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Abstract 

The protective properties of osmolytes have been studied intently for decades. Originally 

used to aid in the crystallization of proteins in x-ray diffraction studies, these cosolvents 

have been shown to reverse protein denaturation and aggregation. Osmolytes aid 

extremophiles in surviving harsh environments by preferentially excluding themselves 

from the surface of the protein, thus directing water molecules to the protein’s surface. 

These osmolytes are naturally found in many health foods and also in many daily use 

products such as shampoo. Due to their osmoprotective effect their use in everyday 

consumer product is increasing. Consumers also supplement their diets with thiol-based 

antioxidants such as glutathione as part of a healthier life style. However, thiol-based 

antioxidants in high concentration have been known to cause un-intended health issues 

that relates to its disulfide reducing property. The disulfide-reducing agent can cleave the 

protein’s disulfide-bonds and promote misfolding and aggregation. In this thesis, we 

investigated the influence of commonly consumed glycine-based osmolytes on providing 

stability to proteins against a disulfide-reducing agent. We chose glycine, sarcosine (N-

methyl glycine), di-methyl glycine (DMG), and betaine (N,N,N-trimethylglycine) with 

increasing number of methyl groups. An added benefit to studying this class of osmolytes 

is to also investigate the impact N-methyl substitution has on the osmolytes’ protective 

properties. We studied the effect of these osmolytes on protein aggregation using 

spectroscopic techniques such as UV-visible absorbance, intrinsic fluorescence, and 

extrinsic fluorescence measurements. In addition, we carried out non-reducing SDS-

PAGE to check for higher order aggregates and characterized morphology of these 
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aggregates using scanning electron microscope. Overall, our results show that of all the 

osmolytes used, glycine was the best stabilizer followed by sarcosine. Betaine and 

dimethylglycine did not provide effective protection against disulfide-reducing influence. 

 

1. Introduction 

To better cope with environmental stresses such as high salt concentrations, extreme pH 

(acidic or alkaline conditions), and high temperatures etc. plants and micro-organisms 

accumulate low molecular weight compounds known as osmolytes1-5. The most common 

osmolytes are small organic or inorganic compounds like polyhydric alcohols (polyols), 

sugars, amino acids, salts, and their derivatives2-7. These osmolytes have been selected by 

nature and normally, do not affect enzymatic activity, are electrically neutral, and are 

preferentially excluded from the vicinity of cellular components so as not to affect 

biological processes2 4 8 9. At high concentrations these osmolytes are known to stabilize 

proteins by preferential hydration (a process by which osmolytes are excluded from the 

protein surface, structure the water molecule around protein, leading to protein 

stabilization; Figure 1.1)10-15. The osmolytes modulate protein stabilization by an intricate 

interplay of protein, water, and cosolvent interactions. The amount of water that is in 

constant flux, perturbing and being perturbed by the protein is termed water of hydration, 

WH.16 The amount of water molecules in contact of the protein is termed, water of 

preferential hydration, WPH. This value can fluctuate if either the surface area of the 

protein changes or if another molecule is introduced into the solvent system. Several 

mechanisms for stabilization of proteins by preferential hydration in the presence of 
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osmolytes have been proposed: 1.) due to increase in ‘surface tension’ (cosolvents are 

excluded from the protein-solvent interface, creating a cavity, leading to stabilization of 

proteins) e.g. sugars, polyols, salts, amino acids4 10 11 12 17-25 2.) due to ‘solvophobic 

effect’ (increase in tendency of cosolvents to move away from water molecules and 

strengthen hydrophobic interaction) e.g. glycerol, TMAO11 12 17 24 25, and 3.) by ‘steric 

exclusion’ (depends upon the size of the cosolvent, that affects how close the compound 

can get to the protein surface region immediately surrounded by water) e.g. betaine13.  

To better understand how these cosolvents can lead to stabilization or can adversely 

affect stability (e.g. by binding and denaturing proteins), at the interplay of protein-water 

or protein-cosolvent interaction. The balance between cosolvent—protein-backbone 

interaction (leads to protein destabilization) or amino acid side chain—solvent interaction 

(leads to protein stabilization) determines the overall protein stability.   If a protein 

becomes denatured, the surface area of the protein is modified and will thus change the 

water of preferential hydration. In a ternary solvent system, each locus of the protein 

surface area will be in contact with either the primary solvent (most concentrated solvent, 

usually water in biological systems) or with a cosolvent. These cosolvents can be either 

beneficial or detrimental to the protein’s native state. A cosolvent can either increase the 

water of preferential hydration, thus making the protein more stable and rigid; or decrease 

the water of preferential hydration and cause the protein to precipitate out of the solution.  
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Figure 1.1. Mechanism for stabilization/destabilization of a protein molecule through 
cosolvent interaction. If cosolvent has little or no effect on the stability of the protein, 
then solvent and cosolvent evenly distribute across the protein surface. If the cosolvent 
does not favor interaction with the protein, it is excluded and structures water around the 
proteins surface. If the cosolvent, interacts favorably with the protein, it binds excluding 
water from the proteins surface. Adapted from Timasheff S.N. 2002.26 

 

Cosolvents that promote preferential hydration and stabilize the protein’s native state are 

called osmolytes, while cosolvents that decrease the preferential hydration are called 

denaturants. The most commonly used denaturants are urea and guanidinium 
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hydrochloride. These compounds cause denaturation of proteins by interacting favorably 

with the protein’s backbone, dislodging the water molecule, thus decreasing preferential 

hydration.27 The process by which water molecules are excluded and the cosolvent 

interacts with the protein surface area is called preferential interaction. Preferential 

interaction is the direct opposite of preferential hydration. Osmolytes on the other hand 

promote proteostasis by undergoing solvent exclusion, thus causing more water 

molecules to come into contact with the protein surface, thus increasing preferential 

hydration. This mechanism makes the protein more rigid; one consequence of such 

rigidity can be reduction of enzymatic activity if the osmolyte concentration is high.28 

The balancing act between preferential hydration and preferential interaction of cosolvent 

or ligands can be represented with the following equilibrium equation.29  

P·nH2O + L  P·L + nH2O 

Whenever a ligand molecule interacts with a protein, water is displaced. Osmolytes will 

shift the equilibrium to the left while denaturants will shift this equilibrium to the right. 

These molecules have been widely used for many years to aid in protein crystallization as 

well as preservative for proteins.30 Investigation into the protective properties of these 

osmolytes on proteins have been a major focus of research for decades. With a better 

understanding of how these osmolytes provide protection, different additive formulas or 

synthetic osmolytes can be designed, thus allowing for major contributions to several 

pharmaceutical and biotech industries. Osmolytes can be used to stabilize therapeutic 

proteins in the drug industry. Therapeutic proteins such as insulin, are small and only 

stable in vitro for short periods of time.31 By increasing the shelf life and thermal stability 
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of therapeutic proteins, the cost of production, storage, and shipping would decrease, thus 

allowing for a more cost effective and consumer affordable medication.32 33 This use of 

osmolytes can be expanded to help improve the handling of proteins in a laboratory 

setting.  

Osmolytes affect our everyday life as these are used as stabilizers in consumer goods 

such as foods, shampoos, toothpastes, and topical medications. Health foods, such as 

quinoa, spinach, fish, and whole grain products contain a significant amount of 

osmolytes. These osmolytes are found naturally in these food products at relatively high 

concentrations, and survive the baking process as these are very thermostable. Regardless 

of diet or lifestyle, many consumers enjoy the benefits of these osmolytes in everyday 

products that they use or consume regularly.  

Extremophiles such as bacteria residing in deep sea thermal vents have also been 

observed to be stabilized by inorganic osmolytes.34 These organisms live in extreme 

environmental conditions that is harsh and can affect proteins in their cell system. High 

pressure, temperature, salinity, and pH environments are detrimental to a proteins native 

structure. These osmolytes preferentially hydrate the protein protecting it from the harsh 

conditions and hence prevent its denaturation and/or loss of function. This 

osmoprotective role of these cosolvents has been the central focus of research in 

biotechnology, pharmaceutical, and academia. The goal is to increase shelf life of 

everyday use items such as toothpaste, shampoos and of food and medicine.  

As people are becoming more health-conscious, everyday use of ‘over-the-counter’ 

vitamins and supplements are on the rise. Use of antioxidant supplements into everyday 
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diet for either general health improvement or bodybuilding is becoming increasingly 

popular. Many of these antioxidants are thiol-based and are naturally occurring in the 

human body e.g. glutathione, N-acetylcysteine, cysteine, and lipoic acid. These 

commonly used thiol-based antioxidants are easily available as ‘over-the-counter’ natural 

supplements. These compounds can attack conserved disulfide-bonds on proteins, leading 

to its destabilization.  

Reduction of disulfide bonds can affect protein stability due to loss of anchoring effect of 

disulfide bonds in proteins making them more flexible and mobile.35 This increase in 

structural flexibility (degrees of freedom), causes rearrangement of water molecules in 

contact with the protein surface promoting protein misfolding. As a consequence, 

hydrophobic amino acid residues that are normally buried within the bulk (core) of the 

protein become solvent exposed. This makes the protein more hydrophobic (decreasing 

the water of preferential hydration), making it sticky which can promote self-interaction 

and aggregation.  In cells, it can lead to aberrant interactions with other proteins or 

cellular constituents. Studies involving muscle recovery and long term use of thiol-based 

antioxidants show that skeletal muscle recovery is decreased significantly when such 

antioxidants are taken consistently.36 37 These thiol-based supplements can increase the 

concentration of natural disulfide reducing agents in the body that may have a deleterious 

effect.  

Health foods such as quinoa, spinach, and wheat bread have been on the rise and are 

encouraged to incorporate into a healthy diet for various nutritional benefits. Some health 

fanatics as part of healthy lifestyle, consume high amounts of thiol-based antioxidants in 
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combination with health foods.  Studies show that these health food products contain high 

concentrations of osmolytes such as betaine and glycine. For example, spinach contains 

645 mg/100g, wheat bran contains 1339mg/100g, eggs contains 251mg/100g, and wheat 

bread contains 201mg/100g of betaine.38 Osmolytes can prevent the denaturation of 

proteins under harsh conditions such as high pH, salinity, temperature, and chemical 

denaturants.1-5 Osmolytes have also been shown to reverse aggregation process of 

denatured proteins.39 40 Therefore, it will be interesting to study how these glycine based 

osmolytes may modulate the overall deleterious impact of thiol-based antioxidants. Since, 

glycine-based osmolytes exist in such large amounts in commonly ingested food 

products, we wanted to study the protective effect of these osmolytes on proteins against 

disulfide-reducing influences.  
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2. Goals and Hypotheses  

We hypothesized that glycine based osmolytes will provide protection to proteins against 

instability promoted by disulfide-reducing agents. The primary goal was to investigate 

the influence of commonly consumed glycine-based osmolytes on the stability of proteins 

against a disulfide-reducing agent. The disulfide-reducing agent can cleave the proteins 

disulfide-bonds and promote misfolding and aggregation as shown in model Figure 2.1.   

 

 

Figure 2.1. Effect of disulfide-bond reduction on protein unfolding and misfolding. 
Cleavage of these covalent bonds cause an increase in freedom of motion of protein 
domains, significantly increasing the probability of misfolding and aggregation. The 
different color dots and numbers represent Cys residues present on lysozyme that are 
disulfide-bonded in native state of the protein. 

 

We chose a series of amino acids, viz., glycine, sarcosine (N-methyl glycine), di-methyl 

glycine (DMG), and betaine (N,N,N-trimethylglycine) with increasing number of N-

methyl groups. Glycine has no methyl group, sarcosine has one, DMG has two, and 

betaine has three methyl groups attached to the amino terminal. Glycine, sarcosine, and 

betaine are naturally occurring osmolytes whereas DMG is a synthetic compound. We 

also chose dithiothreitol (DTT), a thiol based reducing agent that is commonly used in 
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protein stability and aggregation studies41. We carried out all experiments at conditions 

close to physiological pH and temperature (pH 7.2 and 37 °C) and monitored the proteins 

instability and aggregation by several techniques, such as, UV-visible spectroscopy, 

fluorescence (both intrinsic and extrinsic), electrophoresis, and scanning electron 

microscopy. 

The goal of this project was to investigate the real world application of thiol-based 

antioxidant supplementation combined with a glycine-based osmolytes (present at high 

concentration in many health foods) on the stability of proteins. These experiments are 

designed to mimic the influence of consistent consumption of glycine based osmolytes in 

a typical healthy diet against the deleterious effects of thiol-based antioxidant 

supplementation. Interestingly, there are no reported studies that have looked at the 

beneficial effect of glycine based osmolytes against the noxious effect of disulfide-

reducing agents on protein stability. 

 

2.1. Justification for reagent use 

Hen egg white lysozyme was used in this project since it is a well-characterized protein 

that behaves predictably in vitro in conditions close to physiological. This allows for 

minimal bias and complication in the investigation of osmolytes stabilizing influence in a 

disulfide-reducing environment. Lysozyme is a 14.3 kDa 129 amino acid globular protein 

containing four disulfide bonds. These disulfide bonds are located between C6-C127, 

C30-C115, C64-C80, and C76-C94. The C6-C127 disulfide bond is partially exposed to 
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the solvent, while the other three are buried and not accessible to the solvent (Figure 2.2). 

This arrangement allows for studying the protein in a partially reduced and a fully 

reduced state. In these two states, the degree of protection these osmolytes provide can be 

observed.  

 

Figure 2.2. Structure of lysozyme generated using PyMOL 1.3 and PDB file 1UCO 
adapted from Nagendra HG et al (1996).42.  Ribbon diagram highlights the disulfide 

-yellow) stick; the tryptophan (dark-teal), tyrosine (firebrick red), and 
phenylalanine residues (orange) as spheres. The backbone is shown in gray color. 
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Dithiothreitol (DTT) (Figure 2.3) is a thiol-based reducing agent that has been 

extensively investigated and the mechanism of its action is well known. This compound 

reduces proteins disulfide-bonds through two thiol disulfide exchanges.43 The mechanism 

of action is shown in Figure 2.4. DTT was chosen as this reducing agent is commonly 

used for protein stability studies at pH 7.2 (near physiological), and has a structure 

similar to many thiol-based antioxidants.41 44 45 It is hypothesized that partial reduction of 

the protein represents how thiol-based antioxidants may reduce lysozyme in a biological 

system.  In summary, DTT is well positioned to be used as a reducing agent to investigate 

the protective power of osmolytes in an environment close to physiological.    

 

HS
SH

OH

OH

Dithiothreitol
 

Figure 2.3. Structure of thiol-based reducing agent dithiothreitol (DTT).   
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Figure 2.4. Dithiothreitol reduces disulfide bonds through two thiol disulfide 

exchanges. 

 

Glycine based osmolytes exist in large amounts in everyday food products such as 

spinach, wheat bread, pretzels, and quinoa.46 There is a growing consumer awareness 

and demand for healthy diet and lifestyle that has led to an increased consumption of 

health food such as quinoa and spinach. As shown in Figure 1.1, osmolytes stabilize 

proteins by directing more water molecules to the protein surface. Since previous 

studies have demonstrated the stabilizing effects of osmolytes on proteins under 

conditions of stress such as pH, temperature, etc., we hope to expand the knowledge 

base on the stabilizing effects of osmolytes on the influence of reducing agents on 

protein stability. There is a lack of research on the protective effects of osmolytes on 

a disulfide reducing stressor. This project provides insight into the stabilizing 

potential of glycine based osmolytes against a disulfide reducing influence and offers 
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an insight into the implication of consuming large amounts of these osmolytes in 

combination with thiol-based antioxidant supplementation.  

An added benefit of studying this class of osmolytes is to investigate impact of N-

methyl substitution on the osmolytes protective properties. It is hypothesized that 

glycine has the highest degree of solvent exclusion and thus will offer the strongest 

protection potential. This protection potential is also theorized to decrease as the 

degree of N-methyl substitution increases. We chose this series, as in addition to 

being at high concentrations in health foods providing beneficial effects, we wanted 

to know if number of N-methyl groups also played a role. If so, what is the 

relationship between number of methyl groups and the relative protection provided by 

these osmolytes? The four compounds pictured below, cover the full range of 

possible N-methyl substitutions for this class of cosolvents and studying them will 

provide a complete view of its influence under physiological conditions.    

O
N

O

O
N

O

O

H
N

O

O
NH3

O

Betaine Dimethylglycine

GlycineSarcosine
 

Figure 2.5. Glycine based osmolytes commonly found in consumer products.  
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An extrinsic fluorescence assay involving the dye 1-anilinonaphthalene-8-sulfonic acid 

(ANS) was chosen to monitor changes in hydrophobic exposure of lysozyme as the 

protein is exposed to a reducing environment. This dye was chosen as it is a well–

established dye used to determine the hydrophobic exposure of proteins as they misfold.47 

The hypothesis, is that the fluorescence of the dye will be lower for proteins that are not 

reduced. Therefore, if the osmolytes protect the protein from disulfide reduction, then the 

fluorescence should be significantly lower than for the protein samples that were reduced 

successfully by DTT.  

NH S OO

O

1-anilinonaphthalene-8-sulfonic acid (ANS)  

Figure 2.6. 1-anilinonaphthalene-8-sulfonic acid (ANS) dye used to assess changes in 
proteins hydrophobic exposure as result of denaturation and misfolding.  

 

2.2. Investigate the influence of osmolyte at 0.05M and 1M concentration on misfolding 

When a weakly interacting ligand exists in solution at high concentration i.e. 0.2 M to 10 

M, then the ligand is considered an equal solvent component to water. At this point the 

ligand is considered a cosolvent.48 Studies have shown cosolvents having both positive 
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and negative effect on the proteins native structure depending on the environmental 

conditions. For example, betaine acts as an osmolyte at physiological pH but is a 

denaturant at acidic pH.49 It is a known stabilizer against thermal stress and shows its 

protective property as a result of steric exclusion leading to preferential hydration. A 

protein is neutral thermodynamically to the interaction with water. By having a high 

concentration of osmolyte in solution (i.e. 1M), we hypothesize that the protein will be 

preferentially hydrated due to the solvent exclusion of the osmolyte. The samples were 

also enriched with a small concentration of osmolyte (0.05M) in order to determine if the 

osmolytes affect stability by direct interaction, since only a small amount of cosolvent 

would be required to observe such a destabilizing effect. In these experiments, osmolytes 

glycine, sarcosine, dimethylglycine, and betaine were used to assess the effect of N-

methyl substitution on the stabilizing effect of the osmolytes against a reducing 

environment at pH 7.2 and at 37 °C.     
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3. Materials and Methods 

 

3.1. Material and Sample Preparation 

3.1.1. Lysozyme Stock Solution Preparation 

All materials were purchased and used as supplied from Sigma unless otherwise 

indicated. Lyophilized lysozyme powder was dissolved in 20 mM sodium phosphate 

buffer (pH 7.2) and 150 mM NaCl. Lysozyme concentration was determined by UV-Vis 

280nm = 2.64 mg-1 mL cm-1. Protein stock 

solutions used for this project had M (0.572 mg/mL) 

lysozyme, 20 mM sodium phosphate (pH 7.2) and 150 mM NaCl.  

 

3.1.2. Material Preparation 

Dithiothreitol solution was prepared by dissolving 38 mg dithiothreitol powder in 500 

deionized water, producing a 500 mM final solution. ANS dye was prepared by 

dissolving 2.99 mg ANS powder in 1 mL of 100% ethanol. Betaine, dimethylglycine, and 

sarcosine working solutions were made by preparing a 3 M stock solution; then filtering 

through a 0.45 s prepared 

similarly by preparing 3 M solution at 40 °C then it was filtered while warm to prevent 

crystallization.  
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3.1.3. Sample Preparation 

Lysozyme sample solutions were prepared in nine different compositions in order to 

investigate the protective capability of glycine based osmolytes against thiol based 

antioxidants. Each solution consisted of 70  of 200 mM sodium phosphate buffer at pH 

7.2, 27     M 

osmolyte, either 0, 1.4, or 14  of dithiothreitol and diluted to 700 

water. This produced a set containing nine different sample solutions. These sets were 

incubated for either 0, 0.5, 1, 2, 4, 24, 48, or 168 hours. This setup was repeated for each 

osmolyte, either betaine, dimethylglycine (DMG), sarcosine, or glycine).    

 

3.2. Experimental Setup and Protocol 

The following methods were used to investigate the rate of protein unfolding, misfolding, 

and aggregation of lysozyme caused by DTT, a thiol-based reducing agent in a glycine 

based osmolyte protected environment at pH 72 and 37 °C.  

   

3.2.1. UV-Vis Turbidity Assay 

Optical density measurements were taken using a PerkinElmer Lambda 35 UV/Vis 

spectrometer. Protein samples were incubated at their indicated time according to section 

3.1.3 and a visible spectrum of each lysozyme sample was acquired between 380 to 700 

nm. Each sample was mixed well via pipetting before measurements. Milli Q water was 

used in the reference cell. Absorbance measurements of each sample assayed was plotted 
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as incubation time vs. optical density at 600 nm. Absorbance values (pertaining to the 

same osmolyte) were divided by the largest absorbance value. This provided a percentage 

of protein denatured. The data sets were then normalized to incubation time vs. fraction 

denatured. All measurements were performed in triplicates.        

 

3.2.2. Water Raman Spectrum 

Before every fluorescence experiment, a water Raman spectrum was taken using MilliQ 

water. Fluorescence emission spectrum was taken between 365-450 nm with excitation at 

350 nm. Emission and excitation bandwidths were both set to 5 nm. This was used for 

normalization of fluorescence data acquired on different days to avoid instrument 

variability. 

 

3.2.3. Intrinsic Fluorescence Assay 

Fluorescence experiments were performed using a Horiba Jobin Yvon spectrofluorometer 

(Fluoromax-4). Protein samples were incubated at their indicated time according to 

section 3.1.3. Intrinsic fluorescence emission spectra of the lysozyme samples were 

collected between 285-450 nm with excitation at 280 nm. Emission and excitation 

bandwidths were both set to 2 nm. The data was plotted at 345 nm as incubation time vs. 

counts per second divided by 1000 (CPS/1000). All experiments were performed in 

triplicate.  
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3.2.4.. ANS Extrinsic Fluorescence Assay 

Immediately after collecting intrinsic emission spectra, 5  1-anilinonaphthalene-8-

sulfonate (ANS) was added to each protein sample and was incubated on ice and in 

darkness for 15 minutes. Fluorescence emission spectra were collected between 400-700 

nm with excitation at 385 nm. Emission and excitation bandwidths were both set to 2 nm. 

Fluorescence measurements were plotted at 345 nm as incubation time vs. counts per 

second divided by 1000 (CPS/1000). All experiments were performed in triplicates.    

 

The following methods were used to investigate the hydrodynamic volume and the 

morphology of lysozyme after denaturing in an osmolyte stabilizing environment. These 

methods were used to provide evidence of the formation of high molecular weight 

species as well as provide insight into whether osmolytes influence disulfide scrambling.     

 

3.2.5. Non-reducing SDS PAGE 

Lysozyme samples containing 1 M osmolyte and 1 mM DTT were chosen for non-

reducing SDS PAGE. These samples were incubated for either 4 hours or 48 hours at 37 

°C. Then the samples were incubated with 5 mM iodoacetamide for two hours at room 

temperature to block any free –SH groups. These samples were then mixed with sample 

buffer (that has all the components of traditional SDS-PAGE except the reducing agent) 

and boiled for five minutes. A 12% SDS gel was cast and pre-run for 30 minutes before 

loading samples. Samples were loaded into the gel at 8.5 μg/lane and gel was run for two 
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hour and fifteen minutes at 80 V. Samples containing 0 M osmolyte with 0 mM DTT 

with 0 incubation time and samples containing 0 M osmolyte with 1 mM DTT incubated 

at either 4 or 48 hours were used as controls.    

    

3.2.6. Field Emission-Scanning Electron Microscopic Imaging 

Aggregate samples were prepared using a similar protocol to previous published work 

from our research group41. In order to remove osmolytes and low molecular weight 

species, the samples were diluted by a factor of ten, washed with distilled water three 

times (45 minute cycle each), aliquoted on Millipore Amicon Ultra centrifugal filters 

(3000 Da cutoff) and centrifuged at 7000 g at 4 °C. The samples were then aliquoted and 

allowed to dry on SEM stubs at ambient temperature. Samples were then sputter coated 

with 10nm of platinum. Each sample was imaged using a Hitachi S-4700 cold field 

emission high-resolution scanning electron microscope with an accelerating voltage of 5 

kV and an emission current of 10 .    

 

 

 

  



28 
 

4. Data and Observations 

In this project, protein samples were observed using UV-vis absorbance to determine the 

formation of aggregates and its associated kinetics. Do the osmolytes provide long term 

protection or only short term? Intrinsic fluorescence measurements were used to monitor 

the protein misfolding in presence of disulfide reducing agent. As the disulfide bonds 

reduce, the aromatic amino acids become surface exposed affecting their fluorescence 

properties. This can be monitored by shift in the wavelength with change in local 

environment of the amino acid (from non-polar (hydrophobic protein core) to polar 

(exposed to water/solvent)). ANS is an extrinsic fluorophore and provides information 

about protein misfolding, hydrophobic exposure and protein aggregation. The differential 

response observed in presence of osmolytes provides insight into their individual 

protective influence on protein incubated in specific set of conditions. Non-reducing SDS 

PAGE provides information on formation of high molecular weight protein species that 

may be a result of disulfide scrambling. Depending upon the samples incubated in 

presence of different osmolytes we expect to see variability in the different high 

molecular weight bands on gel. Scanning electron microscopy was used to characterize 

the morphology of these aggregates and see if the osmolytes affected the morphology or 

kinetics of aggregate formation.  We acquired the data in presence of 0 M, 0.05 M, and 1 

M of each osmolyte in presence of 0 M, 1 mM, and 10 mM of DTT at pH 7.2 and at 37 

°C.  However, in the main section we only included data for protein samples in presence 

of 1 mM DTT. Data for 0 mM and 10 mM DTT are available in the Appendix section. 

We did this for the following reasons: 1) 1 mM DTT is a mild reducing conditions that 
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maybe equivalent of concentrations reached with overuse of over-the-counter thiol-based 

antioxidants, 2) We expected to see variability in protective power of osmolytes under 

conditions that are relatively mild. 

 

4.1. UV-Vis Turbidity 

UV-vis absorption of protein at 600 nm in presence of 1 M glycine showed a significant 

difference in absorbance compared to 0.05 M and 0 M glycine as shown in Figure 4.1. 

The absorbance remains relatively flat and stable throughout the 168 hours of 

observation, suggesting protection from aggregation. Lysozyme containing 0 M and 0.05 

M glycine exhibited very similar misfolding and aggregation rates; the fraction denatured 

lysozyme increased rapidly for the first 24 hours then absorbance was stable for the rest 

of the 168 hours. This suggests failure of glycine to protect lysozyme at 0.05 M 

concentration. The fraction denatured lysozyme increases minimally in presence of 1 M 

glycine in 1 mM DTT sample up to 24 hours. Glycine shows long term protection 

potential throughout the course of 168 hours of incubation.  

Sarcosine enriched samples followed a near identical trend to that of glycine enriched 

samples. In Figure 4.2, lysozyme at 1 M sarcosine and 1 mM DTT showed no turbidity 

for the first four hours of incubation while the 0.05 M and 0 M both at 1 mM DTT 

showed gradual increases in turbidity. Sarcosine showed protective effect for lysozyme 

samples similar to that seen with glycine (Figure 4.2).  

In Figure 4.3, 1 M dimethylglycine showed protection from aggregation in the first 4 

hours, then the lysozyme showed increased aggregation with time that was very similar to 
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samples with 0 M or 0.05 M of DMG. The overall fraction denatured lysozyme is slightly 

lower for samples containing 1 M DMG compared to protein samples having 0 M or 0.05 

M DMG; thus showing a limited protecting potential at 1 M concentration of DMG.  

Surprisingly, betaine did not show any protective effect on disulfide reduced proteins 

even at 1 M concentration (Figure 4.4). This osmolyte was the least protective when 

compared to other osmolytes under same conditions. There was no difference in turbidity 

between the 0 M, 0.05 M, and 1 M betaine enriched samples (Figure 4.4). This trend was 

consistent throughout the 168 hours of incubation.    
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Figure 4.1. UV-vis absorbance for lysozyme showing fraction denatured protein as a 
function of time. Lysozyme was incubated at 37°C in the presence of varying 
concentrations of glycine (0 M, 0.05 M, or 1 M) in buffer (pH 7.2) containing 1mM DTT 
for the indicated periods of time. The plot for 4 h incubation is shown below the 168 h 
incubation. Fraction of protein denatured was determined by UV-vis absorbance at 600 
nm. Error bars indicate ±SEM.  
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Figure 4.2. UV-vis absorbance for lysozyme showing fraction denatured protein as a 
function of time. Lysozyme was incubated at 37°C in the presence of varying 
concentrations of sarcosine (0 M, 0.05 M, or 1 M) in buffer (pH 7.2) containing 1mM 
DTT for the indicated periods of time. The plot for 4 h incubation is shown below the 168 
h incubation. Fraction of protein denatured was determined by UV-vis absorbance at 600 
nm. Error bars indicate ±SEM. 
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Figure 4.3. UV-vis absorbance for lysozyme showing fraction denatured protein as a 
function of time. Lysozyme was incubated at 37°C in the presence of varying 
concentrations of dimethylglycine (0 M, 0.05 M, or 1 M) in buffer (pH 7.2) containing 
1mM DTT for the indicated periods of time. The plot for 4 h incubation is shown below 
the 168 h incubation. Fraction of protein denatured was determined by UV-vis 
absorbance at 600 nm. Error bars indicate ±SEM. 
 

 

 



34 
 

 

 

Figure 4.4. UV-vis absorbance for lysozyme showing fraction denatured protein as a 
function of time. Lysozyme was incubated at 37°C in the presence of varying 
concentrations of betaine (0 M, 0.05 M, or 1 M) in buffer (pH 7.2) containing 1mM DTT 
for the indicated periods of time. The plot for 4 h incubation is shown below the 168 h 
incubation. Fraction of protein denatured was determined by UV-vis absorbance at 600 
nm. Error bars indicate ±SEM. 
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4.2. Intrinsic Fluorescence  

In Figure 4.5, the intrinsic fluorescence for samples at 1 M glycine concentration was 

noticeably lower than that for proteins incubated in presence of 0 M or 0.05 M glycine. 

There was no perceptible difference in fluorescence for the samples in 0 M or 0.05 M 

throughout the 168 hours. The difference in intrinsic fluorescence for lysozyme samples 

at 1 M glycine compared to proteins incubated at 0 M and 0.05 M glycine was more up to 

48 hours of incubation and that gap decreased upon longer incubation.  

Protein samples containing sarcosine showed similar trend as that observed for samples 

containing glycine but still showed a little more protection for protein at 1 M 

concentration compared to glycine (Figure 4.6). The peak cps value for samples 

containing 1 M sarcosine stayed consistently low while the fluorescence increased 

gradually for the samples containing 0 M and 0.05 M sarcosine. After 48 hours, the 

samples showed a consistent decrease in fluorescence for the length (168 hours) of the 

incubation.  

Samples containing dimethylglycine showed a noticeable difference in fluorescence for 

samples with 1 M DMG compared to samples with 0 M or 0.05 M DMG (Figure 4.7). 

This pattern remained consistent throughout the duration of the 168 hours incubation 

period (Figure 4.7).  

Again no difference in fluorescence of samples incubated in presence of betaine was 

observed (Figure 4.8).  This indicates that betaine has no osmoprotective effect on 
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proteins incubated in its presence. This indicates that betaine is unable to stabilize the 

protein against reducing influence where both glycine and sarcosine are effective.   

 

 

Figure 4.5. Intrinsic fluorescence measurements for lysozyme in presence of glycine (0 
M, 0.05 M, or 1 M) in buffer (pH 7.2) containing 1mM DTT for the indicated periods of 
time at 37 °C. Fluorescence emission spectra was collected from 285-450nm with 
excitation at 280nm. Peak intensity at 346 nm were plotted as a function of time. The plot 
for 4 h incubation is shown below the 168 h incubation. Error bars indicate ±SEM.  
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Figure 4.6. Intrinsic fluorescence measurements for lysozyme in presence of sarcosine (0 
M, 0.05 M, or 1 M) in buffer (pH 7.2) containing 1mM DTT for the indicated periods of 
time at 37 °C. Fluorescence emission spectra was collected from 285-450nm with 
excitation at 280nm. Peak intensity at 346 nm were plotted as a function of time. The plot 
for 4 h incubation is shown below the 168 h incubation. Error bars indicate ±SEM.  
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Figure 4.7. Intrinsic fluorescence measurements for lysozyme in presence of 
dimethylglycine (0 M, 0.05 M, or 1 M) in buffer (pH 7.2) containing 1mM DTT for the 
indicated periods of time at 37 °C. Fluorescence emission spectra was collected from 
285-450nm with excitation at 280nm. Peak intensity at 346 nm were plotted as a function 
of time. The plot for 4 h incubation is shown below the 168 h incubation. Error bars 
indicate ±SEM. 
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Figure 4.8. Intrinsic fluorescence measurements for lysozyme in presence of betaine (0 
M, 0.05 M, or 1 M) in buffer (pH 7.2) containing 1mM DTT for the indicated periods of 
time at 37 °C. Fluorescence emission spectra was collected from 285-450nm with 
excitation at 280nm. Peak intensity at 346 nm were plotted as a function of time. The plot 
for 4 h incubation is shown below the 168 h incubation. Error bars indicate ±SEM. 



40 
 

4.3. ANS Fluorescence 

In Figure 4.9, proteins in presence of 1 M glycine showed a decreased emission only in 

the first 4 hours compared to samples incubated in presence of 0 M or 0.05 M glycine. 

Interestingly, upon longer incubation there was not much difference in emission peak of 

samples at 168 hours of incubation irrespective of the concentration of glycine.  

Sarcosine shows a measurable protection for proteins incubated in presence of 1 M 

osmolyte compared to proteins incubated with 0 M or 0.05 M osmolyte (Figure 4.10). 

This result is in line with other measurements done (intrinsic fluorescence and UV-visible 

turbidity assay) for samples containing sarcosine. 

The ANS binding for samples in presence of DMG did not vary much with change in 

osmolyte concentration (Figure 4.11). In contrast, the turbidity data and intrinsic 

fluorescence data for DMG showed a protective effect at 1 M concentrations of osmolyte.  

Again proteins incubated in presence or absence of betaine (Figure 4.12) did not show 

any difference in ANS fluorescence suggesting betaine do not protect proteins against 

reducing influence.   
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Figure 4.9. ANS was used to monitor increase in hydrophobicity as a result of lysozyme 
misfolding and aggregation. ANS fluorescence measurements for lysozyme in presence 
of glycine (0 M, 0.05 M, or 1 M) in buffer (pH 7.2) containing 1mM DTT for the 
indicated periods of time at 37 °C were carried out. Fluorescence emission spectra was 
collected from 400-700 nm with excitation at 380 nm. Peak intensity at 471 nm were 
plotted as a function of time. The plot for 4 h incubation is shown below the 168 h 
incubation. Error bars indicate ±SEM.  
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Figure 4.10. ANS was used to monitor increase in hydrophobicity as a result of lysozyme 
misfolding and aggregation. ANS fluorescence measurements for lysozyme in presence 
of sarcosine (0 M, 0.05 M, or 1 M) in buffer (pH 7.2) containing 1mM DTT for the 
indicated periods of time at 37 °C were carried out. Fluorescence emission spectra was 
collected from 400-700 nm with excitation at 380 nm. Peak intensity at 471 nm were 
plotted as a function of time. The plot for 4 h incubation is shown below the 168 h 
incubation. Error bars indicate ±SEM.   
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Figure 4.11. ANS was used to monitor increase in hydrophobicity as a result of lysozyme 
misfolding and aggregation. ANS fluorescence measurements for lysozyme in presence 
of dimethylglycine (0 M, 0.05 M, or 1 M) in buffer (pH 7.2) containing 1mM DTT for 
the indicated periods of time at 37 °C were carried out. Fluorescence emission spectra 
was collected from 400-700 nm with excitation at 380 nm. Peak intensity at 471 nm were 
plotted as a function of time. The plot for 4 h incubation is shown below the 168 h 
incubation. Error bars indicate ±SEM.   
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Figure 4.12. ANS was used to monitor increase in hydrophobicity as a result of lysozyme 
misfolding and aggregation. ANS fluorescence measurements for lysozyme in presence 
of betaine (0 M, 0.05 M, or 1 M) in buffer (pH 7.2) containing 1mM DTT for the 
indicated periods of time at 37 °C were carried out. Fluorescence emission spectra was 
collected from 400-700 nm with excitation at 380 nm. Peak intensity at 471 nm were 
plotted as a function of time. The plot for 4 h incubation is shown below the 168 h 
incubation. Error bars indicate ±SEM.   
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4.4. Non-reducing SDS PAGE 

Non-reducing SDS-PAGE was carried out to check for the presence of high molecular 

weight species that may be present in samples incubated in absence or presence of 1 M 

concentration of all four osmolytes in buffer containing 1 mM DTT at pH 7.2 and 

incubated at 37 °C. Based on spectroscopic data (both UV-visible absorbance and 

fluorescence) samples containing 1 M osmolyte were run on gel for 4 hours and 48 hours 

incubation times (Figures 4.13 and 4.14). The 4 hours gel shows strong presence of 

lysozyme dimers for samples incubated with betaine that are similar to lane of protein 

incubated similarly (lane 5) but in absence of any osmolyte (Figure 4.13). Samples 

incubated in presence of DMG (lane 9) shows a very faint band for the dimeric species. 

Interestingly, no higher molecular weight species were observed for proteins incubated 

with sarcosine. Glycine (lane 13) showed a faint band, indicative of dimeric species. For 

samples incubated for 48 hours showed very strong dimeric band for samples in absence 

of osmolyte (lane 5) and presence of betaine (lane 7), no higher molecular weight species 

were observed in presence of DMG (lane 9), and a faint dimeric band for glycine (lane 

13) (Figure 4.14). Sarcosine showed increased protection with absence of any dimeric 

band even after 48 hours of incubation of protein samples (Figure 4.14). 
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Figure 4.13. Non-reducing SDS PAGE of lysozyme samples incubated for 4 h at the 
conditions indicated. For samples in different lanes the following incubation conditions 
were used: (3) 0 M osmolyte, 0 mM DTT (Fresh control sample), (5) 0 M osmolyte in 
presence of 1mM DTT, (7) 1 M Betaine in presence of 1mM DTT, (9) 1 M DMG in 
presence of 1 mM DTT, (11) 1M Sarcosine in presence of 1 mM DTT, (13) 1M Glycine 
in presence of 1 mM DTT. All samples were incubated at 37 °C for 4 h before preparing 
for non-reducing PAGE as detailed in method section. Samples were run on a 12% SDS-
PAGE gel at 80 V for 2 h and 15min.  Lane marked (M) is SDS marker proteins. 
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Figure 4.14. Non-reducing SDS PAGE of lysozyme samples incubated for 48 h at the 
conditions indicated. For samples in different lanes the following incubation conditions 
were used: (3) 0 M osmolyte, 0 mM DTT (Fresh control sample), (5) 0 M osmolyte in 
presence of 1mM DTT, (7) 1 M Betaine in presence of 1mM DTT, (9) 1 M DMG in 
presence of 1 mM DTT, (11) 1M Sarcosine in presence of 1 mM DTT, (13) 1M Glycine 
in presence of 1 mM DTT. All samples were incubated at 37 °C for 48 h before preparing 
for non-reducing PAGE as detailed in method section. Samples were run on a 12% SDS-
PAGE gel at 80 V for 2 h and 15min.  Lane marked (M) is SDS marker proteins. 

 

After 48 hours of incubation, the dimeric population for both the 0 M osmolyte and that 

for samples containing 1 M Betaine in presence of 1 mM DTT showed an increase in 

relative amount of the protein (Figure 4.14). For these samples, a small population of 

higher molecular weight species were also observed. This is most likely due to formation 

of higher order aggregates via aberrant interaction and disulfide scrambling.   
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4.5. Field Emission Scanning Electron Microscopy 

Field emission scanning electron microscopy was used to characterize the morphology of 

the protein aggregates formed after 4 hours and 48 hours of incubation (Figures 4.15, 

4.16, and 4.17). The images show that lysozyme in presence of glycine-based osmolytes 

form amorphous aggregates that look slightly different than the amorphous aggregates 

formed in absence of osmolytes for proteins similarly incubated (Figures 4.16 and 4.17). 

Since the aggregates appear to be amorphous at both 4 hours and 48 hours of incubation, 

it can be concluded that these osmolytes do not alter the morphology of the protein at 

least in the length of time samples are incubated. Figure 4.15 shows image of a control 

lysozyme sample in the absence of both DTT and osmolyte. No aggregate is visible in 

this sample thus proving that aggregates did not form in the absence of reducing agent.  

 

 

 

Figure 4.15. 40 M lysozyme incubated in absence of DTT or osmolytes for 4 h. A cold 
field emission high-resolution Hitachi S-4700 scanning electron microscope was used 
with an accelerating voltage of 5 kV and an emission current of 10 . Scale bar = 50 

m. 
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Figure 4.16. SEM images showing lysozyme (40 M) aggregates observed in buffer 
containing 1 mM DTT at 37 °C for 4 h in presence of indicated osmolytes (A) 0 mM 
osmolytes (B) 1M glycine (C) 1 M sarcosine (D) 1 M DMG, and (E) 1M Betaine. Scale 
bars are 10, 5, and 1 m from left to right.  
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Figure 4.17. SEM images showing lysozyme (40 M) aggregates observed in 
buffer containing 1 mM DTT at 37 °C for 48 h in presence of indicated osmolytes 
(A) 1M glycine (B) 1 M sarcosine (C) 1 M DMG, and (D) 1M Betaine. Scale bars 
are 10, 5, and 1 m from left to right. 
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5. Discussion 

In general osmolytes protect proteins from environmental stresses to preserve their 

functionality.1-9, 28 50 The mechanism by which most cosolvents protect proteins from 

denaturing stressors is preferential hydration.10-15 Health foods, such as quinoa, spinach, 

fish, and whole grain products naturally have a significant amount of osmolytes such as 

betaine and glycine.51 These compounds are highly thermostable and survive the baking 

process.52 53 As a result, consumers who eat these healthy foods ingest glycine-based 

osmolytes regularly. Consuming regular amount of betaine have shown to have beneficial 

influences on the human body, especially when exercising.54 55 Thiol-based antioxidants 

are also ingested by consumers in order to improve their health.56 57 However, these 

antioxidants can have deleterious effects if taken improperly. As, glycine-based 

osmolytes exist at high concentrations in commonly ingested health food products, we 

wanted to study the protective effect of these osmolytes on proteins against disulfide-

reducing agent.   

We chose a series of glycine based osmolytes with varying N-methyl substitutions. 

Glycine has no methyl group, sarcosine has one, di-methyl glycine (DMG) has two, and 

betaine has three methyl groups attached to the amino terminal. Glycine, sarcosine, and 

betaine are naturally occurring osmolytes whereas DMG is a synthetic compound. We 

also chose dithiothreitol (DTT), a commonly used thiol based reducing agent in protein 

stability and aggregation studies.41 All the studies discussed below had 0, 0.05, or 1 M of 

osmolyte in buffer that had 1 mM DTT and was incubated for varying periods of time. 

The pH and temperature of incubation were close to physiological (pH 7.2; temperature 
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37 °C). The objective of this study was to determine if commonly consumed glycine 

based osmolytes were able to provide protection  to proteins (or contribute to 

denaturation) when exposed to different concentrations of thiol based reducing agent. If 

so, was it by directly binding (low concentration study at 0.05 M) or through preferential 

hydration (high concentration study at 1 M)? It is well known and studied that when 

proteins disulfide bonds are cleaved, the protein destabilizes and begins to unfold.35 As a 

consequence of unfolding, hydrophobic core of the proteins opens up and gets solvent 

exposed.41 This makes the protein sticky that can then self-associate or associate with 

other proteins and cellular constituents leading to aggregation.58 59 We used UV-visible 

absorbance spectroscopy and monitored proteins aggregation at 600 nm (Figures 4.1 to 

4.4).  This is a useful assay to monitor the protein aggregation as it denatures. The data 

shows that when proteins are incubated in presence of 1 M osmolytes, the maximum 

protection against aggregation is shown by glycine and sarcosine. DMG shows some 

protection against aggregation but betaine fails to provide any protection against reducing 

influence. This is interesting as betaine is a well-known stabilizer against thermal 

denaturation but in this study it does not provide any protection from disulfide-reducing 

agent. Previous studies have shown that betaine stabilizes proteins through a mechanism 

called steric exclusion. However, in our experimental conditions (highly reducing) the 

proteins fails to show any protection by betaine. This may be because as disulfide bonds 

are reduced, proteins unfold and methyl substitutions instead of structuring water around 

protein may be directly interacting with the proteins hydrophobic residues. However, to 

conclusively determine this, further experiments would be required to determine its 

affinity constant with the unfolded protein. Glycine and sarcosine (glycine has no methyl 
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substitution and sarcosine has only one) were the best stabilizers. These may be providing 

stability directly through well-known mechanism of preferential hydration.  This 

observation is further corroborated by the data presented in the intrinsic fluorescence 

assay and the ANS extrinsic fluorescence assay (Figures 4.5. to 4.8 and 4.9 to 4.12). As 

the protein denatures, fluorophore residues such as tryptophan and tyrosine become 

exposed to the solvent thus allowing for detection via fluorescence measurements due to 

wavelength shift in the emission spectra. ANS is used to monitor the changes in 

hydrophobic exposure caused by protein unfolding. The greater the fluorescence 

observed for ANS with protein, the more unfolded/loose state of the protein. In presence 

of osmolyte we expect the water to structure better around the protein and as a 

consequence see decrease in fluorescence. The quantum yield of the dye increases as it 

comes in contact with a hydrophobic surface. All three spectroscopic techniques provide 

complementary information into the stabilizing influences of these glycine-based 

osmolytes. Low concentration of osmolytes (0.05 M) did not provide any measurable 

protection from the denaturing influence of reducing agent. This suggests that these 

osmolytes do not preferentially interact with the proteins. 

We used non-reducing SDS PAGE to confirm presence of high molecular weight species 

in protein samples incubated in presence of osmolytes (Figures 4.13 and 4.14). We 

observed appearance of dimer and higher order aggregates for samples incubated in 

presence of betaine that was in line with spectroscopic data suggesting no protection 

against protein aggregation under disulfide-reducing influence. Dimethylglycine (has two 

N-methyl substitutions) also showed appearance of dimer for 4 hour samples. This 
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indicates that the osmolytes are not directing non-native disulfide bond formation but 

betaine and dimethylglycine are failing to preferentially hydrate the protein enough to 

maintain its native state or are directly interacting with the unfolded protein through their 

methyl substitutions.  

Scanning Electron Microscopy (SEM) imaging showed the morphology of the protein 

aggregates. As data at 4 h and 48 h showed a major change in values for spectroscopic 

measurements (both UV-vis absorbance and fluorescence); we imaged samples at these 

two time points (samples incubated for 4 h and 48 h) to see their structural morphology 

(Figures 4.16 and 4.17). Samples, both at 4 and 48 hours in presence of osmolytes 

showed amorphous aggregates for each of the four osmolytes studied. Moreover, these 

aggregates appear very similar to aggregates formed in the absence of osmolyte. This 

suggests that osmolytes do not directly interact with protein or influence aggregation (if 

initiated) pathway of the protein.     

In summary, glycine and sarcosine showed increased protection against disulfide 

reducing agent. Betaine and DMG did not show much protection against disulfide-

reducing influence. And, the amount of protection against reducing influence increases as 

the number of methyl substitutions decrease on the osmolyte.  
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6. Future Work 

This section provides insight into opportunities for further investigation on the subject of 

osmolyte stabilization influence vs. disulfide reduction. 

   

6.1. Thioflavin T assay 

There are many opportunities for the further investigation of the protective properties of 

glycine based osmolytes against thiol-based antioxidants. The use of thioflavin T dye 

using a similar protocol to the ANS extrinsic fluorescence assay outlined in section 3.2.4. 

would provide insight on the nature of lysozyme aggregates. Thioflavin T is a well-

established fluorescent dye used in many works to determine if a protein is amyloid in 

nature. Even though the FESEM images provided evidence of the morphology of the 

protein, thioflavin T would provide more detailed structural information; such as whether 

glycine-based osmolytes of differing degrees of saturation influence the compactness of 

protein aggregates.  

 

6.2. Variety in osmolyte and reducing agent concentration 

In this project, only two concentrations of osmolyte were investigated. Further 

experimentation would involve investigating the protective properties of osmolytes 

between 0.05 M and 1 M concentration. This information would allow us to determine if 

there is a minimum concentration of osmolyte needed to protect a protein from 

denaturation by thiol reducing agent.  
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6.3. Investigation of other osmolyte  

Future phases of this project would expand to investigating other frequently used 

osmolytes and molecular crowders. In particular, trehalose, polyethylene glycols (PEGs), 

and glycerol. These cosolvents are well established and have been investigated intently 

for decades. However, there is little to no information on their influence on denaturation 

via disulfide reduction.  

 

6.4. Investigate osmolyte protection against reducing agents under extreme conditions 

All experiments in this project have been under near-physiological conditions i.e. pH 7.2, 

37 °C, and 150 mM NaCl. Evidence exists of osmolytes having different protection 

properties at different pH, salinity, and temperatures. An important next step in this 

investigation would be to modify the experimental environment to high and low 

temperatures, higher salinity levels, and high and low pH values. This information would 

provide useful information to drug industries that produce therapeutic proteins and the 

food industry in order to better preserve food. This information would help biologists 

better understand the mechanisms of osmolytes involved in extremophile homeostasis.     
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6.5. Apply to other proteopathic proteins 

Lysozyme was chosen in this experiment as a model protein since it behaves very well in 

vitro and would provide minimal complications in this preliminary investigation. Once 

the protective properties of osmolytes, in particular glycine-based osmolytes, are well 

investigated then the ultimate goal for this project would be to apply these concepts to 

other proteins. Consumers ingest thiol-based antioxidants as supplements which diffuse 

into the circulatory system where they eventually come into contact with other proteins, 

in particular hormones. Hormones, such as insulin, are small proteins that contain a high 

concentration of disulfide bonds. Disulfide bonds, exposed to solvent, can be reduced 

naturally by glutathione. Glutathione exists naturally in the human body; however, 

consumers also ingest glutathione as a supplement to reduce oxidative stress. This 

increased concentration of glutathione could have a negative impact on the stability of 

proteins. Investigating the protective influence of glycine-based osmolytes on known 

proteopathic proteins would be beneficial in understanding its unfolding mechanism in 

vivo. This may even provide insight on the onset of certain neurodegenerative diseases.    
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7. Conclusion 

To conclude, glycine based osmolytes are able to protect lysozyme from disulfide 

reduction to an extent. At near physiological conditions, these osmolytes are able to 

preferentially hydrate the protein to an extent at both 1 mM DTT and 10 mM DTT. The 

amount of aggregation was reduced as the number of N-methyl groups decreased. This 

information indicates that in a disulfide reducing environment, the less methylated the 

osmolyte (for glycine-based) the greater the solvent exclusion of the osmolyte. This was 

confirmed through a series of assay of UV-vis absorbance measurements, and 

fluorescence assay, both intrinsic and extrinsic with ANS. Non-reducing SDS-PAGE 

confirmed the formation of aggregates for betaine and dimethylglycine in which betaine 

especially mimicked samples not enriched by osmolyte. SEM imaging presented the 

formation of amorphous aggregates, which did not change as incubation time increased. 

These experiments provide an initial investigation into the protective properties of 

glycine based osmolytes on proteins when exposed to disulfide reducing stressors. This 

information can be applied to consumers ingesting an improper amount of thiol-based 

antioxidants while consuming and using glycine based products.  
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Appendix 

Data for 0 mM and 10 mM DTT were placed in the Appendix for the following reasons: 

1) 1 mM DTT is a mild reducing conditions that may be equivalent of concentrations 

reached due to over use of over-the-counter thiol-based antioxidants, 2) We expected to 

see variability in protective power of osmolytes under conditions that are relatively mild. 

Data obtained at 0 mM DTT served as a control, while data obtained at 10 mM DTT 

represented extreme reducing conditions.   

This appendix is broken down into four sections: 1. UV-vis Turbidity Supplemental data, 

2. Intrinsic Fluorescence Supplemental Data, 3. ANS Extrinsic Fluorescence 

Supplemental data. The figures within each section are organized first by concentration 

of DTT used, i.e. 0mM DTT data then 10mM DTT data, and then by osmolyte used 

(same order as Results section, i.e. glycine, sarcosine, dimethylglycine, betaine). Section 

4 has a high contrast image of the gel Figures 4.14 and 4.15 showing the high molecular 

weight species observed for the cross-linked proteins. 
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A.1. UV-vis Turbidity Supplemental Figures 

 

 

Figure A.1. UV-vis absorbance for lysozyme showing fraction denatured protein as a 
function of time. Lysozyme was incubated at 37°C in the presence of varying 
concentrations of glycine (0 M, 0.05 M, or 1 M) in buffer (pH 7.2) containing 0mM DTT 
for the indicated periods of time. The plot for 4 h incubation is shown below the 168 h 
incubation. Fraction of protein denatured was determined by UV-vis absorbance at 600 
nm. Error bars indicate ±SEM. 
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Figure A.2. UV-vis absorbance for lysozyme showing fraction denatured protein as a 
function of time. Lysozyme was incubated at 37°C in the presence of varying 
concentrations of sarcosine (0 M, 0.05 M, or 1 M) in buffer (pH 7.2) containing 0mM 
DTT for the indicated periods of time. The plot for 4 h incubation is shown below the 168 
h incubation. Fraction of protein denatured was determined by UV-vis absorbance at 600 
nm. Error bars indicate ±SEM. 
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Figure A.3. UV-vis absorbance for lysozyme showing fraction denatured protein as a 
function of time. Lysozyme was incubated at 37°C in the presence of varying 
concentrations of dimethylglycine (0 M, 0.05 M, or 1 M) in buffer (pH 7.2) containing 
0mM DTT for the indicated periods of time. The plot for 4 h incubation is shown below 
the 168 h incubation. Fraction of protein denatured was determined by UV-vis 
absorbance at 600 nm. Error bars indicate ±SEM. 
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Figure A.4. UV-vis absorbance for lysozyme showing fraction denatured protein as a 
function of time. Lysozyme was incubated at 37°C in the presence of varying 
concentrations of betaine (0 M, 0.05 M, or 1 M) in buffer (pH 7.2) containing 0mM DTT 
for the indicated periods of time. The plot for 4 h incubation is shown below the 168 h 
incubation. Fraction of protein denatured was determined by UV-vis absorbance at 600 
nm. Error bars indicate ±SEM. 
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Figure A.5. UV-vis absorbance for lysozyme showing fraction denatured protein as a 
function of time. Lysozyme was incubated at 37°C in the presence of varying 
concentrations of glycine (0 M, 0.05 M, or 1 M) in buffer (pH 7.2) containing 10mM 
DTT for the indicated periods of time. The plot for 4 h incubation is shown below the 168 
h incubation. Fraction of protein denatured was determined by UV-vis absorbance at 600 
nm. Error bars indicate ±SEM. 
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Figure A.6. UV-vis absorbance for lysozyme showing fraction denatured protein as a 
function of time. Lysozyme was incubated at 37°C in the presence of varying 
concentrations of sarcosine (0 M, 0.05 M, or 1 M) in buffer (pH 7.2) containing 10mM 
DTT for the indicated periods of time. The plot for 4 h incubation is shown below the 168 
h incubation. Fraction of protein denatured was determined by UV-vis absorbance at 600 
nm. Error bars indicate ±SEM. 
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Figure A.7. UV-vis absorbance for lysozyme showing fraction denatured protein as a 
function of time. Lysozyme was incubated at 37°C in the presence of varying 
concentrations of dimethylglycine (0 M, 0.05 M, or 1 M) in buffer (pH 7.2) containing 
10mM DTT for the indicated periods of time. The plot for 4 h incubation is shown below 
the 168 h incubation. Fraction of protein denatured was determined by UV-vis 
absorbance at 600 nm. Error bars indicate ±SEM. 
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Figure A.8. UV-vis absorbance for lysozyme showing fraction denatured protein as a 
function of time. Lysozyme was incubated at 37°C in the presence of varying 
concentrations of betaine (0 M, 0.05 M, or 1 M) in buffer (pH 7.2) containing 10mM 
DTT for the indicated periods of time. The plot for 4 h incubation is shown below the 168 
h incubation. Fraction of protein denatured was determined by UV-vis absorbance at 600 
nm. Error bars indicate ±SEM. 
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A.2. Intrinsic Fluorescence Supplemental Figures 

 

 

Figure A.9. Intrinsic fluorescence measurements for lysozyme in presence of glycine (0 
M, 0.05 M, or 1 M) in buffer (pH 7.2) containing 0mM DTT for the indicated periods of 
time at 37 °C. Fluorescence emission spectra was collected from 285-450nm with 
excitation at 280nm. Peak intensity at 346 nm were plotted as a function of time. The plot 
for 4 h incubation is shown below the 168 h incubation. Error bars indicate ±SEM. 
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Figure A.10. Intrinsic fluorescence measurements for lysozyme in presence of sarcosine 
(0 M, 0.05 M, or 1 M) in buffer (pH 7.2) containing 0mM DTT for the indicated periods 
of time at 37 °C. Fluorescence emission spectra was collected from 285-450nm with 
excitation at 280nm. Peak intensity at 346 nm were plotted as a function of time. The plot 
for 4 h incubation is shown below the 168 h incubation. Error bars indicate ±SEM. 
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Figure A.11. Intrinsic fluorescence measurements for lysozyme in presence of 
dimethylglycine (0 M, 0.05 M, or 1 M) in buffer (pH 7.2) containing 0mM DTT for the 
indicated periods of time at 37 °C. Fluorescence emission spectra was collected from 
285-450nm with excitation at 280nm. Peak intensity at 346 nm were plotted as a function 
of time. The plot for 4 h incubation is shown below the 168 h incubation. Error bars 
indicate ±SEM. 
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Figure A.12. Intrinsic fluorescence measurements for lysozyme in presence of betaine (0 
M, 0.05 M, or 1 M) in buffer (pH 7.2) containing 0mM DTT for the indicated periods of 
time at 37 °C. Fluorescence emission spectra was collected from 285-450nm with 
excitation at 280nm. Peak intensity at 346 nm were plotted as a function of time. The plot 
for 4 h incubation is shown below the 168 h incubation. Error bars indicate ±SEM. 
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Figure A.13. Intrinsic fluorescence measurements for lysozyme in presence of glycine (0 
M, 0.05 M, or 1 M) in buffer (pH 7.2) containing 10mM DTT for the indicated periods of 
time at 37 °C. Fluorescence emission spectra was collected from 285-450nm with 
excitation at 280nm. Peak intensity at 346 nm were plotted as a function of time. The plot 
for 4 h incubation is shown below the 168 h incubation. Error bars indicate ±SEM. 
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Figure A.14. Intrinsic fluorescence measurements for lysozyme in presence of sarcosine 
(0 M, 0.05 M, or 1 M) in buffer (pH 7.2) containing 10mM DTT for the indicated periods 
of time at 37 °C. Fluorescence emission spectra was collected from 285-450nm with 
excitation at 280nm. Peak intensity at 346 nm were plotted as a function of time. The plot 
for 4 h incubation is shown below the 168 h incubation. Error bars indicate ±SEM. 
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Figure A.15. Intrinsic fluorescence measurements for lysozyme in presence of 
dimethylglycine (0 M, 0.05 M, or 1 M) in buffer (pH 7.2) containing 10mM DTT for the 
indicated periods of time at 37 °C. Fluorescence emission spectra was collected from 
285-450nm with excitation at 280nm. Peak intensity at 346 nm were plotted as a function 
of time. The plot for 4 h incubation is shown below the 168 h incubation. Error bars 
indicate ±SEM. 
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Figure A.16. Intrinsic fluorescence measurements for lysozyme in presence of betaine (0 
M, 0.05 M, or 1 M) in buffer (pH 7.2) containing 10mM DTT for the indicated periods of 
time at 37 °C. Fluorescence emission spectra was collected from 285-450nm with 
excitation at 280nm. Peak intensity at 346 nm were plotted as a function of time. The plot 
for 4 h incubation is shown below the 168 h incubation. Error bars indicate ±SEM. 
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A.3. ANS Extrinsic Supplemental Figures 

 

 

Figure A.17. ANS was used to monitor increase in hydrophobicity as a result of 
lysozyme misfolding and aggregation. ANS fluorescence measurements for lysozyme in 
presence of glycine (0 M, 0.05 M, or 1 M) in buffer (pH 7.2) containing 0mM DTT for 
the indicated periods of time at 37 °C were carried out. Fluorescence emission spectra 
was collected from 400-700 nm with excitation at 380 nm. Peak intensity at 471 nm were 
plotted as a function of time. The plot for 4 h incubation is shown below the 168 h 
incubation. Error bars indicate ±SEM. 
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Figure A.18. ANS was used to monitor increase in hydrophobicity as a result of 
lysozyme misfolding and aggregation. ANS fluorescence measurements for lysozyme in 
presence of sarcosine (0 M, 0.05 M, or 1 M) in buffer (pH 7.2) containing 0mM DTT for 
the indicated periods of time at 37 °C were carried out. Fluorescence emission spectra 
was collected from 400-700 nm with excitation at 380 nm. Peak intensity at 471 nm were 
plotted as a function of time. The plot for 4 h incubation is shown below the 168 h 
incubation. Error bars indicate ±SEM. 
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Figure A.19. ANS was used to monitor increase in hydrophobicity as a result of 
lysozyme misfolding and aggregation. ANS fluorescence measurements for lysozyme in 
presence of dimethylglycine (0 M, 0.05 M, or 1 M) in buffer (pH 7.2) containing 0mM 
DTT for the indicated periods of time at 37 °C were carried out. Fluorescence emission 
spectra was collected from 400-700 nm with excitation at 380 nm. Peak intensity at 471 
nm were plotted as a function of time. The plot for 4 h incubation is shown below the 168 
h incubation. Error bars indicate ±SEM. 
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Figure A.20. ANS was used to monitor increase in hydrophobicity as a result of 
lysozyme misfolding and aggregation. ANS fluorescence measurements for lysozyme in 
presence of betaine (0 M, 0.05 M, or 1 M) in buffer (pH 7.2) containing 0mM DTT for 
the indicated periods of time at 37 °C were carried out. Fluorescence emission spectra 
was collected from 400-700 nm with excitation at 380 nm. Peak intensity at 471 nm were 
plotted as a function of time. The plot for 4 h incubation is shown below the 168 h 
incubation. Error bars indicate ±SEM. 
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Figure A.21. ANS was used to monitor increase in hydrophobicity as a result of 
lysozyme misfolding and aggregation. ANS fluorescence measurements for lysozyme in 
presence of glycine (0 M, 0.05 M, or 1 M) in buffer (pH 7.2) containing 10mM DTT for 
the indicated periods of time at 37 °C were carried out. Fluorescence emission spectra 
was collected from 400-700 nm with excitation at 380 nm. Peak intensity at 471 nm were 
plotted as a function of time. The plot for 4 h incubation is shown below the 168 h 
incubation. Error bars indicate ±SEM. 
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Figure A.22. ANS was used to monitor increase in hydrophobicity as a result of 
lysozyme misfolding and aggregation. ANS fluorescence measurements for lysozyme in 
presence of sarcosine (0 M, 0.05 M, or 1 M) in buffer (pH 7.2) containing 10mM DTT 
for the indicated periods of time at 37 °C were carried out. Fluorescence emission spectra 
was collected from 400-700 nm with excitation at 380 nm. Peak intensity at 471 nm were 
plotted as a function of time. The plot for 4 h incubation is shown below the 168 h 
incubation. Error bars indicate ±SEM. 
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Figure A.23. ANS was used to monitor increase in hydrophobicity as a result of 
lysozyme misfolding and aggregation. ANS fluorescence measurements for lysozyme in 
presence of dimethylglycine (0 M, 0.05 M, or 1 M) in buffer (pH 7.2) containing 10mM 
DTT for the indicated periods of time at 37 °C were carried out. Fluorescence emission 
spectra was collected from 400-700 nm with excitation at 380 nm. Peak intensity at 471 
nm were plotted as a function of time. The plot for 4 h incubation is shown below the 168 
h incubation. Error bars indicate ±SEM. 
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Figure A.24. ANS was used to monitor increase in hydrophobicity as a result of 
lysozyme misfolding and aggregation. ANS fluorescence measurements for lysozyme in 
presence of betaine (0 M, 0.05 M, or 1 M) in buffer (pH 7.2) containing 10mM DTT for 
the indicated periods of time at 37 °C were carried out. Fluorescence emission spectra 
was collected from 400-700 nm with excitation at 380 nm. Peak intensity at 471 nm were 
plotted as a function of time. The plot for 4 h incubation is shown below the 168 h 
incubation. Error bars indicate ±SEM. 
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A.4. Non-reducing SDS PAGE gel Supplemental Figures 

 

 

 

Figure A.25. This is high contrast image of the gel Figure 4.13 (page 45) showing the 
high molecular weight species observed for the cross-linked proteins in lanes 5, 7, 9, 
and 13. Non-reducing SDS PAGE of lysozyme samples incubated for 4 h at the 
conditions indicated. For samples in different lanes the following incubation conditions 
were used: (3) 0 M osmolyte, 0 mM DTT (Fresh control sample), (5) 0 M osmolyte in 
presence of 1mM DTT, (7) 1 M Betaine in presence of 1mM DTT, (9) 1 M DMG in 
presence of 1 mM DTT, (11) 1M Sarcosine in presence of 1 mM DTT, (13) 1M Glycine 
in presence of 1 mM DTT. All samples were incubated at 37 °C for 4 h before preparing 
for non-reducing PAGE as detailed in method section. Samples were run on a 12% SDS-
PAGE gel at 80 V for 2 h and 15min.  Lane marked (M) is SDS marker proteins. 
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Figure A.26. This is high contrast image of the gel Figure 4.14 (page 46) showing the 
high molecular weight species observed for the cross-linked proteins in lanes 5, 7, 
and 13. Non-reducing SDS PAGE of lysozyme samples incubated for 48 h at the 
conditions indicated. For samples in different lanes the following incubation conditions 
were used: (3) 0 M osmolyte, 0 mM DTT (Fresh control sample), (5) 0 M osmolyte in 
presence of 1mM DTT, (7) 1 M Betaine in presence of 1mM DTT, (9) 1 M DMG in 
presence of 1 mM DTT, (11) 1M Sarcosine in presence of 1 mM DTT, (13) 1M Glycine 
in presence of 1 mM DTT. All samples were incubated at 37 °C for 48 h before preparing 
for non-reducing PAGE as detailed in method section. Samples were run on a 12% SDS-
PAGE gel at 80 V for 2 h and 15min.  Lane marked (M) is SDS marker proteins. 
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