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Abstract

In this work, we study hyperbolic conservation law in one space dimension

with δ-singularities as the initial data. We use finite volume methods to find

the sizes of pollution region. Firstly, we study finite volume method (FVM)

with linear weights and weighted essentially non-oscillatory (WENO) scheme and

apply both methods to linear partial differential equations without singularities

to check the accuracy. Then we use both methods to find the numerical solutions

and compute errors of linear equations with δ-singularities. Lastly, we use such

results to find the size of pollution region of each method. These results show

that the size of the pollution region is approximately of the order O(Δx1/2),

where Δx is the spatial mesh size.

viii



Chapter 1

Introduction to hyperbolic

conservation laws

In this chapter, we will introduce some information about the hyperbolic con-

servation laws.

The following first-order partial differential equation

ut + f(u)x = 0 (1.1)

is called a hyperbolic conservation law in one dimensional space. u = u(x, t) is

the conserved quantity, f is the flux, t and x are the time and spatial variables,

respectively.

Hyperbolic conservation laws can be used to model many transport phenom-

ena. Given interval [a, b], we integrate (1.1) over the interval to obtain∫ b

a

ut(x, t)dx+

∫ b

a

f(u(x, t))xdx = 0,

d

dt

∫ b

a

u(x, t)dx = −
∫ b

a

f(u(x, t))xdx

= f(u(a, t))− f(u(b, t))

= [inflow at a]− [outflow at b].

1



In other words, the total amount of u contained inside an interval [a, b] is chang-

Figure 1.1: Flow across two points.

ing according to the flow of u across boundary points.

Next, we will give an example of hyperbolic conservation law described in [1].

Example 1 (Traffic flow) Let u(x, t) be the density of cars on a highway at the

point x time t. This can be measured as the number of cars per kilometer (see

Figure 1.2). We assume that u is continuous and the speed s of the cars depends

only on their density, say s = s(u) with ds
du

< 0. Given any two points a, b on

the highway, the number of cars between a and b therefore varies according to

(1.1).

Figure 1.2: The density of cars can be described by a conservation law.

2



∫ b

a

ut(x, t)dx =
d

dt

∫ b

a

u(x, t)dx

= [inflow at a]− [outflow at b]

= s(u(a, t)) · u(a, t)− s(u(b, t)) · u(b, t)

= −
∫ b

a

[s(u)u]xdx.

Since the above equation holds for all a, b, it yields the conservation law in one

dimensional space:

ut + [s(u)u]x = 0,

where u is the conserved quantity and f(u) = s(u)u is the flux function.

3



Chapter 2

The algorithm of the finite

volume schemes

In this section we will describe the finite volume methods with linear weights

and WENO scheme.

2.1 Finite Volume Scheme

First of all, we introduce some basic idea of finite volume scheme explained

in [3] and [4]. Consider the hyperbolic conservation laws in one dimensional

space

ut + f(u)x = 0 x ∈ [a, b], (2.1)

which might yield discontinuous solutions even though the initial condition is

smooth.

Given a grid

a = x 1
2
< x 3

2
< ... < xN− 1

2
< xN+ 1

2
= b,

define

Ij = [xj− 1
2
, xj+ 1

2
]

4



to be a cell with size Δxj = xj+ 1
2
− xj− 1

2
. For simplicity, we consider uniform

meshes in the report. The cell average of a function u(x) is denoted by

ūj =
1

Δxj

∫ x
j+1

2

x
j− 1

2

u(x)dx.

Integrating (2.1), we have∫ x
j+1

2

x
j− 1

2

(ut + f(u)x) dx = 0,

∫ x
j+1

2

x
j− 1

2

ut dx+

∫ x
j+1

2

x
j− 1

2

f(u)x dx = 0,

Δxj(ūj)t + (f(uj+ 1
2
)− f(uj− 1

2
)) = 0.

(ūj)t +
f(uj+ 1

2
)− f(uj− 1

2
)

Δxj

= 0.

With Euler forward time-discretization

ūn+1
j − ūn

j

Δt
+

f(uj+ 1
2
)− f(uj− 1

2
)

Δxj

= 0. (2.2)

We can develop a finite volume scheme from (2.2) by reconstructing the uj+ 1
2
at

the cell interface by using

ūj, with j = 1, 2, ..., N.

Notice the fact that the numerical approximation is piecewise constant, then

uj+ 1
2
is not well defined. Therefore, we need to introduce the numerical flux f̂

which depends on u−
j+ 1

2

and u+
j+ 1

2

.

In general, we consider f̂(u−, u+) to be a monotone numerical flux satisfying

(i) f̂(u−, u+) is non decreasing in its first argument u− and non increasing in

its second argument u+, denoted by f̂(↑, ↓);

(ii) f̂(u−, u+) is consistent with the physical flux f(u), i.e.f̂(u, u) = f(u);

5



(iii) f̂(u−, u+) is Lipschitz continuous with respect to both argument u− and

u+.

Both u−
j+ 1

2

and u+
j+ 1

2

are obtained through the reconstruction procedure, with

their stencil biased to the left and to the right, respectively.

Some monotone fluxes include

1. Lax-Friedrichs flux

f̂(u−, u+) =
1

2
(f(u−) + f(u+)− α(u+ − u−)), α = max

u
|f ′(u)|

2. Godunov flux

f̂(u−, u+) =

⎧⎨
⎩minu−≤u≤u+ f(u), if u− < u+,

maxu+≤u≤u− f(u), if u− ≥ u+.

Next, we will consider the general procedure of reconstruction for finite volume

scheme. In order to reconstruct u−
j+ 1

2

, we need to select the stencil which is the

collection of consecutive cells near xj+ 1
2
including Ij. For example to reconstruct

u−
j+ 1

2

given ūj−1, ūj and ūj+1.

1. Find the unique polynomial of degree two p(x) satisfying the three cell

averages ūj−1, ūj and ūj+1 for three cells in the stencil, respectively:

1

Δx

∫ x
j− 1

2

x
j− 3

2

p(x) = ūj−1, (2.3)

1

Δx

∫ x
j+1

2

x
j− 1

2

p(x) = ūj, (2.4)

1

Δx

∫ x
j+3

2

x
j+1

2

p(x) = ūj+1. (2.5)

2. Take the value p(xj+ 1
2
) as an approximate to u−

j+ 1
2

:

u−
j+ 1

2

= p(xj+ 1
2
).

6



3. From (2.3)-(2.5), we can write p(xj+ 1
2
) as a linear combination of the given

cell averages ūj−1, ūj and ūj+1. For example,

u−
j+ 1

2

= −1

6
ūj−1 +

5

6
ūj +

1

3
ūj+1.

This approximation is third order accurate.

For general, k order of accuracy, we can write

u−
j+ 1

2

=
k−1∑
i=0

criūj−r+i (2.6)

for some constant cri. Some of the c’s are given in Table 2.1.

k r j=0 j=1 j=2

1 -1 1

0 1

2 -1 3/2 -1/2

0 1/2 1/2

1 -1/2 3/2

3 -1 11/6 -4/6 1/3

0 1/3 5/6 -1/6

1 -1/6 5/6 1/3

2 1/3 -7/6 11/6

Table 2.1: The constant cri in (2.6).

7



2.2 WENO Scheme

We will consider the WENO reconstruction procedure. WENO is based on

ENO which is uniformly high order accurate right up to the discontinuity and

one suitable stencil is selected from several candidates by a local smoothness.

However, WENO reconstruction can improve some properties of ENO that are:

(i) We can get the high-order of accuracy with the same set of candidate

stencils: with k stencils we can obtain k-th order accurate ENO scheme

while 2k − 1-th order accurate WENO scheme.

(ii) We can have the neater programming because the logical if will not appear

in the WENO to choose the stencil unlike ENO.

(iii) We can obtain a more robust scheme for some special problem. For exam-

ple, with initial condition e−x, the ENO procedure will select the unstable

stencil to approximate the solution.

Next, we will explain the WENO reconstruction procedure. We use the

numerical flux obtained from fixed stencil low order finite volume schemes to

create a high order numerical flux and the numerical scheme will be oscillatory

in the presence of shocks by the Godunov Theorem stated in [2].

The general procedure of a WENO reconstruction is the following:

1. Compute the approximation from several different sub-stencils. Suppose

the k candidate stencils

Sr(j) = {Ij−r, Ij−r+1, ..., Ij−r+k−1}, r = 0, 1, .., k − 1

provide k different reconstructions to the value u−
j+ 1

2

, from (2.6)

u
(r)

j+ 1
2

=
k−1∑
i=0

criūj−r+i.

8



2. Find the combination coefficients to have a convex combination of all u
(r)

j+ 1
2

to be a new approximation

u−
j+ 1

2

=
k−1∑
r=0

ωru
(r)

j+ 1
2

,

which require

ωr ≥ 0,
k−1∑
r=0

ωr = 1

for stability and consistency.

If the function u(x) is smooth in all of the candidate stencils, there are

constants dr called linear weights such that

u−
j+ 1

2

=
k−1∑
r=0

dru
(r)

j+ 1
2

= u(xj+ 1
2
) +O(Δx2k−1)). (2.7)

For instance, for 1 ≤ k ≤ 3

k = 1 : d0 = 1

k = 2 : d0 =
2

3
, d1 =

1

3

k = 3 : d0 =
3

10
, d1 =

3

5
, d2 =

1

10

Because of consistency,

dr ≥ 0,
k−1∑
r=0

dr = 1.

When the function u(x) has a discontinuity in one or more of the stencils,

the weights should be essentially 0, smooth function of the cell averages

involved and computationally efficient. We use the smoothness indicators

βr =
k−1∑
l=1

∫ x
j+1

2

x
j− 1

2

Δx2l−1(
∂lpr(x)

∂lx
)2dx.

9



For example, for k = 3,

β0 =
13

12
(ūj−2 − 2ūj−1 + ūj)

2 +
1

4
(ūj−2 − 4ūj−1 + 3ūj)

2

β1 =
13

12
(ūj−1 − 2ūj + ūj+1)

2 +
1

4
(ūj−1 − ūj+1)

2

β2 =
13

12
(ūj − 2ūj+1 + ūj+2)

2 +
1

4
(3ūj − 4ūj+1 + ūj+2)

2.

Base on the indicator, we can construct the weights

αr =
dr

(ε+ βr)2
.

By taking ε = 10−6 to avoid zero in the denominator.

Then nonlinear weights are defined by

ωr =
αr∑k−1
s=0 αs

, r = 0, 1, ..., k − 1.

We consider fifth order WENO as an example. The three stencils are:

S0 = {Ij, Ij+1, Ij+2}, S1 = {Ij−1, Ij, Ij+1}, S2 = {Ij−2, Ij−1, Ij}

From (2.6), we have

u
(0)

j+ 1
2

=
1

3
ūj +

5

6
ūj+1 − 1

6
ūj+2,

u
(1)

j+ 1
2

= −1

6
ūj−1 +

5

6
ūj +

1

3
ūj+1,

u
(2)

j+ 1
2

=
1

3
ūj−2 − 7

6
ūj−1 +

11

6
ūj.

If the function u(x) is smooth in all three sub-stencils, then the three approxi-

mations u
(0)

j+ 1
2

, u
(1)

j+ 1
2

and u
(2)

j+ 1
2

are all third order of accuracy and

u−
j+ 1

2

=
3

10
u
(0)

j+ 1
2

+
3

5
u
(1)

j+ 1
2

+
1

10
u
(2)

j+ 1
2

would lead to a fifth order accurate linear scheme which is oscillatory.

10



Program method:

1. Set up:

Define mesh size, time step, Δt
Δx

, all parameters including cri.

2. Initial condition:

3. If (t<tend)

1) Boundary condition

2) Compute flux

3) Compute weights

4) Add them up to obtain the numerical flux

5) Time integral

e.g. strong stability preserving Runge-Kutta

ut = L(u)

u(1) = un +ΔtL(un)

u(2) =
3

4
un +

1

4
(u(1) +ΔtL(u(1)))

u(n+1) =
1

3
un +

2

3
(u(2) +ΔtL(u(1)))

t = t+Δt

end if

4. Out put:

Error table or figure.

11



Chapter 3

Numerical Experiments

In this section we will demonstrate some numerical experiments to test the ac-

curacy of our code. Then we will consider the problem with singularities and

find out the size of the pollution region.

3.1 Pollution Region

For partial differential equations with singularities, the numerical approxima-

tion may be oscillatory near the discontinuity which we refer to as the pollution

region. We will demonstrate how to find the size of the pollution region numer-

ically.

3.1.1 Algorithm

After we have obtained the numerical approximation, we can compute the size

of pollution region which is assume to be O(hr). The way to find the value r,

described in [5], is the following:

1. Compute a cumulative L2− error elm for each m ≥ 1 and l ≥ 1, where m is

the number of intervals divided from original domain and l denote the l-th

mesh with mesh size hl = (b−a)2−l+1/1000, for interval [a, b] in considered

problem.

12



2. Find out the boundary position ml for each mesh:

(a) Let l = 1. We can visually choose the error e1m by choosing a suitable

boundary position m1. Find a position where its cumulative error

differ to the next one significant. It should stay near the singularity

point for this mesh.

(b) Define the starting error Ψl+1 = elml
/(hl/hl+1)

k+0.95, where k is the

degree of piecewise polynomials, and because of the mesh refinement

in this test hl/hl+1 = 2. Next, we visually scan el+1
m until the error

el+1
ml+1

pass below the starting error Ψl+1. Then we get the boundary

position ml+1.

(c) Let l = l + 1, go back to step (b).

3. Use a least square procedure to find the slope s2 in a linear equation

ln d = s2 lnh+ C

with the collect data (hl, dl). where dl is the distance between the edge of

the pollution region and the position of the singularity i.e. y −mlhl with

a singularity at y.

13



3.2 Numerical Experiments

3.2.1 Basic tests

In this part, we will test the performance of the Finite Volume Method(FVM)

and WENO scheme about the order of accuracy.

Example 1 Finite Volume Method(FVM) Accuracy test

We test with accuracy of the third order FVM with a middle stencil for the

following problem ⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ut + ux = 0

u(x, 0) = sin x, x ∈ [0, 2π]

u(0, t) = u(2π, t)

we consider the L2 errors between the numerical and exact solutions, and the

order of accuracy at t = 0.5 by taking N = 10, 20, 40, 80, 160, 320. The time step

is taken as dt = 0.01dx. The results are listed in Table 3.1.

N L2 error Order of accuracy

10 8.73131393915629E-03 -

20 1.13616582593133E-03 2.94202536061148

40 1.43416960668578E-04 2.98588586060677

80 1.79142287324152E-05 3.00103781190167

160 2.23710649361984E-06 3.00140009186039

320 2.79679976183875E-07 2.99978506284488

Table 3.1: L2 error and order of accuracy for Example 1 with the third order

FVM with a middle stencil at T = 0.5.

14
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Figure 3.1: The numerical approximation for Example 1 at T = 0.5.

Example 2 WENO Accuracy test

We test with accuracy of the fifth order WENO scheme with a nonlinear weights

for the following problem

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ut + ux = 0

u(x, 0) = sin x, x ∈ [0, 2π]

u(0, t) = u(2π, t)

we consider the L2 errors between the numerical and exact solutions, and the

order of accuracy at t = 1 by taking N = 10, 20, 40, 80, 160, 320. The time step

is taken as dt = 0.01dx. The results are listed in Table 3.2.

15



N L2 error Order of accuracy

10 1.93115975623156E-02 -

20 7.55713058465938E-04 4.67548515443402

40 2.20517393082530E-05 5.09887419582036

80 6.53821036834840E-07 5.07585284425216

160 1.97989050745567E-08 5.04540324364396

320 6.09991978729030E-10 5.02048656624585

Table 3.2: L2 error and order of accuracy for Example 2 with the fifth order

WENO scheme with a nonlinear weights at T = 1.

3.2.2 Pollution Region experiments

In this part we consider the problem with singularities and find out the size of

the pollution region.

Example 3 Finite Volume Method(FVM)

We consider the third order FVM with a middle stencil for the following problem⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ut + ux = 0

u(x, 0) = sin x, x ∈ [0, 2π]

u(0, t) = u(2π, t)

we consider the above problem with a single discontinuity at x = 0.625, we

will find the L2 errors between the numerical and exact solutions at final time

T = 0.25 where the discontinuity moves to x = 0.875. The time step is taken

as dt = 0.01dx. By taking the l-th mesh with mesh size hl = (2π)2−l+1/1000,

l = 1, 2, ..., 8 we find the edge of pollution region is at the ml-th cell. The results

are listed in Table 3.3.
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Figure 3.2: The numerical approximation for Example 2 at T = 1.

l 1 2 3 4 5 6 7 8

ml 125 255 525 1071 2171 4382 8816 17701

Table 3.3: The numerical positions of the boundaries of the pollution region at

the l-th mesh for Example 3.

Next we compute the slope s2 in a linear equation ln d = s2 lnh + C by least

square method with the collect data (hl, 0.875−mlhl). We obtain s2 = 0.5805.

It is shown that the pollution region size is near the order O(h1/2). So, it lead to

conclusion that the size of pollution region is sharp for using third order FVM

with middle stencils.
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Figure 3.3: The error in a neighborhood of singularity point for the broadest

mesh for Example 3.

Example 4 (WENO)

We consider the fifth order WENO scheme with a nonlinear weights for the

following problem ⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ut + ux = 0

u(x, 0) = sin x, x ∈ [0, 2π]

u(0, t) = u(2π, t)

We follow the same way discussed in Example 3 to find ml. The results are listed

in Table 3.4.
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l 1 2 3 4 5

ml 116 244 510 1052 2148

Table 3.4: The numerical positions of the boundaries of the pollution region at

the l-th mesh for Example 4.

Then we compute the slope s2 in a linear equation ln d = s2 lnh+C by least

square method with the collect data (hl, 0.875−mlhl). We obtain s2 = 0.5614.

It is shown that the pollution region size is near the order O(h1/2). Then, it can

conclude that the pollution region size using fifth order WENO with a nonlinear

weights is sharp.
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Figure 3.4: The error in a neighborhood of singularity point for the broadest

mesh for Example 4.
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Chapter 4

Conclusions and Future works

4.1 Conclusions

The pollution region size of hyperbolic conservation law with δ-singularities at

x = 0.875 using third order FVM with middle stencils and fifth order WENO

with a nonlinear weights is 0.5805 and 0.5614, respectively which are similar

to O(h1/2). According to the work in [5], we might conclude that the size of

pollution region is sharp.

4.2 Future works

For a future work, we might study the hyperbolic conservation law with δ-

singularities to find a pollution region size with the others method. Moreover,

we can study a nonlinear partial differential equations. For instance, hyperbolic

conservation law with f(u) = u2

2
, with δ-singularities and use WENO or dis-

continuous Galerkin (DG) method to find a size of pollution region such as the

following problem
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Problem 1 Consider the fifth order WENO scheme with a nonlinear weights

for the following problem⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ut + (u

2

2
)x = 0

u(x, 0) = sin x+ 1
2
, x ∈ [0, 2π]

u(0, t) = u(2π, t)

considering with a single discontinuity at some y ∈ [0, 2π], at final time T.

Problem 2 Consider the second or third order DG scheme with Godunov

flux and Lax-Fridrichs flux for the following problem⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ut + (u

2

2
)x = 0

u(x, 0) = sin x+ 1
2
, x ∈ [0, 2π]

u(0, t) = u(2π, t)

at final time T = 2.
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