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Abstract

The purpose of this study is to computationally model and analyze the vehicle frame which 

is mounted with a non-conventional, non-cylindrical compressed natural gas (CNG) fuel 

tank. Integration of this tank in the vehicle underbody will resolve the issue of reduced 

storage space which is observed in a conventional CNG powered vehicle. This research 

will ultimately result in making CNG a good alternative to gasoline and reducing the 

increasing dependency on a single fuel. This tank will be developed in two phases: phase 

I design of the tank will be a standard rectangular outer box shape with Schwarz P-surface 

inner structure and phase II will be a complex and conformable shaped tank. This study 

will only include phase I tanks and the only load case considered is a simple linear static 

case. Modifications are made to the vehicle frame using a computer aided design (CAD) 

software in order to accommodate the tank. The results obtained from the finite element 

analysis of the frame support the design modifications made to the frame and shows the 

ability of the frame to handle a heavier tank.
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1. Introduction

Gasoline is widely used as a primary fuel for automobiles. Due to its stable 

performance and well established maintenance infrastructure, introduction of alternative 

fuels has very little effect on consumer choice. The United States of America produces 

most of the consumed gasoline. However increasing dependency on a single fuel has 

resulted in gasoline imports and rise in fuel prices (Kilian, 2010).

Compressed Natural Gas, or CNG, is one of the alternative fuels which is being 

used in some automobiles for applications such as public transport buses, private 

transportation trucks, waste management vehicles and other similar services. The USA

produces CNG domestically. Due to less consumption in comparison to gasoline, CNG is 

considered to be a good alternative fuel (Ahn, Jeong, & Kim, 2008). The experimental 

study of CNG as an automobile fuel shows that in comparison with gasoline, there is a

considerable drop in vehicular emissions such as carbon monoxide (80% CO), carbon 

dioxide (20% CO2) and hydrocarbons (50% HC). Also under common conditions the fuel 

consumption (BSFC) is reduced by 17-18% (Aslam et al., 2006).

Because of its gaseous state, storage of CNG is an important fuel tank design 

parameter. As the name suggests the fuel needs to be stored under pressure in order to 

obtain effective combustion of fuel. Cylindrical shape provides both a robust structure and 

a geometry assisting streamline flow. CNG tanks available in market today, come in 

cylindrical shape with spherical heads which helps regulate uniform gas pressure.
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Figure 1. [Untitled illustration of CNG powered pickup truck]. Retrieved June 22, 2015 from 
http://www.gmfleet.com/vehicle-overviews/fuel-efficiency/bi-fuel.html

Figure 1 shows the conventional CNG tanks that are currently being used. Even 

though the cylindrical tanks used today are performing well, they come with certain 

limitations that makes the customer avoid buying CNG fueled vehicles. CNG refueling 

stations are not that commonly seen as compared to the gasoline stations. Although the 

CNG fuel infrastructure is slowly developing, the CNG fueled vehicles have the fuel tank 

situated in the bed or cargo. This is because the cylindrical shape cannot be accommodated 

in the underbody of the vehicle. The space available in the underbody proves sufficient for 

a conventional liquid fuel tank with the same capacity. The liquid fuel can be burnt at 

atmospheric pressure and pre-pressurization is not required, hence the conventional tanks 

are conformable and designed to fit in the underbody consisting of varying contours.

Capacity requirement for a gaseous fuel is measured in gasoline gallon equivalent (gge).

The meaning of 1gge is the amount of gasoline consumed to cover the same distance as 

achieved by consumption of 1gallon of gasoline. In order to meet the driving range the 
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current liquid tanks provide, the size of the cylindrical fuel tanks must come in large sizes, 

which have to be accommodated in the bed or cargo of the vehicle.

Vehicles such as the light weight pickup trucks attract consumers who are looking 

for large storage space. Presence of a large fuel tank in the cargo space is a big turn off for 

a customer. The tank almost takes one third of the available storage space thus diminishing 

the purpose of the pickup trucks. It is essential to attract customers towards CNG powered 

vehicles to reduce dependence on gasoline.

Figure 2. CNG Packaging Efficiency with REL MATRIX Tanks [Online Image]. (2015). Retrieved June 22, 2015 
from http://relinc.net/advanced-materials/conformable-natural-gas-tank/

Named after founder Robert E. Loukus, B.S. Mechanical Engineering, REL Inc. 

from Calumet, MI has developed the non-cylindrical CNG fuel tank design matching the 
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conventional CNG tank in terms of fuel handling capacity and performance. The tank has 

a unique inner structure similar to sea urchin skeleton also known as the Schwarz P-surface.

There are spherical cells integrated in a rectangular shaped outer body thus eliminating 

corners in the geometry. Figure 2 shows the structure of these tanks along with potential 

mounting solutions. This tank is capable of getting mounted on the vehicle frame thus 

resolving the storage space issue. The challenge with development of this tank is use of 

appropriate material for tank fabrication, mounting this tank on the vehicle and 

performance of the tank under varying driving situations. The material should be light 

weight considering the complex inner structure and weight carrying capacity of the vehicle 

frame and it should sustain the rated pressure of the gaseous fuel. 

Southwestern Energy Company, REL Inc. and Michigan Technological University

(MTU) have collaborated to develop and integrate this unique tank design on a 2015

Chevrolet Silverado pickup truck. This project, considering its wide scope, is divided into 

two phases with the span of total three years. Phase I consists of development of these non-

cylindrical tanks in simple rectangular box type outer shape. Within this phase, the 

rectangular tanks will be mounted in the vehicle underbody with the help of a suitable 

mounting assembly and modification of the default underbody structure. Figure 3 shows 

the probable layout of these tanks on a pickup truck. The underbody of an automobile 

mainly consists of the powertrain, drive shaft, differential assembly, exhaust system, liquid 

fuel tank, and spare tire. In order to mount the non-cylindrical tank these assemblies may 

require redesigning and relocating. 
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Figure 3. Odegard, G. M. (2015). Seven quarter scale tanks positioned under truck. Retrieved June 22, 2015 from 
Updates on Conformable Tank Development PowerPoint presentation

1.1 Scope of research

This project will be conducted in two distinct phases. Phase I will be development of 

the non-cylindrical CNG tanks with standard rectangular outer box shape with Schwarz 

P-surface inner structure. The main goal of this phase is to mount these tanks and make 

the vehicle run on CNG fuel. The actual tests performed in this phase will include 

driving the vehicle on a plane road with standard bumps and potholes, off-road testing 

and overloading of the cargo will not be tested. Phase II will include a refined outer box 

design which will be conformable in shape. The scope of this study will not include 

phase II tanks and dynamic analyses.

This study will help establish whether multiple number of heavy tanks can be 

mounted on a regular pickup truck frame. Also the stress plots generated after analysis, 

will indicate the potential low stress regions on the frame which can be utilized for 
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employing modifications accompanying mounting of these tanks. This study includes 

computational techniques used to analyze the computer aided design of the frame in a 

static load case, which includes the frame in static position with loads acting due to 

weight of the vehicle sub-assemblies. The analysis will not include the dynamic cases 

like impact tests (front, rear or side), optimization (thickness or shape) or non-linear 

cases (contacts or material).
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2. Geometric Modeling

Figure 4. Isometric view of the entire vehicle CAD

A three dimensional computer aided design (CAD) of the 2015 Chevrolet Silverado 

1500 Double Cab Standard box pickup truck consisting of all the significant assemblies 

was provided by REL Inc. The model was an assembly file which consists of the various 

sub-assemblies. Figure 4 shows the isometric view of the CAD. Some sub-assemblies were 

absent from the model file. The reason for this was not provided and work was continued 

on it since the area under observation was replicated accurately. The important missing 

parts were the main driveshaft connecting front and rear axles, the powertrain assembly 

and its mounting bracket assembly, the engine and its sub-components, and the liquid fuel 

tank and its sub-components. The mounts for the main vehicle body and cargo were present 

in the model along with the crucial cross-members connecting the side rails of the frame.
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Figure 5. Odegard, G. M. (2015). Loaner inspection. Retrieved June 22, 2015 from Updates on Conformable Tank 
Development PowerPoint presentation

A substitute Silverado 1500 truck was borrowed from a dealer in Calumet, MI in 

order to examine the underbody of the vehicle. Figure 5 shows the actual inspection which

helped gain a better view of the area under study. This opportunity was used to locate the 

missing components in the CAD file. Also a record was made of the most promising 

modifications for integration of the non-cylindrical CNG tank. The most pivotal 

modifications were: removal of the spare tire, relocation and redesign of the exhaust 
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system, and removal of the liquid fuel tank. The area vacated by these components would 

be used to accommodate the rectangular tanks. The requirement of mounting more than 

one non-cylindrical tank was established because of the fuel carrying capacity of these 

tanks. Due to the dense inner structure, the volume carried by a single tank is not sufficient 

to run a vehicle for long distances. An estimate was made of mounting a total of three tanks 

on the chassis. Also a small aftermarket liquid tank was to be mounted near the drivetrain

as a source of secondary fuel.

Figure 6. Bottom view of the vehicle design

The original CAD model did not include the liquid fuel tank and driveshaft, so that 

space was used to position the rectangular tanks. Figure 6 shows the missing parts from the 

CAD file. Measurements of length, width and height of the volume accommodated by the 

liquid tank were recorded during the inspection. The dimensions of the space taken by the 

liquid gas tank were 41 inches x 14 inches x 12 inches. The liquid fuel tank is accompanied 

by a fuel vapor canister which is linked to the tank in series connection. The role of the 

vapor canister is to absorb the vapors from the fuel tank and supply it to the engine, thus 

avoiding emissions of the evaporated fuel. This part can be moved as it has no locational

requirement. Hence to get access to some extra space this canister was to be relocated in
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the front crash zone. The reason for this was that even in the case of any hazard the canister 

will not burst. This modification created an extra longitudinal space of 14 inches. A CAD 

part file of the rectangular tank was created using Solidworks 2k13 geometric modeling

software. It was a simple rectangular box which was assembled in the space where the 

liquid tank was present. The dimensions of the box are 55 inches x 14 inches x 12 inches.

Figure 7 shows the three assembled rectangular tanks. Figure 8 shows the fuel vapor 

canister relocated in the front crash zone and the secondary liquid fuel tank.

Figure 7. Initial rectangular tank assembly
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Figure 8. Relocation of the fuel vapor canister and inclusion of small liquid tank

The current exhaust system occupies the entire passenger side space. It is essential 

to change the exhaust system’s location as more than one non-cylindrical tank is to be 

mounted on the frame. As the exhaust assembly consists of a flex pipe, a muffler, a 

resonator and an exhaust gas pipe, it covers very little volume. Hence it can be relocated 

and redesigned to accommodate less area. The exhaust assembly was totally removed from 

the CAD model and replaced by another rectangular tank which was the mirror image of 

the tank occupying the liquid tank space. The new exhaust system is currently being 

designed by the integration team at the Advanced Power Systems (APS) Labs, in Calumet. 

The new system will contain side exhaust pipes, and the original mufflers will be replaced 

with the small sized mufflers, as shown in Figure 9.
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Figure 9. New exhaust system concept

Unlike the exhaust system it is not possible to relocate the spare tire since it has a 

large volume. Also, it is one of the important requirements of a customer to get a vehicle 

with a spare tire. However for the phase I of the project the spare tire was to be removed. 

The space made available due to this modification was 13 inches x 36 inches x 19 inches. 

Using these dimensions the third rectangular tank was modelled and assembled in the spare 

tire space, as shown in Figure 7. Figure 10 shows the total modifications that were initially 

decided.
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Figure 10. Bottom view of the vehicle with modifications

The three rectangular tanks were modelled with the help of the dimensions of the 

space made available by the removed assemblies. There were certain problems generated 

due to the initial modifications. The underbody of the vehicle had varying contours on 

which the default liquid fuel tank was conformed and fit. The rectangular tanks had plane 

surfaces and hence they were mounted to hang lower than the original tank, reducing the 

clearance level of the vehicle. Another crucial point was the mounting assembly for the 

rectangular tanks. The existing body and cargo mounts were designed to handle lightweight 

thin plastic tanks, whereas the rectangular tanks were dense and bulky. Hence designing a 

robust, custom-made bracket is essential to mount these tanks. From the manufacturing

point of view, fabrication of three unique rectangular tanks is not possible when it comes 

to batch production. The challenges faced are designing the inner cell sizes and new molds 

for casting of three individual tanks. Hence it was important to come up with a design such 

that standard dimensions were employed and production of the tanks was made easy. REL 

Inc. came up with the standard dimensions of 22.25 inches x 12.24 inches x 11.6 inches for 

the tanks. Figure 11 shows the CAD model of these tanks.
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Figure 11. 2.5 inch cell size tank with its sectional view

The conventional liquid fuel tank has the capacity to hold 26 gallon of gasoline in 

the Silverado 1500 truck. Therefore for achieving the driving range close to 26 gge fuel, 

seven standard tanks were to be mounted on the vehicle, each tank having the capacity of 

3 gge. The layout of the seven tanks mounted on the truck was generated by the CAD 

specialist at REL Inc. With the help of the layout, first the frame was isolated and the three

initial tanks were replaced by the seven boxes of equal dimensions as the tanks. The 

purpose was to make the CAD simpler for the analytical software. Figure 12 shows the 

layout of the frame with seven tanks mounted on it
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Figure 12. Seven 2.5 cell size tanks positioned on the vehicle frame

The mounting of the seven tanks was to be done using custom designed brackets. 

A total of three brackets was to be designed for carrying all the tanks. Simple C-channels 

were used and the design was optimized using finite element method. The brackets were 

to be bolted on the frame and cross members. The 3D design of these brackets was 

performed by Cayman Berg-Morales, Third Year Undergraduate student, Mechanical 

Engineering, MTU and the Finite element Analysis of the individual brackets was 

performed by Paul Roehm and Adit Manurkar, both First Year Graduate students,

Mechanical Engineering, MTU. Currently two brackets, for tanks located in place of the

exhaust system and in the place of the spare tire, have been designed and are being 

optimized. Figure 13 shows the two mounting brackets designed by Cayman Berg-

Morales.
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Figure 13. Side and Back bracket design

The third bracket design is not yet drafted. Once these two brackets are finalized,

work on the third bracket will start. For the purpose of this report the missing bracket was 

assumed to be the mirror image of the other side bracket. However it will not be exactly 

the mirror design since the geometry of the frame is not perfectly symmetric. Figure 14 

shows the three brackets assembled on the frame along with the seven tanks.

Figure 14. Side and Back brackets mounted on the frame
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3. Computational Analysis

3.1 Geometry cleanup and simplification

The frame sub-assembly was imported in Hypermesh 12.0 software in *.step 

format. Before commencing meshing it was essential to cleanup geometry as there were 

many small features like small parts, unwanted contour lines and structurally unimportant 

parts. Auto cleanup feature was used for removing extra contours and simplifying the 

surfaces on all the components. Some members on the frame could be neglected as they 

were having no effect on the structure when considering simple static case. Structurally 

unimportant suggests that these members would contain neither any loads nor any 

constraints rendering them mere mounts on the frame whose inclusion will have negligent 

effect on the results. Hence these members were isolated and not included in any process 

of finite element analysis (FEA). Neglecting these members helped limit the complexity of 

structure and reduced the simulation period. For example in Figure 15 the highlighted 

member was excluded from the structure because it was transferring no load to the structure 

except its weight, which is very little when compared to the size of the structure. Also no 

load was being transferred on the member from other sub-members.

17



Figure 15. One of components excluded from the analysis

3.2 Meshing

The entire frame sub-assembly consists of thin members. All the components in the 

structure were thin structures. The decision to perform 2D meshing was made due to the 

thin feature of all the members. The advantage of using 2D meshing is simplification in 

meshing and less amount of finite elements to process. In thin structures the third 

dimension is the thickness which is always much less in magnitude than the other two 

dimensions which form the surface area (Altair University, 2011). For 2D elements this 

thickness is assigned using the property feature of the software. The other criteria is the 

surface which is to be selected for meshing. For almost all applications it is beneficial to 

use the mid-surface of the thin structures as the thickness assigned using property always 

get split in half on both the sides of the surface (Altair University, 2011). Hypermesh 

provides an auto-midsurface feature which automatically extracts the mid surface of the 

18



desired geometry. However the geometry needs to be clean without any discrepancies in 

the CAD such as uneven thickness or extremely acute angled surfaces. The CAD of the 

frame was extremely well designed with no problems in the assembly. Hence mid-surfaces 

of all the sub-components were extracted. In total there were 112 components in the 

assembly excluding the bolts, nuts, washers and other connectors. Figure 16 shows the 

mid-surface of a single component

Figure 16. Single component along with its mid-surface

A component in FEA software is an entity which contains the geometric data of 

any single CAD part, also it is responsible to store all the geometric data that is generated 

during the setup of FEA. All the extracted mid-surfaces were placed in a single component. 

Then there were three main group components created, namely the frame side rails, cross-

members and mounting brackets. The mid-surfaces were then divided into these three 

group components. The side rails component consist of the C-channels that formed the box 

cross-section frame and were the primary members in the assembly. The cross-member 

component held all the linking members that connected the two side-rails. The mounting 
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brackets component consist of all the mounting brackets were to carry the loads from the 

vehicle and channel them to the side-rails or cross-members. Figure 17 shows the three 

group components. 

Figure 17. All the components arranged in three main groups

After grouping the components it was convenient to mesh individual parts and then 

slowly mesh all the parts in the model. As 2D meshing was to be performed, 2D AutoMesh 

feature was used for meshing the parts. Meshing was done surface by surface using 

interactive style of meshing. Interactive meshing helps in generating clean, smooth and 

desired mesh pattern. For 2D type meshing there are two basic element types trias (3 node

element or triangles) and quads (4 node element or quadrilaterals). Mesh element type was 

kept mixed type which is a combination of trias and quads. This type is used when the 

geometry consists of uneven curves, awkward angles and curved edges. The element size 

was decided by performing the mesh validation of one single part in the assembly. Mesh 

validation is a series of analyses on a single part with varying element sizes but fixed 
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boundary conditions. The decision to analyze a single part instead of the entire assembly 

was made as the size of the assembly was large and time required to mesh and analyze will 

be large. The sizes were varied from as low as 0.01 inches to 1 inches. This range was 

decided considering the overall size of the part and the smallest dimension it held other 

than its thickness. Since all the minute details from the CAD were included the element 

size was needed to be kept as low as 0.01 inches. The data acquired from the analysis is 

then plotted on a graph where the element sizes are compared with the respective von Mises 

stress that is generated. The following plot in Figure 18 shows the results of mesh 

validation along with a linear fitted curve to give the nature of the plot.

Figure 18. Mesh Validation plot of a single component

From Figure 18 it can be seen that smaller element sizes are required to generate a

constant value of maximum von Mises stress. Since the overall structure was large in size 
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it would be impossible to mesh the model with element sizes as low as 0.01 inches or less.

Hence the size of 0.1 inches was selected as this size provided balance between the finer 

mesh size and overall structure of the model. The simulation time would also get reduced 

in case of 0.1 inches element size. Table 1 gives the idea of the simulation time estimate 

for a single part as well as for the entire assembly. The value of the full model computation 

time for 0.09 inches element size is an approximated value generated using simple unitary 

method.

Table 1. Computation time estimate

Sr.

No.

Element

Size (inches)

Computation time (min)

Single component Full model

1 0.09 8.33 x 10-02 >94.6389

2 0.1 5.00 x 10-02 56.78333

All the components in the three groups were meshed using mixed style meshing 

and 0.1 inches element size. This mesh size will not help generate the maximum possible 

stress value, but give an estimate of a value very near to the maximum. Figure 19 shows a

part of the meshed assembly. 
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Figure 19. Detailed view of the mesh pattern

Once the meshing was completed, connecting all the meshed parts was performed.

Most of the parts in the assembly were welded and some had bolted connections. The bolted 

connections were removed to simplify the setup. These connections were replicated using

direct load applied on the bolt holes, assuming that the bolt did not fail under the load. This 

assumption makes sense since the analysis was static type analysis and the load applied 

was that of the vehicle body and maximum payload that the manufacturer rated. Weld 

connections were made using 1D seam connectors feature. This feature simulates the actual 

seam welding that is done between two parts. Nodes on the edges of a part to be welded 

are selected and the two parts to be welded are selected, the type of seam is selected as 

weld and the connectors are created. All the connectors were separately placed in a 

different component. Figure 20 shows the connectors that were used. 
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Figure 20. Detailed view of the seam weld connectors used for connecting all the components in the assembly

3.3 Quality check

All the elements were passed through the quality index before assignment of 

material and property. For 2D mesh elements, the primary quality checks include aspect 

ratio, skewness, and jacobian.

Aspect ratio is the ratio of maximum length edge of an element to the minimum 

length edge of that element. The value of aspect ratio should not be more than 5. For the 

frame assembly the maximum value was 4.93. Skewness is the parameter which gives the 

angle of twist for an element. In case of twisting the angle should not exceed 45 degrees.

Highest skew recorded was 40 degrees. Jacobian gives the measure of deviation of an 

existing element with an ideal element of same size and shape. The value should not be 

less than 0.6. Lowest recorded jacobian was 0.60. (Altair University, 2011)

3.4 Materials and Property
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2015 Chevrolet Silverado truck comes under third generation of the Silverado 

series. SAE International published a paper in affiliation with General Motor titled “GM 

980X – Potential Applications and review”. This paper was published in 1977 and it 

discussed the development and applications of a custom high strength low alloy steel. High 

strength low alloy steels (HSLA) are used for automotive applications as the material for 

vehicle parts that handle high loads and are light in weight (General Motors, 2013). SAE 

HSLA steels follow a standard nomenclature. The first numeral represents the group of 

steels, for example digit 9 represents high strength low alloy steels. The second and third 

digits indicate the minimum yield strength of the material in kilo pounds per square inch 

(ksi) and the letter X indicates that the steel contains niobium, vanadium, nitrogen and 

other elements used in the alloy (Totten, 2006). GM 980X is similar to SAE 980X, 

however it has lower yield strength and high work hardening rate. Due to the high work 

hardening the distribution of strain is uniform and hence the flow of stresses is more refined

(Rashid, 1977). This property suits well for automotive applications as automotive parts,

like the frame, are subjected to constant high amount of loads. Following table gives the 

typical mechanical properties of GM 980X

Table 2. Material Properties of GM 980X HSLA steel (Rashid, 1977)

Sr. No. Property English Metric

1 Yield Strength 55 ksi 380 MPa

2 Tensile Strength 95 ksi 650 MPa 

3 Elastic Modulus 29900 ksi 206 GPa

4 Poisson’s Ratio 0.29 0.29

5 Density 0.28 lbs./in3 7.75 g/cc
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An isotropic material was created in Hypermesh and the properties listed in Table

2 were assigned. In every FEA software a material is accompanied by a property. Property 

helps define the mesh that is being used. For example in a 2D mesh it is essential decide 

its third dimension or in a 1D mesh it is essential to define its cross-section. Hence a 

property of type PSHELL was created. This is the commonly used property for a 2D mesh 

in Hypermesh. Depending on the thicknesses of all the parts individual properties were 

created. Total 21 properties with different thickness values were created. Figure 21 shows 

the thickness generated in a single component in the model due property assignment.

Figure 21. Thickness assigned to the component using PSHELL property

3.5 Load estimation for static analysis

The primary weight on a pickup truck frame is exerted by the vehicle body, engine, 

power-train, passengers and cargo. As mentioned in the 2015 Chevrolet Silverado 1500 

catalog, the following details were extracted. (General Motors, 2015)
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(ܴܹܸܩ) ݃݊݅ݐܴܽ ݐ݄ܹ݃݅݁ ݈݄ܸ݁ܿ݅݁ ݏݏݎܩ ݉ݑ݉݅ݔܽܯ = ݏܾ݈ 7600
݈݀ܽݕܽܲ ݉ݑ݉݅ݔܽܯ = ,ݏܾ݈ 1850

where the gross vehicle weight rating is the maximum weight of the vehicle, which 

includes weight of the body, chassis, engine, transmission, accessories, passengers, cargo,

and fluids which includes lubricants and fuel. The mass of the chassis was determined 

using Solidworks software, and amounts to little less than 480 lbs. Hence the weight on the 

frame can be calculated by subtracting the chassis weight from the GVWR.

݁݉ܽݎ݂ ݈݄݁ܿ݅݁ݒ ݊ ݀ܽܮ = 7600 െ 480 = ݏܾ݈ 7120
Since the liquid fuel tank is excluded from the model, the weight of the liquid fuel 

and the fuel tank should also be removed from the total load on the frame. However, for 

the initial analysis we will include the weight of the tank and fuel, as the purpose of this 

study will also be to see the stress plot with original frame configuration. The front-to-rear 

percentage weight distribution for the 2015 Silverado is 59/41. This ratio is for the empty 

truck without any passenger and cargo load. We will assume that this ratio is maintained 

under full load. Hence the total load was divided into two parts: the load on the front portion 

and on the rear portion of the vehicle.

݁݉ܽݎ݂ ݂ ݊݅ݐݎ ݐ݊ݎܨ ݊ ݀ܽܮ = 0.59 × 7120 = ݏܾ݈ 4200.8
݁݉ܽݎ݂ ݂ ݊݅ݐݎ ݎܴܽ݁ ݊ ݀ܽܮ = 0.41 × 7120 = ݏܾ݈ 2919.2

With the vehicle CAD as the reference, all the locations on the frame which supported the 

body, engine, transmission, and cargo were noted. Figure 22 shows the points on the frame
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where the load is distributed. Total 26 locations were noted, 18 in the front section and 8 

in the rear. 

݊݅ݐܿ݁ݏ ݐ݊ݎ݂ ݄݁ݐ ݊݅ ݊݅ݐ݈ܽܿ ݄ܿܽ݁ ݊ ݀ܽܮ =  4200.818 = ݏܾ݈ 233.3778
݊݅ݐܿ݁ݏ ݎܽ݁ݎ ݄݁ݐ ݊݅ ݊݅ݐ݈ܽܿ ݄ܿܽ݁ ݊ ݀ܽܮ =  2919.28 = ݏܾ݈ 364.9

Figure 22. Locations where the total load is distributed

3.6 Forces and Constraints

Once the total load on the frame was estimated, a load collector was created in 

Hypermesh. The calculated load for each location on the frame was assigned as a uniformly 

distributed load on the selected locations using rigid elements. Rigid elements are pseudo-

elements which are not part of the structure and do not absorb or exert energy on their own, 

they merely transfer energy from one node to another. Another load collector was created 

for applying the constraints to the model. From Figure 23, for the front section, the 
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locations 1 and 3 show where the control arms connect the wheel to the frame. The 

connecting points in location 1 were totally fixed in all degrees of freedom, both 

translational and rotational. The connecting points in location 3 were totally fixed in X and 

Z directions since relative motion in axial direction Y is a possibility. For the rear section,

the locations 2 and 4 showing the location of mountings which were connected to the leaf 

springs and the shock absorbers which limit the displacement of the rear wheel shaft were 

fixed. The connecting points in location 2 and 4 were totally fixed in Z direction only, since 

relative motion in directions X and Y is a possibility. Figure 24 shows the free body 

diagram of a single side rail considering the frame is perfectly symmetric. Figure 25 shows 

the 3D view of the detailed loading of the frame with the arrows showing the location of 

loads and constraints.

 
Figure 23. Bottom view of the frame indicating the location of constraints

29



 

Figure 24. Free body diagram of a single side rail of the symmetric frame

Figure 25. Layout of the frame with boundary conditions

After all the loads were created, a load step was set up in order to simulate the static 

analysis. The load step is used to define the role of the load collectors and extract the 

desired output depending on the analyst’s input. The input entities were the loads and 

constraints applied according to sections 3.5 and 3.6. For this simulation the element 

30



stresses for 2D elements and displacement output were extracted under a simple static 

subcase. 

3.7 Inclusion of brackets and non-cylindrical tanks

The initial simulation did not include the new brackets or the weight of the 

rectangular tanks that are to be mounted. The purpose of this analysis was to generate the 

stress plot and get access to the locations where the new brackets with the seven tanks 

could be mounted. The second simulation was run with the inclusion of these two 

components. The CAD of the two brackets, side bracket and back bracket, was imported 

in the current model file. As they were individually imported, they were not assembled to 

the frame. Hence, the brackets were first positioned on the frame and then, connectors were 

used to attach them to the frame. In reality the brackets are to be bolted on the frame, but 

due to the absence of the bolt holes in the CAD, they were connected using a spot weld 

type connector. This assumption would prove wrong if there was any stress generation near 

the connection. The third side bracket was created using the existing side bracket. As the 

brackets were simple C-channels, 2D meshing was done with extraction of mid-surface 

and thickness assignment using PSHELL property. Figure 26 shows the three brackets 

assembled on the frame. The material of the C-channels was A36 mild steel. Table 3 shows 

the typical mechanical properties of the A36 steel. 
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Figure 26. All the three brackets assembled on the frame using spot welds

Table 3. Material properties of A36 mild steel (Matweb, LLC, 2015)

Sr. No. Property English Metric

1 Yield Strength 36.3 ksi 250 MPa

2 Tensile Strength 58 ksi – 79.8 ksi 400 MPa 

3 Elastic Modulus 29000 ksi 200 GPa

4 Poisson’s Ratio 0.26 0.26

5 Density 0.284 lbs./in3 7.85 g/cc

After meshing the components, these brackets were loaded by simulating the weight of the 

seven tanks. Rated weight of the empty tanks is 89 lbs. In case of a full tank, the CNG 

exerts no more than 10 lbs. due to its gaseous state. Hence, a total of 700 lbs. was uniformly 

distributed on the brackets, where each full tank weighed 100 lbs. The constraints were 

kept identical to the previous simulation. Figure 27 shows the weight distribution of the 

tanks on the brackets.
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Figure 27. Location of weight distribution on the three brackets

The capacity of the liquid fuel tank in the 2015 Silverado is 26 gal, which is 

equivalent to 167.075 lbs. In the previous simulation, this weight was included in the total 

load, but for this case we need to remove this weight, as we are replacing the liquid tank. 

Assuming the weight of tank to be less than 10 lbs., as it is a thin sheet metal tank, a total 

weight of 175 lbs. was subtracted from the total load. Also, since the spare tire was

removed, additional weight of approximately 40 lbs. of a 22 inch wheel is subtracted from 

the total load on the rear section of the frame. Here we will assume that the new exhaust 

assembly is equal in weight with that of the old one. It is noteworthy that the back bracket 

was designed to be connected partially to the frame and partially to the body, specifically 

to the trailer hitch receiver. As the body was excluded from the scope of analysis, the 

connection to the trailer hitch receiver was simulated by using rigids. Rigids were used to 

link the mounting ports on the bracket to the frame where the body is mounted. This 
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approximation is bound to generate some errors, as the connection should not be rigid, but 

rather elastic.

3.8 Results

The analysis was conducted using the Optistruct software. The stress plots and 

displacement plots were used to study the behavior of the frame. The von Mises stress was 

used as the parameter to predict whether the structure was strong enough to handle the 

estimated loads. As the materials used for the entire structure are ductile materials, the von 

Mises yield criterion is used to predict failure (Roesler, Harders, & Baeker, 2007). In all 

the plots, the red color shows the maximum value of the selected parameter, and the blue 

color shows the minimum value. All the colors in between show intermediate values. The 

red-colored zones are of particular importance, since they indicate failure of the structure.

3.8.1 Tanks excluded

Figure 28. Displacement (inch) plot for the original configuration of the frame

34



Figure 28 shows the displacement plot of the frame with the original configuration. 

The deflection generated was very small considering the size of the model. The value of 

maximum displacement is 0.027 inch. The component with maximum displacement is an 

overhanging member highlighted in Figure 28.

Figure 29. Von Mises stress (psi) plot for the original configuration of the frame

Figure 29 shows the von Mises stress plot of the frame with original configuration. 

The maximum von Mises stress recorded was 47.37 ksi. The yield strength of the HSLA 

steel used is 55 ksi, hence generating 1.161 factor of safety. The region of maximum stress 

is an overhanging member, which is bending over the support member, as shown in Figure 

27.
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3.8.2 Tanks included

Figure 30. Displacement (inch) plot of the frame with modified configuration

Figure 30 shows the displacement plot of the frame with modified configuration. 

The value of maximum displacement is 0.111 inches. Most of the deflection occurs in the 

back brackets, specifically in the member which is to be connected to the trailer hitch

receiver.
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Figure 31. Von Mises stress (psi) plot of the frame with modified configuration

Figure 31 shows the von Mises stress plot along with the location of the maximum 

stress in the frame with modified configuration. The value of the maximum stress is 51.67

ksi, and it is located in the back bracket, in the member which is to be connected to the 

trailer hitch receiver. The material used for the brackets has the yield strength of 36.3 ksi 

and ultimate tensile strength ranging from 58 ksi to 79.8 ksi. Hence, the stress generated is 

crossing the yield limit of the material, giving 0.7 factor of safety. Appendix A.1-A.3 shows 

the results of individual sub-assemblies for the modified configuration of the frame.
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3.9 Result Table

Table 4. Result summary for section 3.8

Sr. 

No.

Frame 

Config-

uration

Component Material Maximum 

Displacement 

(inch)

Maximum 

von Mises 

stress 

(ksi)

Yield 

strength 

(ksi)

Factor 

of 

safety

1
Original Frame GM 

980X

0.027 47.37 55 1.161

2 Modified

Frame GM 980 

X

0.04 47.27 55 1.164

Side 

brackets

A36 

mild 

steel

0.075 10.906 36.3 3.329

Back 

bracket

A36 

mild 

steel

0.111 51.674 36.3 0.703

38



4. Discussion
4.1 Original configuration

The FEA of the original configuration of the frame gave a maximum displacement 

of 0.027 inches and a maximum von Mises stress of 47.375 ksi. Since the entire structure 

is large in size and dense with multiple mounts, the recorded displacement is not significant 

to cause failure in the structure. However, the factor of safety of 1.16 gives very little 

tolerance when it comes to modifications requiring addition in attached weight. On close 

observation, it is clear that the stress plot shows 90-95% of the structure has very little 

stresses.

4.2 Modified configuration

Analysis of the modified configurations provided very high displacements and 

stresses. Upon observation of the exploded view of the assembly, studies of three main 

components were conducted. The three components separately analyzed were the frame, 

two side brackets, and the back bracket. Figure 32 and 33 in section A.1 show the 

displacement and von Mises stress plot, respectively, of the frame. The new loading of the 

frame actually improved the factor of safety by a small amount. Most stress contours were 

similar to that of the original configuration. Hence, the frame is capable of handling the 

increased load. 

Figure 34 and 35 show the displacement and stress plots of the two side brackets 

respectively. The factor of safety generated is 3.33, which shows that the structure is safe.

Figure 36 and 37 show the displacement and stress plots of the back bracket, respectively. 

It can be seen that both the maximum displacement and maximum stress is occurring in 

the trailering side. The approximation of considering the trailering hitch to be a rigid 
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member could be the main reason for the generation of high stress. Total transfer of the 

load from the frame to the bracket is causing the material to go into the plastic phase. The 

trailering hitch receiver acts similar to the other cross-members in the frame and is mainly 

used to handle high loads in the range of GVWR. Being an elastic member, it absorbs some 

load before transferring it to the frame. Inclusion of the trailering hitch receiver in the 

analysis will reduce the maximum stress and increase the factor of safety.  It is not possible 

to guarantee whether the improvement in the factor of safety will avoid the current back 

bracket to go plastic. A non-linear analysis is needed to study the behavior of the back 

bracket, when high stresses exceeding the elastic limit are generated.
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5. Conclusion
Successful integration of the non-cylindrical CNG fuel tank on the vehicle 

underbody would solve the issue of lack of space in the vehicle cargo. Coupled with the 

on-going growth in the CNG fuelling stations and maintenance infrastructure, CNG would 

prove to be a good alternative to gasoline. Advantages of using a CNG powered vehicle

would include reduction in emission of harmful exhaust gases like carbon monoxide, 

carbon dioxide and hydro-carbons, less fuel consumption and reduced dependency on a 

single fuel (Aslam et al., 2006).

The study of the vehicle frame using finite element method shows that integration 

of these tanks is possible with the current designs. The analysis of the original frame 

showed that the frame can handle extended loads due to majority of low stress zones and 

the factor of safety of 1.16. The design of brackets, even though not finalized, is a robust 

structure with a simple design. Loading of the new tanks do not affect the factor of safety 

of the frame which suggests that for phase I the devised modifications will work just fine.

However for phase II dynamic load cases will be required to validate the design of the 

brackets.

5.1 Recommendation for future work

Redesigning the bracket with improved support structure would help improve the 

weight carrying capacity of the bracket. Weight of the bracket should be kept under control,

as increasing it would induce increased stresses in the frame. Another solution could be the

use of a different material instead of A36 steel.  Using the finite element method, the 

mounting of the back bracket should be simulated as per reality, with the inclusion of the 

trailer hitch receiver in future simulations. Also, instead of conducting a simple linear static 
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analysis, a material non-linear analysis could be conducted on the three brackets to 

establish their behavior after entering the plastic phase. Using the results from the original 

configuration analysis, the low stress regions could be accessed as the potential locations 

for any further modifications. Also, it is recommended to perform a full frame dynamic 

analysis to study the deformation pattern of the brackets in case of an impact with outside 

obstacles.
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Appendix 
A.1 Isolated modified frame

Figure 32. Displacement (inch) plot of the isolated frame with modified configuration

Figure 33. Von Mises stress (psi) plot of the isolated frame with modified configuration
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A.2 Isolated side brackets

Figure 34. Displacement (inch) plot of the isolated side brackets

Figure 35. Von Mises stress (psi) plot of the isolated side brackets
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A.3 Isolated back brackets

Figure 36.Displacement (inch) plot of the isolated back bracket

Figure 37. Von Mises stress (psi) plot of the isolated back bracket
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