strong bulk 

mechanical property during the healing phase. Finally, the adhesive should also be 

biocompatible and sterilized easily without compromising its properties. Current tissue 

adhesives can be classified into two categories: biological and synthetic adhesives.  

 

Fibrin glue is a biological tissue adhesive and it has been investigated for decades. 

Fibrin glue mimics the final stage of blood clotting.[2] Fibrinogen and thrombin are the 

two main components involved in the process. By mimicking the blood clotting process, 

fibrinopeptides are removed from fibrinogen under the mediation of thrombin. After the 

removal of firbinopeptides, fibrinogen changes the conformational structure and 
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self-assemble into fibrin gel to adhere on the surrounding tissue. The fibrin gel provides 

adhesion sites for cell migration and proliferation to promote the tissue regeneration.[17] 

Additionally, it also presents advantages such as controllable degradation to precisely 

match the rate of tissue regeneration, rapid hemostasis and excellent biocompatibility.[2] 

The fibrin sealants have been successfully used in a number of surgical practices, such 

as cardiovascular, neuro-, plastic, hernia repair [18] and liver surgeries[19]. However, the 

fibrinogen and thrombin are obtained from blood which makes the fibrin sealants at a 

risk of disease transmission. In addition, the relative low mechanical properties make 

fibrin sealants undesirable as a tissue adhesive. 

 

Cyanoacrylate adhesive (CA) is synthesized through the condensation polymerization of 

cyanoacetate and formaldehyde.[20] It shows a relatively high bonding strength and has 

been used in various applications, such as vascular repair[21, 22], hemostasis[23, 24] as well 

as retinal repair[25]. The adhesive provides a water-resistant barrier for wound but a 

constant exposure to body fluids may weaken the adhesive property.[26] Additionally, the 

CA adhesive causes inflammation in vivo and is toxic to the cells in vitro. Cell damage 

may be caused by the released heating during the polymerization process.[27] 

 

Poly (ethylene glycol) (PEG)-based tissue adhesive is another important type of 
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synthetic adhesives. PEG-based tissue adhesive has been used in many biomedical 

applications because of its biocompatibility, non-immunogenity, and bioinert 

characteristics to resist cells or proteins adsorption.[28] Crosslinked oxidized 

methacrylated alginate/PEG (OMA/PEG) hydrogel as bioadhesive has been studied by 

Jeon et al. recently. It has been demonstrated that by changing the degree of alginate 

oxidation, the swelling behavior, degradation and storage modulus of hydrogel 

aretunable.[29] The adhesion strength of OMA/PEG is also superior to the commercial 

fibrin glue. PEG end-functionalized with DOPA and its derivatives (e.g., dopamine, 

3,4-dihydroxyhydrocinnamic acid) have been investigated as injectable tissue adhesive 

and sealant.[30] These adhesives outperformed fibrin glue in various adhesion tests, 

including lap shear, burst strength and peel adhesion tests. Brubaker et al.[31] endcapped 

PEG with catechol groups, which is a functional groups in DOPA and its derivatives, 

and used this novel tissue adhesive in extrahepatic islet transplantation. The adhesive 

hydrogel cured in 1min and elicited minimal inflammatory response in mice.  

 

1.2 DOPA 

 

DOPA (3,4-dihydroxyphenylalanine) is a catechol-containing amino acid  (Figure 1-2) 

which is found in the structure of mussel byssal plaque protein.[32] The byssus consists 



18 
 
 

of plaques, threads, stem and root. The byssus threads are rapidly made of proteins and 

radially distributed while attaching to the stem. The plaques are responsible for the 

attachment to the outside surfaces. (Figure 1-3) 

 
Figure 1-2.2Chemical structure of DOPA. A catechol group shows in the side-chain of the DOPA 
structure. 
 

 
 

Figure 1-3.3Image and schematic illustration of mussel structure. A) Adult mussel with radially 
extended byssus attaching on a solid surface; B) Schematic representation of the mussel with byssus 
consists of threads and plaques and attaches to the stem.[32] (Copyright permission documentation in 
Appendix) 
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The byssal plaques are believed to be responsible for the strong adhesive performance 

due to the high content of unique mussel foot proteins (Mfp-2, -3, -4, -5 and -6), which 

all contain DOPA. The catechol group of DOPA has the capability to undergo different 

catechol-catechol or catechol-surface interactions (Figure 1-4). Catechol groups can 

react with metal ions[33] (Figure 1-4A) or metal oxide surface[34] (Figure 1-4B) to form 

reversible bond. Catechol groups can be oxidized into highly reactive quinones and react 

with each other to complete the polymerization process[35] (Figure 1-4C). When 

quinones react with natural tissue, covalent bonds can be formed with the functional 

groups showing in the tissue, such as lysyl groups, cystainyl groups and histidyl 

groups[36, 37] (Figure 1-5D). Lee et al.[36] investigated the single-molecule adhesion of 

DOPA. The results suggested that the interaction between DOPA and wet inorganic 

surface is strong (~800pN) and reversible. However, the interaction between DOPA and 

amine-modified organic surface was dramatically higher than that between DOPA and 

inorganic surface. The 2.2nN force was believed coming from the covalent bond formed 

between catechol group and organic surface.  
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Figure 1-4.4Schematic of catechol group reactions. A) catechol groups form reversible bond with 
metal ion; B) catechol groups react with metal oxide surface to form reversible bond; catechol 
groups oxidized into highly reactive quinones C) quinones react with each other to complete the 
polymerization; D) or react with different functional groups showing on the tissue surface to form 
covalent bond. 

 

Recently, DOPA has been used to develop antifouling coatings[38-40] and tissue 

adhesives[41, 42]. A thermal-triggered gelation of DOPA-modified PEG hydrogel as 

bioadhesive was studied by Burke et al.[30] The oxidizing reagent was entrapped in 

liposome and released at body temperature. The hydrogel cured rapidly and showed a 

potential for biomedical application. Choi and coworkers[43] used  tyrosinase to oxidize 

tyrosine residues in human gelatin into DOPA and they crosslinked the DOPA-modified 

gelatin into hydrogel by adding Fe3+ ions. Both of the results from in vitro and in vivo 

tests showed that DOPA-Fe3+ gelatin hydrogel exhibited good mechanical properties and 
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hemostatic properties indicating that it is a promising tissue adhesive for surgical 

operations. 

 

1.3 Poly(ethylene glycol) 

 

Poly (ethylene glycol) is a polyether that can be easily synthesized into linear or 

branched (4-armed, 6-armed, 8-armed and superbranched) architecture with different 

molecular weights ranging from several hundred Da to ten million Da or more.[44] It is 

synthesized from ethylene oxide through anionic polymerization (Figure 1-5).   

 

 
Figure 1-5.5Synthesis of poly (ethylene glycol) from anionic polymerization of ethylene oxide. 

 

PEG has been used in many biomedical applications because of its biocompatibility, 

non-immunogenity and bioinert characteristics to resist cell or protein adsorption.[28, 45, 

46] It is believed that when proteins are getting closed to the PEG-surface, the repulsive 

force is increased due to the decreased conformational freedom of the PEG chains. In 

addition, the osmotic interaction between proteins and PEG-surface due to the steric 

stabilization force will also repulse proteins from PEG-surface.[47] VigilonTM and 

HypolTM are two PEG-based commercial products. VigilonTM is formed through the 
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radiation crosslinking of PEO and is used as wound cover material. HypolTM is a PEG 

foam used in wound healing and drug delivery.[48] In recent years, PEG gel has also been 

investigated as vehicles for protein delivery[49] and three dimensional scaffolds[50]. 

However, the bioinert nature of PEG makes it lacking biological activity.  

 

Inspired by nature, researchers modified PEG to mimic the natural extracellular matrix 

(ECM) and applied the modified PEG hydrogel in tissue engineering. RGD sequence is 

the most effective and widely used peptide sequence to stimulate cell adhesion of 

PEG.[51] RGD-mediated cell adhesion consists of four steps: cell attachment, cell 

spreading, organization of actin cytoskeleton and formation of focal adhesion. Integrin 

existing on the cell membrane binds with RGD ligand allowing cells to withstand shear 

force and anchor at a specific location. After the cell attachment, integrin-RGD ligand 

interaction is involved in the transmembrane signal transduction to regulate cell 

response, such as proliferation, differentiation and apoptosis. RGD peptide gradient was 

immobilized on the PEG scaffold to guide the cell migration.[52] Results revealed that 

cells tended to migrate in the direction of gradient with a higher speed than on the 

hydrogel with uniform distribution of RGD. PEG has also been modified with RGD 

peptide sequence to facilitate the cell adhesion and promote bone tissue regeneration.[53] 

There was a significant increase of mineralization after the introduction of RGD in the 
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network of hydrogel.  

 

1.4 Gelatin 

 

Gelatin is a soluble protein hydrolyzed from collagen.[54] Both collagen and gelatin were 

used in wound dressing and adhesives.[55] However, collagen expresses antigenicity in 

physiological condition while gelatin is known having no such antigenicity.[56, 57] The 

denature processes include the melting of ordered hydrogen bond and destroying of the 

triple helix structure to produce random chains of gelatin molecule. Since gelatin is 

obtained by hydrolyzing collagen which is the main component of ECM, it also contains 

RGD-like sequence to promote cell adhesion, migration and proliferation.[58] There are 

two types of gelatin: gelatin A, which is obtained by acidic pretreatment before 

denaturation; gelatin B, which is processed by alkaline pretreatment. The alkaline 

pretreatment leads to a higher content of carboxylic acid in gelatin B than that of gelatin 

A.[59] Molecular chains of gelatin undergo a coil-to-helix conformational transition to 

form physical thermo-reversible gels when the temperature of gelatin solution is lower 

than 35 , in which process the gelatin molecules tend to recover the triple helix 

structure of collagen.[60, 61] However, the physical network of gelatin gel easily breaks 

down at a higher temperature.1-ethyl-3-[3-dimethylaminopropyl]carbodiimide 
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hydrochloride (EDC) and N-hydroxysuccinimide (NHS) are widely used chemical 

crosslinking agent to improve the thermal and mechanical stability of gelatin gel.[13] 

Under reaction of EDC and NHS, COOH groups and NH2 groups showing in the 

gelatin molecule will form covalent bonds[62, 63] (Figure 1-6). 

 

A photocurable tissue adhesive glue composed of photoreactive gelatin and 

poly(ethylene glycol) diacrylate (PEGDA) was investigated by Nakayama et al.[64] 

Gelatin was modified with photoreactive groups and combined with PEGDA. Under 

exposure to the UV or visible light within 1min, water-swollen gels were produced and 

these gels showed a high adhesive strength to wet collagen film. When applied on the 

rat liver tissue, the gel tightly adhered to the native tissue through interpenetration and 

the gel stopped bleeding completely. Balakrishnan et al.[65] reported a self-crosslinked 

oxidized alginate/gelatin hydrogel as injectable biomimetic adhesive scaffold for 

cartilage regeneration. In their experiment the hydrogel was delivered with a minimally 

invasive injection and was cell-attractive. It functioned as an adhesive scaffold for the 

treatment of osteoarthritis. The hydrogel integrated well with cartilage tissue and 

showed a burst pressure of 70 3 mmHg, indicating the adhesive nature. Vandelli et 

al.[14] and Wu et al.[66] used crosslinked gelatin microgel as drug delivery vehicle. The 

gelatin microgel was synthesized via water/oil emulsion system and chemically 
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crosslinked. Drug molecule was loaded in the microparticle structure and released under 

the physiological environment. Results of subcutaneous injection showed that gelatin 

microgel exhibited good biocompatibility. Basic fibroblast growth factor incorporated 

gelatin microgel was investigated by Kawai and colleagues to accelerate tissue 

regeneration.[15] In the experiment the basic fibroblast growth factor incorporated gelatin 

microgel was added into artificial dermis and implanted into full-thickness skin defects 

on pig. The results showed that gelatin microgel impregnated with basic fibroblast 

growth factor accelerated the fibroblast proliferation and capillaries formation. 

 

 
 

Figure 1-6.6Schematic illustration of EDC/NHS involved chemical crosslinking.[62] –COOH and 
–NH2 groups in gelatin structure form covalent bond to chemically crosslink the gelatin hydrogel 
under the function of EDC and NHS. Reprinted with permission from [60]. Copyright (1999) 
American Chemical Society. (Copyright permission documentation in Appendix) 

 

1.5 Wound healing 
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Wound healing is a complex process requiring interaction of different cells and 

tissues.[67] It consists of four steps: hemostasis, inflammation, proliferation, and 

remodeling and scar tissue formation.[68] The formation and contraction of newly 

formed connective tissue (granulation tissue) in step three is an essential step in wound 

healing to keep the tissue continuity.[69] During the normal wound healing, the 

inflammatory cells arrive to the wound bed first and followed by fibroblasts, which 

starts the deposition of collagen and other matrix component.[70] The newly formed 

connective tissue brings the edges of wound together through its contraction. 

Subsequently, a decrease in the cell number happens in the granulation tissue and the 

granulation tissue forms a poorly cellularized scar.[71] However, in many cases the cell 

apoptosis does not occur and there is no scar tissue formed. Then granulation tissue 

evolves into hypertrophic scar containing many myofibroblasts and inappropriately 

produced extracellular matrix, which results in a deformation of surrounding connective 

tissue. The deformation is considered as pathological issue. Therefore, it is very 

important to control the newly formed connective tissue to develop into a normal and 

functional tissue in the wound healing process. 
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2. Experimental 

 

2.1 Materials 

 

Gelatin powder (Type A, 300 Bloom, from porcine skin) was purchased from Electron 

Microscopy Sciences. Sodium periodate (NaIO4, ACS reagent>99.8%), pyridine (ACS 

reagent, >99.0%),  1-ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride 

(EDC),  N-hydroxysuccinimide (NHS), Masson’s trichrome stain kit, bouin solution, 

Weiger’s iron hematoxylin solution, TWEEN80 and glutaric anhydride were purchased 

from Sigma-Aldrich. Dulbecco’s modified Eagle’s medium (DMEM) was obtained from 

Corning Cellgro. Fetal bovine serum (FBS) was purchased from Thermo Scientific. 

Sodium pyruvate (100mM), MEM non-essential amino acid (100X) and 

4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) buffer solution (1M) were 

purchased from Life Technologies. 8-arm poly (ethylene glycol) (20K) was purchased 

from JenKem Technology. Dopamine hydrochloride was purchased from Acros 

Organics. O-(Benzotriazol-l-yl)-N,N,N’,N’-tetramethyluroniumhexafluorophosphate 

(HBTU) and 1-hydroxybenzotryazole monohydrate (HOBt) were purchased from 

Chem-Impex International. Phosphate buffer saline and N,N-dimethylformamide (DMF) 

were purchased from Fisher Scientific. Chloroform was purchased from J.T 
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Baker.3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) 

98%waspurchased from Alfa Aesar.4',6-Diamidino-2-phenylindole (DAPI) was 

purchased from Invitrogen. Anti-S100A4 antibody (ab27957), goat anti-rabbit IgG H&L 

(Alexa Fluor 488; ab150077), anti-CD11b antibody (ab8879) and goat anti-mouse IgG 

(Alexa Fluor&reg; 488) (ab150113) were purchased from Abcam. Anti-CD163 antibody 

(sc-58965) and goat anti-mouse IgG (sc-2781) were purchased from Santa Cruz 

Biotechnology. Rat dermal fibroblast was isolated from rat dermal tissue and identified 

with Anti-S100A4 antibody and goat anti-rabbit IgG H&L (Alexa Fluor 488).[72] 12-well 

cell suspension culture plate was purchased from VWR International. Mechanical sieves 

were purchased from ATM Corporation. Dialysis tubing was purchased from Spectrum 

Labs (MWCO 3500). 

 

2.2 Methods 

 

2.2.1 Synthesis of dopamine-modified 8-arm PEG (PEGDM) 

 

A two-step method was used to synthesize biodegradable dopamine-modified 8-arm 

PEG. The first step was to link glutaric acid to the end of PEG structure.32g of 8-arm 

PEG powder was combined with 7.30g glutaric anhydride in a round bottom flask and 
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dissolved in 300mL chloroform and 5.16mL pyridine under nitrogen. The solution was 

refluxed under nitrogen for 24h. After which, most of the solvent was removed by rotary 

evaporation followed by the complete removal of the solvent in the vacuum system. The 

polymer was further dialyzed for 48h (pH around 3.0) to remove the unreacted 

molecules. The sample was then freeze-dried and characterized with nuclear magnetic 

resonance (NMR). The coupling efficiency was 81%, which was determined using 

NMR. The yield of product was 30g. 1H NMR (400MHz, D2O) δ 3.75-3.39 (m, PEG), 

2.37 (t, 2H, -C(=O)-(CH2)2-CH2-C(=O)-), 2.32 (t, 2H, -C(=O)-(CH2)2-CH2-C(=O)-), 

1.79 (t, 2H, -C(=O)-(CH2)2-CH2-C(=O)-). (Figure A1 in Appendix) 

 

To add dopamine molecule on the structure of PEG-glutaric acid (PEGGlu), 30g 

PEGGlu sample was combined with 5.45g dopamine HCl, 3.70g HOBt and 9.16g 

HBTU. The mixture was dissolved in 120mL of chloroform, 60mL of DMF and 4.01mL 

of triethylamine. After reacting for 3h the solution was rotary evaporated and completely 

dried in vacuum. Dialysis was performed for 48h (pH around 3.0) to remove the 

unreacted small molecules. The freeze-dried sample was characterized with NMR. The 

coupling efficiency was 80% which was determined using NMR. The yield of the 

product was 27.58g. 1H NMR (400MHz, D2O) δ 6.71 (d, 1H, -C6H2H(OH)2), 6.64 (d, 

1H, -C6H2H(OH)2), 6.56 (d, 1H, -C6H2H(OH)2), 3.74-3.38 (m, PEG), 2.12 (t, 2H, 
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-C(=O)-(CH2)2-CH2-C(=O)-), 2.07 (t, 2H, -C(=O)-(CH2)2-CH2-C(=O)-), 1.67 (t, 2H, 

-C(=O)-(CH2)2-CH2-C(=O)-).(Figure A2 in Appendix) 

 

2.2.2 Preparation of gelatin microgel 

 

2g of gelatin powder was dissolved in 20mL of deionized water (DI water) in 50-55  

water bath. The solution was stirred with magnetic stir bar in water bath at 50-55  for 

10min. The gelatin solution was added dropwise into 200mL preheated olive oil under 

stirring at 1000 rpm in 50-55 water bath for 1h to form an emulsion. The temperature 

of the emulsion was lowered to room temperature and the emulsion was kept stirring for 

30min. In order to continue solidifying the gelatin microgel, the container of reaction 

system was placed in ice water bath for 30min to lower the temperature. 100mL 

precooled acetone (4 ) was added into the emulsion mixture to wash the microgel for 

30min in ice water bath. The overhead stirrer kept stirring until the end of wash step. 

The microgel was separated from olive oil and acetone through vacuum filtration. The 

separated microgel was washed twice in 60mL precooled acetone. The size distribution 

was controlled in the range of 53-75μm using the mechanical sieves and the microgel 

was stored at 4 . The yield of produced microgel was 0.72 0.05g. 

 



31 
 
 

In order to chemically crosslink the gelatin microgel, 0.5g of microgel was suspended in 

30mL of phosphate buffer saline (PBS) (pH=5.7, 0.5% TWEEN 80). 0.134g of EDC and 

0.02g of NHS were added into the microgel suspension to start the crosslink reaction. 

The reaction mixture was kept at 4  for 24h. After which, the microgel was washed 

twice with 60mL of precooled (4 ) acetone to remove EDC and NHS and the reaction 

was stopped. The Crosslinked microgel was collected with vacuum filtration and the dry 

product was stored at 4 . The yield of the crosslinked microgel was 0.43 0.02g. The 

morphology of gelatin microgel was characterized with scanning electron microscope 

(SEM). 

 

2.2.3 Preparation and characterization of gelatin microgel 

incorporated PEG (PEG-GM) adhesive 

 

Gelatin microgel was suspended in polymer precursor solution containing PEGDM 

(30wt% PEGDM and 0-15wt% gelatin microgel) in 10mM PBS buffered at pH 7.4. The 

PEG-GM adhesive was prepared by mixing equal volumes of PEGDM/microgel 

mixture and NaIO4 solution (11.67mg/mL in DI water). The molar ratio of NaIO4 and 

dopamine was 0.5 and the final concentrations of PEGDM and gelatin microgel were 

15wt% and 0-7.5wt%, respectively. The cure time was determined when the mixture 
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stopped to flow in a tilt vial (Figure 2-1).[73] The adhesives used in the following 

experiments were allowed to cure for 12h and were cut into dish shape. The dish-shaped 

adhesives were equilibrated in PBS (pH 7.4) for the following tests. 

 

 
Figure 2-1.7Image of the experiment to determine the cure time of adhesive. The cure time was 
determined when the adhesive solution stopped flow in a tilt vial. 8 

 

Adhesive samples with (7.5wt%) and without (0wt%) gelatin microgels were 

vacuum-dried for 2 days. Fourier transform infrared spectroscopy (FTIR) was 

performed using a PerKinElmer Spectrum One Spectrometer to obtain the FTIR spectra 

of dry samples.  

 

Adhesive samples (n=4) with 0wt%, 1.5wt%, 3.75wt% and 7.5wt% gelatin microgel 

were equilibrated in PBS (pH=7.4) at room temperature overnight. The mass of swollen 
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samples (Ms) were weighed after the equilibration. Samples were then vacuum-dried for 

2 days to obtain the dry mass of adhesives (Md). The equilibrium water content (EWC) 

was determined by equation of: 

 

EWC = (Ms–Md)/Ms×100%                 (Equation 1) 

 

2.2.4 Mechanical properties 

 

2.2.4.1 Compression test 

 

6 pieces of adhesive disc samples of each formulation (0wt%, 1.5wt%, 3.75wt% and 

7.5wt%) were tested. The dimensions of the samples were ~3mm in thickness and 

~7mm in diameter, measured individually with a digital caliper. The samples were 

compressed using Bose ElectroForce mechanical testing machine at a rate of 

0.03mm/second until the adhesive structure completely fractured. The stress was 

calculated by dividing the load measured by the surface area of the sample. The strain 

was obtained by dividing the place changes of compression plate by the original 

thickness of the sample. The failure stress and failure strain were determined when the 

first fracture occurred. Toughness was determined by the integration of the area under 



34 
 
 

the stress-strain curve. The elastic modulus was determined based on the slope of the 

stress-strain curve at a strain between 0.05 and 0.12.  

 

2.2.4.2 Oscillatory rheometry 

 

The storage (G’) and loss (G’’) modulus was determined under frequency of 0.1-100 Hz 

at stain of 0.1 using a rheometer (HR-2, TA Instruments, New Castle, DE). Adhesive 

discs (diameter= 8 mm, thickness = 1 mm, n = 3) were tested using parallel plates at a 

gap distance that is set at 85% that of the individual adhesive thickness, as measured by 

a digital venire caliber. 

 

2.2.5 Lap shear test 

 

Adhesive property of PEG-GM adhesive was tested according to the American Society 

for Testing and Materials (ASTM) standard F2255-05. 60μL of PEG polymer precursor 

solution and 60μL of NaIO4solutionwere added onto the overlap area of two pieces of 

bovine pericardium and cured in situ with an overlap area of 2.5cm x 1cm. A 100g 

weight was immediately loaded on the top of overlapping area for 10min (Figure 2-2). 

After the complete gelation, samples were placed in the PBS solution and incubated at 
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37 overnight. The adhesive area of each sample was measured in both length and 

width before the testing with a digital caliper. The samples were pulled at a rate of 

5mm/min until completely separated. The adhesive strength and the work of adhesion 

were obtained respectively by dividing the max load and the integral of the area under 

the load-displacement curve by the adhesive area measured before the test.[74] 

 

 
Figure 2-2.9Photographs of preparation for lap shear test. A) One piece of bovine pericardium placed 
in a mold; B) the other piece of bovine pericardium placed on a glass slide; C) adhesive precursor 
solutions was mixed in the overlap area; D) the mixed precursor solution covered by the other piece 
of bovine pericardium; E) 100g weigh loaded on the overlap area for 10min. 

 

2.2.6 In vitro degradation test 

 

PEG-GM adhesives containing 0wt%, 1.5wt%, 3.75wt% and 7.5wt% gelatin microgel 

were punched into disc shape (thickness=1mm, diameter=8mm) and incubated in 2mL 

PBS at 37 . PBS was changed every 7 days. Three pieces of adhesive were dried in 
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each formulation group and recorded the dry weight of adhesive. M0 is the average dry 

weight of adhesive at original status. Three repeat samples in each formulation group 

were then collected every week and dried to weigh the weight of adhesive to determine 

the remaining mass after degradation, Mt. The degradation was determined by:  

 

Degradation%=Mt/M0× 100%               (Equation 2) 

 

2.2.7 Cell experiment 

 

2.2.7.1 Cell viability 

 

In order to evaluate the cytotoxicity of PEG-GM adhesive, quantitative MTT 

cytotoxicity assay according to the ISO 10993-5 guideline was conducted. L929 mouse 

fibroblast was cultured in culture medium containing 10% FBS and 10 units/mL 

penicillin-streptomycin in DMEM at 37 .Adhesive extract was obtained by incubating 

the adhesive discs in the culture medium for 24h and using 0.22μm sterile filters to 

sterilize the adhesive extract[75]. Meanwhile, cells were seeded into 96-well culture plate 

at the density of 1x104 cell/cm2. Each well was then added 100μL of culture medium 

and incubated for 24h to obtain a confluent monolayer of cells. After 24h the cell culture 



37 
 
 

medium was removed and 100μLadhesive extract was added into each well. The 

adhesive extract was then replaced by 50μL MTT solution (1mg/mL in PBS) after 24h 

incubation and continued to incubate for another 2h. 100μL DMSO was added into each 

well to replace the MTT solution. The absorbance was measured at 570nm with a 

Synergy HT Multi-Mode Microplate Reader (BioTek, USA). Three tests were repeated 

for each formulation group. The relative cell viability was calculated with: 

 

Cell viability% = Aadhesive/Acontrol× 100%          (Equation 3) 

 

Where Aadhesive is the absorbance for cells cultured in adhesive extract and Acontrol is the 

absorbance for cells cultured in cell culture medium. The test was repeated for three 

times for each formulation (0wt%, 3.75wt% and 7.5wt%). Samples were considered 

non-cytotoxic when they had a relative cell viability higher than 70%.[75] 

 

2.2.7.2 Cell attachment 

 

PEG-GM adhesives containing 0wt%, 3.75wt% and 7.5wt% gelatin microgel were 

punched into dish shape (thickness=0.5mm, diameter=10mm). Adhesive samples were 

sterilized with 70% ethanol for 45min and balanced with PBS for three times, each time 
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lasting30min.[75] Rat dermal fibroblasts with a density of 3.2 x 104 cell/cm2 were seeded 

on the surface of adhesive samples in a 12-well cell suspension culture plate. The cells 

were seeded on the surface of adhesive for 30min in an incubator and subsequently 

cultured for another 72h at 37 .Cell density was quantified using ImageJ software after 

the DAPI staining. Calcine and ethidium bromide were diluted in PBS at 1: 1000 ratio. 

Cells were incubated in the calcine/ethidium bromide solution for 3min. The cell 

morphology was observed by calcine staining. The calcine-stained cells were considered 

as living cells which have been successfully attached on the adhesive and continue to 

proliferate.[76] Ethidium bromide-stained cells were considered as dead cells.  

 

2.2.8 Subcutaneous implantation 

 

Healthy, weight matched Sprague Dawley rats were provided by Michigan 

Technological University animal care facility. The subcutaneous implantation was 

performed following the protocol approved by Michigan Technological University 

Institutional Animal Care and Use Committee. Disc-shaped PEG-GM adhesives 

containing 0wt% and 7.5wt% gelatin microgel (diameter=10mm and thickness=1.5mm) 

were subcutaneously implanted. Each formulation has four pieces of repeat sample. 

Samples were sterilized using ethanol-based sterilization method (samples were soaked 
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in 20mL 70% ethanol for 45min and washed with 20mL PBS for 30min for three 

times[75]) Rats were anesthetized with isofluorane-oxygen gas. Fur in the surgical area 

was removed and surgical sites were sterilized with ethanol and betadine. Four bilateral 

pouches were formed with sterile surgical scissors on the back of rats. Samples were 

implanted into the pouches. Wounds were closed with surgical staples. After 2 weeks 

and 6weeks recovery, rats were sacrificed. Samples and surrounding tissue were 

collected and flash frozen in Polyfreeze for the following cryosection. Samples were 

sectioned into 10μm thick sections and stained with Hematoxylin and eosin (H&E) 

staining and Masson’s trichrome staining to evaluate the morphology and collagen 

formation, respectively. Fibroblast marker S100A4, M1 macrophage marker CD11b and 

M2 macrophage marker CD163 were used for immunohistochemistry staining to 

analyze the inflammatory response and wound healing process.[75, 77, 78] All images were 

taken with Olympus microscope and analyzed with ImageJ software.  

 

2.2.9 Statistical analysis 

 

Statistical analysis was performed using SigmaPlot software. Student t-test and one-way 

analysis of variance (ANOVA) were used to compare the means of two groups and 

multiple groups, respectively. A statistical difference was determined when p-value was 
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less than 0.05. 

 

3. Results and discussions 

 

3.1 Preparation and characterization of materials 

 

Gelatin microgel was synthesized via water in oil emulsification method.[14] The surface 

morphology of harvest gelatin microgel was characterized using SEM (Figure 3-1) and 

the average diameter of gelatin microgel was 53.57 14.23μm. 

 

Gelatin microgel incorporated PEG adhesive was prepared with a simple operation 

under mild condition. Microgels were suspended into PEG precursor solution at room 

temperature first. Then the gelatin microgel containing PEG precursor solution and the 

NaIO4 solution were fully mixed at room temperature and gelled in a minute. The cure 

time of PEG-GM adhesive decreased with increasing weight percentage of gelatin 

microgel (Figure 3-2). The average cure time of 0wt% PEG-GM adhesive was 54 

second and the cure time decreased gradually with increasing weight percentage of 

gelatin microgel. The 7.5wt% PEG-GM adhesive exhibited the shortest gelation time 

(37 seconds). PEGDM adhesive cures through the polymerization of catechol groups in 
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the dopamine structure with the introduction of the chemical oxidant (NaIO4).[73, 79] 

Additionally, quinones which are oxidized from catechol groups can form covalent bond 

with –NH2 found on the gelatin microgel surface.[36] As such, the number of cohesive 

chemical crosslinks needed for network formation was reduced with increasing microgel 

content, and resulted in a reduced cure time. A similar result was reported by Liu et al.[75] 

that the incorporation of nanoparticles decreased the gelation time of 

dopamine-modified PEG adhesive. 

 

For comparison purposes, we attempted to incorporate gelatin polymers into PEGDM 

adhesive by directly blending it into the precursor solution. However, at the 

concentrations that were tested in this study, gelatin was not soluble in the precursor 

solution at room temperature. In order to dissolve gelatin, the temperature of the 

precursor solution needed to be raised to above 50 , but the mixture solidified upon 

cooling as a result of physical bond formation within the gelatin polymer chains. This 

temperature dependent curing of gelatin made it not possible to create an in situ curable 

adhesive through direct blending of gelatin polymer. 

 

Fourier transform infrared spectroscopy (FTIR) was used to confirm the incorporation 

of gelatin microgel into PEGDM adhesive (Figure 3-3). FTIR spectrum contains peaks 
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for ether bond (1000-1150 cm-1), ester bond (1731 cm-1), phenols (3200-3500 cm-1) and 

aromatics (1400-1500 cm-1) of PEGDM and amide bond peaks (1568 and 1640cm-1) of 

PEGDM and PEG-GM. The intensity of amide bond peak increased with the 

incorporation of gelatin microgel while the intensity of ester bond remained unchanged, 

confirming the incorporation of gelatin microgel into PEG adhesive. 

 

Equilibrium water content (EWC) was measured to determine the physical property of 

the adhesive network. The value of EWC is inversely proportional to the crosslink 

density of adhesive network.[80] As shown in the Figure 3-4 EWC decreased from 

90.1% 0.4% to 86.6% 0.5% with increasing content of gelatin microgel, which 

indicated that the crosslink density of adhesives increased significantly with increasing 

content of gelatin microgel. 
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Figure 3-1.10SEM image of gelatin microgel. 

 

 

 
Figure 3-2.11Cure time of PEG-GM adhesive with different gelatin microgel weight percentage. The 
cure time decreased with the increasing weight percentage of gelatin microgel. * p < 0.05 when 
compared with 0wt% adhesive. 
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Figure 3-3. 12FTIR results of PEGDM adhesive (black) and PEG-GM adhesive (red). 

 

 

 
Figure 3-4.13Equilibrium water content of PEG-GM adhesive with different gelatin microgel weight 
percentage. The equilibrium water content decreased with increasing weight percentage of gelatin 
microgel. * p < 0.05 when compared with 0wt% adhesive; # p < 0.05 when compared with 1.5wt% 
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adhesive; $ p < 0.05 when compared with 3.75wt% adhesive. 

 

3.2 Mechanical property test 

 

3.2.1 Compression test 

 

From unconfined, uniaxial compression test, incorporation of gelatin microgel increased 

the elastic modulus of PEG-GM adhesive while other parameters such as the maximum 

strength, failure strain and toughness were unaffected (Table 3-1). The increase in the 

measured modulus corresponded with increased crosslinking density of PEG-GM, 

which corroborated with results from EWC. The increased crosslinking density led to a 

stiffer adhesive. However, the crosslinked bulk gelatin gel showed a significantly lower 

modulus compared to those of PEG-GM adhesives (Table A1 in Appendix). Since the 

failure strain showed no significant decrease with increasing content of gelatin microgel. 

Therefore, the compliance of adhesive was not compromised with the increased 

stiffness. 

 
Table 3-1. 1Compression test results of 0wt%, 1.5wt%, 3.75wt% and 7.5wt% PEG-GM adhesive. 

 

 0wt% 1.5wt% 3.75wt% 7.5wt% 

Failure stress/kPa 407 49.9 460 37.8 450 36.4 423 28.4 
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Failure strain 0.64 0.03 0.62 0.02 0.60 0.01 0.57 0.03 

Elastic modulus/kPa 151 10.0 161 5.1 177 15.1* 204 11.1*,# 

Toughness/kJ/m3 183 11.5 199 8.2 193 17.7 196 37.7 

* p < 0.05 when compared with 0wt% adhesive; # p < 0.05 when compared to 1.5wt% and 3.75wt% 
adhesives 

 

3.2.2 Oscillatory rheometry 

 

The viscoelastic property of adhesive was determined through the oscillatory rheometry 

test. The storage modulus (G’) was significantly higher than the loss modulus (G’’) in 

all groups (Figure 3-5), indicating that the adhesive were fully crosslinked. The G’ of 

0wt% sample (control group) was independent of frequency at a frequency less than 

25Hz, which also indicated a chemically crosslinked network. On the other hand, there 

was a slightly increase in G’ values with increasing frequency for microgel incorporated 

samples, which indicated the presence of reversible physical bonds in the adhesive 

network.[81] G’ values increased sharply for all the samples tested at elevated frequencies 

(>25 Hz). This stiffening phenomenon is a typical behavior of chemically crosslinked 

network, associated with polymer chains not having sufficient time to relax.[82] 

 

The increased G’ with the increasing content of gelatin microgel indicates a higher 
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crosslink density due to the presence of gelatin microgel. The catechol groups showing 

in the PEG adhesive structure reacted with gelatin microgel and formed chemically 

crosslinking. This matches the increased elastic modulus in compression test. Both of 

these two results indicate a stiffer material with a higher content of gelatin microgel.  

 

G’’ values also increased with the increasing content of gelatin microgel. Most 

noticeably, the adhesive containing 7.5wt% microgel exhibited a G” value that was over 

an order of magnitude higher than those of formulations containing 0wt% and 1.5wt% 

microgel. The elevated G’’ revealed an increased viscous dissipation ability of 

adhesive.[83] Molecular chains of gelatin undergo a coil-to-helix conformational 

transition to form physical thermo-reversible gels at a lower temperature (< 35 ), in 

which process the gelatin molecules tend to recover the triple helix structure of 

collagen.[60, 61] The reversible physical bonds existing in the gelatin microgel and the 

hydrogen bond in the adhesive network can be sacrificed before the breaking of 

chemical bond during the energy dissipation. 
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Figure 3-5.14Storage and loss modulus of PEG-GM adhesive. The storage modulus and loss modulus 
increased with the increasing weight percentage of gelatin microgel. 

 

3.3 Lap shear test 

 

As shown in the figure 3-6, the adhesive strength and the work of adhesion of PEG-GM 
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adhesives were significantly higher (1.5-2 folds) than the control group (0wt%). The 

increased work of adhesion was attributed to the reversible physical bonds in the 

adhesive structure, such as the physical bond existing in the gelatin microgel structure. 

PEG-GM adhesive presented 2-fold higher work of adhesion due to the existence of 

gelatin microgel compared with the dopamine-modified PEG hydrogel incorporated 

with inorganic nanoparticle[75]. But the adhesive property reported here is weaker than 

those in other studies of catechol-modified PEG systems.[30, 78] It is difficult to compare 

this result with those in other studies due to the usage of different tissue and the testing 

protocols (different methods used to prepare testing samples, strain rate, etc.). 

 

 
Figure 3-6.15Lap shear adhesion test results of PEG-GM adhesive with different weight percentage 
of gelatin microgel. * p < 0.05 when compared to0wt% adhesive. # p < 0.05 when compared to  
1.5wt% adhesive. 
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3.4 In vitro degradation test 

 

In the in vitro degradation test, adhesives with different weight percentage of gelatin 

microgel degraded at a similar rate (Figure 3-7). The degradation went slowly in the first 

6 weeks and all the gels lost their 70% mass after 8 weeks. After 8 weeks all the 

adhesives were completely degraded. There is no significant difference between 

different testing groups, indicating that degradation occurred mainly through the 

hydrolysis of the ester bond between the PEG and glutaric acid. The fast degradation 

after 8 weeks was attributed to the loose structure of adhesive and more water molecule 

penetrated into the adhesive structure to complete the degradation. 

 

 
Figure 3-7.16In vitro degradation test of PEG-GM adhesives containing 0wt%, 1.5wt%, 3.75wt% 
and 7.5wt% gelatin microgels.  
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3.5 Cell experiment 

 

3.5.1 Cell viability 

 

MTT assay was performed to evaluate the cytotoxicity of PEG-GM adhesives (0wt%, 

3.75wt% and 7.5wt%). The relative cell viability showed no significant difference 

between the control group (0wt%) and test groups (3.75wt% and 7.5wt%) (Figure 3-8). 

All the results of the three groups were higher than 70% which is considered as 

biocompatible and noncytotoxic. The catechol modified PEG hydrogels previously 

studied either in our lab or other investigators all presented as biocompatible and 

noncytotoxic.[75, 78, 79, 84] Additionally, gelatin is biocompatible and its degradation 

product is also nontoxic.[14] Therefore it can be concluded that PEG-GM adhesive was 

noncytotoxic.  
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Figure 3-8.17Relative cell viability test results of PEG-GM adhesives containing 0wt%, 3.75wt% 
and 7.5wt% gelatin microgel. 

 

3.5.2 Cell attachment 

 

Primary rat dermal fibroblasts were seeded on the surface of PEG-GM adhesive and the 

cellular density of the attached cells was quantified after DAPI staining (Figure A3 in 

Appendix). The cell number increased significantly with increasing weight percentage 

of gelatin microgel. The number of attached cell on the 7.5wt% was about 4-fold higher 

than control group (0wt%) and 2-fold higher than 3.75wt% group (Figure 3-9). Calcine 

and ethidium bromide were used to stain living (green) and dead (red) cells, respectively 

(Figure 3-10). The live/dead staining results showed that the ratio of living and dead 
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cells was 1 0.25/3 0.47 on the 0wt% group and the living cells appeared rounded in 

shape indicating that these cells were not attached well (Figure 3-10A)[76]. More cells 

attached and spread on the 3.75wt% adhesive, although there were some cells in 

rounded shape (Figure 3-10B). Most cells on the 7.5wt% adhesive were spread well 

(Figure 3-10C). No dead cells were found on the 3.75wt% and 7.5wt% adhesives. 

Gelatin microgels were also stained green through non-specific binding (blue arrows in 

Figure 3-10 B and C), and there is evidence for co-localization of the attached cells and 

the underlying gelatin microgels (Figure 3-10 B and C). The figures of DAPI staining 

(Figure A3 in Appendix) also support the co-localization of attached cells and gelatin 

microgels. 

 

All the results discussed above indicated that the incorporation of gelatin microgel 

promoted cells attachment and spreading, both of which are essential for the cell 

survival and proliferation.[85-87] The gelatin microgel provided cell binding sites (i.e., 

RGD peptide sequences)[51, 53] and increased gelatin microgel content promoted cell 

attachment and spreading. Additionally, as reported by Discher et al.[88] and Yeung et 

al.[89] fibroblasts tend to spread on a stiffer substrate. This can also explain the 

difference among these three testing groups. 
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Figure 3-9.18Cell attachment result. The number of attached rat dermal fibroblasts on the adhesive 
increased with the increased weight percentage of gelatin microgel.* p < 0.05 when compared to  
0wt% adhesive. # p < 0.05 when compared to 3.75wt% adhesive. 
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Figure 3-10.19Live/dead staining result of cell attachment test. Cells spread better with increasing 
weight percentage of gelatin microgel. A: 0wt% adhesive; B: 3.75wt% adhesive; C: 7.5wt% adhesive. 
Living cells were stained in green and dead cells were stained in red. Gelatin microgels were also 
stained into green through non-specific binding. Blue arrow: gelatin microgel; Red arrow: spread 
cells; Orange arrow: dead cells; Yellow arrow: Living cells but not spread. 

 

3.6 Subcutaneous implantation 

 

PEG-GM adhesives with 0wt% and 7.5wt% gelatin microgel were subcutaneously 

implanted into rats for 2 and 6weeks to evaluate the in vivo biocompatibility and 

bioactivity of the adhesive. The H&E and Trichrome staining revealed that after 2 weeks 

of implantation, more cells were present near the tissue-adhesive interface of 7.5wt% 

adhesive(7.7±0.9 cells/mm2) than 0wt% adhesive(5.3±0.8 cells/mm2) (Table 3-2 and 
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Figure 3-11 A-D). Through the immunofluorecentstaining M1 macrophage and 

fibroblast were observed in the tissue-adhesive interface (Figure 3-11 E and F, I and J), 

while M2 cells were found further away from the tissue-adhesive interface (Figure 3-11 

G and H). The results of 6 weeks of implantation showed higher cell density in 

tissue-adhesive interface of 7.5wt% adhesive (3.4±0.64 cells/mm2) than that of 0wt% 

adhesive (2.02±0.66 cells/mm2) (Figure 3-12 A and B). However, when compared to the 

2 weeks test result, the cell density of 6 weeks test was obviously lower (Table 3-2). The 

thickness of collagen deposition around 7.5wt% adhesive (74.31±14.14 μm) was also 

higher than that surrounding the 0wt% adhesive (43.63±14.4μm) after 6 weeks of 

implantation (Figure 3-12 C and D). Fibroblast and macrophage were observed in the 

same area as the result of 2 weeks implantation (Figure 3-12 E-J). Cell infiltration into 

the pocket structure via the degradation of previously contained gelatin microgel (single 

headed arrows in Figure 3-11 and 3-12) was observed at both time points. However, the 

pocket structure after 6 weeks of implantation is not as clear and regular as that of 2 

weeks implantation due to the degradation of surrounding PEGDM adhesive. The 

degradation of PEGDM adhesive resulted in an irregular and uneven tissue-adhesive 

interface. Additionally, no cell infiltration into the pocket structure was observed in the 

results of 2 weeks and 6 weeks implantation of control groups (0wt%). There was no 

significant difference on the average infiltration layer thickness between control group 
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and 7.5wt% group after 6 weeks of implantation (Table 3-2). 

 

M1 macrophage was the predominant cell type found in the tissue-adhesive interface 

area in both 2 weeks and 6 weeks test for 0wt% and 7.5wt% adhesives, indicating an 

inflammatory response due to the degradation of materials.[4, 90] The degradation of both 

PEGDM and gelatin microgel will lead to an uneven surface which will subsequently 

induce inflammatory response surrounding the implanted materials. The higher cell 

density in the interface of gelatin microgel containing adhesives is due to the activation 

of macrophage by gelatin.[91, 92] Fibroblasts were then attracted by the macrophage and 

started the deposition of collagen molecule.[93] The higher deposition of collagen 

molecule surrounding the 7.5wt% adhesive after 6 weeks can be potentially used in the 

wound healing of connective tissue. However, in order to achieve a successful and 

normal wound healing process of connective tissue we need to further control the 

collagen matrix formation into a normal and functional tissue.[70, 71] The presence of M2 

macrophage indicated a wound healing process.[94] 

 

Based on the discussion above, although there was M1 macrophage existing around the 

adhesives, the cell density was significantly reduced after 6 weeks implantation 

compared to 2 weeks implantation, indicating a reduced inflammatory response. The 
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deposition of collagen and the existence of M2 macrophage are signs of wound 

healing.[68, 94-97] Therefore, the PEG-GM adhesive can be considered as 

biocompatible.[98] The cell infiltration into the pocket structure via the degradation of 

gelatin microgel was observed in both 2 weeks and 6 weeks tests, indicating that gelatin 

microgel can be degraded by cells and it can provide space for cell infiltration. However, 

there was no significant difference in the cell infiltration layer of both 0wt% and 7.5wt% 

groups after 6 weeks implantation, indicating that the degradation rates of both groups 

were similar and the degradation was dictated by the hydrolysis of ester bond between 

PEG and glutaric acid. Additionally, although cells could infiltrate into the pocket 

structure after the degradation of gelatin microgel, cell infiltration was still prevented by 

PEG adhesive. The results revealed that gelatin microgel containing PEG adhesive had 

the potential to promote cell infiltration if we could build a pathway with gelatin 

microgel for cells to go through the PEG adhesive. 
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Figure 3-11.20Hematoxylin and eosin stain (H&E stain) (A and B), Masson’s Trichrome stain (C and 
D) and immunofluorecent stain (E-J) of 0wt% and 7.5wt% adhesive and surrounding tissue after 2 
weeks subcutaneous implantation. a: adhesive; Orange box: cell distribution area. Single headed 
arrow: cell infiltrating into the pocket formed via gelatin microgel degradation. Blue (DAPI): cell 
nuclei; Green (CD11b): M1 macrophage; Red (CD163 and S100A4): M2 macrophage and fibroblast, 
respectively. 
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Figure 3-12.21Hematoxylin and eosin stain (H&E stain) (A and B), Masson’s Trichrome stain (C and 
D) and immunofluorecent stain (E-H) of 0wt% and 7.5wt% adhesive and surrounding tissue after 6 
weeks subcutaneous implantation. a: adhesive; Orange box: cell distribution area. Single headed 
arrow: cell infiltrating into the pocket formed via gelatin microgel degradation. Double headed 
arrow : cell infiltration layer (IL in A and B) and collagen layer (CL in C and D), respectively. Blue 
(DAPI): cell nuclei; Green (CD11b): M1 macrophage; Red (CD163 and S100A4): M2 macrophage 
and fibroblast, respectively. 
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Table 3-2. 2Cell density, cell infiltration layer and collagen layer thickness of 2 weeks and 6   
weeks subcutaneous implantation.  
 

 2 weeks 6 weeks 

0wt% 7.5wt% 0wt% 7.5wt% 

Cell density in tissue-adhesive interface 

(x10
3
 cells/mm

2
) 

5.3±0.8 7.7±0.9* 2.02±0.66 3.4±0.64* 

 
Cell infiltration layer (μm) 
 
Collagen layer thickness 
(μm) 

- 
 
- 

- 
 
- 

95.79±14.37 
 

43.63±14.47 

97.15±16.78 
 

74.31±14.14* 

* p < 0.05 when compared to 0wt% adhesive. 

 

4. Conclusion 

 
This study has demonstrated that PEG-GM adhesive presented improved adhesive 

property and enhanced bioactivity. PEG is known for its biocompatibility but the 

bioinert property makes it lacking of interaction with surrounding cells to regulate the 

cell function and tissue development.[4] The incorporation of gelatin microgel provided 

the cell binding sites to promote the bioactivity. In addition, the gelatin microgel reacted 

with PEGDM to form both chemical and physical bond to increase the bulk property of 

material. The incorporation of chemically crosslinked gelatin microgel into PEGDM 

also enhanced the mechanical stability of gelatin. The increasing weight percentage of 
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gelatin microgel contributed to a faster gelation of adhesive and showed stronger 

adhesive property under wet environment. The in vitro degradation test showed no 

significant difference among the adhesives with or without gelatin microgels, indicating 

that the adhesives degraded through the hydrolysis of ester bond between PEG and 

glutaric acid. Cell culture tests showed the PEG-GM adhesive as biocompatible and the 

addition of gelatin microgel enhanced the cell attachment and spreading on the adhesive 

surface. In vivo subcutaneous implantation test revealed that PEG-GM adhesive as 

biocompatible and bioactive. The higher deposition of collagen molecule made the 

PEG-GM adhesive a promising material for the wound healing of connective tissue. 

 

In conclusion, incorporating gelatin microgel into PEGDM adhesive is a simple method 

to achieve an adhesive presenting enhanced adhesive property and bioactivity.  

 

5. Future work 
 

Although cell infiltration can be observed in the present study, it is limited by the 

absence of efficient pathway for cell going through. In the future work it is possible to 

build an efficient pathway to further promote the cell infiltration. It is known that the 

stiffness of cell adhesion substrate will influence the cell response on the morphology 
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and adhesion.[88, 89] By changing the concentration of EDC and NHS the crosslinking 

density of gelatin gel can be controlled.[62] It is possible to control the cell response 

better through controlling the stiffness of gelatin microgel. We can also entrap growth 

factor molecule within the gelatin microgel. With the degradation of gelatin microgel, 

growth factor can be released to control the formation of normal and functional tissue. It 

is also necessary to build a new animal model to study the material as an injectable 

bioadhesive on tissue regeneration and wound healing. 
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Appendix 

 

 
Figure A1. NMR spectrum of PEGGlu. 
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Figure A2. NMR spectrum of PEGDM. 

 

 
Figure A3. DAPI staining of rat dermal fibroblasts for cell attachment test. A) 0wt% adhesive; B) 
3.75wt% adhesive; 7.5wt% adhesive. Small blue dots: cell nuclei; Large cyan dots: gelatin 
microgels. 
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Table A1. Compression test results of crosslinked bulk gelatin gel. 
Failure stress 

kPa 
Failure strain Elastic modulus 

kPa 
Toughness 

kJ/m3 

563±51.5 0.53±0.03 128±9.8 218±6.3 
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Copyright permission for Figure 1-3 
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Copyright permission for Figure 1-6 
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