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Preface 
This dissertation has been written as a collection of four articles, which will be 

submitted for publication in scientific journals.  For all chapters, I led all aspects of the 

research (study design, field data collection, laboratory analysis, data analysis, and 

interpretation of the data) and am the primary author.  Chapter 2 is in consideration for 

publication in the Journal of Great Lakes Research and was written in collaboration with 

Amy M. Marcarelli and Evan S. Kane.  Drs. Marcarelli and Kane contributed to study 

design, acquisition of funding, data analysis, and writing of the manuscript.  Chapter 3 

will be submitted to the Journal of Geophysical Research and was written with co-

authors Amy M. Marcarelli, Evan S. Kane, Robert Stottlemyer, and David Toczydlowski.  

Drs. Marcarelli and Kane contributed to study design, acquisition of funding, and writing 

of the manuscript.  Dr. Stottlemyer and Mr. Toczydlowski contributed long-term 

monitoring data and assisted with editing of the manuscript.  Chapter 4 will be submitted 

to Limnnology and Oceanography and was written in collaboration with Amy M. 

Marcarelli, Evan S. Kane, and Casey J. Huckins.  Drs. Marcarelli, Kane, and Huckins 

assisted with acquisition of funding, study design, data analysis and writing of the 

manuscript.  Chapter 5 has been prepared as a report for Ecology and was written in 

collaboration with Amy M. Marcarelli and Evan S. Kane, both of whom contributed to 

the study design, acquisition of funding and manuscript writing.    
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Abstract 
Seasonal and spatial variability in environmental factors may affect dissolved 

organic matter composition and nutrient transformation and retention in streams.  The 

objective of this research was to quantify and describe seasonality, quantity, and quality 

of nutrient processing and export of ammonium (NH4), soluble reactive phosphate (SRP), 

and dissolved organic carbon (DOC) into Lake Superior through intensive study in a 

small 1st order watershed coupled with snapshot measurements across 12 tributaries that 

varied in size, location, and wetland coverage.  Our results suggest biodegradable C is 

exported from a small headwater stream year-round and that DOC mineralization rates 

can be stimulated by additions of NH4 and labile C (Chapter 2).  We found that 

biodegradable DOC varied synchronously among 3 rivers that varied in size by three 

orders of magnitude.  Furthermore, these rivers exported 9 to 17% of annual DOC in 

biodegradable form, which may then fuel biological activity in nearshore zones of Lake 

Superior.  Modeling of historical loads of DOC suggests that spring loads of DOC have 

increased and fall loads have decreased over a 26 year period, but annual loads have not 

(Chapter 3).  Across eleven tributaries variability in NH4 uptake velocity was explained 

by watershed area, discharge, and fluorescence index of DOC (indicator of microbial and 

terrestrial sources; Chapter 4).  Temporally detailed measurements (every 2 to 4 weeks 

for 3 years) of nutrient uptake in a small headwater stream indicated light availability, 

algal and periphyton biomass, solute concentrations, and pH were important predictors of 

NH4 uptake velocity (Chapter 5).  We found a similar magnitude of NH4 uptake velocity 

during winter and summer measurements while SRP uptake velocity was greater in 

summer than winter (Chapter 5).  Overall the greatest uptake velocities were observed in 

x 



spring and fall for NH4, in spring for SRP and in fall for DOC (Chapter 5).  Collectively, 

this research demonstrates the temporally dynamic nature of biodegradable carbon and 

nutrient uptake, the tight coupling of C and N cycling, and the role of DOM composition 

in stream nutrient uptake in northern temperate forested streams. 
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Chapter 1: Introduction 
 

In aquatic ecosystems, dissolved organic carbon (DOC) plays an integral role in 

biogeochemical cycling because it provides an energy source for aquatic organisms, 

alters pH, affects light penetration, and binds elements (e.g., Maranger and Pullin 2003; 

Laudon et al. 2004).  Global estimates reveal terrestrial ecosystems deliver at least 1.9 Pg 

C yr-1 to freshwater ecosystems, but organic carbon is transported, transformed or stored 

in streams, rivers and lakes to the extent that only half of this amount of C is ultimately 

delivered to the ocean (Cole et al. 2007).  A significant pathway of C loss, which was not 

originally incorporated into Cole et al. (2007)’s C budget, also occurs as carbon dioxide 

(CO2) evasion from streams and rivers (Buffam et al. 2011; Butman and Raymond 2011), 

with the greatest CO2 evasion rates occurring in the smallest (1st order) streams (Butman 

and Raymond 2011).  Small streams have also been shown to have a disproportionate 

role in nutrient cycling of nitrogen (N) compared to larger tributaries (Alexander et al. 

2000; Peterson et al. 2001), and the smallest streams alone comprise 48% of the total 

stream length in a typical stream network due to their high density (Leopold et al. 1964). 

To estimate nutrient export from streams to downstream ecosystems it is important to 

incorporate a range of stream sizes to account for variability in input and in-stream 

processing rates.   

C, N, and phosphorus (P) provide essential nutrients and energy sources to aquatic 

organisms, and among these elements, researchers have previously demonstrated the tight 

relationship between C and N cycling in streams (Bernhardt and Likens 2002; Sobczak et 

al. 2003; Johnson et al. 2009).  DOC availability can increase the assimilative demand for 
1 



nitrogen, as has been demonstrated by nutrient injections into streams (e.g., Johnson et al. 

2009) and laboratory incubation experiments (e.g., Sobczak et al. 2003).  For example, 

Sobczak et al. (2003) incubated stream water from Neversink River and found that an 

increase in bioavailable DOC increased stream N retention.  Any natural variations in 

seasonal DOC availability or composition will likely affect stream N retention, as well as 

uptake of DOC.  

Autochthonous (aquatic primary production) and allochthonous (terrestrial 

organic matter) inputs provide DOC to streams, and the variability of these inputs affects 

stream DOC concentrations and chemical composition (Bertilsson and Jones 2003; 

McKnight et al. 2003; Mulholland 2003).   Dissolved organic matter (DOM), from which 

DOC is derived, is a chemically heterogeneous compound.  In a typical river fulvic acids 

comprise the greatest percentage of DOM, but humic acids, transphilic acids, high and 

low molecular weight acids, neutrals, and bases each comprise small fractions of the 

remaining portion of DOM (Thurman 1985).  DOC concentrations from Lake Superior 

tributaries range from 2.8 to 36 mg L-1 (Maier and Swain 1978; Back et al. 2002; Urban 

et al. 2005) and are positively correlated with physicochemical properties (e.g. molecular 

weight, spectral indices), which are indicators of bioavailability and DOM 

transformations (Frost et al. 2006).  The percent of wetlands in a watershed is an 

important predictor of surface water DOC concentrations (Mulholland 2003) and has also 

been positively correlated with DOM physicochemical properties (Frost et al. 2006).  Due 

to the prevalence of wetlands and variability of their coverage within the Great Lakes 

region, spatial variability in DOC concentrations and composition likely exists among 

Great Lakes tributaries.  
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Seasonal changes in environmental factors (e.g., light availability, temperature, or 

nutrient inputs) may affect nutrient transformation and retention (e.g., Mulholland et al. 

1985; Hoellein et al. 2007).  However, few studies have examined in-stream processing 

in the winter, particularly in regions where snow represents a significant amount of the 

annual precipitation.   Several studies have found high nutrient uptake velocities in spring 

for ammonium (NH4) (Hoellein et al. 2007, Johnson et al. 2009), nitrate (NO3) (Hoellein 

et al. 2007, Hall et al. 2009), and soluble reactive phosphorus (SRP) (Hoellein et al. 

2007).  A previous study conducted in southwest Michigan found stream uptake of labile 

DOC did not vary seasonally among spring, summer, or fall seasons, but found that DOC 

uptake can be as high as NH4 uptake (Johnson et al. 2009).  Of these studies, none were 

able to collect continuous measurements throughout the winter.  For example, Hoellein et 

al. (2007) was unable to measure nutrient uptake from January through March, due to 

excessive snowpack limiting site accessibility.  Without an understanding of how in-

stream biogeochemical cycling varies year-round in snow-dominated regions it is 

uncertain how climate change will affect nutrient export to downstream ecosystems.   

Climate change is expected to alter temperature and precipitation globally, and 

may have pronounced effects on terrestrial and aquatic ecosystems in the Great Lakes 

region.  Global climate predictions indicate that in regions currently receiving snow, 

warming will alter stream flow such that winter flows will increase and summer flows 

will decrease (IPCC 2007).  Warming air temperatures have already been observed in 

long-term monitoring records in the Great Lakes region (Schindler et al. 1997; 

Stottlemyer and Toczdlowski 2006; NOAA 2012).  At Calumet watershed, a 1st order 

tributary of Lake Superior, monitoring over a 30-year period has identified a decreased 
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duration of snowpack, increased stream spring DOC and total dissolved N export, and 

increased ratio of winter runoff to precipitation with time (Stottlemyer and Toczdlowski 

2006; Stottlemyer and Toczdlowski 2011).  A global analysis of extreme temperature 

collected over a similar 30-year period (1981-2010) compared with a reference (1951-

1980) concluded dramatic increases in seasonal mean temperature anomalies were due to 

climate change (Hansen et al. 2012).  If observed regional trends continue, we could 

expect altered nutrient export, and magnitude and timing of discharge from streams in the 

Great Lakes region, which would have consequences for nutrient budgets of downstream 

ecosystems.  For example, reduced duration of snowpack may result in frozen soils (e.g., 

Groffman et al. 2001), which would prevent precipitation or runoff from infiltrating the 

soil (i.e., reduce soil microbial processing) prior to entering the stream channel.  

Determining which environmental factors drive seasonal patterns of stream nutrient 

cycling and how biodegradable DOC loads have changed over the past 30 years will 

improve our ability to identify potential impacts of climate change on freshwater aquatic 

ecosystems in the Great Lakes region.  

My dissertation research sought to improve our understanding of temporal and 

spatial variability of in-stream N, P, and C dynamics among Lake Superior tributaries.  In 

the first study (Chapter 2) we determined if DOC mineralization rates were limited by 

availability of N or labile C in a small tributary of Lake Superior by conducting 

experimental additions of N and C to stream water in 28 day incubations and measuring 

DOC mineralization rates on four dates corresponding to seasons.  We found that DOC 

mineralization rates were stimulated by NH4 on 3 of the 4 dates (summer, fall and spring 

but not winter) and by labile C on all 4 dates, and that biodegradable DOC was greater in 
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spring than fall and winter, but did not differ from spring. These results suggest that 

biodegradable C is exported from this small headwater stream year-round and that DOC 

mineralization rates can be stimulated by additions of NH4 and labile C.   

  In the second study we examined whether biodegradability of DOC varies 

temporally in northern temperate watersheds by measuring BDOC via incubation assays 

on eleven dates throughout a one-year period in three tributaries that vary in size by three 

orders of magnitude (Chapter 3).  We found that BDOC was seasonally synchronous 

across these watersheds, and that DOC composition varied the most among tributaries in 

summer, but was remarkably similar during fall, spring and winter.  We further quantified 

that these rivers export 9 to 17% of annual DOC in biodegradable form.  Modeling of 

historical loads of DOC does not suggest exports have changed on an annual basis to 

date, but does suggest that spring loads of DOC have increased and fall loads have 

decreased over the past 26 years.  Together, these results suggest that future hydrologic 

and climatic changes may alter export of BDOC if they change the timing of major runoff 

events like snowmelt and storms.   

In the third study, we aimed to identify important drivers of N, P, and C uptake by 

measuring in-stream nutrient spiraling, DOM composition, and watershed characteristics 

across eleven Lake Superior tributaries (Chapter 4).  We found watershed area, discharge, 

and fluorescence index were all highly influential variables explaining variability in NH4 

uptake velocity across sites, and that DOM composition and DOC concentration may be 

important predictors of nutrient uptake in streams, but they are often overlooked in 

studies of nutrient spiraling.  Fluorescence index identifies the source of fulvic acids 

(microbial versus terrestrial; McKnight et al. 2001).  Furthermore, our measurements 
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suggest that DOC and SRP are likely exported from many Lake Superior tributaries 

without measureable uptake during summer baseflow, and may be important nutrient and 

energy sources to the near-shore region of Lake Superior. 

In the fourth study, we aimed to quantify how nutrient uptake varies temporally 

and identify environmental drivers of this temporal variability by measuring in-stream 

nutrient spiraling of N, P, and C in a small first order tributary in fine temporal detail (2-4 

week intervals over a 3 year period) (Chapter 5).  We found similar magnitude of NH4 

uptake velocity during winter and summer, while SRP uptake velocity was greater in 

summer than winter.  Overall the greatest uptake velocities were observed in spring and 

fall for NH4, in spring for SRP and in fall for DOC.  We identified that light availability, 

biofilm chlorophyll a and ash-free dry mass, conductivity, DOC, NH4, and pH were 

important predictors of NH4 uptake velocity.  Our results suggest that any future 

alteration to the timing of these important variables could alter nutrient export to 

downstream ecosystems. 

Collectively these four research chapters reveal that concentrations of 

biodegradable C and rates of nutrient uptake were temporally dynamic in Lake Superior 

tributaries, that the cycling of C and N were tightly coupled in northern temperate rivers, 

and that dissolved organic matter composition can control rates of in-stream nutrient 

uptake.  Furthermore, by investigating drivers of nutrient uptake we found that 

temporally detailed, year-round measurements revealed different predictors of nutrient 

uptake than when compared spatially among different tributaries during summer base 

flow.  For example, we found light availability was an important driver on an annual 

scale within a single stream but not among rivers.  Clearly, utilizing a combination of 
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spatial and temporal measurements can provide additional insight into mechanisms that 

control in-stream biogeochemical processes in northern temperate streams.   
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Abstract: Dissolved organic carbon (DOC) plays an integral role in the biogeochemical 

cycles of aquatic ecosystems, and rates of DOC mineralization can be affected by 

nitrogen (N) availability and carbon (C) quality in the water column.  To determine if 

DOC mineralization rates were limited by availability of N or labile C in a small tributary 

of Lake Superior, we conducted 28-day laboratory experiments where we amended 

stream water with ammonium (NH4) and/or glucose in a full factorial design (N, C, C+N, 

no amendment).  We repeated these experiments on four dates (July, October, January, 

April), as we expected nutrient limitation to vary with temporal changes in sources of 

DOC and nutrients. DOC mineralization rates were stimulated by additions of NH4 in 

three of the four experiments and by glucose in all four experiments, even in October 

when carbon inputs to the stream via leaf litter were greatest. Mean %BDOC was greater 

in July (40.6%, ± 5.4) than October (10.2% ± 0.9) or January (9.6% ± 10.9), but did not 

differ from April (18.4% ± 0.7), which suggests the quality of DOC varies temporally.  

Our results suggest that biodegradable C is exported from this forested stream to near-

shore Lake Superior throughout the year, but DOC mineralization can be stimulated by 

additions of both carbon and nitrogen.  Nutrient enrichment may alter in-stream 

processing of DOC in small forested tributary streams, in turn reducing export of high 

quality DOC to near-shore regions of the Great Lakes, where it fuels microbial 

production.   

 

Key words: biodegradable dissolved organic carbon, tributary stream, nutrient limitation, 

temporal variability, Lake Superior  
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It is well recognized that dissolved organic carbon (DOC) is an important 

component of biogeochemical cycling in aquatic ecosystems (Sholkovitz, 1976; Buffam 

et al., 2001; Aiken et al., 2011), but C cycling in freshwaters has only recently emerged 

as an important, but previously overlooked, component of the global carbon cycle (e.g., 

Cole et al., 2007).  Carbon dioxide (CO2) evasion from streams and rivers driven by 

heterotrophic bacterial decomposition of organic C is a significant pathway of C loss 

(Jonsson et al., 2003; Karlsson et al., 2007; McCallister and del Giorgio, 2008), and 

among surface waters, the greatest amount of cumulative CO2 evasion occurs from the 

smallest streams (Butman and Raymond, 2011; Wallin et al., 2013).  In turn, bacterial 

metabolism in streams, including respiration and demand for inorganic nutrients, can be 

affected by changes in dissolved organic matter (DOM) sources and composition 

(Findlay, 2003), which vary temporally (e.g., Mulholland and Hill, 1997). Some research 

suggests that C quality is positively correlated with DOM or DOC concentrations 

(Buffam et al., 2001; Frost et al., 2006; Wilson et al., 2013).  For example, Wilson et al. 

(2013) found that the percent of biodegradable DOC (%BDOC, the fraction of DOC that 

can be mineralized by heterotrophic microbes within days to months), increased with 

increasing DOC concentrations in a small temperate stream.  Seasonal variability also 

exerts strong controls over the susceptibility of DOC to photochemical degradation in 

tributaries of the Great Lakes (MacDonald and Minor, 2013), further affecting DOC 

composition.  

Terrestrial subsidies of C delivered via rivers and groundwater may supply an 

important source of C to large lakes (e.g. Lake Michigan, Bidanda and Cotner, 2002; 

Lake Baikal, Yoshioka et al., 2002), yet our understanding of DOC biodegradability in 
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Great Lakes tributaries is limited.  For example, of the estimated 0.4 to 0.9 Tg C exported 

from tributaries to Lake Superior (Urban et al., 2005), the labile fraction of the tributary 

DOC pool remains unknown.  A recent study modeling Lake Superior C processing 

relied on estimates of biodegradable DOC from Arctic tributaries due to the lack of 

information available from the Great Lakes region (Bennington et al., 2012).  Improving 

our understanding of C biodegradability in Great Lakes tributaries will enhance our 

understanding of near-shore microbial processing and our ability to create robust C 

models of these dynamic freshwater ecosystems. 

Nitrogen and carbon cycles are tightly coupled in streams (Bernhardt and Likens, 

2002; Johnson et al., 2012). As such, N availability or stoichiometric C:N ratios may 

limit microbial breakdown of DOC in some aquatic systems, presumably due to N 

limitation of microbial growth (Holmes et al., 2008; Wickland et al, 2012).  Previous 

studies conducted in temperate streams have found that additions of labile DOC to 

streams resulted in increased N removal by stimulating microbial processing (Bernhardt 

and Likens, 2002; Sobczak et al., 2003; Johnson et al. 2012).  Bernhardt and Likens 

(2002) also found that labile DOC additions resulted in shortened uptake lengths of NH4 

and nitrate (NO3), suggesting a concomitant increase in inorganic N demand with 

increasing DOC bioavailability.  In another experiment, additions of N and P to a stream 

for 5-years resulted in an increase in microbial (fungal and bacterial) production, a 

decrease in leaf standing crop, and an increase in leaf decomposition rates, suggesting N 

and P alter in-stream processing of particulate organic C (Greenwood et al., 2007; 

Suberkropp et al., 2010).  Therefore, C mineralization rates may be limited by the 

availability of C or N, and these limitations may change in light of temporal changes in 
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DOM inputs and quality. To our knowledge, no studies have examined whether DOC 

mineralization or bioavailablity is limited by either C or N availability in Great Lakes 

tributaries.   

Despite the potential for high rates of DOC processing in small streams, we know 

little about these rates in Great Lakes tributary streams or the relative importance of 

elemental limitations on DOC mineralization throughout the year.  The objective of this 

study was to determine whether DOC mineralization rates or %BDOC exhibited 

elemental limitations in a forested Lake Superior tributary stream, and whether limitation 

varied within a year based on changes in watershed C and N inputs.  We conducted 

nutrient amendment experiments using laboratory incubations of stream water to 

determine whether the rate of DOC mineralization or the %BDOC was stimulated by 

additions of labile C and N.  Because elemental limitation may exhibit temporal 

variability, we repeated these experiments on four dates (April, January, July, October). 

Through these experiments we sought to better understand the role of in-stream DOC 

processing over an annual cycle, and the consequences for export to Lake Superior.   

 

Methods 

Site description 
These experiments were conducted with stream water from Calumet watershed 

(1.76 km2), a small temperate tributary located on the south shore of Lake Superior in 

Michigan’s Upper Peninsula, USA (lat 47° 17” N, long 88° 34” W).  This watershed has 

been continuously monitored since 1979 and research at this site has included study of 

terrestrial ecosystem processes, snowpack dynamics, and stream water chemistry 
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(Stottlemyer and Toczdylowski, 2006).  Stream water discharge is continuously 

monitored near the mouth of the watershed by a Parshall flume equipped with a Stevens 

pressure transducer (Stevens Water Monitoring Systems Inc., Portland, Oregon) and Li-

Cor datalogger (Li-Cor, Lincoln, Nebraska) installed approximately 100 m upstream 

from Lake Superior (Stottlemyer and Toczdylowski, 2006).  Dominant overstory 

vegetation consists primarily of sugar maple (Acer saccharum Marsh.) and white birch 

(Betula papyrifera Marsh.); bedrock consists primarily of Cambrian Freda sandstones, 

alkaline till and old beach deposits (Stottlemyer and Toczdylowski, 2006); and mean 

annual precipitation is 80 ± 20 cm (Stottlemyer and Toczydlowski, 1996) with up to 50% 

occurring as snowfall (Stottlemyer, 1997).   

 

Sample collection and analysis 
Stream water was collected once per season with sampling dates selected to target 

characteristic environmental conditions: July, during leaf-out; October, during leaf 

senescence; January, during snow cover; and April, during snow-melt.  Stream water 

samples were pooled from multiple locations within a 200 m reach located immediately 

upstream of the flume, filtered through 0.45 μm nylon membrane filters within 4 h of 

collection, and kept at a temperature of 4° C until the experiment was set up, which 

occurred within 24 hours.  Three of the four experiments were conducted during a one-

year period in 2012-2013 (July 2012, October 2012, and April 2013).  Due to analytical 

problems during a January 2012-2013 experiment, the January experiment was repeated 

in 2013-2014, and only data from this later period is reported.  

18 



Initial stream water characteristics were analyzed for each experiment.  Stream 

water temperature, conductivity, pH, turbidity, and dissolved oxygen were measured 

using a YSI 6920 multiparameter sonde (YSI Incorporated, Yellow Springs, Ohio); 

during October 2012, these measurements were taken 13 days following sample 

collection due to equipment issues.  Initial stream NH4 concentrations were determined 

using the fluorometric method (Holmes et al. 1999, Taylor et al. 2007) and analyzed with 

an Aquafluor handheld fluorometer (Turner Designs, Sunnyvale, California).  Initial 

DOC and total dissolved nitrogen (TDN) concentrations were determined on acidified 

samples and analyzed using a TOC-5000A analyzer (Shimadzu Scientific Instruments, 

Columbia, Maryland). DOC quality was characterized using specific ultra violet 

absorbance measured with a GENESYS™ 10s UV-Vis spectrophotometer (Thermo 

Scientific, Waltham, Massachusetts).  SUVA254, which is defined as the specific 

absorbance at = 254 nm divided by the DOC concentration, was calculated as an 

indicator of DOC aromaticity (Weishaar et al., 2003).   

 

Experimental Design 
To determine whether DOC mineralization rates were limited by availability of  

labile nitrogen or labile carbon, we utilized a full factorial experimental design, amending 

with N as NH4Cl, labile DOC as glucose, a combination of N (NH4Cl) and labile DOC 

(glucose), or MilliQ water as a no-nutrient control. Each treatment was applied to 12 

replicate bottles, resulting in 48 bottles total in each experiment.  Amendments increased 

ambient DOC by 1 mg/L and ambient NH4 by 5 μg N/L, resulting in 0.1 to 0.2X 

increases in background DOC concentrations and 1.8 to 4.9X increases in background 
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NH4-N concentrations. Although the degree of N enrichment appears to be much greater 

than that we used for C, it should be noted that most of the background DOC present in 

the stream on any given date is resistant to degradation.  Therefore, our addition of labile 

C relative to the initial amount of labile C present in the stream may actually be much 

greater than that reflected by total DOC concentrations.   

To initialize each experiment, 120 mL amber glass serum bottles (48 total) were 

filled with 50 mL of filtered (0.45 μm Nylon membrane) stream water and inoculated 

with 1 mL of a mixture of unfiltered stream water and stream sediment to introduce a 

microbial assemblage of organisms from the water column and the benthos.  For the 

inoculum, three sediment cores (2 cm diameter) were collected to a depth of 1 cm on 

each sampling date, covered with parafilm to reduce evaporation, and kept cold until the 

experiment was initiated (within 24 hours).  To make the inoculum, one g of sediment 

(maintaining field moisture conditions) from each core was measured and added to 500 

mL of unfiltered stream water.  We used different inoccula for the experiments to mimic 

in situ stream conditions on a particular sampling date.  However, because each inoculum 

was different, any changes in DOC mineralization rates observed among experiments 

may be due to either differences in the microbial community or DOC composition.  

Following inoculation, the bottles were sealed with butyl rubber septa, placed on a shaker 

in the dark, and incubated at room temperature (21°C ± 3°).   

On day 0, 1, 3, 5, 7, 14 and 28, CO2 was measured in all vials by withdrawing 1 

mL aliquots of the equilibrated headspace and analyzing using a SRI 8610C gas 

chromatograph (SRI Instruments, Torrance, California; TCD detector, He carrier gas, 

Hayesep D packed column, column temperature 62°C).  The volume of headspace 
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removed was replaced with an equal amount of N2 or air.  When air was added, the 

amount of CO2 generated over the course of the experiment was corrected to account for 

CO2 introduced.  On one date (July experiment day 7) analytical issues prevented sample 

analysis on the day that headspace aliquots were collected, and these samples have been 

excluded from further analysis. Calibration curves were created with 1000 ppm CO2 

standard.  Following headspace analysis on days 0 and 28, 3 replicate bottles per 

treatment were acidified with 2 mL of 43.5% H3PO4 to convert all dissolved inorganic 

carbon (DIC) to CO2 and the headspace was analyzed again for CO2 as described above.  

On days 0, 14 and 28, water from an additional 3 replicate bottles per treatment were 

analyzed for DOC, TDN and SUVA254 as described above.   

Percent BDOC was calculated using the following equation from Wickland et al. 

(2012):   

%BDOC =  DIC୤୧୬ୟ୪ െ DIC୧୬୧୲୧ୟ୪DOC୧୬୧୲୧ୟ୪  

where DIC and DOC are expressed in mg C.  Using DIC produced over the incubation 

period to determine CO2 production accounts for any changes in DIC form due to 

changes in pH during the incubation and assumes the change in DIC is completely due to 

respiration of DOC (Wickland et al., 2007).  For these calculations, DOCinitial was 

adjusted for the C added to treatment vials such that 1 mg C/L was added to the initial 

stream water DOC concentration measured prior to experiment intialization. 
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Statistical Analyses 
To assess whether C or N treatments affected rates of DOC mineralization we 

analyzed the dataset in two ways: 1) using the measured CO2 concentration on each 

sampling date (days 0, 1, 3, 5, 7, 14, 21, 28); and 2) using the percent BDOC.  To 

determine whether CO2 production differed among day, C amendment, or N amendment 

on each date we used a three-way repeated measures analysis of variance (ANOVA) with 

C, N, and day as factors.   To determine if %BDOC differed among C amendment or N 

amendment on each date we used a two-way ANOVA with C and N as factors.  To assess 

whether DOC mineralization varied temporally we used a one-way analysis of variance 

of %BDOC in control vials with date as the factor.  Data were log-transformed when 

necessary to meet assumptions of normality.  For all statistical analyses, alpha was set a 

priori at 0.05.  All statistical analyses were conducted with SAS version 9.2 (SAS 

Institute, Cary, North Carolina).   

 

Results 

Nutrient amendments and microbial CO2 production over time  
Our results support the hypothesis that N or C additions affect DOC 

mineralization rates in a small northern hardwood forest stream.  Analysis of microbial 

CO2 production over the incubation period revealed significant differences among time 

and treatments within each of the four experiments (Fig. 1).  Labile C additions alone or 

in combination with N increased CO2 production in all four experiments.  NH4 additions 

alone or in combination with C increased CO2 production in July, October and April 

experiments, but not in the January experiment (Fig. 1).   
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During the July experiment (Fig. 1a), there was a significant interaction of C x 

day (F(6,120) = 5.7, p < 0.001), N x day (F(6,120) = 3.1, p = 0.007), and C x N (F(1,20) = 13.6, 

p = 0.002) on CO2 concentration.  The interactive effect of C and N in the July 

experiment resulted in the greatest production of CO2 in the CN treatment relative to 

other treatments.  The July mean CO2 production on day 28 was 1.10X greater in the CN 

treatment than the control treatment, but CO2 production in C and N alone treatments 

were 0.95X and 0.98X below that of the control, respectively (Fig.1).   

Microbial CO2 production also varied significantly in the October experiment 

(Fig. 1b) with a significant interaction of C x day (F(7,135) = 5.8, p < 0.001) and N x day 

(F(7,135) = 3.2, p = 0.004).  Mean CO2 production on day 28 in the C treatment was 1.27X 

the CO2 production in the control, the N treatment was 1.17X the control, and the CN 

treatment was 1.47X the control.   

In the January experiment (Fig. 1c) there was only a significant interaction of C x 

day (F(7,140) = 60.4, p < 0.001).  Mean CO2 production on day 28 in the C treatment was 

1.52X greater than the control and the CN treatment was 1.47X greater than the control.   

In the April experiment (Fig. 1d) there was a significant interaction of C x day 

(F(7,140) = 25.8, p < 0.001) and C x N (F(1,20) = 4.7, p = 0.04).  Mean CO2 production on 

day 28 in the C treatment was 1.29X greater than the CO2 production in the control, the N 

treatment was 1.12X greater than the control, and the CN treatment was 1.30X greater 

than the control.   

Analysis of %BDOC also showed that additions of N in the October experiment 

increased DOC mineralization rates, agreeing with the observations of CO2 production 

through time (Fig 2). The %BDOC differed significantly among treatments in October 
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(overall ANOVA F(3,8) = 7.1, p = 0.01) with a significant effect of N (F(1,8) = 14.5, p = 

0.005).  October mean %BDOC was 1.5x greater in the N treatment and 2.4x greater in 

the CN treatment compared to the control (Fig. 2).  The %BDOC did not differ among 

treatments in July (F(3,8) = 1.3, p = 0.33), January (F(3,8) = 0.8, p = 0.55), or April (F(3,8) = 

2.7, p = 0.12).   

To determine whether consumption of C in this experiment exceeded the amount 

of labile C added to incubation vials, we first assumed that labile C would have been 

completely consumed before any of the background C present in the stream water at the 

initiation of the experiment.  We then calculated the total C consumed based on CO2 

produced by day 28 of each experiment in each C-amended treatment, and compared the 

amount of C consumed to the C added. Using this approach, we estimated that the 

maximum percent of the labile C added that could have been consumed ranged from 52.2 

to 81.1 % in C amendments and 42.9 to 81.0 % in CN amendments (Table 1).  Therefore, 

while our addition rate of labile C was conservative, the labile C added was not 

completely consumed during any of the four experiments. 

 

Temporal variability of biodegradable DOC & stream conditions 
Our results revealed that %BDOC varied among sampling dates with significantly 

greater %BDOC in control treatments in July (40.6%) than in October (10.2%) or 

January (9.6%), but July %BDOC did not differ from April (18.4%; F(3,8) = 5.7, p = 

0.02).  The lowest DOC concentrations were observed in October and January, which 

were at least 2 mg C/L below concentrations observed in July and April (Table 2).  Three 

of the four experiments occurred during base flow conditions; only the April experiment 
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occurred under elevated discharge (Table 2).  The greatest initial SUVA254 values, an 

indicator of C aromaticity, were observed in October and the lowest SUVA254 values 

were observed in January (Table 2).   

 

Discussion and Conclusions 
The results of our experiments show that NH4 and labile C additions can stimulate 

DOC mineralization rates throughout the year in a small Lake Superior tributary.  

Interestingly, we found that NH4 and labile C additions can stimulate C mineralization 

rates in October, at a time when leaf litter inputs already supply a substantial C subsidy to 

forested streams surrounding Lake Superior’s shores.  To our knowledge, this is the first 

study to identify elemental limitation of DOC mineralization rates and quantify %BDOC 

in any tributaries of Lake Superior.  Our results suggest that small headwater streams 

supply high quality biodegradable C to Lake Superior year-round.   

 

NH4 and labile C amendments stimulate DOC mineralization rates 
The results of our nutrient amendment experiments suggest that NH4 availability 

can limit C mineralization rates during much of the year in forested tributaries of the 

Great Lakes, and particularly during leaf-fall.  Furthermore, additions of NH4 and labile 

C stimulated DOC mineralization in both April and July when stream %BDOC is 

greatest, suggesting the relatively high quality C found at these times could be further 

mineralized with increased supply of NH4 or labile C.  The only experiment where NH4 

amendments did not increase C mineralization rates was in January, when only labile C 

additions increased CO2 production. The temporal variability in NH4 limitation in our 
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experiments could be explained by the availability of C and N in stream water at the start 

of each experiment.  The ratio of DOC:TDN was lowest at the start of the January 

experiment (17.06), which was the only season when NH4 was not limiting or co-

limiting, and greatest for the October experiment (24.21) relative to April (20.48) and 

July (18.74).  Furthermore, background NH4 concentrations were elevated in the January 

experiment relative to the others, which appears to have alleviated NH4 limitation during 

this experiment (Table 2).  In Alaskan rivers, Wickland et al. (2012) found the lowest 

DOC:DIN molar ratios occurred in winter relative to spring and summer, but they also 

found the greatest %BDOC in winter.  In contrast, the low DOC:TDN ratio in our 

January experiment did not correspond with the greatest %BDOC.  Low stream water 

temperatures, the presence of stream ice cover, or variability in the microbial community 

during January could contribute to the low %BDOC we observed.   

Our results revealed an increase in DOC mineralization when labile C was added, 

and further revealed that there can be C limitation of DOC mineralization in October, 

when leaf litter subsidies to the stream are highest.  Upon leaf litter entering the stream, 

rapid leaching of DOM occurs within a matter of days (McDowell and Fisher, 1976; 

Meyer et al., 1998).  As leaf litter is broken down, DOC is also generated through 

chemical leaching, microbial breakdown, and invertebrate feeding (Meyer and O’Hop, 

1983; Meyer et al., 1998).  Water collection for our October experiment (10/7/2012) 

likely occurred during a period of rapid DOC leaching from newly fallen leaves, as the 

majority of leaves had fallen in the watershed immediately preceding that sample date 

(58% of the total input of deciduous leaves occurred between 9/29/2012 and 10/5/2012, 

Coble unpublished data).  Furthermore, the greater SUVA254 values observed in October 
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suggest greater aromaticity of stream DOC during October than on other dates, which 

could explain the observed response to labile C additions during this experiment.  

However, the lowest SUVA254 values, indicating lower aromaticity of DOC, were 

observed in the January experiment, which also responded positively to labile C 

additions.  Despite the presence of leaf litter in the stream and potential DOC generation 

from leaf litter breakdown, our results reveal that DOC mineralization in October can still 

be limited by the availability of labile C. 

 

Comparison of %BDOC estimates to other studies 
Variability in %BDOC can be as great within a single lake (Weiss and Simon, 

1999) or stream (Volk et al. 1997) as among aquatic ecosystems (e.g. Søndergaard and 

Middelboe, 1995).  In our study, %BDOC varied from 10% to 41% within a single 

stream.  In comparison, Volk et al. (1997) measured %BDOC on 25 different dates 

between January and April of a single year from a small stream draining an agricultural 

watershed in southeastern Pennsylvania and found %BDOC ranged from 16.5 to 34.4%.  

Other studies examining the %BDOC among streams of varying sizes found %BDOC did 

not vary among streams in Alaska (drainage areas: 3,315 to 831,386 km2; Wickland et al., 

2012) or streams in the eastern United States (drainage areas: 0.46 km2 to 36,260 km2; 

Wiegner et al. 2006).  Despite the lack of differences among stream sizes, a high degree 

of temporal variability (4 to 53%) was observed in %BDOC measured from Alaskan 

streams between January and September (Wickland et al., 2012).  Caution must be used 

when comparing %BDOC values among studies because differences in methodologies 

(microbial inoculum, incubation temperatures, and incubation time) may affect these 
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values.  Notwithstanding, our estimates of %BDOC are in agreement with previous 

studies and suggest that temporal variability in biodegradable carbon export likely occurs 

in northern temperate streams, like those draining into Lake Superior. 

 

Potential for %BDOC export to Lake Superior 
Although previous studies have discussed potential seasonal variations in DOC 

lability in Lake Superior streams, they have largely relied on proxy estimates of %BDOC 

from Arctic tributaries.  For example, in their model of Lake Superior’s carbon budget, 

Bennington et al. (2012) assumed, based on Arctic measurements from Holmes et al. 

(2008), that 15% of DOC was biodegradable for the 9 largest tributaries of Lake 

Superior, and they considered this to be a relatively high estimate of lability.  By 

comparison, our study revealed that %BDOC in a small Lake Superior tributary averaged 

19.7% among the four experiment dates, and the proximity of our study site to Lake 

Superior (~100 m from the mouth) suggests this BDOC is most likely exported directly to 

the near-shore environment.  Applying our estimate of 19.7% BDOC and assuming that 

similar %BDOC occurs across all Lake Superior tributaries, we estimate that of the 0.4 to 

0.9 Tg C/yr exported from Lake Superior tributaries (Urban et al., 2005), 0.08 to 0.18 Tg 

C/yr is in biodegradable form.  

The fate of the BDOC exported from tributaries to nearshore Lake Superior may 

depend on the timing of export.  In our study, %BDOC varied from 10 to 41% (but note 

that January %BDOC could be negligible due to the high standard error observed; Table 

2).  Therefore, at times, stream %BDOC will be substantially greater than the 15% 

estimated by Bennington et al. (2012) and the 19.7% we used in our annual estimate 
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above.  Relatively high quality DOC exported during July provides DOC at a time when 

downstream water temperatures are elevated.  Bidanda and Cotner (2002) found that 

bacterial respiration in Lake Michigan was much greater in summer than in winter, 

supporting the concept that elevated temperatures increase maintenance costs and reduce 

bacterial growth efficiency. Thus, high quality riverine C exported to the near-shore 

region of Lake Superior may support greater rates of bacterial respiration in the summer 

when temperatures are elevated.   

Our results also have implications for understanding how C loads to Lake 

Superior may scale across tributaries and how they may change through time. The C 

budget for Lake Superior remains imbalanced, with respiration losses that greatly exceed 

primary production (Urban et al., 2005; Bennington et al., 2012).  Our results suggests 

that the abundance of small streams surrounding Lake Superior’s shorelines may provide 

important inputs of biodegradable C to Lake Superior that, when considered cumulatively 

and annually, may help explain this imbalance.   Spring snowmelt represents a significant 

proportion of the hydrologic budget of Lake Superior tributaries and also accounts for a 

substantial amount of annual DOC loads (Stottlemyer et al., 1998; Stottlemyer and 

Toczydlowski, 2006).  Our results suggest that spring snowmelt may transport large 

quantities of relatively high quality (18% BDOC) DOC from small headwater streams to 

Lake Superior.  Furthermore, this export of high quality DOC occurs within the same 

season that has exhibited increasing DOC concentrations over a 15-year period 

(Stottlemyer and Toczydlowski, 2006).  As such, future export of %BDOC during 

snowmelt may change if export of DOC continues to increase.   Finally, although 

anthropogenic N enrichment is not a major concern for Lake Superior tributaries, our 
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results suggest that any increase in N availability in Great Lakes tributaries may enhance 

C mineralization rates, affect in-stream DOC processing, and ultimately alter export of 

biodegradable C to the Great Lakes.   
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Table 1. Maximum amount of added labile C consumed in each experiment, estimated by 
comparing to total CO2 production over the 28 day incubation period and assuming that 
the 1 mg/L of labile C added would be consumed before background C present. 
   

Date  Maximum consumption of 
added labile C (%) 

C 
amendment 

CN 
amendment 

16 Jul 2012 52.2 42.9 
7 Oct 2012 72.6 56.4 
5 Jan 2014 64.3 68.1 

26 Apr 2013 81.1 81.0 
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Figure 1.  Mean CO2 production versus day during the 28 day period for the four 
experiments conducted in (a) July (b) October (c) January and (d) April.  Error bars 
represent ± 1 standard error (n = 6 for each point).  Note that during the July experiment, 
day 7 samples and standards were excluded due to methodological issues as explained in 
the methods. 
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Figure 2.  Percent biodegradable DOC (%BDOC) measured in each treatment for the 
four experiments.  Asterisk denotes significant differences among treatments within each 
season as determined with a two-way analysis of variance.  Error bars represent ± 1 
standard error (n = 3 for each point).  
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Key Points 
DOM biodegradability varies synchronously among watersheds varying in size 

DOM composition was only distinct among different watersheds during stormflow 

14% of average annual DOC export from these watersheds was biodegradable 
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Abstract 
Dissolved organic matter (DOM) composition may be an important determinant 

of its fate, but little is known about temporal variability in DOM composition and the 

biodegradability of dissolved organic carbon (BDOC) in northern temperate watersheds, 

which export 23% of total organic carbon globally.  We measured BDOC via incubation 

assays and DOM composition using optical indices on eleven dates in 3 Lake Superior 

tributaries.  BDOC was seasonally synchronous across these watersheds that vary in size 

by orders of magnitude (1.7 to 3400 km2), even during an August storm event when 

DOM composition greatly differed among sites.  BDOC also varied within seasons; for 

example, BDOC on 2 different dates in winter when ice covered the rivers were among 

the highest and lowest BDOC observed.  DOM composition varied the most among 

tributaries during a summer storm event, but was remarkably similar during fall, spring 

and winter.  Multivariate models identified humic-like and tryptophan-like fluorophores 

as predictors of BDOC, but DOM composition only described 21% of the overall 

variation in BDOC. Collectively, we estimate that these three rivers export 18.12 Gg C 

yr-1 as DOC and 2.84 Gg C yr-1 as BDOC, which corresponds to 9 to 17% of annual DOC 

exported in biodegradable form.  Modeling of historical (26 years) DOC and BDOC 

loads do not suggest that annual exports have changed to date, although spring loads of 

DOC and BDOC have increased.  Future hydrologic and climatic changes may alter 

export of BDOC if they change the timing of major seasonal and hydrologic events like 

storms.     
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1. Introduction 
Dissolved organic carbon (DOC) plays an integral role in biogeochemical cycling 

in aquatic ecosystems because it provides an energy source for aquatic organisms, alters 

pH, affects light penetration, and binds elements [Maranger and Pullen, 2003; Laudon et 

al., 2004].  Streams can supply a large amount of DOC to downstream ecosystems [e.g., 

Schindler et al., 1997], and much of the spatial variability in riverine DOM concentration 

and character can be attributed to watershed land cover characteristics such as percentage 

of wetland cover, wetland type, and agricultural land use [Gergel et al., 1999; Frost et 

al., 2006; Wilson and Xenopoulos, 2008; Yamashita et al., 2011].  However, streams are 

not simply conduits from terrestrial environments to downstream ecosystems [Bernhardt 

et al., 2005];in-stream processing of terrestrial DOC can transform or mineralize 

terrestrially-derived organic C before it reaches downstream ecosystems [Frazier et al., 

2005; Hall and Meyer, 1998; Butman and Raymond, 2011].  Photodegradation and 

autochthonous production of DOM in aquatic systems can also alter the quantity and 

chemical composition of DOM [Kaplan and Bott, 1982; Larson et al., 2007], further 

contributing to spatial variability of DOM composition.  

Variation in DOM composition among watersheds is important because it may 

determine the biodegradability of the DOC (BDOC) pool that is found within or exported 

from rivers, and biodegradability will determine the ultimate fate of DOC – e.g., whether 

it is respired by microbes and released as CO2 or stored in freshwater or marine 

ecosystems.  DOM composition has been linked with BDOC across a wide range of 

ecosystems including temperate soils [Marschner and Kalbitz, 2003] and freshwater and 

marine ecosystems [Benner, 2003].  For example, some studies suggest that some humic 

44 



 

fractions of DOM may be important contributors to BDOC [Moran and Hodson, 1990; 

Volk et al., 1997].  However, a wide range of low molecular weight humic substances 

with varying susceptibility to degradation can be found in aquatic ecosystems and their 

contributions to the BDOC pool may also vary.  Furthermore, proteins, carbohydrates, 

and organic acids have also been linked with high BDOC [Marschner and Kalbitz, 2003].  

Temperate rivers alone account for 23% of global total organic carbon export, 

trailing only tropical rivers [Meybeck, 1982], yet we know little about how composition 

and biodegrability of that carbon may vary temporally.  Although studies have shown the 

BDOC in temperate streams may differ depending on season [Coble et al. in review] or 

over several months [Volk et al., 1997], we lack a comprehensive understanding of how 

BDOC varies at the week to month scale across an entire year in these streams and rivers.  

In contrast, studies of temporal variability in BDOC in Arctic rivers demonstrated a high 

fraction of labile DOC was exported during winter and the spring freshet and attributed 

this variability to changes in N availability, DOM chemical composition, and flowpaths 

[Holmes et al., 2008; Wickland et al., 2012].  We may expect distinct seasonal patterns in 

BDOC in northern temperate regions versus those observed in arctic systems due to 

differing rates of winter and spring DOM processing and hydrologic flowpaths.  In the 

arctic during the spring freshet, frozen soils can restrict runoff to surface or shallow soil 

flowpaths, which allows runoff to leach the upper organic rich layers [Striegl et al., 2005; 

Finlay et al., 2006]. By comparison, in northern temperate regions without permafrost, 

shallow flowpaths also persist during snowmelt [Kendall et al., 1999] and deep snowpack 

can insulate temperate soils during the winter [Stottlemyer,1987; Stottleyer and 
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Rutkowski, 1990], preventing soil freezing and allowing winter microbial processing of 

organic matter beneath the snowpack.   

Alterations in the intensity or quantity of freeze thaw cycles, as are predicted for 

this region in climate projections [e.g. Henry, 2008], can alter soil DOM pools [Schmitt et 

al., 2008] and subsurface flowpaths [Stottlemyer and Toczydlowski, 2006] in temperate 

forests, which should influence stream DOM composition and BDOC.  Following a 

severe soil freeze event in Hubbard Brook, the watersheds retained more NO3 than in 

previous years [Judd et al., 2011] suggesting future climate change may, at least in part, 

alter watershed N dynamics, which could influence biodegradability of DOC.  Projected 

future alterations to the intensity [e.g. Groisman et al., 2004] or type of precipitation 

[snow vs. rain; e.g. Mortsch and Quinn, 1996] received in northern temperate regions 

may also have consequences for quantity, quality, and timing of DOC entering rivers. It 

is possible that some of these changes are already underway, although they are likely to 

accelerate into the future.  

The overall goal of our study was to examine how variability in DOC sources 

may alter the biodegradability of DOC in northern temperate aquatic ecosystems, and 

how these changes may alter seasonal patterns of DOC in a changing climate.  We 

measured DOC concentrations and conducted short (28 day) incubations approximately 

monthly over a full year to determine DOC biodegradability and estimate annual DOC 

and BDOC export in three temperate hardwood forested rivers that vary in watershed size 

by three orders of magnitude.  Our specific objectives were to: 1) determine the percent 

of total annual DOC exported from these 3 rivers to Lake Superior that is present in 

biodegradable form and whether biodegradability varies temporally, 2) determine how 
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DOM composition affects BDOC in these rivers; and 3) quantify current and historical 

total annual DOC export from these rivers to Lake Superior.  

 

2. Methods 

2.1 Study Sites 
  

All three study tributaries are located on the south shore of Lake Superior in Michigan’s 

Upper Peninsula (Figure 3).  Calumet watershed is located in Houghton County, drains a 

1.76 km2 watershed area [Stottlemyer and Toczdylowski, 2006], and comprises 0.001% of 

Lake Superior’s drainage area (total drainage area for Lake Superior 127,700 km2).  The 

Salmon Trout River is located in Marquette County, drains a 127 km2 watershed area 

[Bullen 1988], and comprises approximately 0.1% of Lake Superior’s drainage area.  The 

Ontonagon River is located in Ontonagon County Michigan, drains a 3,470 km2 

watershed area [Thompson, 1978], and comprises 2.6% of Lake Superior’s drainage area.  

In this region mean annual precipitation is ~80 cm (National Atmospheric Deposition 

Program (NADP), station MI99, Chassell Michigan, available from: 

http://nadp.sws.uiuc.edu.data/) with up to 50% received as snow [Stottlemyer and 

Toczdylowski, 2006].  Bedrock within Calumet watershed is comprised of Freda 

sandstone, Copper Harbor conglomerate and Nonesuch formation, within the Salmon 

Trout watershed bedrock includes: Archean granitic and gneissic, Michigamme 

formation, and Jacobsville sandstone, and within the Ontonagon watershed bedrock 

includes: Jacobsville sandstone, Michigamme formation, and granite and gneissic 
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bedrock.  Wetland area within each watershed is: Calumet watershed: 30%, Salmon Trout 

River: 9.9%, and Ontonagon River: 20%. 

2.2 Sample Collection and Analysis 

 To determine DOC biodegradability we collected stream water twice per season 

at each of the three tributaries.  In spring we collected stream water on two additional 

dates for a total of four dates because we expected that BDOC may change rapidly during 

spring snowmelt and runoff [e.g. Wickland et al., 2012].  For these four spring dates, we 

targeted two collections on the rising limb or at the peak of the hydrograph and two 

collections on the falling limb, which was achieved at the Calumet and Ontonagon 

watersheds, while we only captured the falling limb at the Salmon Trout River (Figure 4).   

 On each sampling date, stream water was filtered within 4 hours of collection, and 

then stored at 4°C until the experiment was set up, which occurred within 24 hours. An 

additional sample was filtered on site for analysis of DOC concentration and 

characterization.  Initial stream water temperature, conductivity, pH, turbidity, and 

dissolved oxygen were measured by deploying a YSI 6920 multiparameter sonde (YSI 

Incorporated, Yellow Springs, Ohio) in the streams on each sampling date.  Because 

inorganic nutrients have been previously linked with BDOC [e.g. Wickland et al., 2012, 

Coble et al. in review], we also collected water samples to measure dissolved inorganic 

nitrogen (DIN) concentrations as ammonium (NH4) and nitrate (NO3), and phosphorus as 

soluble reactive P (SRP) and total P (TP). Finally, we collected stream sediment from 

each site by extracting three 1 cm deep cores (2 cm diameter) from the stream channel to 

use as a microbial inoculum for the BDOC incubations as described below. 
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 DOC and total dissolved nitrogen (TDN) concentrations were determined using a 

TOC-5000A analyzer (Shumadzu Scientific Instruments, Columbia Maryland).  NH4 

analyses were conducted on a Turner Trilogy fluorometer (Turner Designs, Palo Alto, 

California) and followed Taylor et al. [2007], adapted from Holmes et al. [1999].  Nitrate 

was analyzed on a Dionex ICS-900 Ion Chromatograph (Dionex, Sunnyvale California).  

SRP analyses were conducted using the ascorbic acid method [APHA, 2005] on a Thermo 

Scientific 10s UV-Vis spectrophotometer.  Total P analysis followed the same analysis as 

SRP preceded by an ammonium persulfate digestion [APHA, 2005]. 

2.3 BDOC  
  

To determine DOC biodegradability, 28 day laboratory incubation experiments were 

conducted by placing 50 mL of stream water filtered through 0.45 μm nylon membrane 

filters into 15 replicate 100 mL amber glass serum bottles for each site on each date.  A 

mixture of unfiltered stream water and stream sediment collected from each site on each 

date was used as a common inoculum, and 1 mL of inoculum was added to each bottle to 

introduce a microbial assemblage from the water column and from the benthos [e.g., 

Coble et al. in review].  The inoculum was site- and date-specific to better mimic in situ 

stream conditions and to account for seasonal variability in the microbial assemblage.   

 The serum bottles were sealed, and then CO2 was analyzed for all bottles in 1 mL 

aliquots of equilibrated headspace using gas chromatography (model SRI 8610C; He 

carrier gas; Hayesep D packed column; column temperature 62°C).  Calibration curves 

were created with five standard dilutions of 1000 ppm CO2 standard (Scotty analytical 

gas, Supelco Analytical, Bellefonte PA).  To calculate CO2 concentrations we used CO2 
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equilibrium constants and corrections for temperature and pressure [Plummer and 

Busenberg, 1982; Striegl et al., 2001].  The volume of headspace removed was replaced 

with an equal amount of N2.    

 Following the initial CO2 measurements on day 0, three replicate bottles per 

stream were acidified with 2 mL 43.5% H3PO4 and the headspace was analyzed for 

dissolved inorganic carbon (DIC) by measuring CO2 as described above. Three additional 

replicate bottles per stream were analyzed for DOC concentration as described above and 

DOM composition as described below.  The 9 remaining bottles per stream were then 

placed on a shaker table in the dark at a temperature of 21°C to control for temperature 

among seasons.  After 28 days, all replicate bottles were analyzed for headspace CO2 

concentrations, then six replicates were acidified and analyzed for DIC, and the final 

three replicates were analyzed for DOC concentration and composition. For each 

incubation, the percent BDOC (hereafter referred to as BDOC) was calculated as follows 

[Wickland et al., 2012]:  BDOC =  ୈ୍େ౜౟౤౗ౢିୈ୍େ౟౤౟౪౟౗ౢୈ୓େ౟౤౟౪౟౗ౢ       (1) 

Three of the BDOC values (Salmon Trout River January 2014, Calumet Watershed July 

2014, and Ontonagon River July 10, 2014) were negative, but standard error estimates 

suggest these values are within the range of 0% BDOC and therefore below our detection 

ability using these assays.   

To determine if BDOC varied temporally, we conducted a repeated measures 

analysis of variance (rm ANOVA) for each stream with date as the repeated factor and 

BDOC as the response variable with SAS version 9.4 (SAS Institute, Cary, North 

Carolina, USA). BDOC data were arcsin transformed to meet assumptions of normality.  
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Because we were unable to sample the Ontonagon River in winter we conducted two 

separate rm ANOVA analyses 1) excluding Ontonagon River samples; 2) excluding 

winter samples to determine whether BDOC varied among sample dates or sites.  For all 

statistical analyses alpha was set a priori at 0.05.   

 

2.4 DOC characterization and PARAFAC modeling 
  

We characterized DOM character using UV-Vis spectrophotometric and fluorescence 

methods.  Specific ultraviolet absorbance at 254 nm (SUVA254), an indicator of C 

aromaticity, was measured using a GENESYS™ 10s UV-Vis spectrophotometer 

(Thermo Scientific, Waltham, Massachusetts), and determined by dividing the UV 

absorbance at 254 nm wavelength by the DOC concentration [Weishaar et al., 2003].  

 Fluorescence excitation-emission matrices (EEMs) of stream water and 

incubation samples were determined with a Horiba Aqualog (Jobin Yvon Horiba, France) 

at 3 nm excitation wavelength intervals between 240 and 600 nm, and at emission 

wavelength coverage between 212 and 620 nm with 3.28 nm increments.  Fluorescence 

spectra were corrected for inner filter effects, accounting for the absorption of both 

emission and excitation light by the DOM sample.  To remove the Raman signal, a 

Raman-normalized Milli-Q water sample was removed from each fluorescence spectrum.  

All EEMs are then expressed in Raman Units (R.U.; nm-1).  Fluorescence index (FI), 

which distinguishes between microbial and terrestrial-derived sources, was identified 

from corrected EEMs as the ratio of the emission intensity at 450 nm to 550 nm acquired 

with an excitation of 370 nm [McKnight et al., 2001].   
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In addition, fluorescence EEMs were analyzed using the multivariate modeling 

technique parallel factor analysis (PARAFAC), a three way decomposition method 

[Stedmon et al., 2003].  PARAFAC modeling was completed using MATLAB software 

(MATLAB® , The Mathworks, Natick, USA) and the  PLS-toolbox (Eigenvector 

Research Inc., Wenatchee, WA USA) on 374 samples collected in Michigan’s Upper 

Peninsula comprised primarily of river samples, but also including near-shore Lake 

Superior samples, snow samples, and soil lysimeter samples from study sites.  This 

analysis validated six components, and split-half analysis following Stedmon et al. [2003] 

and Stedmon and Bro [2008] revealed that splits were 92.5% similar.  All of the six 

components identified by the model have been previously described for aquatic systems 

(Table 1).  Component 1 (C1) was identified as a fulvic-like peak, and components 2 

(C2), 3 (C3), and 5 (C5) were identified as humic-like peaks (Table 3). Component 4 

(C4) was identified as humic-like and fulvic-like (Table 3). One protein-like component, 

component 6 (C6), was identified as tryptophan in our data set, but tyrosine, another 

protein-like component commonly observed in aquatic ecosystems, was not identified.  

The fluorescence intensity of each component is expressed as a percentage of the total 

intensity of all components identified. 

2.5 Multivariate analysis of BDOC and DOM character 
To determine how DOM composition affects DOC biodegradability, we first used 

a principal components analysis (PCA) to examine relationships among the six 

fluorescence components identified by PARAFAC and other measurements of DOC 

characteristics including: FI, SUVA254, and [DOC].   For this analysis we included only 

stream water samples from day 0 of the incubation.  To further identify which DOC 
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characteristics influenced BDOC across sites and dates, we used a partial least squares 

(PLS) with BDOC (y response variable) and all of the measured DOC characteristics (x 

predictor variables).  The importance of each X variable was determined by the variable 

importance on the projection scores (VIP) with a value �1 considered highly influential, 

between 0.8 and 1 as moderately influential, and <0.8 as less influential.  Cross validation 

of the data set was performed with 10 splits.  The number of components included in the 

model was determined by assessing eigenvalues and the root mean square error of the 

cross validation (RMSECV).  Outliers were identified using the Hotelling’s T2 analysis if 

they exceeded the 95% confidence limit.  PCA and PLS analyses were performed using 

MATLAB (MATLAB®) with the PLS Toolbox (Eigenvector Research Inc., Wenatchee, 

WA USA).  Following PLS analysis, we used linear regression to test for relationships 

between BDOC and the most influential components identified with the PLS model.  We 

also explored the relationship between BDOC and [DOC]:[DIN] using linear regression 

[c.f., Wickland et al., 2012].    

 

2.6 Load modeling and time series analysis 
  

To quantify current and historical DOC export from streams to Lake Superior we 

calculated annual DOC loads from the 3 study tributaries.  Water samples to measure 

DOC concentrations were collected at least monthly across a variety of flow and 

environmental conditions.  At the Ontonagon River, we were unable to collect water 

during the winter because ice cover prevented safe access to the water column.  The other 

two study rivers were also ice covered during the winter, but we were able to safely 
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access the water beneath the ice.  Samples were filtered and analyzed for DOC and TDN 

concentrations, SUVA254, and FI as described above.   

 To calculate the total annual and monthly DOC loads from these Lake Superior 

tributaries we used the FORTRAN load estimator (LOADEST) program [Runkel et al., 

2004].  LOADEST requires at least 12 measurements of DOC concentrations, thus we 

used >12 measurements of DOC at each site to calibrate the LOADEST model.  

Additionally, we used daily discharge measurements from each site to calculate monthly 

and annual loads.   

Discharge at Calumet watershed is continuously monitored with a Parshall flume, 

Stevens pressure transducer (Stevens Water Monitoring Systems Inc., Portland, Oregon) 

and Li-Cor datalogger (Li-Cor, Lincoln, Nebraska) installed at the site [Stottlemyer and 

Toczdylowski, 2006].  Discharge of the Salmon Trout and Ontonagon Rivers is gauged by 

the USGS (http:/waterdata.usgs.gov); discharge records were obtained for station 

04043238, located in the headwaters of the Salmon Trout River, and for station 

04040000, located on the Ontonagon River near Rockland, MI.  Our study location at the 

Salmon Trout River was downstream of the gauging station; to relate discharge at the 

downstream site to the upstream USGS discharge measurements, we deployed a level 

logger downstream and measured discharge under a variety of flow conditions to identify 

the time lag between upstream and downstream discharge measurements.  To measure 

discharge we set up a transect [Gordon et al., 2004] and measured velocity in at least 10 

locations along the transect using a Flomate flow meter and wading rod.    During high 

flow conditions (e.g., spring runoff) discharge was measured with a StreamPro Acoustic 

Doppler Current Profiler (ADCP; Teledyne RDI, Poway, California).  A logarithmic 
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regression of discharge measurements from 2012 through 2014 was used to estimate 

discharge downstream based on the upstream gauge data (Qdownstream = 82.484 * 

ln(Qupstream) - 89.519, n = 20, r2 =  0.49, p = 0.0006, F(1,18) = 17.46 ).   

To estimate BDOC loads from the study rivers we multiplied the monthly loads of 

DOC obtained from LOADEST by the BDOC measured within that month.  When 

BDOC was not measured in that month then the nearest month or an average of the 

nearest months were applied.  The BDOC values were applied within the season it was 

measured.  The August stormflow BDOC measurement was not applied to the August 

estimate, but was applied to specific days when stormflow events occurred in summer 

and fall as identified by examining the hydrograph.   

 To calculate historical DOC loads from Calumet watershed we used water 

chemistry and stream flow data that have been collected continuously from 1988 to 2014 

[Stottlemyer and Toczdlowski, 2006].  We applied current BDOC measurements to 

historical DOC load estimates to estimate historic BDOC loads, assuming that the 

proportion of the DOC load that is biodegradable has remained constant through time.  

We used LOADEST to estimate load contributions for each one-year period.  Thus, the 

model was calibrated independently for each year to facilitate analysis of temporal 

variability.   

 To examine the rate and trajectory of change in monthly DOC and BDOC loads 

from Calumet watershed through time we used a univariate autoregressive integrated 

moving average (ARIMA) model [Box and Jenkins, 1970].  Time-series analysis is more 

appropriate than regression to analyze data with temporal autocorrelation.  ARIMA 

modeling was conducted on: 1) monthly DOC loads from July1988 through June 2014; 
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and 2) monthly BDOC from July 1988 through June 2014.  Additionally, we analyzed 

mean seasonal loads separately because previous research at our study site found an 

increase in winter/spring loads suggesting there may be seasonal differences in DOC 

export over time [Stottlemyer and Toczdlowski, 2006].   Seasons were defined as: 

Summer = June, July, August; Fall = September, October, November; Winter = 

December, January, February; Spring = March, April, May.  For this analysis we 

averaged the three months for each season to obtain a single value for each year.  

Seasonal ARIMA model structure is denoted by (p, d, q) (P, D, Q)[m] where p = non-

seasonal number of autoregressive parameters, d = non-seasonal order of differencing, q 

= non-seasonal number of moving average parameters, P = seasonal number of 

autoregressive parameters, D = seasonal order of differencing, Q = seasonal number of 

moving average parameters, m = number of periods per season.  The data were assessed 

for stationarity (constant mean, variance and autocorrelation); if data are non-stationary 

then the data must be detrended by differencing [Cryer and Chan, 2008].  Models were 

assessed by examining autocorrelation and partial autocorrelation plots to ensure the 

model had accounted for all autocorrelation [e.g. Zuur et al., 2009], and final model 

selection was determined by Akaike Information Criterion [AIC; Akaike, 1973].  All 

ARIMA modeling was completed using R (version 3.1.2, R core development team) 

using the Arima function [R package forecast; Hyndman; 2013].   
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3. Results 

3.1 Biodegradable DOC Incubations: Spatial and Temporal Variability 
BDOC in these streams exhibited temporal variability, and some of this variability 

occurred within seasons (Figure 5).  Summer measurements of BDOC ranged from 

negligible (Calumet Watershed and Ontonagon River, 10 July 2014), to moderate (all 

sites, 2 July 2013), to exceptionally high during a summer storm event (all sites, 26 

August 2013). The greatest BDOC value overall was observed during the summer storm 

event in the Ontonagon River.  While BDOC was also elevated during this storm at the 

other two sites, the greatest BDOC at the Salmon Trout River and Calumet Watershed 

occurred in winter, on 28 February 2014.  However, BDOC was low to negligible a 

month earlier at both sites on 15 January 2014, in spite of ice cover over both rivers from 

December until late April.  Within-season variability in BDOC was not as pronounced in 

fall and spring.  From October to November there was an increase in BDOC at the 

smallest and largest watersheds (Calumet and Ontonagon), but a decline in BDOC in the 

intermediately-sized watershed (Salmon Trout).  We did not observe a relationship 

between BDOC and position on the hydrograph during spring snowmelt; however, we 

were unable to capture the rising and falling limb at all sites due to variability in the 

timing of snowmelt and amount of snow among these three watersheds (Figure 4).  

Pearson correlation coefficients of BDOC among sites suggest that BDOC is 

synchronous across sites (Calumet and Ontonagon: r = 0.89, p = 0.001; Salmon Trout and 

Ontonagon: r = 0.87, p = 0.003; Calumet and Salmon Trout: r = 0.87, p < 0.001; Figure 

6).  Analysis of BDOC among sample dates revealed significant effects of site and date, 

and a significant interaction of site x date when the Ontonagon River was excluded (site 
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(F(1,38.7) = 32.81, p < 0.001), date (F(10,37.4) = 54.31, p<0.001), site x date (F(10,37.4) = 16.72, 

p < 0.001) and when winter was excluded (site (F(2,47) = 47.0, p<0.001), date (F(8,51.1) = 

131.70, p<0.001), site x date (F(10,37.4) = 16.72, p<0.001).   

The three sites showed similar temporal patterns in discharge, temperature, and 

conductivity (Appendix Table 1).  Inorganic N and SRP values were often below our 

detection limit (Appendix Table 2).  DOC concentrations ranged from 5.63 to 18.96 mg 

L-1 at Calumet Watershed, 2.73 to 11.14 mg L-1 at the Salmon Trout River, 7.85 to 14.85 

mg L-1 at the Ontonagon River (Appendix Table 2).   

 

3.2 DOM composition 

3.2.1 Relationships among DOM concentration and composition  
The PCA of DOC concentration and DOM composition metrics resulted in four 

principal components that together explained 94% of the variance in DOM.  The first two 

principle components alone explained 78% of the variance in DOM.  Loadings for the 

first PCA axis, which explained 65% of the variability in the model, were most strongly 

positively affected by C4 (humic-like), C1 (fulvic-like), DOC concentration, and C5 

(humic-like) and negatively by C2 (humic-like; Appendix Figure 1).  Loadings for the 

second PCA axis, which explained 13% of the variability in the model, were positively 

affected by C3 (humic-like fluorophore) and negatively by C6 (tryptophan-like 

fluorescence), indicating a gradient from allochthonous to autochthonous influence.   

3.2.2 Predictors of BDOC 
We used a PLS analysis and subsequent linear regression to determine the 

influence of DOC characteristics on riverine BDOC across all sites and dates.  The PLS 
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model provided information about potential factors affecting BDOC and identified 4 

latent variables (LV); Table 4).  The model explained 88% of the variability in the DOM 

composition (X variables) and 17% of the variability in BDOC (Y variable). The model’s 

ability to fit the data (RMSEC = 12.49) was similar to the model’s ability to predict 

samples that were not used in model building (RMSECV = 15.39; [Wise et al., 2006].  

Analysis of Q residuals (11.8%) and Hotelling T2 value (88.2%) indicate each sample 

conformed well to the model and revealed little variation in each sample within the model 

[Wise et al., 2006].   

To best illustrate the differences among DOM composition (X variables) we 

display only two LVs, LV1 and LV2.  The first component (LV1) explained 64% of the 

variability in X variables (DOM composition), 6% of the variability in the Y variable 

(BDOC), and represented a gradient of aromaticity; DOC concentration, SUVA254, C1, 

C4, and C5 (humic and fulvic like-fluorophores) had negative loadings and C2, C3 

(humic-like fluorophores), C6 (tryptophan-like fluorophore), and FI had positive loadings 

(Figure 7).  The second component axis explained 15% of the variability in X variables 

and 7% of the variability in the Y variable and represented a gradient from a humic-like 

fluorophore (C3) to a tryptophan-like fluorophore (C6; Figure 7).  

Based on VIP scores, C6 and C1 (ordered from greatest to least VIP score) were 

identified as highly influential predictors of BDOC in the model, SUVA254 and C3 were 

moderately influential, and all other variables were less influential (Figure 7).  Of these 

highly influential predictors, tryptophan-like fluorescence (C6) was positively related to 

BDOC shown by its positioning near BDOC on the PLS bi-plot and the fulvic-like 

fluorophore (C1) was negatively related to BDOC shown by their positioning opposite 
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BDOC on the PLS bi-plot (Figure 7).  Linear regression analysis indicated that 

individually none of the components (C1-C6), DOC concentration, SUVA254, FI, nor 

[DOC]:[DIN] were significant predictors of BDOC (Table 3).  DOC concentration, 

SUVA254, FI, and [DOC]:[DIN] were not significant predictors of BDOC (Table 5).  

Collectively these analyses reveal limited predictive ability of BDOC by these DOM 

composition variables reflecting relative aromaticity and autochthony. 

3.2.3 Temporal variability in DOM concentration and composition 
The PLS analysis also provides insight into how the composition of DOM relative 

to BDOC changed through time in the 3 study rivers.  During summer base flow, DOM 

composition shifted from greater fulvic and humic-like fluorophores (C4, C1, C5), DOC 

concentration, and aromaticity (SUVA254) in July 2013 to greater humic-like fluorophore 

(C2, C3), FI, and tryptophan-like fluorescence (C6) in July 2014 (Figure 8a), which was 

associated with a decline in BDOC from July 2013 to July 2014 (Figure 5). DOM 

composition during the summer storm flow event was distinct for each of the three sites, 

with all sites spread from smallest to largest along the first axis (LV1, Figure 6 along a 

gradient of decreasing C4, C1, C5, DOC, and aromaticity, and increasing C2, C3, C6 and 

FI.  However, despite the high degree of variability in composition expressed along the 

LV1 axis, similarly high BDOC values were observed across all three sites during this 

storm event (Figure 5).   

In fall, DOM composition shifted along LV 1 toward greater C4, C1, C5, DOC, 

and aromaticity from 13 October 2013 to 14 November 2013, and also shifted towards 

greater % tryptophan along LV2 (Figure 8b), which was associated with an increase in 

BDOC at Calumet Watershed and the Ontonagon River and a decrease at the Salmon 
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Trout River.  At Calumet winter DOM composition was similar to the fall season.  At the 

Salmon Trout River winter DOM had greater humic-like fluorescence (C2), FI, and 

%tryptophan (C6) observed along LV1 and greater C6 (tryptophan) observed along LV2 

relative to fall (Figure 8c).  Despite the similar DOM composition among winter 

measurements, winter BDOC was variable with extremely high and low BDOC observed.  

 In spring, all sites were found on the negative side of LV1, indicating DOM was 

comprised of greater C4, C1, C5, DOC, and aromaticity for all sites except for the 

Salmon Trout River in late May, suggesting that DOM composition in that river had 

returned to similar composition observed during baseflow (Figure 8d).  All other sites and 

dates revealed markedly similar positioning along LV1 across spring dates and varied 

mainly along the LV2 axis suggesting that the amount of tryptophan (C6) versus humic-

like fluorescence (C3) varied among dates.  Consistency in DOM composition among 

spring dates concurs with the consistent BDOC values observed for all study sites and 

dates (Figure 5). 

3.3 DOC and BDOC loads 
 As expected, magnitudes of the annual DOC and BDOC loads from these three 

rivers in 2013-2014 were reflective of watershed size and annual discharge (Table 6).  

The 2013-2014 DOC load at Calumet watershed was on the higher end of the range in 

DOC loads observed at this site since 1988 (Figure 9).  A majority of the annual DOC 

loads were exported in the months of April and May, which alone comprised 62.9% of 

total annual DOC loads at Calumet watershed, 43.3% at the Salmon Trout River, and 

62.5% at the Ontonagon River. Annual loads of BDOC exported from each of these 

rivers ranged from 422 to 2,788,000 kg C yr-1 (Table 6).  The percent of the annual DOC 
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load that was biodegradable was comparable for the two larger rivers (17% and 16%) and 

lower for the smallest river (9%).  We estimated that collectively, the three rivers 

exported 18.12 Gg C yr-1 and 2.84 Gg C yr-1 as BDOC that is decomposable within 28 

days, which corresponds with 15.7% of annual export from these tributaries (Table 6).   

 The  selected ARIMA model of monthly DOC loads at Calumet Watershed from 

1988 to 2014 required no differencing and suggests that the model is stationary at the 

annual time scale over the observed period (ARIMA(0,0,0)(1,0,1)[12]; Table 7). 

Similarly, the selected ARIMA model for monthly BDOC loads from 1988 to 2014 was 

ARIMA(0,0,0)(1,0,1)[12] and suggests that the model is stationary at the annual 

timescale (Table 7).   Both DOC and BDOC loads display clear seasonal patterns with 

loads peaking each spring (Figure 9).  BDOC loads followed similar patterns to DOC 

(Figure 9).  DOC loads became more variable after 1996 when loads exceeded 1500 kg 

mo-1 in some years (Figure 9).  ARIMA models of mean seasonal loads indicated the 

same model structure (ARIMA(0,1,1) with drift) for each of the four seasons, which 

indicates one order of differencing which suggest the data had a constant rate of change 

within each season (Table 8; Figure 10).  The drift components indicate an increasing 

trend in DOC loads over time for 3 seasons, but a decreasing trend in DOC loads over 

time within the fall season (Table 8).     

 

4. Discussion 
 BDOC appears to vary synchronously across three northern temperate rivers 

despite large variability in watershed size and location.  DOM composition, particularly 

compounds containing tryptophan and humic-like fluorophores, was identified as a 
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predictor of BDOC but only explained a small amount of the total variation in BDOC. 

The synchronous pattern of BDOC cannot be explained by DOM composition alone; for 

example, we observed large variation in DOM composition among study sites during a 

summer storm event described by fluorometric and spectrophotometric indices, however 

we observed very little variation in BDOC among these rivers on any given date.  On 

average, 14% of C that is exported to Lake Superior from these rivers is relatively labile 

and large contributions of labile C can be exported during much of the year, particularly 

during stormflow events.  Historical load modeling over a 26 year period suggest that 

loads of DOC and BDOC are increasing in the spring during snowmelt, and that DOC 

and BDOC loads are not consistently increasing at an annual time scale.  Given this 

apparent dependence of BDOC on hydrologic events like stormflow and spring runoff, 

future changes in climate that alter the timing of seasons or increase the frequency or 

severity of storms may alter the quantity and timing of BDOC exported from temperate 

rivers, with potential consequences for productivity in downstream rivers, lakes, and 

oceans.    

4.1 DOM composition and synchronous biodegradability of DOC 
Consistent with previous studies of riverine DOM [Fellman et al., 2010a, Mann et 

al., 2012, Wickland et al., 2012], we found DOM composition was an influential 

predictor of BDOC, but it  explained only 17% of the variability in BDOC across these 

rivers.  Evidence from several studies has indicated that terrestrially-derived humic DOM 

may be an important component of the stream BDOC pool [Moran and Hodson, 1990, 

Volk et al., 1997]; however, in our study we did not find humic fluorophores to strongly 

influence variability in BDOC although a fulvic flourophore was an influential predictor.  
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Tryptophan-like fluorescence, the only autochthonous DOM source identified in our 

PARAFAC model, was also an influential predictor of BDOC which is consistent with 

previous studies [Fellman et al., 2009a; Balcarczyk et al., 2009; Wickland et al., 2012,].  

In contrast to previous studies [e.g. Wickland et al., 2012], we did not find any 

relationships between BDOC and nutrient concentrations, SUVA254 (an indicator of C 

aromaticity) or FI (an indicator of sources of fulvic acids).  Therefore, the majority of the 

variability (79%) of BDOC in our study cannot be accounted for by DOM composition, 

source, or stoichiometry. 

 DOM composition was remarkably similar among watersheds that vary in size by 

orders of magnitude and in wetland area (10 to 30%).  However, DOM composition 

during a summer storm event was extremely variable among watersheds, and our results 

demonstrate that a wide range of DOC concentrations, % protein like fluorophores, and 

% humic like fluorophores can yield high BDOC during storm events across a range in 

river sizes.  In contrast, another study measuring BDOC during storm events did not find 

that different DOM composition yielded similar responses of BDOC [Fellman et al., 

2009b] nor did storm events yield variability in DOM composition among streams [Singh 

et al., 2014].  Singh et al. [2014] investigated the effects of stream size on DOM 

composition during storm events and found that DOM composition was similar across a 

narrow range of stream sizes in nested watersheds (0.035 to 0.79 km2).  Apparently a 

greater range in river size and spatial independence among rivers led to greater variability 

in DOM composition among our study rivers during a storm event.  McGuire et al. 

(2005) found that flowpath length and gradient were correlated with residence time and 

that these topographic characteristics influenced watershed scale transport more than 
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watershed size. We suggest that perhaps storm events allow for differences in flow paths 

and residence times among watersheds (e.g. McGuire et al. 2005; Uchida et al. 2006) to 

become more pronounced because at other times of the year DOM composition was 

remarkably similar.  Singh et al [2014] suggested that hydrologic flow paths and wetland 

coverage may also be influential factors for concentration and composition of DOM 

during storm events.  Regardless of the mechanism controlling variability in DOM 

composition among during storm events biodegradability did not differ, suggesting that 

DOM may be rapidly decomposed and/or respired by microbes in recipient aquatic 

ecosystems.   

Although the biodegradability of DOC in our study rivers varied minimally as a 

function of size, it varied greatly as a function of time.  Jaffe et al. [2008] analyzed 

variability in DOM composition as determined from UV-visible absorbance and 

fluorescence spectra from streams, lakes, and estuaries across 12 Long Term Ecological 

Research sites distributed throughout the United States.  Theyfound that DOM 

composition varied both temporally at monthly scales in Florida Bay and that DOM 

composition can vary spatially among biogeographic regions.  During fall and spring 

seasons, consistent nutrient inputs and hydrologic drivers across our study sites (e.g., leaf 

litter in fall and snowmelt in spring) likely drive the consistency in DOM pool 

composition across our study rivers except during storm events.  Across the three rivers, 

BDOC followed similar trends, suggesting that temporal variability may exert a greater 

control over BDOC than watershed size.   For example, all sites exhibited minimal 

BDOC in January and July 2014, maximal BDOC in February and during a summer 

storm event, and moderate BDOC in spring.  In the Yukon River basin in Alaska, 
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Wickland et al. [2012] observed similar trends in BDOC among a gradient of river size 

and suggested that hydrology was an important control on BDOC across river size by 

minimizing DOM processing during transport.  Across our study sites DOM processing is 

likely also minimized due to cold water temperatures during much of the year and 

reduced photodegradation due to canopy cover.  Seasonal variability in biological factors, 

such as microbial community composition, or physical factors, such as stream water 

temperature and light availability, may be more important in determining BDOC than 

watershed size across these northern temperate forested rivers.   

 Intriguingly, our data also suggest that similar compositions of DOM can have 

different biodegradability depending on the time of year.  Summer baseflow 

measurements demonstrate similarities in DOM composition but differences in 

biodegradability across dates (BDOC was greater in July 2013 than in July 2014).   

Additionally, autochthonous sources of DOM were most prevalent in winter on both 

experimental dates in the winter, as indicated by higher % of tryptophan-like components 

and higher FI values, yet the biodegradability of DOC varied dramatically between 

January and February.  Other studies measuring BDOC beneath ice in rivers have found 

the greatest % tryptophan in their samples occurred in winter in the Yukon River 

[Wickland et al., 2012] or the pre-spring freshet in the Kolyma River [Mann et al., 2012], 

but the response of BDOC differed between these two rivers.  In the Yukon River the 

percent BDOC was high (41 to 53%) but in the Kolyma River BDOC was very low 

(0.1%) [Wickland et al., 2012; Mann et al., 2012].  Monthly measurements of chlorophyll 

a from our smallest study stream, Calumet watershed, indicate an increase in periphytic 

biomass in winter relative to other seasons [Coble et al., in preparation], suggesting that 
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autochthonous production of DOC may be greatest during this season.  However, other 

factors may be important in regulating BDOC during this season, and more intensive 

sampling and BDOC analysis during the winter months is needed to understand the high 

amount of variability observed.   

  

4.2 Fate of terrigenous DOM 
It is important to understand the fate of terrigenous DOM because it is essential 

for aquatic productivity, energy budgets, and a changing climate.  We estimate that 

annually 14% of DOC exported from rivers to Lake Superior is biodegradable within 28 

days.  Despite the elevated BDOC observed in storm event or winter sampling periods, 

23 to 73% of BDOC is exported in spring across these rivers.  This is not because the 

DOC pool is particularly susceptible to biodegradation during this time, but rather 

because the majority of annual DOC was exported in spring (40 to 63%) due to high river 

discharges. During this snow-melt period, high water velocity leads to low river residence 

time, suggesting that much of this highly labile C is likely exported to Lake Superior 

rather than stored or processed in tributary streams. 

It is widely acknowledged that storm-flow events can provide “hot moments” 

when large DOC pulses occur in rivers [e.g. Raymond and Saiers, 2010], and some 

studies have shown BDOC also increases during storm events [Kaplan and Newbold, 

1995; Buffam et al., 2001].  Our results support the concept that these hot moments are 

important in exporting not only high quantity DOC but also high quality DOC, and 

further show that across a range in river sizes a substantial amount of BDOC can be 

exported from temperate forested watersheds during storm events.   
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4.3 DOC, N, and BDOC loads across the Lake Superior basin 
Annual estimates of DOC and BDOC loads in our three study sites highlight the 

role of stream size in total DOC export.  Clearly, the largest of these rivers accounts for a 

considerably larger proportion of loads exported from these rivers.  Using stream data 

layers from Michigan, Wisconsin, Minnesota, and Ontario (Canada), we estimate that 

there are 1550 tributaries surrounding Lake Superior’s shorelines (Figure 3).  Streams 

from Isle Royale National Park were not included in the state stream layers and it is likely 

that many of the smaller first-order streams were not included in these stream layers.  

Therefore, the actual number of streams may be even greater.  Of these 1550 streams, 

1544 of them are smaller than the Ontonagon River, the 6th largest tributary of Lake 

Superior.  Thus, DOC and BDOC export in the majority of these streams is likely more 

reflective of the smaller tributaries included in the current study.   

To compare the DOC concentrations and DOM composition of our study sites 

with other regional streams, we measured DOC concentrations in 33 additional south 

shore Lake Superior tributaries (not including our three study sites) and found they 

ranged from 2.0 to 9.30 mg L-1 during baseflow conditions and from 6.46 to 19.42 mg L-1 

during spring snow-melt (Appendix Table 4).  By comparison, DOC concentrations at 

our three study sites ranged from 2.73 to 18.96 mg L-1 (Appendix Table 2), and all of our 

measurements are within the range of previously reported concentrations for Lake 

Superior tributaries: 2.8 to 34 mg L-1 [Back et al., 2002; Urban et al., 2005; Frost et al., 

2006; Minor and Stephens, 2008].   

 Our study sites represent a relatively small fraction (~2.8%) of the total watershed 

size of Lake Superior (127,700 km2).  By making a crude assumption that similar DOC 
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and BDOC loads are exported from all Lake Superior tributaries, we scaled our 

measurements on a percentage watershed basis and estimated that 0.64 Tg C yr-1 as DOC 

and 0.09 Tg C yr-1  as BDOC are exported from rivers to Lake Superior annually.  This 

scaled up estimate is within the range of previously estimated riverine export of C from 

Lake Superior tributaries (0.4 to 0.9 Tg C yr yr-1; Urban et al., 2005).  Furthermore if we 

apply the mean of our annual BDOC estimates (9, 17, 16% BDOC; mean = 14%) 

observed across the three sites to Urban et al.’s [2005] estimate of C export, together 

with the assumption that all Lake Superior tributaries exhibit similar percentages of 

biodegradable C, we estimate that 0.06 to 0.13 Tg C yr-1 is in biodegradable form, which 

is also consistent with the estimate calculated on a percentage watershed basis above.  

Our results suggest that a large amount of C that is exported to Lake Superior is relatively 

labile, and large contributions of labile C can be exported during much of the year, 

particularly during summer stormflow events, late winter, and spring snowmelt.  Given 

the large percentage of C exported by temperate streams globally, our results suggest 

large amounts of this C is likely relatively labile, resulting in pulses of labile DOC 

exported during storm events or during snowmelt, in regions where snowpack occurs. 

 

4.4 Historical loads at Calumet watershed and implications for future export 
Long-term monitoring at Calumet watershed has provided a unique dataset of 

watershed solute export to Lake Superior, and allowed us to compare current 

measurements of DOC and BDOC to historical records to identify whether previous 

export has changed over time.  Historical annual load modeling of C suggested that past 

export of BDOC has not changed over a 26 year period.  When modeling historical 
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BDOC loads we assumed that seasonal patterns of BDOC have remained constant over 

time, but with climate change it is likely that these patterns may vary. Exploration of 

long-term variability within each season individually suggests that there is variability in 

DOC loads within each season that is not apparent on an annual scale.  Stottlemyer and 

Toczdylowski [2006] previously observed a decrease in the amount of snowmelt over 

time at Calumet watershed, and future reductions in the quantity or timing of snowmelt 

may have consequences for stream flow in late summer and fall as water demands from 

evapotranspiration reduce surface water quantity.  If this pattern continues we may expect 

to further observe a reduction in fall DOC loads as was indicated by the long-term record.  

The observed long-term increase in winter and spring DOC loads suggests that the 

winter/spring snowmelt season may be a critical season for biogeochemical change in 

these aquatic systems, which corresponds to a time of peak BDOC export and unique 

DOM composition relative to baseflow.  Our results suggest that any future increase in 

spring DOC export will result in greater annual export of BDOC due to the magnitude of 

DOC export during this season.  Substantial snowpack enables belowground soil 

microbial processing to occur in winter in northern temperate ecosystems, and microbial 

processing ultimately influences the composition of runoff delivered to rivers [e.g. 

Semkin et al., 2002].  Projected future changes in the amount of winter precipitation and 

increases in air temperature may affect the type of precipitation received in winter 

[Wuebbles and Hayhoe, 2004] and potential for soil freeze-thaw cycles [e.g. Henry, 

2008], and any alteration in quantity of snowpack or timing of snowmelt may affect 

seasonal DOC export and annual BDOC export from rivers.   

  

70 



 

Acknowledgements 

Funding for this research was provided by NASA Michigan Space Grant 

Consortium, U.S.D.A. McIntire-Stennis funding received by Michigan Technological 

University, a Research Seed Grant from Michigan Technological University’s Research 

Excellence Fund, the Huron Mountain Wildlife Foundation, and the Michigan Tech 

Ecosystem Science Center.  A.A.C. was also supported with a fellowship from the 

National Science Foundation’s GK-12 Global Watershed program (award DGE-

0841073).  We thank E. Collins, B. Danhoff, K. Heiden, and T. Matthys for assistance in 

the field and lab, and T. Veverica and K. Meingast for assistance with analysis of 

fluorescence characteristics.    

71 



 

References 
Akaike, H. (1973) Maximum likelihood identification Gaussian auto-regressive moving 

average models.  Biometrika, 60, 255-266. 

APHA (2005) Standard methods for the examination of water and wastewater. American 

Public Health Association, American Water Works Association, and Water 

Environment Federation. 

Back, R.C., Hurley, J.P., and Rolfhus, K.R. (2002) Watershed influences on the transport, 

fate, and bioavailability of mercury in Lake Superior: field measurements and 

modeling approaches.  Lakes Reserv Res Manage, 7, 201-206. 

Balcarczyk, K.L., Jones, J.B., Jaffe, R., Maie, N. (2009) Stream dissolved organic matter  

bioavailability and composition in watersheds underlain with discontinuous 

permafrost.  Biogeochemistry, 94, 255-270. 

Benner, R. (2003) Molecular indicators of the bioavailability of dissolved organic matter.  

In: Aquatic ecosytems interactivity of dissolved organic matter. Editors: Findlay S.E., 

and Sinsabaugh R.L. Academic Press, San Diego 

Bernhardt, E.S., Likens, G.E., Hal, R.O., Buso, D.C., Fisher, S.G., Burton, T.M., Meyer, 

J.L., McDowell, W.H., Mayer, M.S., Bowden, W.B., Finslay, S.E.G., Macneale, 

K.H., Stelzer, R.S., and Lowe, W.H.  (2005)  Can’t see the forest for the stream? In-

stream processing and terrestrial nitrogen exports. Bioscience 55(3), 219-230. 

Box, G., and Jenkins, G.M.  (1970) Time series analysis: forecasting and control. Holden-

Day, San Francisco, California 

72 



 

Buffam, I., Galloway, J. N., Blum, L. K., and McGlathery, K. J.  (2001) A 

stormflow/baseflow comparison of dissolved organic matter concentrations and 

bioavailability in an Appalachian stream, Biogeochemistry, 53, 269-306. 

.x 

Bullen, W.H. (1988)  Fisheries management plan for the Salmon Trout River. Marquette 

County, Michigan: Michigan Department of Natural Resources Fisheries Division.  

Technical Report 88 (7). 

Butman, D., and Raymond, P.A. (2011) Significant efflux of carbon dioxide from streams 

and rivers in the United States.  Nat. Geosci., 4, 829-842. 

Coble, A.A., Marcarelli, A.M., and Kane, E.S. (in review) Nutrient limitation of 

dissolved organic carbon mineralization in a Lake Superior tributary, J.Great Lakes 

Res. 

Cryer, J.D., and Chan, K.S. (2008) Time series analysis with applications in R. 2nd 

edition. Springer, New York. 

Fellman, J.B., Spencer, R.G.M., Hernes, P.J., Edwards, R.T., D’Amore, D.V., Hood, E. 

(2010) The impact of glacier runoff on the biodegradability and biochemical 

composition of terrigenous dissolved organic matter in near-shore marine ecosystems.  

Mar. Chem. 121, 112-122, doi: 10.1016/j.marchem.2010.03.009. 

Fellman, J.B., Hood, E., D’Amore, D.V., Edwards, R.T., White, D. (2009a) Seasonal 

changes in the chemical quality and biodegradability of dissolved organic matter 

exported from soils to streams in coastal temperate rainforest watersheds. 

Biogeochemistry, 95, 277-293. doi:10.1007/s10533-009-9336-6. 

73 



 

Fellman, J.B., Hood, E., Edwards, R.T., and D’Amore, D.V.D. (2009b) Changes in the 

concentration, biodegradability, and fluorescent properties of dissolved organic 

matter during stormflows in coastal temperate watershed.  J.Geophys.. Res. 114, 

G01021, doi: 10.1029/2008JG000790. 

Finlay, J., Neff, J., Zimov, S., Davydova, A., and Davydov, S. (2006) Snowmelt 

dominance of dissolved organic carbon in high-latitude watersheds: implications for 

characterization and flux of river DOC.  Geophys. Res. Lett., 33, L10401, 

doi:10.1029/2006GL025754. 

Frazier, S. W., Kaplan, L. A., and Hatcher, P. G. (2005) Molecular characterization of 

biodegradable dissolved organic matter using bioreactors and [12C/13C] 

tetramethylammonium hydroxide thermochemolysis GC-MS. Environ. Sci.Technol., 

39(6), 1479-1491. 

Frost, P. C., et al. (2006) Landscape predictors of stream dissolved organic matter 

concentration and physicochemistry in a Lake Superior river watershed, Aquat. Sci., 

68, 40-51. 

Gergel, S. E., Turner, M. G., and Kratz, T. K. (1999) Dissolved organic carbon as an 

indicator of the scale of watershed influence on lakes and rivers, Ecol. Appl., 9(4), 

1377-1390. 

Gordon, N.D., McMahon, T. A., Finlayson, B.L., Gippel, C. J., and Nathan, R. J.  (2004) 

Stream hydrology: an introduction for ecologists. John Wiley & Sons Ltd.: West 

Sussex, 448 pp. 

74 



 

Groisman, P.Y., Knight, R.W., Karl, T.R., Easterline, D.R., Sun, B., and Lawrimore, J.H. 

(2004) Contemporary changes of the hydrological cycle over the contiguous United 

States: trends derived from in situ observations. J. Hydrometeor., 5: 64-85. 

Hall, R. O. Jr, and Meyer, J. L. (1998) The trophic significance of bacteria in a detritus-

based stream food web. Ecology, 79(6), 1995-2012. 

Henry, H.A.L. (2008) Climate change and soil freezing dynamics: historical trends and 

projected changes.  Clim. Chang., 87, 421-434. 

Holmes, R.M., Aminot, A., Kerouel, R., Hooker, B.A., and Peterson, B.J. (1999) A 

simple and precise method for measuring ammonium in marine and freshwater 

ecosystems. Can.J. Fish. Aquat. Sci., 56, 1801-1808. 

Holmes, R. M., McClelland, J.W., Raymond, P.A., Frazer, B.B., Peterson, B.J., and 

Stieglitz, M. (2008) Lability of DOC transported by Alaskan rivers to the Arctic 

Ocean.  Geophys. Res. Lett. 35, L03402, doi:10.1029/2007GL032837.  

Hyndman, R. J. (2015) forecast: forecasting functions for time series and linear models. 

R package Version 5.8.  Available at http:cran.r-

project.org/web/packages/forecast/index.html 

Jaffe, R., McKnight, D., Maie, N., Cory, R., McDowell, W.H., and Campbell, J.L. (2008) 

Spatial and temporal variations in DOM composition in ecosystems: the importance 

of long-term monitoring of optical properties. J. Geophys. Res., 113, G04032, 

doi:10.1029/2008JG000683. 

Judd, K. E., Likens, G.E., Buso, D.C., and Bailey, A.S. (2011) Minimal response in 

watershed nitrate export to severe soil frost raises questions about nutrient dynamics 

75 



 

in the Hubbard Brook experimental forest.  Biogeochemistry 106, 443-459, doi 

10.1007/s10533-010-9524-4. 

Kaplan, L.A., and Bott, T.L. (1982) Diel fluctuations of DOC generated by algae in a 

piedmont stream. Limnol. Oceangr. 27, 1091-1100. 

Kaplan, L.A. , and Newbold, J.D. (1995) Measurement of streamwater biodegradable 

dissolved organic carbon with a plug-flow bioreactor.  Wat. Res., 29(12), 2696-2706. 

Kendall, K.A., Shanley, J.B., and McDonnell, J.J. (1999) A hydrometric and geochemical 

approach to test the transmissivity feedback hypothesis during snowmelt.  J. Hydrol. 

219, 188-205. 

Larson, J.H., Frost, P.C., Lodge, D.M., and Lamberti, G.A. (2007) Photodegradation of 

dissolved organic matter in forested streams of the northern Great Lakes region.  J. N. 

Am Benthol Soc, 26(3), 416-425. 

Laudon, H., Köhler, S., and Buffam, I. (2004) Seasonal TOC export from seven boreal 

catchments in northern Sweden. Aquat. Sci., 66(2), 223-230. 

Mann, P.J., et al. (2012) Controls on the composition and lability of dissolved organic 

matter in Siberia’s Kolyma River basin.  J. Geophys. Res., 117, G01028, 

doi:10.1029/2011JG001798  

Maranger, R., and Pullen, M.J.  (2003)  Elemental complexation by dissolved organic 

matter in lakes: implications for Fe speciation and the bioavailability of Fe and P.  In: 

Aquatic ecosytems interactivity of dissolved organic matter. Editors: Findlay S.E., 

and Sinsabaugh R.L. Academic Press, San Diego 

Marschner, B., and Kalbitz, K. (2003) Controls of bioavailability and biodegradability of 

dissolved organic matter in soils.  Geoderma 113, 211-235. 

76 



 

McGuire, K. J., J. J. McDonnell, M. Weiler, C. Kendall, B. L. McGlynn, J. M. Welker, 

and J. Seibert.  2005.  The role of topography on catchment-scale water residence 

time.  Water Resour. Res., 41, W05002, doi: 10.1029/2004WR003657. 

McKnight, D.M., Boyer, E.W., Westerhoff, P.K., Doran, P.T., Kulbe, T., and Anderson, 

D.T. (2001) Spectrofluorometric characterization of dissolved organic matter for 

indication of precursor organic material and aromaticity. Limnol. Oceanogr., 46, 38-

48, doi:10.4319/lo.2001.46.1.0038. 

Meybeck, M. (1982) Carbon, nitrogen, and phosphorus transport by World Rivers. 

American J.Sci. 282, 401-450. 

Minor, R., and Stephens, B. (2008) Dissolved organic matter characteristics within the 

Lake Superior watershed.  Org. Geochem., 39, 1489-1501. 

Moran, M.A., and Hodson, R.E. (1990) Bacterial production on humic and nonhumic 

components of dissolved organic carbon.  Limnol. Oceanogr., 35(8), 1744-1756. 

Mortsch, L.D., and Quinn, F.H. (1996) Climate change scenarios for Great Lakes Basin 

ecosystem studies. Limnol. Oceanogr., 41(5), 903-911. 

Olefeldt, D., Teretsky, M.R., and Blodau, C. (2013)  Altered composition and microbial 

versus UV-mediated degradation of dissolved organic matter in boreal soils 

following wildfire.  Ecosystems, 16, 1396-1412. 

Plummer, L.N. and Busenberg, E. (1982)  The solubilities of calcite, aragonite and 

vaterite in CO2-H2O solutions between 0 and 90°C, and an evaluation of the aqueous 

model for the system CaCO3-CO2-H2O.  Geochim. Cosmochim. Ac., 46, 1011-1040, 

doi:10.1016/0016-7037(82)90056-4. 

77 



 

Raymond, P. A., and Saiers, J. E. (2010) Event controlled DOC export from forested 

watersheds.  Biogeochemistry, 100, 197-209, doi: 10.1007/s10533-010-9416-7. 

Runkel, R.  L., Crawford, C. G., and Cohn, T. A. (2004) Load Estimator (LOADEST): A 

FORTRAN program for estimating constituent loads in streams and rivers. US 

Department of the Interior, US Geological Survey.  

Schindler, D.W., Curtis, P.J., Bayley, S.E., Parker, B.R., Beaty, K.G., and Stainton, M.P.  

(1997) Climate-induced changes in the dissolved organic carbon budgets of boreal 

lakes.  Biogeochemistry, 36, 9-28. 

Schmitt, A., Glaser, B., Borken, W., and Matzner, E. (2008) Repeated freeze-thaw cycles 

changed organic matter quality in a temperate forest soil. J. Plant Nutr. Soil Sc., 

171, 707-718, doi: 10.1002/jpln.200700334. 

Semkin, R.G., Hazlett, P.W., Beall, F.D., and Jeffries, D.S. (2002) Development of 

stream water chemistry during spring melt in a northern hardwood forest.  Water 

Air Soil Poll, 2, 37-61. 

Singh, S., Inamdar, I., and Mitchell, M. (2014) Changes in dissolved organic matter 

(DOM) amount and composition along nested headwater stream locations during 

baseflow and stormflow.  Hydrol. Process., doi: 10.1002/hyp/10286. 

Stedmon, C.A., Markager, S., and Bro, R. (2003) Tracing dissolved organic matter in 

aquatic environments using a new approach to fluorescence spectroscopy. Mar. 

Chem., 82, 239-254, doi:10.1016/S0304-4203(03)00072-0. 

Stedmon, C.A., and Bro, R. (2008) Characterizing dissolved organic matter fluorescence 

with parallel factor analysis: a tutorial. Limnol. Oceanogr., 6, 572-579, 

doi:10.4319/lom.2008.6.572. 

78 



 

Stedmon, C.A., and Markager, S. (2005a) Resolving the variability in dissolved organic 

matter fluorescence in a temperate estuary and its catchment using PARAFAC 

analysis. Limnol. Oceanogr, 50, 686-697. 

Stedmon, C. A., and Markager, S. (2005b). Tracing the production and degradation of 

autochthonous fractions of dissolved organic matter by fluorescence analysis.  

Limnol. Oceanogr, 50,1415-1426 

Stottlemyer , R (1987) Snowpack ion accumulation and loss in a Lake Superior Basin 

watershed. Can.J. Fish. Aquat. Sci., 44, 1812-1819 

Stottlemyer, R., and Rutkowski, D.  (1990) Multi-year trends in snowpack ion 

accumulation and loss, Northern Michigan. Water Resour. Res. 26, 721-737. 

Stottlemyer, R., and Toczydlowski, D. (2006) Effect of reduced winter precipitation and 

increased temperature on watershed solute flux, Biogeochemistry, 77, 409-440, doi 

10.1007/s10533-005-1810-1. 

Striegl, R.G., Aiken, G.R., Dornblaser, M.M., Raymond, P.A., Wickland, K.P.  (2005)  A 

decrease in discharge-normalized DOC export by the Yukon River during summer 

through autumn. Geophys. Res. Lett., 32, L21413. 

Striegl, R.G., Kortelainen, P., Chanton, J.P., Wickland, K.P., Bugna, G.C., and Rantakari, 

M. (2001)  Carbon dioxide partial pressure and 13C content of north temperate and 

boreal lakes at spring ice melt.  Limnol.Oceanogr., 46, 941-945, 

doi:10.4319/lo/2001.46.4.0941. 

Taylor, B.W., Keep, C.F., Hall, R.O., Koch, B.J., Tronstad, L.M., Flecker, A.S., and 

Ulseth, A.J. (2007) Improving the fluorometric ammonium method: matrix effects, 

79 



 

background fluorescence, and standard additions. J. N. Am. Benthol.Soc., 26(2), 167-

177. 

Thompson, M. E. (1978), Major ion loadings to Lake Superior, J. Great Lakes Res., 4(3–

4), 361–369, doi:10.1016/S0380-1330(78)72206-9. 

Uchida, T., J. J. McDonnell, and Y. Asano (2006) Functional intercomparison of 

hillslopes and small catchments by examining water source, flowpath and mean 

residence time. J. Hydrol., 327, 627-642. 

Urban, N. R., M. T. Auer, S. A. Green, X. Lu, D. S. Apul, K. D. Powell, and L. Bub 

(2005), Carbon cycling in Lake Superior, J. Geophys. Res., 110, C06S90, 

doi:10.1029/2003JC002230. 

Volk, C.J., Volk, C.B., and Kaplan, L.A. (1997) Chemical composition of biodegradable 

dissolved organic matter in streamwater. Limnol. Oceanogr. 42, 39-44 

Weishaar, J.L., Aiken, G.R., Bergamaschi, B.A., Fram, M.S., and Fujii, R. (2003) 

Evaluation of specific ultraviolet absorbance as an indicator of the chemical 

composition and reactivity of dissolved organic carbon. Environ. Sci.Technol. 37, 

4702-4708, doi:10.1021/es030360x. 

Wickland, K. P., et al. (2012), Biodegradability of dissolved organic carbon in the Yukon 

River and its tributaries: seasonality and importance of inorganic nitrogen, Global 

Biogeochem. Cycles 26, GBOE03, doi:10.1029/2012GB004342. 

Wilson, H. F., and Xenopoulos, M.A. (2008)  Effects of agricultural land use on the 

composition of fluvial dissolved organic matter. Nat. Geosci., 2, 37-41, doi: 

10.1038/ngeo391. 

80 



 

Wise, B. M., Shaver, J.M., Gallagher, N.B., Windig, W., Bro, R., and Koch, R.S.  Manual 

PLS_Toolbox, Version 4.0., Eigenvector Research Inc, Wenatchee, USA, 2006 

Wuebbles, D.J., and Hayhoe, K. (2004) Climate change projections for the United States 

Midwest. Mitig. Adapt. Strategies Glob. Chang., 9, 335-363. 

Yamashita, Y., Kloeppel, B. D., Knoepp, J., Zausen, G.L., and Jaffe´, R.  (2011) Effects 

of watershed history on dissolved organic matter characteristics in headwater streams. 

Ecosystems 14, 110-1122, doi: 10.1007/s10021-011-9469-z. 

Yamashita, Y., Tanoue, E. (2003) Chemical characterization of protein-like fluorophores 

in DOM in relation to aromatic acids. Mar. Chem. 82, 255-271. 

Yamashita, Y., Tanoue, E. (2004) Chemical characteristics of amino acid-containing 

dissolved organic matter in seawater. Org. Geochem., 35, 679-692. 

Zuur, A.F., Leno, E.N., Walker, J.J., Saveliev, A.A., and Smith, G.M. (2009) Mixed 

effects models and extensions in ecology with R. Springer, New York. 

  

81 



 T
ab

le
 3

. S
pe

ct
ra

l c
ha

ra
ct

er
is

tic
s o

f d
is

so
lv

ed
 o

rg
an

ic
 m

at
te

r f
or

 th
e 

si
x 

co
m

po
ne

nt
s i

de
nt

ifi
ed

 b
y 

pa
ra

lle
l f

ac
to

r a
na

ly
si

s 

(P
A

R
A

FA
C

)a  

C
om

po
ne

nt
 

Ex
ci

ta
tio

n 
m

ax
im

a 
(n

m
) 

Em
is

si
on

 
m

ax
im

a 
(n

m
) 

Si
m

ila
r t

o 
co

m
po

ne
nt

s 
id

en
tif

ie
d 

fr
om

 p
re

vi
ou

s 
st

ud
ie

s 

D
es

cr
ip

tio
n 

O
rig

in
 

1 
<2

50
(3

40
) 

45
5 

St
ed

m
on

 a
nd

 M
ar

ka
ge

r, 
20

05
a,

 C
4 

Fu
lv

ic
-li

ke
 fl

uo
ro

ph
or

e 
Te

rr
es

tri
al

/a
ut

oc
ht

h
on

ou
s 

2 
<2

50
 

44
8 

St
ed

m
on

 a
nd

 M
ar

ka
ge

r, 
20

05
a,

 C
1 

H
um

ic
-li

ke
 fl

uo
ro

ph
or

e 
Te

rr
es

tri
al

 

3 
<2

50
(3

10
) 

39
5 

St
ed

m
on

 a
nd

 M
ar

ka
ge

r, 
20

05
a,

 C
3 

H
um

ic
-li

ke
 fl

uo
ro

ph
or

e 
Te

rr
es

tri
al

 

4 
28

2(
38

0)
 

51
4 

O
le

fe
ld

t e
t a

l. 
20

13
, 

co
m

po
ne

nt
 C

x 
Fu

lv
ic

-li
ke

, H
um

ic
-li

ke
, 

H
ig

h 
m

ol
ec

ul
ar

 w
ei

gh
t 

Te
rr

es
tri

al
 

5 
27

7(
39

6)
 

47
7 

St
ed

m
on

 a
nd

 M
ar

ka
ge

r, 
20

05
b,

 C
7 

H
um

ic
-li

ke
 fl

uo
ro

ph
or

e 
 

6 
27

9 
34

4 
St

ed
m

on
 a

nd
 M

ar
ka

ge
r, 

20
05

a,
 C

7 
Tr

yp
to

ph
an

-li
ke

 
flu

or
es

ce
nc

e 
A

ut
oc

ht
ho

no
us

 

a Se
co

nd
ar

y 
ex

ci
ta

tio
n 

m
ax

im
a 

ar
e 

in
 p

ar
en

th
es

es
 

 

 
 

82 



 

Table 4: Partial least squares model performance as a function of the number of latent 
variables. 

Latent 
Variable 

X 
cumulative 
variance 
explained 
(%) 

Y 
cumulative 
variance 
explained 
(%) 

RMSECV 

1 64.01 5.92 14.22 
2 78.53 13.22 14.83 
3 84.69 15.25 15.45 
4 94.20 16.95 15.39 
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Table 5. Linear regressions of biodegradable dissolved organic carbon (BDOC) versus 

DOM characteristicsa 

Variable Equation r2 F p 
C1 ns 0.02 1.52 0.22 
C2 ns 0.01 0.41 0.52 
C3 ns 0.00 0.03 0.86 
C4 ns 0.00 0.21 0.65 
C5 ns 0.01 0.46 0.50 
C6 ns 0.02 1.62 0.21 
DOC ns 0.01 0.52 0.47 
SUVA254 ns 0.01 0.44 0.51 
FI ns 0.00 0.00 0.95 
DOC:DIN ns 0.02 0.63 0.43 

ans indicates linear regression was not significant at p <0 .05 
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Table 6: Watershed area (km2), annual DOC (kg yr-1) and annual BDOC loads (kg yr-1) 

for each river for the period of sampling (July 1 2013-June 30 2014).   

River Watershed 
Area (km2) 

DOC load  
(kg yr-1) 

BDOC load 
(kg yr-1) 

Calumet Watershed 1.76a         4,899 422 
Salmon Trout River 127b     310,100 52,440 
Ontonagon River 3,470c 17,810,000 2,788,000 

aStottlemyer and Toczydlowski 2006 
bBullen 1988 
cThompson 1978 
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Table 7: Structure of the autoregressive integrated moving average (ARIMA) model for 

monthly DOC and BDOC (1988-2014) loads exported from Calumet watersheda.   

Response Model structure Coefficients 

  sar sma intercept 

DOC (0,0,0)(1,0,1)[12] 1.00 

(0.00) 

-0.97 

(0.05) 

323.21 

(106.43) 

BDOC (0,0,0)(1,0,1)[12] 1.00 

(0.00) 

0.99 

(0.01) 

29.91 

(10.49) 

aSAR is the seasonal autoregressive coefficient, SMA is the seasonal moving average 
coefficient 

 
  

86 



 

Table 8: Structure of the autoregressive integrated moving average (ARIMA) model for 
mean seasonal DOC (1988-2014) loads exported from Calumet watersheda.   
 

Season  ma drift 

Spring  (0,1,1) -1.00 (0.12) 7.32 (7.02) 

Summer  (0,1,1) -1.00 (0.16) 1.71 (3.11) 

Fall  (0,1,1) -1.00 (0.13) -2.02 (3.25) 

Winter  (0,1,1) -1.00 (0.16) 0.89 (1.06) 

 
aMA is the moving average coefficient 
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Figure 3. Map of the tributaries of Lake Superior with the location of the three study 
sites indicated.  Tributaries for the United States identified from National Hydrography 
Dataset and tributaries for Canada identified from Ontario Hydro Network. 
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Figure 4. Annual discharge from July 1, 2013- July 31, 2014 for Calumet Watershed, 
Salmon Trout River, and Ontonagon River.  Downward triangles indicate sampling dates. 
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Figure 5. Percent of biodegradable dissolved organic carbon (BDOC) measured in each 
of three rivers: Calumet Watershed, Salmon Trout River, and Ontonagon River on 
sampling dates in 2013-2014.  Error bars represent standard error.  Values below zero 
were replaced with a zero value, although BDOC values were not altered for statistical 
analysis.   
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Figure 6.  Correlation of BDOC among sites with regression line displayed. 
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Figure 7. Property-property plots for the first and third latent variable loadings from the 
partial least squares (PLS) analysis for DOC concentration and DOM characteristics (X 
variables) and BDOC (Y variable). 
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Figure 9.  Time series of monthly loads for the Calumet Watershed from July 1988 
through June 2014 for: a.) dissolved organic carbon (DOC) and b) BDOC. 
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Appendix 
Appendix Table 1. Initial Stream Conditions on Dates of Stream Water Collection for 

Incubation Experimentsa   

Site Date Discharge 
(m3 sec-1) 

Temperature  
(ºC) 

Conductivity 
(mS cm-1) 

pH DO 
(%) 

Calumet 07/02/13 0.005 12.15 0.109 8.35 95.6 
 08/26/13 0.019 18.32 0.121 7.81 95.9 
 10/13/13 0.002 10.87 0.164 8.00 96.2 
 11/14/13 0.008 3.72 0.132 7.89 94.2 
 01/15/14 0.006 0.12 0.134 8.37 88.1 
 02/28/14 0.004 -0.22 0.08 8.80 95.3 
 04/23/14 0.084 1.33 0.07 8.47 99.2 
 04/30/14 0.201 0.97 0.06 8.51 97.6 
 05/13/14 0.131 4.48 0.06 8.58 75.5 
 05/27/14 0.010 12.40 0.09 8.03 96.1 
 07/10/14 0.003 12.54 0.135 8.02 97.2 
Salmon Trout 07/02/13 1.571 13.61 0.148 7.46 95.1 
 08/26/13 1.029  19.65 0.105 8.14 95.2 
 10/13/13 1.081 11.57 0.141 7.77 98.8 
 11/14/13 2.950 2.28 0.124 7.81 93.3 
 01/15/14 0.644 0.35 0.149 8.06 95.2 
 02/28/14 0.817 0.06 0.160 8.41 NA 
 04/23/14 3.751 1.12 0.060 7.93 97.8 
 04/30/14 3.093 1.44 0.054 7.74 99.5 
 05/13/14 3.364 8.18 0.076 8.69 96.5 
 05/27/14 1.947 15.08 0.118 8.46 97.5 
 07/10/14 2.259 16.94 0.135 7.80 97.2 
Ontonagon 07/02/13 21.188 23.38 0.152 8.36 91.2 
 08/26/13 13.473 23.85 0.189 8.13 89.5 
 10/13/13 15.148 12.81 0.159 7.83 92.0 
 11/14/13 43.400 1.28 0.115 8.07 94.7 
 04/23/14 263.056 0.73 0.067 8.2 98.5 
 04/30/14 228.793 2.83 0.071 8.03 97.2 
 05/13/14 205.291 9.74 0.094 8.79 95.8 
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Appendix Table 1. Continued 

Site Date Discharge 
(m3 sec-1) 

Temperature  
(ºC) 

Conductivity 
(mS cm-1) 

pH DO 
(%) 

Ontonagon 05/27/14 56.915 19.2 0.108 8.31 95.0 
 07/10/14 24.305 20.82 0.155 8.14 91.9 

 

aTemperature (Temp.), Conductivity, pH, and Dissolved Oxygen (DO) were measured 

with YSI multiparameter sonde deployed in each river on the date of stream water 

collection.   
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Appendix Table 2. Initial stream chemistry on dates of stream water collection for 
incubation experimentsa  

Site Date NH4
-N 
(μg 
L-1) 

NO3-
N 
(mg 
L-1) 

SRP 
(μg 
L-1) 

Total 
P 

DOC 
(mg 
L-1) 

TDN 
(mg 
L-1) 

SUVA
254  
(L mg-1 
m-1) 

FI 
 

Calumet 7/02/13 4.36 0.30 bdl 12.91 7.42 0.44 3.54 1.18 
 8/26/13 2.16 0.16 bdl 30.40 18.96 0.78 3.33 1.17 
 10/13/13 1.14 bdl bdl 15.82 7.69 0.35 2.61 1.21 
 11/14/13 3.20 bdl 3.20 bdl 8.97 0.43 2.88 1.20 
 1/15/14 15.1

4
0.17 bdl bdl 6.72 0.42 2.57 1.22 

 2/28/14 22.0
9

0.15 bdl 15.82 5.63 0.42 2.94 1.22 
 4/23/14 bdl 0.13 bdl 12.81 9.60 0.68 3.06 1.18 
 4/30/14 2.66 0.11 3.20 bdl 9.43 0.51 3.45 1.16 
 5/13/14 bdl bdl bdl 18.27 9.09 0.42 3.21 1.14 
 5/27/14 0.20 bdl bdl bdl 8.76 0.41 2.85 1.18 
 7/10/14 bdl bdl bdl 12.81 6.61 0.40 3.11 1.21 
Salmon 7/02/13 17.5

1
bdl bdl bdl 4.45 0.37 3.45 1.17 

Trout 8/26/13 1.15 0.17 bdl 15.82 9.54 0.58 3.38 1.17 
 10/13/13 4.30 bdl bdl bdl 4.76 0.28 2.91 1.20 
 11/14/13 3.66 bdl bdl 12.91 6.56 0.36 3.09 1.19 
 1/15/14 bdl 0.15 bdl 21.65 3.91 0.45 2.07 1.21 
 2/28/14 7.51 0.14 bdl 21.65 2.73 0.3 2.61 1.20 
 4/23/14 13.8

1
0.12 bdl bdl 11.14 0.65 3.58 1.14 

 4/30/14 2.26 0.10 bdl 15.54 10.71 0.5 2.83 1.14 
 5/13/14 bdl bdl bdl 26.46 9.77 0.48 2.67 1.14

8 5/27/14 bdl bdl bdl 16.54 6.98 0.43 2.97 1.14
7 7/10/14 4.16 bdl bdl 18.27 4.90 0.47 3.49 1.18
4Ontonagon 7/02/13 24.0

5
0.31 9.70 24.57 13.39 0.87 3.91 1.15 

 8/26/13 2.04  bdl 3.20 18.74 7.85 0.42 2.53 1.17 
 10/13/13 22.5

0
bdl 4.26 33.32 11.16 0.57 3.19 1.20 

 11/14/13 40.8
3

0.10 3.20 39.15 16.16 0.92 3.35 1.15 
 4/23/14 19.9

3
0.11 4.78 26.46 11.82 0.74 3.45 1.14 

 4/30/14 9.45 0.11 bdl 26.46 11.43 0.75 3.76 1.13 
 5/13/14 9.46 bdl 3.20 34.64 14.85 0.78 3.81 1.13 
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Appendix Table 2. Continued 

Site Date NH4
-N 
(μg 
L-1) 

NO3-
N 
(mg 
L-1) 

SRP 
(μg 
L-1) 

Total 
P 

DOC 
(mg 
L-1) 

TDN 
(mg 
L-1) 

SUVA
254  
(L mg-1 
m-1) 

FI 
 

Ontonagon 5/27/14 bdl bdl bdl 21.00 14.03 0.61 3.26 1.14 
 7/10/14 bdl bdl bdl 18.27 9.27 0.51 3.53 1.16 

aammonium (NH4-N), nitrate (NO3-N), soluble reactive phosphate (SRP), total 
phosphate (total P), dissolved organic carbon (DOC), specific ultra-violet absorbance at 
254 nm (SUVA254), fluorescence index (FI). 
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Appendix Table 3.  Dissolved organic carbon (DOC), total dissolved nitrogen (TDN), 
and specific ultra-violet absorbance at 254 nm (SUVA254) for regional streams measured 
in summer and spring. 

Site Season Date DOC  
(mg L-1) 

TDN  
(mg L-1) 

SUVA254  
(L mg-1 m-1)

FI 

Black Creek Summer 8/13/13 7.25 0.30 3.29 1.22 
Gratiot River Summer 8/16/13 6.54 0.34 3.58 1.21 
Hills Creek Summer 8/15/13 6.07 0.33 3.18 1.22 
Little Garlic River Summer 7/14/13 5.10 0.30 3.33 1.23 
Big Pup Creek Summer 7/12/13 2.00 0.33 3.07 1.23 
East Branch Huron Summer 7/11/13 9.30 0.44 3.90 1.17 
Little Huron Summer 7/15/13 4.30 0.33 3.89 1.19 
Pine River Summer 7/26/13 5.89 0.21 3.46 1.17 
Mountain Stream Summer 7/27/13 5.94 0.25 3.18 1.15 
Ash Spring 4/26/14 11.03 0.36 4.50 1.13 
Mud Spring 4/26/14 11.23 0.36 4.50 1.12 
Big Cranberry Spring 4/26/14 8.87 0.33 4.89 1.15 
Big Iron Spring 4/26/14 11.48 0.49 4.61 1.13 
Dreiss Spring 4/26/14 10.47 0.44 4.45 1.16 
Duck Spring 4/26/14 8.96 0.37 4.46 1.12 
Flintsteel Spring 4/26/14 9.09 0.36 4.27 1.17 
Floodwood Spring 4/26/14 9.57 0.38 4.33 1.15 
Halfway Spring 4/26/14 8.38 0.43 4.53 1.15 
Little Cranberry Spring 4/26/14 9.00 0.45 4.31 1.15 
Little Iron Spring 4/26/14 9.76 0.38 4.51 1.14 
Mineral Spring 4/26/14 8.29 0.39 4.17 1.15 
Pine Creek Spring 4/26/14 9.21 0.50 4.14 1.14 
Potato Spring 4/26/14 9.00 0.47 4.28 1.14 
Townline Spring 4/26/14 9.27 0.38 4.29 1.14 
Union Spring 4/26/14 8.15 0.36 4.38 1.12 
Weigel Spring 4/26/14 10.17 0.42 4.34 1.15 
Gratiot Spring 5/2/14 8.36 0.43 3.87 1.15 
Jacob’s Creek Spring 5/2/14 6.46 0.63 3.80 1.17 
Montreal River Spring 5/2/14 8.55 0.44 3.92 1.15 
Mud Lake Creek Spring 5/2/14 19.52 0.49 4.32 1.14 
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Appendix Table 3. Continued. 

Site Season Date DOC  
(mg L-1) 

TDN  
(mg L-1) 

SUVA254  
(L mg-1 m-1)

FI 

Silver River Spring 5/2/14 7.74 0.34 3.48 1.15 
Tobacco River Spring 5/2/14 13.86 0.52 4.20 1.14 
Traverse River Spring 5/2/14 15.88 0.46 4.30 1.11 
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Abstract 
It is widely acknowledged that cycling of nitrogen (N) and carbon (C) are tightly coupled 

in streams, yet it is unclear how dissolved organic matter (DOM) composition may alter 

nutrient uptake. The goal of this study was to determine how DOM composition and 

other watershed characteristics interacted to influence rates of ammonium (NH4), soluble 

reactive phosphate (SRP), and dissolved organic carbon (DOC) uptake across 11 Lake 

Superior tributaries.  Nutrient uptake velocities ranged from non-detectable to 11.7 mm 

min-1 for NH4, non-detectable to 7.2 mm min-1 for SRP, and non-detectable to 3.1 mm 

min-1 for DOC.  Multiple linear regression models revealed that fluorescence index (FI), 

NH4 concentration, and canopy cover explained 69% of the variability in NH4 uptake 

velocities (Vf), and DOC concentration explained 90% of the variability in SRP Vf.  

Multivariate analysis further identified FI as an important predictor of NH4 Vf across 

these rivers, with increasing composition of terrestrially-derived DOM resulting in NH4 

being taken up more quickly. Our results suggest that DOM composition along with DOC 

concentration may be important, yet often overlooked, predictors of NH4 and SRP uptake 

in streams.  Moreover, our estimates of nutrient uptake lengths suggest that DOC and 

SRP are likely exported from our study streams to Lake Superior without measureable 

uptake, potentially supplying important nutrient and energy sources to the near-shore 

region.   
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Introduction 
 In aquatic ecosystems dissolved organic matter (DOM) exerts a strong influence 

on physical, chemical, and biological characteristics, all of which play an integral role in 

biogeochemical cycling (Maranger and Pullin 2003, Prairie 2008, Webster et al. 2008).  

For example, DOM can bind trace elements, affect water transparency, alter rates of 

metabolism, and undergo photodegradation and microbial processing.  DOM is 

comprised of a complex mixture of organic acids and molecules and these components 

originate from a variety of organic matter pools, each of which can undergo 

biogeochemical transformations, further contributing to the complexity of DOM found 

within aquatic ecosystems (Thurman 1985, McKnight et al. 2003).  

 Watershed characteristics can also contribute to variability in river DOM 

concentration and character (Gergel et al. 1999, Frost et al. 2006, Yamashita et al. 2011).  

For example, Frost et al. (2006) found that DOM concentration was related to watershed 

morphology, landcover, and wetland type, but DOM physicochemical properties (e.g. 

molecular weight, spectral indices) were related to lake and wetland area.  In another 

study, land cover and nutrient concentrations were more strongly related to DOC 

concentration than DOM composition, further supporting the concept that watershed 

characteristics may influence DOM concentration and composition differently (Larson et 

al. 2014).  Clearly, watershed characteristics serve an important role in determining DOC 

concentration and composition in aquatic ecosystems.   

 Uptake and cycling of C and N are tightly coupled in small streams (Bernhardt 

and Likens 2002, Sobczak et al. 2003), yet studies do not typically consider DOM 

composition as a potential predictor of variability in nutrient uptake rates.  Additions of 
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labile C to a small temperate stream in the eastern U.S.A. resulted in shortened uptake 

lengths of both ammonium (NH4) and nitrate (NO3), suggesting that an increase in 

bioavailable C increases demand for inorganic N (Bernhardt and Likens 2002).   

Furthermore, an experimental laboratory incubation of stream water with amendments of 

NH4 and labile C revealed C mineralization rates were limited by NH4 or co-limited by 

NH4 and labile C during much of the year (Coble et al., in review).  Given the tight 

reciprocal coupling of C and N in streams, and the potential role of C quantity and quality 

in controlling N uptake, simultaneous measurements of both DOM composition and 

nutrient uptake metrics could, collectively, provide insight into mechanisms responsible 

for spatial variability in nutrient uptake among watersheds.   

  Variability in biological, physical, & chemical characteristics among streams can 

directly or indirectly affect nutrient cycling.  Previous studies of in-stream nutrient uptake 

of N and P have found that processing rates are influenced by a variety of characteristics 

in and among watersheds including: stream size (Peterson et al. 2001), riparian vegetation 

(Sabater et al. 2000), climate variability (Mulholland 1992), autotrophic activity (Hall 

and Tank 2003), and nutrient inputs (point source or eutrophication; Alexander et al. 

2000; Marti et al. 2004).   Furthermore, variability in biological, physical, and chemical 

characteristics could indirectly affect nutrient cycling through alteration of DOM 

concentration and composition.  Existing variability in biological, physical, and chemical 

characteristics within watersheds likely contributes to variability in DOM composition, 

in-stream nutrient uptake, and ultimately the quality and form of elements exported to 

downstream rivers, lakes, and oceans. 
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 What is the role of DOM composition and other watershed characteristics in 

controlling among-stream variability in nutrient uptake rates?  Here, we applied short-

term nutrient releases of N, P, and C to streams and characterized DOM composition to 

determine whether variability in DOM composition or other biological, physical and 

chemical characteristics are related to nutrient uptake in forested tributary streams of 

Lake Superior.  In this study we address two overarching hypotheses: 1) watershed 

characteristics (defined as: watershed area, wetland percent, and discharge) influence 

variability in physical, chemical, and biological characteristics; and 2) physical, chemical, 

and biological characteristics (defined as: NH4, SRP, DOC, TDN concentrations, benthic 

chlorophyll a, percent canopy cover, stream water temperature, and pH) and DOM 

character will influence nutrient uptake velocities.    

 

Methods 
Study sites All study sites were located along the south shore of Lake Superior in 

Michigan’s Upper Peninsula (Figure 11).  We selected small to mid-size tributaries 

situated near the shoreline of Lake Superior exhibiting a range in watershed area from 1.7 

to 124.2 km2 (Table 9) and where some previous measurements of riverine characteristics 

(e.g., discharge) have been conducted.  Bedrock among these sites consists of 

Precambrian sedimentary and volcanic formations (Table 9) and overstory vegetation is 

predominately comprised of northern hardwood forests.  Mean annual precipitation 

(1983-2013) in the region is ~80 cm (National Atmospheric Deposition Program 

(NADP), station MI99, Chassell Michigan, available from: 
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http://nadp.sws.uiuc.edu/data/) with up to 50% of annual precipitation received as snow 

(Stottlemyer 1997).    

Watershed characteristics and stream chemistry Watershed characteristics across the 

study sites varied in watershed area (2 to 124 km2), wetland percent (1 to 30%), and 

riverine distance to Lake Superior (0.2 to 22.6 km; Table 9).  Background NH4 

concentrations were relatively low across the study sites, and exceeded 10 μg L-1 at only 

two of the study sites (Little Huron and Salmon Trout; see Appendix Table 4).  

Background SRP concentrations were also low across all sites (below 4.2 μg L-1) and 

background DOC concentrations ranged from 2.0 to 9.3 mg L-1 (see Appendix Table 4).  

Additional biological, physical, and chemical stream characteristics are reported in the 

Web Appendix (see Appendix: Tables 4 and 5).   

Nutrient uptake measurements We quantified whole-stream uptake of NH4, soluble 

reactive phosphate (SRP), and DOC using nutrient spiraling techniques (Stream Solute 

Workshop 1990).  Nutrient injections were conducted at six study sites in July 2012 and 

at eleven study sites in July or August 2013.  Five additional sites were added in 2013 to 

increase the spatial distribution of our sampling.  Reaches with little to no tributary inputs 

were selected to target a travel time of 40 minutes to one hour; reaches ranged in length 

from 200 to 1000 m.  At all sites we conducted a short-term release of both NH4 and PO4 

(added together) by pumping a solution of nutrients as NH4Cl and KH2PO4 and a 

conservative tracer (rhodamine WT) continuously into the stream at a constant rate of 

100 mL/min.  In a subset of 6 streams (Calumet, Big Pup, Little Huron, Little Garlic, E. 

Branch Huron, Salmon Trout), we conducted a second addition of C (C12H22O11) and a 

conservative tracer (rhodamine WT) at least one hour (and in some cases more than one 
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day) after the conclusion of the NH4 and PO4 injection. Our measurements of C uptake 

were limited by stream size and analytical ability to detect small differences in DOC 

concentrations. We targeted an increase in background nutrient concentrations of 12 μg 

L-1 for NH4 and PO4, 5 mg L-1 for DOC, and 7 μg L-1 for rhodamine WT; because we did 

not have background nutrient information prior to conducting injections for some study 

sites, this resulted in enrichment factors (enrichment/background concentrations) ranging 

from 1.4 to 5.9 for NH4, 1.6 to 6.6 for SRP, and 1.2 to 2.8 for DOC.  We only attempted 

to measure DOC uptake at the Salmon Trout River in 2012 because we were unable to 

achieve the desired 5 mg L-1 increase in DOC concentration due to its large size.   

 Within each study reach, seven or more sampling locations were established 

downstream of the site of the nutrient addition where replicate samples of filtered water 

(0.45 μm) were collected for analysis of background concentrations of N, P, and C prior 

to the addition of nutrients.  We then initiated the addition and after the conservative 

tracer reached a plateau concentration at the downstream end of the reach (~40 minutes to 

1 hour), we again collected replicate samples from all sampling locations.  Additional 

water samples were collected from above the nutrient addition site to confirm that 

background conditions did not change during the nutrient addition.   

To determine nutrient uptake lengths (Sw), background-corrected nutrient 

concentrations (plateau minus background concentration) were normalized for the 

conservative tracer concentrations and the natural log of these values were plotted against 

distance from the nutrient addition site (Stream Solute Workshop 1990).  If the linear 

regression was significant (Į = 0.10), Sw was then calculated as the inverse slope of the 

regression line (Stream Solute Workshop 1990) using the slope of the line (kw):  
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ܵ௪ = 1݇௪ 

From Sw we calculated uptake velocity (Vf; ): 

௙ܸ = × ݑ)  ௪ܵ(ݖ  

where u = velocity, z = depth. 

We used Sw to assess how far a nutrient travels before it is taken up in relation to 

the total stream distance prior to entering Lake Superior.  Because Sw is highly influenced 

by discharge (Davis and Minshall 1999; Hall et al. 2002), we used Vf to compare nutrient 

uptake among sites and years with varying discharge.   

Dissolved organic matter character  For determination of DOM character filtered (0.45 

μm) water samples were collected on the dates of each nutrient injection and stored in a 

refrigerator (1.6°C) until analyzed.  As an indicator of C aromaticity, ultraviolet (UV) 

absorbance at 254 nm was determined on room temperature background water samples 

from all nutrient injections using a Thermo Scientific 10s UV-Vis spectrophotometer, and 

used to calculate specific ultraviolet absorbance (SUVA254), defined as the UV 

absorbance at 254 nm wavelength divided by the DOC concentration (Weishaar et al. 

2003).   

To characterize the chemical composition of DOC we determined fluorescence 

excitation-emission fluorescence matrices (EEM) with a Jobin-Yvon Horiba Fluoromax-

3TM fluorometer in 2013 only (Jobin Yvon Horiba, France).  EEMs were collected on 

room-temperature water samples every 3 nm over excitation wavelength intervals 

between 240 and 600 nm, and every 3.28 nm over emission wavelength intervals between 

212 and 620 nm.  Fluorescence spectra were corrected for the inner filter effect, and a 
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Raman normalized Milli-Q water sample was removed from each fluorescence spectrum.   

Fluorescence index (FI), which can be used to distinguish sources of aquatic and fulvic 

acids, was defined as the ratio of the emission intensity at 450 nm to 550 nm acquired 

with an excitation of 370 nm (McKnight et al. 2001), and was identified from corrected 

sample EEMs.   

Parallel factor analysis (PARAFAC) was used to further identify fluorescing 

components detected using EEMs (Stedmon et al. 2003, Cory and McKnight 2005), and 

was completed using the PLS-toolbox for Matlab (Eigenvector Research Inc.).  In 

addition to samples from this study we used a variety of samples (n = 374) to develop a 

robust PARAFAC model (e.g., Stedmon and Bro 2008).  Samples were comprised 

primarily of regional river samples, but also included samples from Lake Superior’s near 

shore region, soil lysimeter samples, and precipitation samples collected within one of the 

study watersheds.  The PARAFAC model was validated with split-half analysis and by 

examining residuals (Stedmon et al. 2003, Stedmon and Bro 2008).  This analysis of the 

fluorescence spectra identified six components, and split-half analysis identified 92.5% 

similarity among splits.  Each of these six components (C1 to C6) has been previously 

described for aquatic systems (Table 10).  C1 was identified as a fulvic-like peak, C2, C3, 

and C5 were identified as humic-like peaks, C4 was identified as containing both fulvic-

like and humic-like peaks, and C6 was identified as the protein-like component 

tryptophan (Table 10).  C6 was the only autochthonous-derived component identified.  

Hereafter, reference to these six components will be expressed as a percentage of all 

fluorescent DOM. 
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Watershed characteristics To identify variability in watershed characteristics among 

our study sites, we used ESRI Arc Geographic Information System (GIS) Desktop, 

Version 10.1.  Geospatial datasets were downloaded from the U.S. Geological Survey: 

the National Elevation Dataset (NED, http://ned.usgs.gov), the National Hydrography 

Dataset (NHD, http://nhd.usgs.gov), and the National Land Cover Dataset (NLCD, 

http://www.mrlc.gov).  Wetlands polygons from the National Wetlands Inventory (NWI) 

were acquired from U.S. Fish and Wildlife Service (U.S. Fish and Wildlife Service, 

Division of Habitat and Resource Conservation, September 26, 2011, Washington D.C., 

http://www.fws.gov/wetlands/) 

 To delineate boundaries and calculate areas of watersheds for each study site, we 

used the Hydrology toolset found in Arc Toolbox under spatial analysis tools.  We used 

sample points determined with Global Positioning System (GPS) at the downstream end 

of our sampling reach and the NED data to delineate the individual watersheds for each 

of our sample locations.  Therefore, watershed area includes only the area above our 

sampling locations.  Watershed boundaries were used to clip the NWI data to determine 

the percent total wetland area within each watershed.  The length of the polyline in the 

NHD drainage networks was used to determine the distance from our study sites to Lake 

Superior.  The NHD drainage networks did not include two of our study streams 

(Calumet watershed and Black Creek), thus we used flow accumulation data layers, 

which were derived from the NED and were created as part of the watershed delineation, 

to determine the distance from our study reach to Lake Superior.   

Reach-level chemical, physical, and biological characteristics To identify potential 

factors that may affect variability in nutrient uptake and DOM character among sites we 
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also measured discharge, canopy cover, water temperature, background nutrient 

concentrations, and periphyton biomass on each sampling date.  Discharge was 

determined by measuring velocity along a transect within the nutrient uptake reach using 

a Flomate flow meter and wading rod.  At Calumet watershed, discharge is continuously 

monitored using a Parshall flume equipped with a Li-Cor datalogger (Li-Cor, Lincoln, 

Nebraska) and Stevens pressure transducer (Stevens Water Monitoring Systems Inc., 

Portland Oregon; Stottlemyer and Toczdylowki 2006), and an established stage-discharge 

relationship allowed for on-site determination of discharge on each sampling date. We 

measured canopy cover as a proxy for light availability at �7 locations along each stream 

reach using a densiometer.  A YSI multiparameter sonde that measured water 

temperature, dissolved oxygen, turbidity, conductivity, and pH at one minute intervals 

was deployed upon arrival at the downstream end of the reach.  Background nutrient 

concentrations of NH4, SRP, and DOC were collected as part of nutrient uptake 

measurements and analyzed as described below. 

To determine periphyton biomass as chlorophyll a, we collected samples at each 

of the water sampling locations (�7) at each stream. Chlorophyll a provides an estimate 

of algal biomass and can be used to differentiate algal biomass from other organic 

materials (Steinman et al. 2007).  On the date of each nutrient injection we collected 

samples of the dominant substrate as either rocks or fine sediment at each sampling 

location.  We collected the top 1 cm of sediment using a 2 cm diameter core.  Rocks were 

scrubbed into approximately 150 mL of water and a subsample of the resulting slurry was 

filtered through pre-ashed GF/F filters.  The filters were kept frozen until laboratory 

analysis.  Periphyton chlorophyll a was analyzed using the spectrophotometric method 
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(APHA 2005, Nusch 1980). After analysis, the planar rock shape was traced and weighed 

to determine the surface area of the rocks (Bergey and Getty 2006).    

 Ammonium was analyzed on the day of sample collection using a fluorometric 

method (Holmes et al. 1999, adapted by Taylor et al. 2007) and analyzed with either an 

Aquafluor handheld fluorometer  or a Turner Trilogy fluorometer (Turner Designs, 

Sunnyvale, California).  All SRP samples were frozen until laboratory analysis using the 

ascorbic acid method (APHA 2005) and analyzed on a Thermo Scientific Gensys10s UV-

Vis spectrophotometer.  DOC samples were kept cool (4 °C) until laboratory analysis, 

when they were acidified with hydrochloric acid for quantification of DOC and total 

dissolved N (TDN) concentrations using a TOC-5000A analyzer (Shimadzu Scientific 

Instruments, Columbia Maryland).  Rhodamine WT concentrations were analyzed with 

an Aquafluor handheld fluorometer (Turner Designs, Sunnyvale, California)  within five 

hours of collection.  To characterize additional stream water chemistry at each site we 

also analyzed fluoride (F-), chloride (Cl-), nitrite (NO2
-), bromide (Br-), nitrate (NO3

-), 

phosphate (PO4
3-), and sulfate (SO4

2-) on a Dionex Ion Chromatograph and total 

phosphorus by performing an ammonium persulfate digestion method followed by the 

ascorbic acid method (APHA 2005).  When nutrient concentrations were below our 

detection limit they were replaced with a value of ½ the detection limit for inclusion in 

models, and are reported as such in Appendix Table 4.   

Statistical analyses We used a principal components analysis (PCA) to examine 

relationships among watersheds and DOC characteristics.  DOC characteristics included 

in this analysis were: the six fluorescence components identified by PARAFAC (C1-C6; 

expressed as a percentage of fluorescent DOM), DOC concentration, SUVA254, and FI.  
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To further identify how DOC or watershed characteristics or chemical, physical, 

and biological variables perform as predictors of nutrient uptake we used partial least 

squares (PLS) with uptake velocity as the response variable and the following as 

predictor variables: watershed area, stream temperature, discharge, percent wetland area, 

canopy cover percent, conductivity, dissolved oxygen, pH, benthic chlorophyll a, TDN, 

NH4, SRP, DOC, FI, SUVA254, C1, C2, C3, C4, C5, and C6.  PLS is a multivariate 

approach where variance in the predictors is used to explain variance in the response, and 

which is less sensitive than multiple regression to correlation among predictor variables 

and deviations from normality.  Within a PLS biplot, the location of the variables 

indicates the correlation structure such that variables situated near each other are 

positively correlated, variables situated opposite each other are negatively correlated, and 

variables situated near the origin have very little influence on the overall model.  Any 

variable situated a greater distance from the origin has a greater overall influence on the 

model (Kothawala et al. 2014). The importance of a variable on the overall model was 

determined by the variable importance on the prediction (VIP) scores.  VIP scores �2 

were considered highly influential, between 1 and 2 as moderately influential, and <1 as 

less influential.  Because SRP and DOC Vf was not detectable at the majority of the sites 

sampled (see results below), we were only able to conduct this analysis with NH4 Vf.  

Two sites (Little Huron and the Salmon Trout) without significant NH4 uptake were 

excluded.  For both PCA and PLS analysis we identified outliers as samples exceeding 

the 95% confidence limit in the Hotelling’s T2 analysis.  Internal cross validation was 

performed to test the repeatability of the analysis and validate the model.  PCA and PLS 
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analyses were performed using MATLAB (MATLAB®) with the PLS Toolbox 

(Eigenvector Research Inc.).   

Multiple linear regression was also used to determine whether biological, 

chemical, or physical variables were significant predictors of uptake velocity of NH4 or 

SRP.  Given the lack of significant uptake of DOC amongst many of our study sites we 

did not model predictors of DOC Vf.  We expected watershed characteristics (watershed 

area, percent wetland area, and discharge) to affect physical (temperature, light) and 

chemical characteristics (nutrient concentrations, DOM character), which in turn affect 

nutrient uptake.  Therefore, we excluded watershed characteristics which were highly 

correlated with other parameters from this modeling approach to isolate the effects of 

physical, chemical, and biological parameters on nutrient uptake velocity. Additionally 

some physical, chemical, and biological parameters were excluded due to correlations 

with other parameters.  We measured or calculated the following variables for inclusion 

in regression models as potential predictors of nutrient uptake velocity (Vf): fluorescence 

index, SUVA254, canopy cover, stream water temperature, benthic chlorophyll a, pH, and 

concentrations of DOC, NH4, SRP, and TDN.  One covariate, pH, was removed prior to 

model selection because it was significantly correlated (p > 0.05) with SUVA254.  Due to 

our limited sample size, we a priori limited models to a maximum of three predictors for 

NH4 Vf and one predictor for SRP Vf. Additionally, we only constructed regression 

models for 2013 because all streams were sampled and DOM characteristics were 

quantified in 2013 only.  Only sites with significant uptake were included in this 

modeling approach, resulting in two sites excluded from the NH4 model and 7 sites 

excluded from the SRP model.  Akaike’s information criteria (AIC) were used to evaluate 
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models.  We identified the best model(s) based on the smallest AIC and we only 

considered models greater than two AIC units from the null model (Burnham and 

Anderson 2002).   

 

Results 
Nutrient uptake metrics  Across our study sites, NH4 Vf ranged from non-detectable to 

11.7 mm min-1 in 2013 and from non-detectable to 5.7 mm min-1 in 2012.We observed 

significant uptake of NH4 at all of our study sites on at least one date except Little Huron 

(Fig. 12).  There were similarities in NH4 Vf among years (Fig. 12).  For example, the 

East Branch of the Huron had the fastest Vf measured among study sites in both years, 

while there was no significant uptake of NH4 in the Little Huron in either year.  The 

Salmon Trout was the only site where uptake of NH4 was observed in 2012, but not 2013 

(Fig. 12).  Additional parameters of nutrient uptake can be found in Appendix Table 6.   

 Across sites, SRP Vf ranged from non-detectable to 7.2 mm min-1 in 2012 and 

from non-detectable to 1.2 mm min-1 in 2013.  Significant uptake of SRP was observed at 

three sites in 2012 and four sites in 2013, but only one of these sites, Big Pup Creek, had 

significant uptake of SRP in both years (Fig. 12).  Two sites with significant uptake of 

SRP, Black Creek and Hills Creek, were studied in 2013 only (Fig. 12).  The observed 

SRP uptake velocities were 1.5 to 6x greater in 2012 than in 2013, and at Big Pup SRP Vf 

was 11x greater in 2012 than in 2013.   

 Across sites and years, DOC Vf ranged from non-detectable to 3.1 mm min-1, with 

a single measurement of 0.6 mm min-1 in 2012 and a range from 2.4 to 3.1 mm min-1 in 

2013.We observed significant uptake of DOC at only one of the six sites in 2012 and two 
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of the five sites in 2013.  Significant uptake of NH4, SRP, and DOC only occurred at one 

site, Big Pup Creek, and this occurred in both years.  Additional parameters of nutrient 

uptake can be found in Appendix Table 7.    

DOM characteristics  Quantifiable differences in SUVA254, FI, and fluorescing 

components identified by PARAFAC indicate variability in DOC chemical 

characteristics among sites.  SUVA254, an indicator of C aromaticity, ranged from 2.43 to 

3.75 L mg-1 m-1 across study sites in 2012 and from 3.07 to 3.90 L mg-1 m-1 in 2013 (see 

Appendix: Table 5).  In both 2012 and 2013 the lowest SUVA254 values were observed at 

Big Pup and the greatest SUVA254 values were observed at East Branch of the Huron (see 

Appendix: Table 5).  Fluorescence index (FI) ranged from 1.15 to 1.23 among sites in 

2013; FI values below 1.2 are characteristic of terrestrially derived fulvic acids and FI 

values above 1.7 are characteristic of microbially-derived fulvic acids (McKnight et al. 

2001).  Although the observed values are tightly constrained and indicative of 

terrestrially derived fulvic acids, there is a trend of decreasing fluorescence index with 

increasing stream size (F(1,9) = 7.8, p = 0.02, r2
adj = 0.40; Fig. 13). 

The PCA model of DOM characteristics identified four principal components that 

collectively explained 97% of the variability in the model.  DOM characteristics 

explained most of the variability along the first principal component axis, which 

explained 63.4% of the variability in the model: C1 (fulvic-like), C4 (fulvic and humic-

like), and C5 (humic-like) all had strong positive loadings while C2 (humic-like), C3 

(humic-like), and C6 (tryptophan-like) all had strong negative loadings (Table 11).  

Separation along the first axis generally corresponded to components with longer 

emission wavelengths positioned on the right (C1, C4, C5) and components with shorter 
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emission wavelengths positioned on the left (C3, C2, C6; Fig. 14).  The exception to this 

was that C1 and C2, which were located on opposing ends of PC 1, had similar, mid-

range emission wavelengths.  The second principal component explained 18.5% of the 

variability in the model, with fluorescence index with positive loadings and DOC 

concentration and SUVA254 with strong negative loading (Table 11).  The third and 

fourth principal components explained 9% of the variability in the model with positive 

DOC loadings and 6% of the variability in the model with positive SUVA254 loadings 

(Table 11). 

 Three rivers with larger watershed areas (Mountain, Pine, and Salmon Trout) 

were located primarily in the lower left hand quadrant of the PCA, indicating greater 

percentages of C3 (humic-like), C2 (humic-like), C6 (tryptophan-like) DOM components 

and greater DOC concentration and SUVA254 compared to other sites (Fig. 4).  However, 

the second largest river, the Salmon Trout River, was located near the origin, and 

therefore less influenced by the DOM composition characteristics (C3, C3, and C6) than 

the other two sites.  The third largest river, East Branch of the Huron, was located in the 

lower right quadrant, indicating high concentrations of DOC and SUVA254, but in 

contrast to the other large rivers DOM displayed greater C1 (fulvic-like), C4 (fulvic and 

humic-like), and C5 (humic-like).  The smallest river, Calumet, was also in this quadrant, 

with DOM with high C1, C4, and C5.  Most other sites (Little Garlic, Black, Gratiot, and 

Little Huron) displayed moderately positive loadings along the PC1 axis.  One other site, 

Big Pup Creek, was found to have slightly negative loadings along the PC1 axis.  This 

site also revealed the greatest positive loadings along the PC2 axis, indicating greater FI 

(Fig. 14).  
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Predictors of nutrient uptake velocity  The PLS model provided information about 

potential factors driving NH4 Vf and identified 4 latent variables (LV), which collectively 

explained 95.5% of the variance in NH4 Vf (R2Y = 0.955) and 80.9% of the variance in 

the predictor variables (R2X = 0.809).  Here, we report the two LVs that explained the 

most variability.  The first latent variable axis (LV1) explained ~28% of the variability in 

the X variables and 79.8% of the variability in the Y variable (NH4 Vf).  LV1 was a 

function of watershed characteristics; discharge, watershed area, and water temperature 

were all tightly clustered with positive loadings, and FI, dissolved oxygen, and C5 had 

strong negative loadings (Fig. 15a). The second latent variable axis explained ~34% of 

the variability in the X variables and 8.6% of the variability in the Y variable.  Along the 

LV2 axis TDN, DOC, C1, and C4 all had positive loadings, and C2 and C6 had negative 

loadings (Fig. 15a).   

PLS analysis identified discharge, watershed area, and FI as highly influential 

predictors of NH4 Vf. Conductivity, dissolved oxygen, SUVA, temperature, SRP, and 

chlorophyll a were identified as moderately influential predictors, while all other factors 

were less influential predictors of NH4 Vf (Fig. 15a).  Positioning within the biplot 

suggests discharge and watershed area were positively correlated with NH4 Vf and FI was 

negatively correlated with NH4 Vf (Fig. 15).  FI was also situated near conductivity 

indicating a strong positive correlation between these variables.  Also apparent from the 

biplot of the PLS model is that watershed area and correlated variables (discharge and 

stream water temperature) were situated opposite of FI, indicating a strong negative 

correlation among these predictor variables.  NH4 concentration was found at the origin, 

suggesting it did not have a strong overall influence on the model.   
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 Multiple regression models, which included only sites with detectable NH4 uptake 

and excluded highly correlated watershed characteristics, resulted in three significant 

models that predicted NH4 uptake velocity (Table 12).  The best model explained 69% of 

the variance, had an Akaike weight of 0.58, and included FI, NH4 concentration, and 

percent canopy cover as predictor variables (Table 12).  The second best model included 

the predictors FI and NH4 concentration, which explained 65% of the variance in NH4 Vf 

and had an Akaike weight of 0.42 (Table 12). The only significant single predictor model 

was for FI, which alone explained 44% of the variability in NH4 Vf.  However, because 

its AIC was greater than 2 units from the best model, it was not considered one of the top 

models for predicting NH4 Vf  nor was it considered in calculation of Akiake weights.  

 There was one significant multiple regression model explaining the variability in 

SRP uptake velocity, which was a single predictor model with DOC concentration as a 

predictor variable (Table 12).  This model explained 90% of the variability in SRP Vf 

(Table 12).   

 

Discussion 
 Despite wide acknowledgment of the linkages between C, N, and P cycling in 

aquatic ecosystems, no studies have incorporated DOM composition into studies of 

uptake of N, P, or C in streams and rivers.  Here, we demonstrate that DOM character 

was an important explanatory variable of uptake of N and P in the forested streams 

included in our study. In turn, some of these DOM characteristics were influenced by 

watershed characteristics like size.  Furthermore, our results indicate that C and P are 

likely exported from our study streams to Lake Superior without measureable uptake, 
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potentially supplying important nutrient and energy sources to the near-shore region of 

Lake Superior.  However, ammonium N is quickly taken up in streams, suggesting that 

in-stream dynamics may closely regulate the delivery of N to Lake Superior from its 

tributaries.   

Drivers of nutrient uptake and linkages between C, N, and P  Consistencies among the 

PLS and multiple regression analyses support our hypothesis that DOM composition is an 

important predictor of in-stream nutrient uptake but also highlights the role of watershed 

size and its effect on chemical and physical variables.  Both the PLS and multiple 

regression analysis indicated that FI was an important predictor of NH4 Vf, along with 

watershed area and discharge. Multiple regressions also identified canopy cover and NH4 

concentration as important predictors.  Of these covariates, the multivariate analysis 

indicated NH4 concentrations did not have a strong overall influence on the PLS model. 

Canopy cover had a negative correlation with NH4 Vf; therefore, NH4 Vf increased as 

light availability increased (and canopy cover decreased).  This finding is consistent with 

a previous study that found an increase in light availability following riparian tree 

removal resulted in an increase in NH4 uptake (Sabater et al. 2000).  Collectively our 

findings indicate that as watershed size and discharge increase, canopy cover and FI 

decrease, and NH4 Vf increases. 

To our knowledge no studies have specifically addressed the relationship among 

DOM composition and P uptake in streams, but previous research in Minnesota lakes 

suggests that an increase in labile C can increase bacterial uptake of P (Stets and Cotner 

2008).  In streams, seasonal increases in P uptake (shortened uptake lengths) by stream 

biota have been observed when DOC concentrations are highest following leaf fall 
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(Mulholland and Hill 1997) at Walker Branch in Tennessee and at Coweeta in North 

Carolina (Mulholland et al. 1985, D’Angelo and Webster 1991).  However, among 17 

Idaho streams no correlation was observed between DOC concentration and PO4-P Vf 

(Bechtold et al. 2012).  Interestingly, the four sites (Big Pup, Hills, Little Garlic, Black) 

with significant SRP uptake all expressed similarities in DOM characteristics as 

identified from the PCA analysis, including greater FI, C5 (humic-like), and C2 (humic-

like) than any of the other sites.  Therefore C quality, rather than C quantity, may have a 

greater influence on whether P will be taken up in streams.  Conclusions about the role of 

DOC concentration in SRP uptake from linear regression analysis alone are limited by 

the small number of streams with measureable SRP uptake (n = 4).  However, the distinct 

DOM composition occurring at sites with significant SRP uptake compared with sites 

without detectable uptake as identified by PCA analysis provides further support that 

DOM character may be important in SRP uptake.  While we sought to address how DOM 

composition may alter DOC uptake rates in our streams, undetectable DOC uptake at 

most sites in both years limited our ability to identify important drivers of DOC Vf.  

Our study demonstrates that DOM composition can be an important driver of NH4 

and SRP Vf, which is consistent with the concept of tight coupling between C and 

nutrient cycles in aquatic systems.  In lake and marine ecosystems the addition of labile C 

sources can increase bacterial uptake of N or P by improving the ability of bacteria to 

compete with phytoplankton for inorganic nutrients (Joint et al. 2002, Hasegawa et al. 

2005, Stets and Cotner 2008).  Our methods did not identify whether autotrophic and/or 

heterotrophic communities utilized N or P, but if altered community competition for N 

and P results in greater overall uptake in these rivers then our results suggest that 
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variability in Vf may due to the composition rather than the quantity of DOM.  In contrast 

to previous studies that revealed that N uptake can increase as C concentrations increase 

(Bernhardt and Likens 2002, Johnson et al. 2009) we did not observe a relationship 

between DOC background concentrations and NH4 Vf, consistent with Bechtold et al. 

(2012).  Rather, our results suggest that rivers with a greater contribution of terrestrial 

sources of DOC (i.e., lower FI) have greater NH4 Vf than rivers with a greater 

contribution of microbial sources.  A previous study has linked nutrient uptake to 

mineralization of organic matter and found that shorter nutrient uptake lengths in fall and 

winter were associated with greater abundance of course particulate organic matter 

abundance (Mulholland et al. 1985).  Although FI values were tightly constrained across 

study sites, FI varied with watershed area and was a significant predictor of NH4 Vf, 

suggesting that even minor variations in FI may explain variability in nutrient uptake.   

  Our results suggest that variability in DOM composition was related to watershed 

size.  The majority of the variability of DOM composition among rivers in our study was 

explained by the relative contributions of the six PARAFAC components to DOM.  Three 

of the largest rivers had greater tryptophan-like fluorescence, an indicator of 

autochthonous-derived proteins, than smaller rivers. This may be explained by relatively 

open canopies or warmer water temperatures found in larger rivers, which can facilitate 

greater contributions from autochthonous sources (e.g. Hall 1971; Cummins 1974).  

Furthermore, the DOM molecules that fluoresce in this protein-derived region are 

biologically reactive (Lønborg et al. 2010, Guillamette and Del Giorgio 2011).  Although 

tightly constrained, FI decreased with increasing watershed area across our study sites, 

suggesting that FI may be a function of watershed area and that a greater contribution of 
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terrestrially-derived fulvic acids occurred in larger rivers.  Wilson and Xenopoulos 

(2008) also found relationships between tightly constrained FI values (1.27 to 1.35) and 

land cover characteristics along an agricultural gradient in the Great Lakes region, where 

FI was negatively correlated with % wetland area and positively correlated with % 

cropland area.   Although land cover characteristics were related to minor variations of FI 

within the watersheds in our study there was not a large gradient in land use among sites, 

which may suggest that watershed area is a proxy for another variable influencing 

variability in DOM character.  

Variability in nutrient uptake among watersheds and years NH4 is known to be highly 

bioreactive, and in our study sites we observed the greatest and most consistently 

detectable uptake velocities for NH4 relative to SRP and DOC.  In Lake Superior 

tributaries both N and P can limit biomass of primary production (Allen and Hershey 

1996; Wold and Hershey 1999), yet we generally observed rapid uptake of NH4 and not 

SRP.  In contrast to NH4, which is predominately removed from the water column by 

autotrophic and heterotrophic organisms (Peterson et al. 2001), inorganic P uptake is 

regulated by physical and chemical processes as well as biological processes (Mulholland 

et al. 1990, Wither and Jarvie 2008).  Multiple processes controlling uptake of inorganic 

P likely contributed to the variability in whether or how quickly SRP was taken up across 

sites and years.  In 2012, but not 2013, SRP uptake velocities were greater than either 

NH4 or DOC.  In southwestern Michigan streams labile DOC uptake (as acetate) was 

found to be greater than or equal to NH4 uptake (Johnson et al. 2009).  At our sites, DOC 

uptake velocity never exceeded the greatest NH4 uptake velocities, yet when DOC Vf was 
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detectable it was comparable to most 2013 NH4 uptake velocities, and greater than all 

2013 SRP uptake velocities.   

Ammonium uptake was undetectable when NH4 background concentrations were 

elevated.  Little Huron, where we did not detect NH4 uptake in either year, had the 

greatest background concentrations of NH4 of all sites (20 and 22 μg L-1) while 

background concentrations at the Salmon Trout rose from 8 μg L-1in 2012, when NH4 

uptake occurred, to 12 μg L-1in 2013, when uptake was not detectable (Web appendix 

Table 1).  Across all other sites NH4 background concentrations were below 7 μg L-1 and 

NH4 uptake was always detected.  Undetectable uptake could be due to lower enrichment 

factors during the nutrient injections at these sites, which were targeted to increase 

background concentrations by 10 to 12 μg L-1 (2x increase at the Salmon Trout, l.5x 

increase at the Little Huron) and resulted in actual enrichment factors ranging from 1.4 to 

1.8 on dates when background concentrations were elevated.  Alternatively, uptake of 

NH4 may be saturated on these dates such that there was not biological demand for the 

increased NH4 regardless of the enrichment factor.  Regardless of the mechanism, the 

lack of NH4 uptake at these two sites appears to be affected by elevated background NH4 

concentrations.   

Ammonium and SRP uptake velocities in our study sites were similar to previous 

measurements across a variety of streams (NH4 Vf = 0 to 119 mm min-1, Tank et al. 2008; 

SRP Vf: 1.14 to 4.92 mm min-1, Bernot et al. 2006; PO4 Vf: 0.9 to 11.6 mm min-1, Hall et 

al. 2002).   Regionally, our study sites on the south shore of Lake Superior (NH4 Vf: 0.9 - 

11.7 mm min-1; SRP Vf: 0.3 - 7.2 mm min-1) revealed  lower uptake velocities than in 

some north shore streams (NH4 Vf : 1.1 - 28.4 mm min-1; PO4 Vf: 0.75 - 15.7 mm min-1 
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(Lehto and Hill 2013), but were similar with other measurements of inland Upper 

Peninsula streams (NH4 Vf: 1.9 to 7.6 mm min-1; SRP Vf : 1.1 to 10.7 mm min-1 (Hoellein 

et al. 2007).   DOC Vf at our study sites (0.64 to 2.4 mm min-1) were also within the 

ranges of previous measurements of C uptake in streams (glucose Vf:1.4 to 10.6 mm min-

1, Newbold et al. 2006; glucose Vf: 0.6 to 4.5 mm min-1, Bechtold et al. 2012).  It should 

be noted that in our study we measured total DOC rather than the specific form of carbon 

added (in this case, glucose), which may lead to underestimation of Vf because a larger 

increase in background DOC concentration would be required to detect uptake 

(Mulholland et al. 2002, Johnson et al. 2009).  

 

Export of solutes to downstream ecosystems  Ammonium was quickly taken up across 

most of our study streams, and likely cycled multiple times before being exported to Lake 

Superior.  For most of our study sites, the distance NH4 traveled before being taken up 

was 30 to 98% shorter than the distance to Lake Superior and NH4 could be cycled up to 

50 times in these streams before being exported.  However, we did not account for the 

distance NH4 traveled in organic form after being taken up. Therefore, the total spiraling 

length could be much greater in these streams.  

Our results suggest that these small to mid-size streams likely exported C and P 

directly to the downstream ecosystem, Lake Superior, without measureable uptake.  For 

most of our study sites DOC uptake was either not detectable or DOC Sw was greater 

than the distance to the downstream lake, suggesting that DOC may be exported to Lake 

Superior without being taken up.  SRP uptake lengths indicate that SRP was only taken 

up before reaching Lake Superior in three of six streams in 2012 and two of eleven 
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streams in 2013, and thus SRP likely is exported to downstream ecosystems without 

being taken up at the majority of our study sites.  Although SRP concentrations are 

relatively low, riverine export of SRP could be important in fueling primary productivity 

in near shore regions of Lake Superior, where phytoplankton and bacterioplankton have 

been shown to be limited or co-limited by SRP (Sterner et al. 2004).  Riverine export of 

C and P from the more than 1500 tributaries of Lake Superior (Coble et al., in 

preparation) may therefore supply important nutrient and energy sources to the near-

shore region of the largest lake in the world, potentially fueling productivity in this 

oligotrophic downstream environment. 

Conclusions Our results provide strong support for the inclusion of DOM composition, 

and not only concentration, when deciphering and quantifying important relationships 

between uptake of N and P in aquatic ecosystems.  Coupled cycling of C, N, and P occurs 

across aquatic ecosystems (e.g., marine, lake) and it is likely that DOM composition may 

also serve as important controls on biogeochemical cycling in those ecosystems.  Recent 

studies of DOM variability across watersheds have paved the way for DOM composition 

to be integrated as a tool in aquatic biogeochemical studies.  Furthermore, our results 

highlight the importance of stream-lake linkages in delivering essential nutrient and 

energy sources to downstream ecosystems.  
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Table 11: Loadings for the four principal components identified in the PCA model of 

DOM composition and concentration.  Percent variability explained by each component 

listed in parentheses. 

Variable PC 1 
(63.4%) 

PC2 
(18.5%) 

PC3 
(9%) 

PC4 
(6%) 

SUVA 0.14 -0.19 -0.14 0.16 
DOC 0.17 -0.20 0.18 -0.01 
FI 0.08 0.26 0.10 0.13 
%C1 0.31 -0.05 0.03 0.04 
%C2 -0.30 0.06 -0.06 0.01 
%C3 -0.27 -0.08 0.13 0.05 
%C4 0.29 0.01 -0.04 -0.11 
%C5 0.30 0.10 -0.02 -0.01 
%C6 -0.29 -0.06 -0.03 -0.02 
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Table 12: Multiple regression model results of uptake velocity of ammonium (NH4) and 
soluble reactive phosphate (SRP) as response variables and a variety of biological, 
chemical, and physical variables as predictors.  Only sites with significant uptake were 
included in the models (NH4 Vf model, n = 9; SRP Vf model, n =4).  We used AIC to 
identify and select the most important predictors.  We selected models with AIC lower 
than two units below that of the Null model of complete randomness, and >0.01 Akaike 
weight (Burnham and Anderson 2002).  One significant single predictor model is shown 
here for comparison but this model was not considered for Akaike weight calculations 
because ǻAIC was greater than 2 units from the best model.  All of the models are based 
on the following covariates, except for the NULL model which assumes a constant rate: 
DOC = dissolved organic carbon concentration (mg L-1), FI = fluorescence index, NH4 = 
ammonium concentration (μg L-1) CanopyCover = canopy cover (%),  

Response Model AIC p-value R2adj w ǻAIC 
NH4 Vf log FI+NH4+Canopy 

Cover 
45.23 0.03 0.69 0.58 0 

 log FI+NH4 45.84 0.02 0.65 0.42 0.61 
 log FI 49.50 0.03 0.44  4.26 
 Null 53.86 - - - 8.63 
SRP Vf log DOC -1.48 0.03 0.90 1 0 
 Null 7.24    8.72 
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Figure 11. a. Location of Laurentian Great Lakes watersheds shown in relation to the 
contiguous United States of America.  b. Location of Lake Superior watersheds in 
relation to the Laurentian Great Lakes. c. Location of study sites and their delineated 
watersheds.   
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Figure 13. Watershed Area was a significant predictor of Fluorescence Index (FI) across 
the eleven study sites sampled in 2013 (F(1,9) = 7.788, p = 0.02103, r2

adj = 0.4043). 
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Figure 14.  Principal components analysis loading plot of the first two principal 
components displaying DOC characteristics and sites. 
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Figure 15. Partial least squares loading plot predicting the variability of ammonium 
uptake velocity (NH4 Vf; response variable) with biological, chemical, and physical 
characteristics as predictors (predictor variable): a) all predictor and response variables b) 
sites only.  Little Huron and the Salmon Trout River were excluded from analysis 
because NH4 Vf was undetectable. 
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Abstract 

 It is uncertain how climate change may affect export of essential nutrients to 

downstream ecosystems in regions that host substantial winter snowpack because nutrient 

uptake is rarely quantified in snow and ice covered streams and rivers.  To evaluate how 

nutrient uptake varied year-round in relation to temporal variability in biofilm standing 

crop, light availability, nutrient and organic matter availability, and hydrology we 

measured nutrient uptake of ammonium (NH4) and soluble reactive phosphate (SRP) at 2 

to 4 week intervals for three years and dissolved organic carbon (DOC) for two years.  

The greatest uptake velocities (Vf) were observed in spring and fall for NH4, spring for 

SRP, and fall for DOC.  Winter NH4 Vf were similar to and SRP Vf, were greater than 

summer baseflow measurements, but DOC Vf was undetectable in winter.  Using partial 

least squares and multiple regression analysis we found that light availability, benthic 

chlorophyll a, benthic ash-free dry mass, solute concentrations, and pH collectively were 

important predictors of NH4 Vf.  These results suggest that any future alteration to the 

timing of these key chemical and biological variables may alter nutrient export to 

downstream ecosystems. Furthermore, our results suggest that in-stream winter 

processing cannot be ignored. 

Key Words: nutrient uptake, nitrogen, phosphorus, dissolved organic matter, headwater, 

seasonality, Michigan Upper Peninsula 
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Introduction 
Watershed mass-balance studies have historically regarded streams as a 

mechanism to deliver nutrients from watersheds, and ignored in-stream processing of 

nutrients (e.g., Vitousek and Reiners 1975, Goodale and Aber 2001).  Yet, in-stream 

retention and transformation of nitrogen, phosphorus, and carbon controls nutrient and 

carbon export across a variety of geographic regions (Alexander et al. 2000, Peterson et 

al. 2001, Bernhardt et al. 2005, Withers and Jarvie 2008, Johnson et al. 2009, Bechtold et 

al. 2012). Assimilation by autotrophic and heterotrophic organisms is a dominant process 

responsible for the removal of inorganic nitrogen in headwater streams (Peterson et al. 

2001).  Inorganic P uptake is influenced by biological assimilation and by physical and 

chemical processes (Mulholland et al. 1990, Withers and Jarvie 2008).  Therefore, 

variability in biological, physical and chemical parameters alters in-stream nutrient 

uptake, in-turn affecting export nutrients or carbon from the watershed to downstream 

ecosystems.   

Stream nutrient processing can vary temporally (Mulholland et al. 1985, Hoellein 

et al. 2007, Roberts and Mulholland 2007; Hall et al. 2009) yet little is known about the 

factors that control seasonal variability in uptake rates due largely to a paucity of studies.  

The suite of variables that influence biotic activity in the stream (e.g., light availability, 

temperature, discharge, or nutrient inputs) vary seasonally, thus some combination of 

these environmental characteristics should influence seasonal variability in nutrient 

uptake.  Measurements of nutrient uptake across seasons not typically sampled, such as 

winter and spring, can provide new insight into controls on stream nutrient uptake (e.g., 

Hoellein et al. 2007, Hall et al. 2009). Studies including winter or spring measurements 
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have found the greatest uptake of phosphate (PO4
-) occurred in fall (Mulholland et al. 

1985), high levels of N retention occurred during both snowmelt and baseflow conditions 

in an Idaho stream (Hall et al. 2009), and the greatest N uptake velocity was observed in 

spring in 4 Michigan streams (Hoellein et al. 2007).   

Climate change is expected to alter hydrology throughout the United States 

(Groisman et al. 2004), and in northern temperate regions winter snowpack is likely to 

decrease with important potential consequences for biogeochemical cycling in streams.  

Changes in the intensity or quantity of freeze thaw cycles (Henry 2008) can alter 

concentrations of solutes entering streams (Mitchell et al. 1996, Watmough et al. 2004), 

hydrological flowpaths to streams (Stottlemyer and Toczdlowski 2006), and nutrient 

export from streams (Judd et al. 2011). Additionally, variability in the intensity or type of 

precipitation received could further alter delivery of nutrients or C inputs into streams 

(Groisman et al. 2004, Mortsch and Quinn 1996) potentially affecting in-stream nutrient 

uptake.   However, before we can predict how stream biogeochemical cycling may 

respond to climate change we must first understand how in-stream nutrient cycling varies 

seasonally in response to major environmental drivers.   

Few studies have examined in-stream processing of nutrients throughout the 

entire year, particularly in regions where snow represents a significant amount of the 

annual precipitation.  Before we can begin to understand how climate change may affect 

nutrient cycling in the vast freshwater resources found in northern climates, it is 

necessary to identify how in-stream processing varies in streams across the full annual 

cycle including during snow/ice cover and spring runoff.  To address this knowledge gap 

we measured in-stream nutrient uptake and environmental characteristics at 2-4 week 
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intervals for three years in a headwater stream.  We addressed the following research 

questions: 1) How does nutrient uptake of N, P, and C vary temporally in regions with 

snow-dominated hydrographs?  2) Does uptake of N, P, and C occur in winter when 

ice/snow cover often covers the stream? 3) Which physical and chemical drivers 

influence temporal variability in nutrient uptake? We hypothesized: that in-stream 

nutrient spiraling would vary seasonally, due to increased light availability and nutrient 

pulses contributed by snowmelt in spring and leaf litter in fall relative to winter and 

summer when light and nutrient inputs would be minimal.   

Study Area 
This research was conducted at Calumet watershed, a 1st order watershed (1.76 

km2) located on the southern shore of Lake Superior near Calumet, Michigan.  Mean 

annual precipitation at Calumet watershed is 80 ± 20 cm (Stottlemyer and Toczydlowki 

1996) with up to 50% occurring as snowfall (Stottlemyer 1997).  Overstory vegetation 

within the watershed is primarily comprised of: sugar maple (Acer saccharum Marsh) 

and white birch (Betula papyrifera March).  There has been ongoing research in the 

Calumet watershed since 1979 and it is one of only two long-term observational study 

watersheds that discharge directly into Lake Superior (Stottlemyer and Toczydlowski 

2006).  A Parshall flume equipped with a Stevens pressure transducer (Stevens Water 

Monitoring Systems Inc., Portland, Oregon) and Li-Cor datalogger (Li-Cor, Lincoln, 

Nebraska) is installed near the mouth of the watershed to continuously monitor discharge 

(Stottlemyer and Toczdylowski, 2006). 
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Methods 
 In-stream spiraling of NH4 and SRP was measured at least monthly for three years 

and DOC for two years.  In spring measurements were measured at two week intervals 

because we expected nutrient uptake would vary in response to rapidly changing 

environmental conditions following snow-melt.  We used short-term continuous 

injections of NH4 (NH4Cl), phosphate (KH2PO4), and glucose (C6H12O6) with NaCl or 

Rhodamine WT dye as conservative tracers.  NH4 and PO4 were added together and a 

separate glucose injection was conducted after at least two hours or often more than one 

day.  We set up a 200 m stream reach to achieve a target travel time of 30 minutes to 1 

hour, although travel time varied depending on season/discharge.  We targeted an 

enrichment of 10 to 12 μg L-1 above background for NH4 and SRP and 5 mg L-1 above 

background for DOC.  Background water samples were collected and filtered (0.45 μm) 

immediately before nutrient addition at 7 locations downstream of the nutrient injection 

point, and water samples were again collected when conservative tracer concentrations at 

the downstream end of the reach reached plateau levels.  For each date we calculated 

nutrient spiraling metrics following standard approaches (Newbold et al. 1981; Appendix 

A).  Here, we report nutrient uptake velocity (Vf), the rate of biotic demand by stream 

biota (Newbold et al. 1981), because it standardizes for discharge allowing for 

comparisons among dates with variable flow conditions (Davis and Minshall 1999).   

 Ammonium was analyzed using the fluorometric method (Holmes et al. 1999, 

modified by Taylor et al. 2007) on an Aquafluor handheld fluorometer (Turner Designs, 

Sunnyvale, California) on the date of collection.  Rhodamine WT concentrations were 

determined within 5 hours of collection also using the Aquafluor handheld fluorometer. 
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SRP samples were frozen prior to analysis following the ascorbic acid method (APHA 

2005) on a spectrophotometer (Thermo Scientific GENESYS™ 10s UV-Vis 

spectrophotometer, Waltham, MA, USA).  To determine DOC and TDN concentrations, 

samples were acidified and analyzed using a TOC-5000A analyzer (Shimadzu Scientific 

Instruments, Columbia, Maryland). Chloride was determined using ion chromatography 

(Dionex ICS-900 Ion Chromatograph, Sunnyvale, CA, USA).   

 To identify potential factors that may affect variability in nutrient uptake we 

measured biofilm chlorophyll a and ash-free dry mass (AFDM), canopy cover, water 

temperature, background nutrient concentrations and DOM composition, and discharge 

on each sampling date.  Because biofilms can be responsible for the removal of nutrients 

from the water column we measured biofilm chlorophyll a and AFDM (Appendix B).  

Chlorophyll a provides an estimate of algal biomass (Steinman et al. 2007) and AFDM 

represents the total living and dead organic material present (Appendix B).  Light 

availability controls autotrophic organism activity; as a proxy for light availability, we 

determined the percent canopy cover by using a densiometer on each date at each of the 7 

sampling locations along the reach.  In winter we determined the percent ice/snow cover 

rather than canopy cover.  Additionally, on one summer date we estimated leaf area index 

(LAI, m2 leaf m-2 ground) and diffuse non-interceptance (DIFN %), or canopy openness, 

along the reach (Appendix C).    

 Water chemistry metrics can affect biotic activity; to determine water chemistry 

metrics (water temperature, dissolved oxygen, turbidity, conductivity, and pH) we 

deployed a YSI multiparameter sonde at the downstream end of the reach during each 

injection.  Nutrient limitation of essential nutrients may limit autotrophic or heterotrophic 
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activity, thus to determine whether background nutrient concentrations (NH4, SRP, DOC, 

and TDN) were predictors of Vf we measured concentrations on each sampling date as 

described above.   

The quality of DOM can be an important factor controlling heterotrophic activity.  

To determine DOM composition filtered (0.45 μm) water samples were collected at least 

monthly in 2013 and 2014 only, with more frequent collection in spring and fall.  To 

determine SUVA254, an indicator of C aromaticity, background water samples from all 

nutrient injections were analyzed for UV absorbance at 254 nm using a 

spectrophotometer (Thermo Scientific GENESYS™ 10s UV-Vis spectrophotometer, 

Waltham, MA, USA).  SUVA254 was calculated as the UV absorbance at 254 nm 

wavelength divided by the DOC concentration (Weishaar et al. 2003).  Samples were 

analyzed for Excitation Emission Matrices (EEMs) on a Jobin-Yvon Horiba Fluoromax-

3TM fluorometer (Jobin Yvon Horiba, France) and fluorescing components were 

determined through a parallel factor analysis (PARAFAC; Appendix D).  The six 

fluorescent components (C1-C6, expressed as a relative percent) identified by PARAFAC 

and fluorescence index (FI) identified by fluorometric measurements (Appendix D) were 

included as indicators of DOM composition in further analyses. 

To determine if uptake velocity varied seasonally we used a non parametric 

Kruskal-Wallis grouped by season which was defined based on measured environmental 

conditions characteristic of each season (see Appendix E for seasonal definitions).  We 

used a non-parametric test because a different number of dates with detectable uptake 

were observed in each season.  Due to the few dates with detectable uptake we were 

unable to perform this analysis for SRP and DOC.   
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To identify which covariates were related to variability in nutrient uptake 

velocity, we used a two step approach. First, we used partial least squares (PLS) analysis 

to identify important predictor variables, and followed this with multiple regression 

analysis using only the highly influential predictors identified by PLS.  PLS is a 

multivariate approach that is less sensitive to correlation among predictor variables and 

deviations from normality.  For PLS analysis nutrient uptake velocity was included as the 

response variable and the following were included as predictor variables: stream 

temperature, discharge, canopy cover, conductivity, dissolved oxygen, pH, benthic 

chlorophyll a,  AFDM, TDN, NH4, SRP, DOC, FI, SUVA254, C1, C2, C3, C4, C5, and 

C6.  We used MATLAB (MATLAB®) with the PLS Toolbox (Eigenvector Research 

Inc.) to perform the PLS analysis.  The location of variables within a PLS biplot 

represents the correlation structure among variables.  Variables located near each other 

are positively correlated, variables opposite each other are negatively correlated, and 

variables located near the origin have little influence on the model.  The greater distance 

from the origin for a variable the greater its overall influence on the model (Kothawala et 

al. 2014).  We used variable influence on projections scores (VIP scores) to interpret the 

importance of the X variables on the overall model, and defined variables with VIP score 

�1 as highly influential, between 0.8 and 1 as moderately influential, and 0.8ޒ less 

influential predictors.  To maximize the number of covariates included in the models we 

used only dates between 28 March 2013 and 13 August 2014 when DOM composition 

was characterized.  Outliers identified using the Hotelling’s T2 analysis were removed if 

they exceeded the 95% confidence limit.   
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  Multiple regression models using predictor variables that were highly influential 

variables in PLS were evaluated using Akaike’s information criteria (AIC).  The best 

model(s) were selected based on the smallest AIC and only models greater than two AIC 

units than the null model were considered (Burnham and Anderson 2002).   

Results 
 Consistent with our hypothesis, we found the greatest uptake velocities of NH4 in 

fall and spring, of SRP in spring, and DOC in fall (Fig. 16).  Kruskal-Wallis test indicated 

there was not a significant effect of season on NH4 Vf (ȋ2 = 7.04, df = 3, p = 0.07).  In 

October 2013, during leaf fall, we observed the greatest uptake velocity of NH4 (8.0 mm 

min-1) and DOC, but uptake of SRP was undetectable.  In 2012 high NH4 Vf (6.2 mm 

min-1) was also observed in fall (November).  Uptake of DOC was observed in October 

2012 although Vf was much lower (0.15 mm min-1) than in 2013 (5.3 mm min-1).  

Unfortunately, we were unable to quantify uptake of NH4 in October 2012 due to 

depletion of the added NH4 prior to the third sampling station.  However, this suggests 

that NH4 uptake was exceptionally high on that date.  Additionally, we were unable to 

measure uptake of NH4, SRP or DOC due to extremely low discharge in September 2012.  

The greatest NH4 Vf  and SRP Vf observed in 2012 occurred in April with NH4 Vf 

peaking in early April (6.6 mm min-1) and SRP Vf peaking in late April (4.0 mm min-1). 

High NH4 Vf measurements were observed for much of the spring (3.1 to 5.7 mm min-1 in 

March, April, and late May; Fig. 16) and only one other date of detectable SRP Vf.  Peaks 

in NH4 and SRP Vf occurred earlier in 2012 than in 2013 or 2014, consistent with earlier 

spring snowmelt in 2012 (Fig. 16).  High NH4 and SRP Vf was also observed in 2013 

following snowmelt in early June (6.4 mm min-1; SRP 5.4 mm min-1).  NH4 Vf was also 
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high in May (4.2 to 4.3 mm min-1 in May), but SRP Vf was undetectable on other spring 

dates.  In 2014 SRP Vf following snowmelt peaked in late May (7.6 mm min-1).  NH4 Vf 

was not as high as in previous years and peaked following snowmelt in mid June (2.1 mm 

min-1).  Although high Vf was observed in spring not all spring measurements revealed 

high uptake velocity of NH4 and SRP.  DOC Vf was not detectable in spring in either year 

(Fig. 16).   

 Despite low temperatures and the occasional presence of ice cover, we observed 

uptake of NH4 on five winter dates (Vf = non-detectable to 2.3 mm min-1) and rates were 

comparable to those during summer baseflow measurements (non-detectable to 5.7 mm 

min-1).  SRP Vf (non-detectable to 3.0 mm min-1) was detectable on two winter dates in 

January of 2013 and 2014.  DOC Vf was not detectable in winter in either year (Fig. 1).  

Summer baseflow measurements of NH4 Vf (non-detectable to 5.7 mm min-1) and SRP Vf 

(1.2 to 2.2 mm min-1) were generally low.  In July 2013 elevated NH4 Vf (3.3 mm min-1) 

relative to other summer measurements was observed, and this measurement was taken 

approximately one week following a major storm event which scoured all periphyton 

(reflected in chlorophyll a data).  The undetectable uptake of NH4 and SRP observed in 

July 2014 was due to insufficiently increasing background concentration.  Summer DOC 

Vf was generally low (non-detectable to 1.5 mm min-1), but was high in June 2013 (4.3 

mm min-1).   

 In the PLS model, 5 latent variables (LV) were identified which collectively 

explained 89% of the variance in the Y variable (NH4 VF) and 87% of the variability 

among X variables (Table 13).  The first axis (LV1) represented a gradient of DOC 

concentrations, C aromaticity and discharge; discharge, DOC and SUVA254 had positive 
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loadings, and C3, and FI had strong negative loadings.  The second axis (LV2) 

represented a gradient of NH4 concentration; C3, C2, FI and conductivity had positive 

loadings, and NH4, C4, and canopy cover had negative loadings along LV2 (Figure 17a). 

 The PLS model identified canopy cover, NH4, DOC, AFDM, chlorophyll a, 

conductivity, and pH as highly influential variables and C3, SUVA254, TDN, C6, FI, 

temperature, SRP, C4, C1, C5, C2, discharge, and DO as less influential predictors 

(Figure 17a).  No moderately influential variables were identified.  Following PLS 

analysis we used multiple regression models including the highly influential variables to 

further identify predictors of NH4 Vf and found 2 significant models (Table 14).  The best 

model explained 60% of the variability in NH4 Vf and included 5 covariates including 

canopy cover, benthic chlorophyll a, conductivity, and pH (Table 14).  The second model 

explained 55% of the variability in NH4 Vf and included four covariates: canopy cover, 

benthic chlorophyll a, and conductivity (Table 14). 

 Due to the number of dates when SRP and DOC Vf was not detectable, we did not 

use PLS models to predict SRP and DOC Vf . Multiple regression was used to identify 

predictors of SRP Vf using the 10 dates with detectable uptake: conductivity and 

temperature were excluded as covariates in this analysis due to correlation with other 

variables.  No significant predictors of SRP Vf were identified.   

Discussion  
 Winter nutrient processing has seldom been measured in streams, particularly in 

regions that receive a significant snowpack.  Extremely low temperatures and coverage of 

ice and snow were observed at Calumet watershed in winter but despite these potential 

limitations NH4 and SRP uptake was still observed and was similar to summer baseflow 
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measurements.  We did not observe uptake of DOC in winter, but concurrent 

measurements of biodegradable DOC at this and another regional watershed revealed that 

a high percentage of DOC is biodegradable and autochthonously derived during some 

winter months (Coble et al., in preparation). Furthermore, we observed high 

concentrations of benthic algal biomass as chlorophyll a during the winter months, 

suggesting that increased production of chlorophyll a may occur beneath the ice in this 

stream (Appendix B; Figure B1).  Collectively, our results demonstrate that winter can be 

an important period for in-stream nutrient processing and should not be ignored. 

 In temperate forested streams, cycling of carbon and nitrogen are tightly coupled 

(Bernhardt and Likens 2002, Coble et al. in review) and in this study we found the 

greatest uptake of NH4 and DOC occurred in October during the leaf-fall period.  

Furthermore, the multiple regression analysis identified DOC as a highly influential 

predictor of NH4 uptake velocity, likely because background stream DOC concentrations 

were greatest in spring and fall, which were both seasons when NH4 uptake was elevated.   

A laboratory incubation of stream water collected from Calumet watershed revealed C 

mineralization rates were stimulated by additions of NH4 and as glucose in October, 

when leaf litter carbon inputs were greatest (Coble et al., in review).  Collectively, these 

two studies suggest that even as large quantities of carbon subsidies enter the stream from 

leaf fall, availability of labile DOC and NH4, can limit heterotrophic breakdown of leaf 

litter substrates.  In contrast we did not observe uptake of SRP during the leaf fall season 

despite that others have observed elevated uptake of inorganic P during leaf fall in 

forested streams (Mulholland et al. 1985).  Heterotrophic breakdown of organic matter 

appears to be N and not P limited in this stream.   
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  The peak NH4 Vf observed in fall and spring and peak SRP Vf observed in spring 

each year were likely the result of increased demand for inorganic nutrients in response to 

allochthonous organic matter inputs (received via leaf litter and snowmelt) and increased 

light availability, consistent with our original hypothesis.  Modeling results supported this 

hypothesis by revealing that light availability, stream chemistry (conductivity, pH, 

background NH4 and DOC concentrations), and biofilm chlorophyll a and AFDM were 

all highly influential predictors of NH4 Vf.  Within each season a high degree of temporal 

variability in nutrient uptake velocities were observed, which is likely explained by 

rapidly changing conditions altering these physical, chemical, and biological variables.  

For example, in forested streams during spring runoff DOC increases to a peak and then 

declines as snowmelt progresses, while pH decreases and then increases following 

snowmelt (Buffam et al. 2007).  During the leaf-on season in summer only 5% of light 

passes through the canopy at this stream while canopy cover varies from 54 to 95% 

throughout the year (Appendix C).  We found that peak uptake for each year of our study 

occurred approximately one month following peak spring discharge for NH4 (28 to 40 

days) and SRP (22 to 41 days), presumably allowing biofilms to reestablish following 

scouring by spring floods and increasing autotrophic demand for inorganic nutrients.  

Interestingly, we found a similar response in NH4 uptake demand following a major 

summer flood event, which scoured biofilms and resulted in high NH4 Vf.  Thus, the 

timing of these changes in relation to other important variables appear to influence 

nutrient uptake demand in this temperate forested stream.   

Our results are consistent with other studies that have found that NH4  or NO3 

uptake peaks in spring in streams (Hoellein et al. 2007, Roberts and Mulholland 2007).  
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For example, Hall et al. (2009) found that high levels of N uptake occurred during both 

snowmelt and baseflow conditions in an Idaho stream (Hall et al. 2009).  However, in 

their study of 4 streams in Michigan’s Upper Peninsula, Hoellein et al. (2007) did not 

identify peaks in NH4 uptake in fall, which may be due to the timing of their sampling 

dates in relation to leaf fall (October and December but not November).  However, they 

did attribute high rates of NH4 uptake in December to C inputs from prior leaf fall.  Our 

results suggest that within the fall season, NH4 Vf was temporally variable and high rates 

of uptake may occur for relatively short periods of time.  Moreover, detecting these rapid 

uptake velocities required drastically shortening the reach length; thus, we were unable to 

quantify the high uptake in October 2012 but were able to do so when we shortened the 

study reach used in October 2013.   

 Our finding that a suite of physical, chemical, and biological variables are 

important in determining year-round patterns in  NH4 uptake in streams suggests that the 

relative timing of abiotic factors and biotic responses are critical to determining in-stream 

nutrient demand, and if climate change alters this timing then we may expect changes in 

seasonal patterns of nutrient uptake.  For example, a reduction in the duration ice cover in 

streams, as is expected for northern temperate lakes in a warming climate (e.g., 

Magnuson et al. 1997), will increase light availability earlier in the spring season.  

Furthermore, a reduction in the quantity of winter snow can cause earlier spring runoff 

and reduce the magnitude of spring flows, thereby affecting concentrations of DOC and 

other solutes (e.g., Schindler et al. 1997).   Collectively, these alterations could allow for 

a longer spring period of elevated NH4 uptake prior to leaf out.  With climate change we 

may expect seasonal shifts in light availability, nutrient inputs, or algal biomass to occur 
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in spring and fall, times when nutrient uptake of N, P, or C are elevated.  Variability in 

nutrient uptake will alter rates and timing of nutrient or carbon export to downstream 

ecosystems that utilize these inputs to fuel downstream productivity. 
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Table 13.  PLS model for prediction of NH4 Vf (Y variable) performance as a function of 
the number of PLS latent variables.   

Latent Variable X cumulative 
variance 
explained 

Y cumulative 
variance 
explained 

RMSECV 

1 33.54 30.80 2.39 
2 43.73 58.30 3.08 
3 65.92 63.78 2.96 
4 69.97 82.62 4.73 
5 78.57 86.73 5.13 
6 87.16 88.79 5.48 

 

Table 14. Multiple regression model results to identify predictors of seasonal variability 
in NH4 Vf at Calumet Watershed. 

Model AIC p-value R2adj w ǻAIC 
CanopyCover+Chla+cond+AFDM+pH 52.28 0.024 0.60 0.66 0 
CanopyCover+Chla+cond+AFDM 53.62 0.022 0.55 0.34 1.34 
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Figure 16. Discharge (a) and uptake velocity (Vf) for ammonium (a; NH4), soluble 
reactive phosphate (b; SRP), and dissolved organic carbon (d; DOC) in Calumet 
Watershed.  Hatch marks indicate winter conditions, and cross marks indicate summer 
conditions.    
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Figure 17. Partial Least Squares analysis of influential variables determining variability 
in ammonium uptake velocity (NH4 Vf)  
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Appendix A: Nutrient uptake measurements 
 

We corrected plateau nutrient concentrations for background concentrations and 

normalized these values to the conservative tracer.  We then applied a natural log 

transformation to the normalized background corrected concentrations and plotted it 

versus distance from the location of the injection and fit a linear model to calculate first 

order uptake rate coefficient (k).  Only significant linear regressions were included (p = 

0.10); for any non-significant regressions uptake was considered undetectable and was 

not used in further analysis.  Uptake length (Sw) is the mean distance a nutrient travels 

downstream in inorganic form before it is taken up and is calculated as: Sw = -1 k-1.  

From these values other nutrient spiraling metrics can be calculated (Newbold et al. 

1981).  Cross sectional widths and depths were measured at each of the 7 sampling 

locations on each sampling date.   

Only significant linear regressions (p = 0.10) were included in determining 

whether uptake occurred.  Note: no p-values were borderline or fell within p <0.2 that 

were identified as undetectable.   

References: 

Newbold, J. D., J. W. Elwood, R. V. O’Neill, and W. Van Winkle.  1981.  Measuring 

nutrient spiraling in streams.  Canadian Journals of Fisheries and Aquatic 

Sciences 38:860-863. 
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Appendix B: Chlorophyll a and ash-free dry mass  
 

To measure benthic chlorophyll a and ash-free dry mass (AFDM), three rocks or 

sediment cores (1 cm depth) were collected monthly from each of the 7 locations in the 

stream reach.  All biofilm was removed from the rock surface by scrubbing with a firm 

brush and rinsing into ~150 mL of water.  Subsamples from the resulting slurry were 

filtered onto pre-ashed 0.7 m glass fiber filters and frozen until analysis.  We traced the 

planar rock shape and weighed the resulting cut-out to determine the rock surface area 

(Bergey and Getty 2006).  Periphyton chlorophyll a was analyzed using the 

spectrophotometric method (APHA 2005, Nusch 1980).  Following analysis, AFDM was 

determined as the difference between the mass of samples (following oxidization in a 

muffle furnace) and the initial dry mass of those samples.  AFDM does not distinguish 

algal components from other living and dead components of periphyton (i.e. fungi, 

bacteria, or detritus; (Steinman et al. 2007). 
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Figure B1. Mean chlorophyll a (mg m-2) and ash-free dry mass (AFDM; g m-2) measured 

at Calumet watershed from April 2012 through September 2014.  Error bars represent 

standard error. 
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Appendix C: Leaf area index and diffuse non-interceptance 
 

On one summer date we estimated leaf area index (LAI, m2 leaf m-2 ground) and diffuse 

non-interceptance (DIFN %), or canopy openness, at each of the 7 sampling locations 

along the reach.   All light measurements were collected following sunrise within an hour 

of sunrise using a plant canopy analyzer (LAI 2200, LiCOR, Inc., Lincoln, NE, USA).  

We collected above-canopy measurements prior to and following below-canopy 

measurements in a canopy clearing (road) and used a 10 degree view cap to block out 

forest canopies along the edges of the clearing.  At each site, we collected four below-

canopy measurements at four azimuthal directions (N, E, S, W) also using the 45 degree 

view cap.  We used FV-2200 software to linearly interpolate above-canopy light 

measurements through time that corresponded with below-canopy measurements.  The 

four estimates of DIFN % and LAI collected at each site were averaged.   

Results 

During the leaf-on season in summer only 5% of light passes through the canopy (mean 

DIFN = 5 %; mean LAI = 4.54 m2 leaf area m-2 ground).  Throughout the year canopy 

cover as measured from a densiometer ranged from 54 to 94%. 
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Appendix D: Dissolved organic matter characterization 
 

Samples for DOM characterization were kept cool and analyzed within 24 hours 

of collection for excitation-emission fluorescence matrices (EEM) on a Jobin-Yvon 

Horiba Fluoromax-3TM fluorometer (Jobin Yvon Horiba, France).  EEMs were collected 

every 3 nm over excitation wavelength intervals between 240 and 600 nm and every 3.28 

nm over emission wavelength intervals between 212 and 620 nm.  Fluorescence spectra 

were corrected for the inner filter effect.  To remove the Raman signal a Raman 

normalized Milli-Q water sample was removed from each fluorescence spectrum.  

Fluorescence index (FI) distinguishes between microbial and terrestrial sources of fulvic 

acids, and was identified from corrected sample EEMs as the ratio of the emission 

intensity at 450nm to 550 nm acquired at an excitation of 370nm (McKnight et al. 2001). 

 To identify fluorescing components we used a parallel factor analysis 

(PARAFAC) on 374 samples collected from regional rivers, Lake Superior’s near shore 

region, soil lysimeter, snow, and precipitation samples.  We validated the PARAFAC 

model with split-half analysis and by examining residuals (Stedmon et al. 2003, Stedmon 

and Bro 2008).  PARAFAC analysis was completed using the PLS-toolbox for Matlab 

(Eigenvector Research Inc.). 

 The PARAFAC model identified 6 components (Table 1) all of which have been 

previously identified in the literature (Table 1).  Components 2, 3, and 5 were all 

identified as humic-like fluorophores, component 1 was identified as a fulvic-like 

fluorophore, and component 4 was identified as a fulvic-like and humic-like fluorophore.  

Component 6 was the only protein-like fluorescence component identified and it was 
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tryptophan-like.  From hereafter, we will refer to the components as the percentage of 

total fluorescent DOM (e.g. C1). 
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Table D1.  Six components identified by parallel factor analysis (PARAFAC) with 

secondary excitation maxima listed in parentheses. 

Component Excitation 
maxima 
(nm) 

Emission 
maxima 
(nm) 

Description Similar to previously 
identified 
components  

1 <250(340) 455 Fulvic-like 
fluorophore 

Stedmon and 
Markager, 2005a, C4 

2 <250 448 Humic-like 
fluorophore 

Stedmon and 
Markager, 2005a, C1 

3 <250(310) 395 Humic-like 
fluorophore 

Stedmon and 
Markager, 2005a, C3 

4 282(380) 514 Fulvic-like, Humic-
like, High molecular 
weight 

Olefeldt et al. 2013, 
component Cx 

5 277(396) 477 Humic-like 
fluorophore 

Stedmon and 
Markager, 2005b, C7 

6 279 344 Tryptophan-like 
fluorescence 

Stedmon and 
Markager, 2005a, C7 
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Appendix E: Seasonal Definitions 
 

 For comparisons among seasons, we selected dates that reflected major 

hydrologic and phonological events in the region, rather than defaulting to calendar based 

seasons.  This was particularly important to reflect the extended winter snow over in our 

region.  Moreover, we adjusted the dates of each season to reflect the large variation in 

the timing of peak snowmelt runoff, which ranged between early March and late April 

within the 3 year duration of our study.  For our definitions, winter extended from 

December until the first sign of spring snowmelt (identified by a rise in the hydrograph) 

in each year.  Spring was defined as starting from the first sign of spring melt and 

extending until 45 days following peak spring discharge.  The end of spring was also 

determined by an increase in measured canopy cover indicating the beginning of leaf-out.  

Summer extended from the end of spring until the end of August.  Fall was defined as 

September through November, consistent with observations of leaf fall, which began in 

September and peaked in October each year.   
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Table E1: Seasonal definitions for each year of the study. 

Year Winter Spring Summer Fall 

2012 1 Dec 2011 -  

9 March 2012 

10 March 2012 -  

30 Apr 2012 

01 May 2012 - 

 31 Aug 2012 

1 Sep 2012 - 

 30 Nov 2012 

2013 1 Dec 2012 - 

 30 March 2013 

31 March 2013 - 

 12 Jun 2013 

13 Jun 2013 - 

 31 Aug 2013 

1 Sep 2013 - 

 30 Nov 2013 

2014 1 Dec 2013 - 

1 April 2014 

2 April 2014 - 

22 Jun 2014 

23 Jun 2014 - 

 31 Aug 2014 

1 Sep 2013 - 

 30 Nov 2013 

 

191 


	BIOGEOCHEMICAL CYCLING IN LAKE SUPERIOR TRIBUTARIES: SEASONALITY, QUANTITY AND QUALITY OF EXPORT
	Recommended Citation

	AshleyCoble-1.pdf

