
Michigan Technological University Michigan Technological University

Digital Commons @ Michigan Tech Digital Commons @ Michigan Tech

Dissertations, Master's Theses and Master's
Reports - Open

Dissertations, Master's Theses and Master's
Reports

2015

GENERATING PLANS IN CONCURRENT, PROBABILISTIC, OVER-GENERATING PLANS IN CONCURRENT, PROBABILISTIC, OVER-

SUBSCRIBED DOMAINS SUBSCRIBED DOMAINS

Li Li
Michigan Technological University

Follow this and additional works at: https://digitalcommons.mtu.edu/etds

 Part of the Artificial Intelligence and Robotics Commons

Copyright 2015 Li Li

Recommended Citation Recommended Citation
Li, Li, "GENERATING PLANS IN CONCURRENT, PROBABILISTIC, OVER-SUBSCRIBED DOMAINS",
Dissertation, Michigan Technological University, 2015.
https://doi.org/10.37099/mtu.dc.etds/943

Follow this and additional works at: https://digitalcommons.mtu.edu/etds

 Part of the Artificial Intelligence and Robotics Commons

http://www.mtu.edu/
http://www.mtu.edu/
https://digitalcommons.mtu.edu/
https://digitalcommons.mtu.edu/etds
https://digitalcommons.mtu.edu/etds
https://digitalcommons.mtu.edu/etd
https://digitalcommons.mtu.edu/etd
https://digitalcommons.mtu.edu/etds?utm_source=digitalcommons.mtu.edu%2Fetds%2F943&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=digitalcommons.mtu.edu%2Fetds%2F943&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.37099/mtu.dc.etds/943
https://digitalcommons.mtu.edu/etds?utm_source=digitalcommons.mtu.edu%2Fetds%2F943&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=digitalcommons.mtu.edu%2Fetds%2F943&utm_medium=PDF&utm_campaign=PDFCoverPages

GENERATING PLANS IN CONCURRENT, PROBABILISTIC, OVER-SUBSCRIBED

DOMAINS

By

Li Li

A DISSERTATION

Submitted in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

In Computer Science

MICHIGAN TECHNOLOGICAL UNIVERSITY

2015

c© 2015 Li Li

This dissertation has been approved in partial fulfillment of the requirements for the Degree

of DOCTOR OF PHILOSOPHY in Computer Science.

Department of Computer Science

Dissertation Advisor: Dr. Nilufer Onder

Committee Member: Dr. Laura Brown

Committee Member: Dr. Charles Wallace

Committee Member: Dr. Renfang Jiang

Department Chair: Dr. Min Song

Contents

List of Figures . v

List of Tables . vi

Preface . vii

Acknowledgments . viii

Abstract . ix

1 Introduction . 1

2 Background . 5
2.1 AO*: Heuristic Search in Hypergraphs . 6

2.1.1 HAO*: Planning with Continuous Resources 10

2.1.2 LAO*:A Heuristic Search Algorithm that Finds Solutions with Loops 12

2.2 Sapaps: Solving Deterministic Over-Subscription Planning Problems 14

2.3 ActuPlan: Planning with Continuous Probabilistic Action Durations 15

2.4 CoMDP and CPTP: Planning with Concurrent Actions in the MDP

Framework . 16

3 CPOAO*: Solving Concurrent, Probabilistic, Over-Subscribed Planning
Problems with AO* search 1 . 19
3.1 The Planning Problem . 19

3.2 The CPOAO* Algorithm . 27

4 Heuristic Functions 2 . 37
4.1 Heuristic Functions for Domains Constrained only by Time 38

4.2 Heuristic Functions for Domains Constrained by both Time and Resources . 42

1 c©2008 AAAI. Portions reprinted with permission, from Li Li, Nilufer Onder, “Generating Plans
in Concurrent, Probabilistic, Over-Subscribed Domains”, in Proceedings of the Twenty-Third AAAI

Conference on Artificial Intelligence (AAAI 2008), pp. 957–962.
2 c©2008 AAAI. Portions reprinted with permission, from Li Li, Nilufer Onder, “Generating Plans
in Concurrent, Probabilistic, Over-Subscribed Domains”, in Proceedings of the Twenty-Third AAAI

Conference on Artificial Intelligence (AAAI 2008), pp. 957–962.

iii

5 Empirical Evaluation . 48
5.1 Running CPOAO* in multiple domains . 49

5.2 Pruning Technique for Time Only problems 56

5.3 Comparison to Other Planners . 57

Conclusion . 62

References . 64

Appendix A CPOAO* Domain and Problem . 70
A.1 Mars Rover Domain . 70

A.2 Mars Rover Problem . 72

A.3 Machine Shop Domain . 73

A.4 Machine Shop Problem . 76

A.5 File World Domain . 77

A.6 File World Problem . 82

Appendix B Experimental Data . 83

Appendix C AAAI Publication Copyright Information 86

iv

List of Figures

2.1 First expansion of the AND/OR graph. 8

2.2 Second expansion of the AND/OR graph. 8

2.3 Third expansion of the AND/OR graph. 9

2.4 Fourth expansion of the AND/OR graph. 10

2.5 Example of AO* hyperarcs. 11

3.1 Mars rover map. 21

3.2 Initial state. 30

3.3 Expansion of s0 (first iteration). 31

3.4 Update the expected reward for s0, re-generate the solution graph. 32

3.5 Expansion of s1 (second iteration). 33

3.6 Update the expected reward for s1 and s0, re-generate the solution graph. . 34

3.7 Expansion of s2 (third iteration). 35

3.8 Update expected reward for s2 and s0, re-generate solution graph. 36

4.1 Relaxed planning graph. 44

4.2 Constructing the causal action networks. 45

4.3 Generating all execution scenarios. 46

4.4 Example with actions that contain more than one precondition 47

5.1 Elapsed Time . 55

5.2 Mars Rover 4 Increase Ratio of Elapsed Time 56

v

List of Tables

3.1 Actions in the Mars rover domain. 22

5.1 Problem features (MR: Mars Rover, MS: Machine Shop, FW: File World) . 50

5.2 Elapsed running time . 52

5.3 Generated states . 53

5.4 Pruning ratio . 54

5.5 CAS Pruning . 57

5.6 Comparison to other planners . 58

5.7 Experiment results with CPTP . 59

5.8 Experiment results with ActuPlan . 60

B.1 Mars Rover Expanded States . 83

B.2 Machine Shop Expanded States . 84

B.3 File World Expanded States . 85

vi

Preface

This dissertation contains the research work done for my PhD degree in Computer Science

at Michigan Technological University. The work presented here has not been submitted

for any other degree or diploma. The main contributions of this work are the design and

implementation of an automated planner that can find plans with early-finish and all-finish

parallelism, and the development and evaluation of several domain independent heuristics

that can work with temporal and resource constraints.

Chapters 3 and 4 contain part of material previously published in the proceedings of

the AAAI conference in 2008. My contributions to this publication were to design and

implement the CPOAO* algorithm, develop and evaluate heuristics functions, and compare

to existing planners. The work has been done under the guidance of my advisor, Dr.

Nilufer Onder, who is the second author in the paper. In this dissertation, we used the base

CPOAO algorithm and time based heuristic functions from the AAAI 2008 publication.

We extended the algorithm to handle resource constraints in addition to time constraints.

We designed novel heuristic functions which utilize both time and resource constraints.

The previous work being included in this dissertation is: Li Li, Nilufer Onder. “Generating
Plans in Concurrent, Probabilistic, Over-Subscribed Domains”. In Proceedings of the

Twenty-Third AAAI Conference on Artificial Intelligence (AAAI-08), pp. 957–962.

vii

Acknowledgments

I would like to thank my advisor Dr. Nilufer Onder with deepest appreciation for

her excellent guidance, kindness and patience during my graduate study at Michigan

Technological University. There were difficult times during my research and Dr. Nilufer

was always there to give me a lift, from research ideas to advice on how to balance work and

life. It is a long journey and I honestly believe that I would not be able to reach the finish

line without her encouragement and understanding. I also want to thank my committee

members, Dr. Laura Brown, Dr. Charles Wallace, and Dr. Renfang Jiang. I appreciate their

cheerful willingness to be on my committee, spending time to review my dissertation, and

providing very helpful comments and suggestions.

I want to thank my wife, Yang Xue, for taking care of the family all these years so that I can

focus on my studies. I want to thank my parents, Yangzong Li and Anliang Li for inspiring

me to pursue science and knowledge since I was very young. I fondly remember all their

support and warm encouragement.

Finally, I want to thank Dr. Mausam from the University of Washington and Dr. Eric

Beaudry from the University of Quebec in Montreal for providing me their software and

the instructions so that I can complete the experiments and comparisons with their planners.

Their prompt reply to my questions and e-mail messages were of great help to my research.

viii

Abstract

Planning in realistic domains typically involves reasoning under uncertainty, operating

under time and resource constraints, and finding the optimal subset of goals to work on.

Creating optimal plans that consider all of these features is a computationally complex,

challenging problem. This dissertation develops an AO* search based planner named

CPOAO* (Concurrent, Probabilistic, Over-subscription AO*) which incorporates durative

actions, time and resource constraints, concurrent execution, over-subscribed goals, and

probabilistic actions. To handle concurrent actions, action combinations rather than

individual actions are taken as plan steps. Plan optimization is explored by adding two

novel aspects to plans. First, parallel steps that serve the same goal are used to increase the

plan’s probability of success. Traditionally, only parallel steps that serve different goals are

used to reduce plan execution time. Second, actions that are executing but are no longer

useful can be terminated to save resources and time. Conventional planners assume that

all actions that were started will be carried out to completion. To reduce the size of the

search space, several domain independent heuristic functions and pruning techniques were

developed. The key ideas are to exploit dominance relations for candidate action sets and

to develop relaxed planning graphs to estimate the expected rewards of states. This thesis

contributes (1) an AO* based planner to generate parallel plans, (2) domain independent

heuristics to increase planner efficiency, and (3) the ability to execute redundant actions

and to terminate useless actions to increase plan efficiency.

ix

Chapter 1

Introduction

Automated planning is an important field of artificial intelligence. It is an essential

component of developing intelligent systems which can act autonomously to complete

complex tasks. Planning is the process of choosing and organizing actions that will achieve

a set of prestated objectives [1]. Similar to other areas of artificial intelligence and computer

science, research in planning focuses on developing expressive representations and efficient

algorithms. Planners operate using a structured problem representation which defines an

initial state, a set of goal states, and a set of state modifiers called actions. When applied

in a particular state, an action can cause a change to a different state. The conditions for

the applicability of an action are called preconditions, and the resulting changes are called

effects. The goal of a planner is to find a set of actions that will be executed to change the

initial state to a goal state through the effect-precondition linkages [2, 3].

Intelligent planning is useful for many real life applications ranging from supply chain

management to autonomous spacecraft [4, 5]. For example, the modern-day enterprise

commonly has a very sophisticated supply chain which includes geographically distributed

raw material suppliers, external manufacturers, warehouses, plants, and distribution

centers [6]. Adding to the complexity, many factors such as supplier capacity, resource

availability, transportation time, alternate routing, component substitution, manufacturing

cost also need to be considered to create an optimal plan [7]. The traditional material

requirement planning uses a simple waterfall model [8] flowing from the top level assembly

to the lowest level raw materials and generates a baseline requirement plan. These

requirements have to be further adjusted manually before being sent to the purchase

department for acquisition or to the shop floor for execution. This approach becomes

unfeasible when the supply chain is complex and has many variables. In the more and

more intense global competition, having an intelligent supply chain planning system is the

key to reduce costs and increase productivity and on time delivery. The planning software

1

currently available usually take two approaches to tackle the problem of constrained supply

chain planning and optimization. The first approach is to convert the supply chain planning

problem into a mathematical optimization problem and use linear programming or integer

programming to solve it. In this approach, the common key performance indicators such

as inventory turn, total profit, and on-time delivery can be selected as the objectives of

the optimization. However, there is usually no opportunity for the user to enter priorities

to specific orders. The second approach is a heuristic guided search where a domain

dependent, possibly suboptimal heuristic which simulates the strategy of a human planner

is used.

Both approaches of supply chain management assume a deterministic model, not

considering the possibility of production failure, quality issues, transportation delays, or

machine breakdowns. As such, there is no way to generate a contingency plan and

the entire plan needs to be re-generated for each scenario. In the real world of supply

chain, resources and time are always limited. Therefore, it is unavoidable for some

tasks to fail. The common practice is to assign priorities to orders and have an alternate

manufacturing process in case the primary process cannot be carried through. These

shortcomings constitute a motivation to develop a planner which considers uncertainty,

respects time and resource constraints, and give flexibility to assign priorities to goal

conditions. Furthermore, it is desirable to develop domain independent admissible heuristic

functions which can be applied in a range of industries.

Automated Planning is also an important component in autonomous vehicles such as

the Mars rover. Challenges similar to the world of supply chain planning are faced by

Mars rovers: Actions may have uncertain outcomes, placement of an instrument can fail,

driving from one waypoint to another may take longer time than expected, and actions may

consume an uncertain amount of power. Furthermore, the tasks to be accomplished by the

Mars rover may have different level of priorities and deadlines. For example, Mars rover

must get back to the solar recharge location before using up the power. Both Mars rover

Opportunity and Curiosity have an onboard system called OASIS (Onboard Autonomous

Science Investigation System) [9, 10, 11] which plans rovers’ activities on Mars. OASIS

generates a sequenced plan and monitors its execution. When there is a change to the

environment or Mars rover’s state deviates from the plan, OASIS regenerates the plan. An

alternative approach is to generate a more robust contingent plan when the Mars rover is

still on Earth. We believe having a more robust contingent plan as the baseline plan can

improve the overall plan quality and turnaround time. The replan process can be invoked

when there is a situation which is not covered by the preloaded contingent plan.

These requirements of real-world problems give the motivation to develop a planner which

considers uncertainty, models parallel execution, respects time and resource constraints,

and has flexibility to assign priorities to goal conditions. In addition, the planner

needs to be guided with domain independent heuristic functions that guarantee optimal

2

plans. This dissertation develops a model and planner named CPOAO* (Concurrent,

Probabilistic, Over-subscription AO*) which incorporates probabilistic actions, concurrent

action execution, durative actions with time and resource constraints, and over-subscribed

goals.

To give an example of the reasoning in our work, consider a simplified Mars rover

domain [12] where two pictures must be taken within 5 minutes, and actions have fixed

known durations. The rover has two cameras: cam0 succeeds with probability 0.6, and

takes 5 minutes; and cam1 succeeds with probability 0.5, and takes 4 minutes. In a case

where both pictures have a value of 10, the best strategy is to use cam0 for one picture and

cam1 for the other in parallel. Because all the actions need to finish to collect the rewards,

we call this all-finish parallelism. The total expected reward will be 10 × 60% + 10 × 50%

= 11. In a different case where the picture values are 100 and 10, the best strategy is to use

both cam0 and cam1 in parallel to achieve the larger reward. In this case, the success of

the earliest finishing action is sufficient. We call this case early-finish parallelism. Cam1

finishes earlier than cam0 and the expected reward for using cam1 is 100 × 50% = 50.

If cam1 fails, the expected remaining unachieved reward will be 100 × (1 - 50%) = 50.

Then the expected reward for action cam0 is 50 × 60% = 30. Therefore, the total expected

reward is 50 + 30 = 80. This is larger than the expected reward of using the cameras for

different pictures, which is, 100 × 60% + 10 × 50% = 65.

When both cameras are used for the same picture, if cam1 succeeds in achieving the target

reward, we can abort cam0 immediately unless it serves other goals. Such termination

avoids unnecessary expenditure of resources. If plan steps are marked with termination

conditions during plan generation, they can be monitored during plan execution for these

conditions.

In domains where explicit rewards are assigned to goals, there is advantage in having

parallel actions that serve the same goal, i.e., early finish parallelism. In our approach,

we provide the means for using such parallel actions to maximize expected rewards. In

multi-agent domains or in parallel single-agent domains, there is advantage in terminating

actions as soon as the expected result is obtained, or as soon as it becomes impossible

to obtain the expected results. Our algorithm is capable of marking the actions to be

terminated so that resources can be saved to achieve other goals.

The main contributions of this thesis are threefold. First, we designed and implemented an

AO* search based planner that can find plans with early-finish and all-finish parallelism.

Second, we developed and evaluated several domain independent heuristics that can work

with temporal and resource constraints. Third, we explore the notion of interruptible

actions. Our research improves artificial intelligence planning research as evidenced by

the empirical evaluation we conducted.

3

The organization of this dissertation is as follows. In Chapter 2, previous work related to

this research is discussed. Techniques and algorithms that this research is built upon are

reviewed in the same chapter. Chapter 3 gives an overview of the CPOAO* algorithm. The

heuristic functions designed and implemented for CPOAO* are described in Chapter 4.

In Chapter 5, we describe the empirical evaluation of our CPOAO* planner and present

a comparison to state of the art planners. The summary of our research, conclusion and

future work are given in the concluding chapter.

4

Chapter 2

Background

Plan generation is a computationally complex problem because there are typically an

overwhelming number of actions and states resulting in a large number of options to

consider while constructing the optimal plan. The complexity increases exponentially when

the real world features such as probabilistic actions, parallel actions, temporal reasoning,

and over-subscribed goals are modeled. We briefly describe the planners that model each

feature below.

• Probabilistic actions: Uncertainty is represented using actions that have multiple

possible effects. Each effect has an associated probability which reflects how likely

it is for this effect to happen when the action is executed [13, 14, 15, 16, 17, 18].

• Parallel actions: Actions can be executed concurrently rather than in a serialized

fashion. The planner generates sets of actions instead of individual actions to shorten

the makespan of the plan [19, 20, 21, 22, 23].

• Temporal reasoning: Action durations are represented as a numeric quantity, i.e.,

a plan metric [24]. Deterministic planners that use temporal reasoning include

TP4 [25], Sapa [26], MIPS [27], TLPLAN [28], and HPlan-P [29, 30, 31].

• Over-subscribed goals: The planner must select a subset of the goals to plan for

when resource limitations do not allow all the goals to be achieved. Each goal is

represented with an associated numeric reward. The solution is a plan that collects

the maximum rewards based on the resources available [32, 26, 33, 34].

CPOAO*’s plan generation algorithm is based on the AO* heuristic search framework. In

the following section, we review the basics of the A* and AO* algorithms followed by two

AO* based planning algorithms, LAO* and HAO*.

5

2.1 AO*: Heuristic Search in Hypergraphs

AO* is an extension of the A* algorithm [35, 36, 37, 38]. A* is a best-first search algorithm

that was originally developed to solve the shortest path problem. In the shortest path

problem, the objective is to find the shortest path from the root node to a goal node in

a graph (there can be multiple goal nodes in the graph). For each node x visited, the

algorithm calculates the cost function f (x) using the equation f (x) = g(x)+ h(x) where

g(x) is the actual distance from the root node to x and h(x) is a heuristic estimate of the

minimum distance from x to any goal node. The algorithm maintains a queue of nodes to

be expanded and sorts the queue by the value of function f in ascending order. At each

step, the algorithm takes the first node n from the queue and calculates the value of function

f for all of n’s child nodes. Then node n is removed from the queue and its children are

added into the queue. After that, the queue is sorted again and the expansion repeats until

the first node in the queue is a goal node. At this moment, a path is found from the root

node to a goal node, and the search terminates.

A* searches for the best solution to a problem. The definition of “best” is problem-specific.

It can mean either the minimum value, as in the case of shortest path problem, or the

maximum value, as in the case of reward based goal metrics. A heuristic function is said

to be admissible if the heuristic value returned by the heuristic function never misleads the

search away from the potentially promising branches in the search space [39]. In the case

of finding the minimum value, an admissible heuristic function should never overestimate.

In the case of finding the maximum value, it should never underestimate. If the heuristic

function h(x) is admissible, then A* guarantees that the path found is the shortest path.

AO* is also a heuristic guided best-first search algorithm. However, it searches in an

AND/OR graph. An AND/OR graph, also called a hypergraph, has hyperarcs connecting

one node to multiple other nodes [40]. AND/OR graphs were first introduced in the area

of problem solving to represent the structure of problem reduction. In this setting, the

root node represents the original problem. Each hyperarc represents one way of dividing

the problem into subproblems. The children nodes under the same hyperarc represent

the sub-problems which need to be solved all together to complete the solution. The

sub-problems can be further divided until the tasks are indivisible. There is a fixed cost

for completing every task. AO* searches in this AND/OR graph and it can find the optimal

way to divide the original problem such that the total additive cost of completing all the

required indivisible tasks is minimized.

In Algorithm 1, we show the steps of finding the optimal solution of problem reduction

using AO* search. Initially both working graph G and the solution graph S contain only

the root node. Then AO* repeats the following two steps. In the first step, all divisible

6

leaf nodes which are part of the solution graph are expanded in the working graph. For the

new nodes which are not indivisible tasks, the cost values are estimated using a heuristic

function. For nodes representing indivisible tasks, the cost values are directly calculated.

Afterwards, the costs from the new nodes are propagated backwards to their ancestor nodes.

In the second step, the solution graph is re-generated by selecting the best hyperarcs. As

the working graph expands, the values of the expanded nodes are updated iteratively. This

process repeats until all the leaf nodes in the solution graph are indivisible tasks.

Algorithm 1 AO* Algorithm

Initialize the working graph G to the root node.

Initialize the solution graph S to the root node.

while Solution graph S contains divisible leaf nodes do
1. In working graph G, expand all non-divisible nodes which are included in the

solution graph S. Back propagate to update the cost values of all the ancestor nodes.

2. Re-construct the solution graph S by selecting the best hyperarcs in the working

graph G from the root node.

end while
Return solution graph S.

In Figures 2.1 through 2.4 we illustrate an example. In this example, the round nodes

represent sub-problems. The square nodes represent indivisible tasks. The numbers

represent the costs. In Figure 2.1, the root node is expanded. The 3 hyperarcs represent the

3 ways to divide the original problem. The number on the hyperarc is the sum of the costs

of all its children nodes. Because the middle hyperarc has the lowest total cost, at first it

is included in the solution graph. In Figure 2.2, the nodes under the middle hyperarc are

expanded. After the expansion, the cost values are updated using backward propagation.

The total cost on the middle hyperarc is updated from 13 to 18 (8+ 10 = 18). Now the

best hyperarc is the left hyperarc and it is included in the solution graph. In Figure 2.3,

the nodes under the left hyperarc are expanded. After value propagation, the total cost of

left hyperarc is changed from 14 to 16. However, it is still the best hyperarc. Therefore

the solution graph is extended to include the new nodes under the left hyperarc. Figure 2.4

shows the last expansion. After this expansion, all the sub-problem nodes in the solution

graph are expanded into indivisible task nodes and the final solution graph is found.

The calculation of cost values is done differently in AO* and A*. In A*, for a new leaf

node, the cost is calculated as the cost incurred from the root to this new node plus the

estimated cost from this node to a goal node (the second part is calculated by a heuristic

function). This can be done because the solution is a path. In AO*, because the solution

is a graph, the cost value associated with each node is the cost of solving the sub-problems

represented by this node. Hence, a backward propagation is required to incorporate the cost

from the new nodes into the cost of the ancestor nodes. The main idea of AO* is to find the

optimal solution graph without completely expanding the working graph by pruning some

7

Figure 2.1: First expansion of the AND/OR graph.

Figure 2.2: Second expansion of the AND/OR graph.

branches using heuristic values. Similar to A*, if the heuristic function is admissible, the

solution graph found is guaranteed to be optimal.

Hyperarcs can be used in many different ways. In the area of planning, hyperarcs are very

convenient to represent the probabilistic actions which have multiple resulting children

states. Therefore, when designing a probabilistic planner, an AND/OR graph can be used

as the search graph and AO* can be used as the search algorithm. Each node in the search

graph represents a state and the hyperarcs represent the probabilistic actions. When a

probabilistic action is applied at state s, it can have multiple outcome states. All of the

children states are connected to state s by a hyperarc and each branch has an associated

probability. In the example shown in Figure 2.5, there are two probabilistic actions applied

in state s0. The left one has 3 branches, connecting to 3 children states. The right one has 2

children states. For each probabilistic action, the sum of the probabilities of the outcomes

8

Figure 2.3: Third expansion of the AND/OR graph.

equals to 1.

When using AO* to solve planning problems, each node also has a numeric value

associated to it. This numeric value can represent either the cost to reach the goal or the total

reward that can be collected starting from this state. For the leaf nodes in the hypergraph,

this value can be returned by a heuristic function. For internal nodes, the value is calculated

from the children state values using the backward update formula shown below:

V (s) = besta∈A(U(s,a)+ ∑
s′∈T (s,a)

P(s,a,s′)V (s′))

where, V (s) is the value of state s, A is the set of all probabilistic actions, U(s,a) is the

single step reward or cost function of applying action a in state s, T (s,a) is the set of all

possible resulting children states of applying a in state s, and P(s,a,s′) is the probability of

reaching state s′ from state s when applying action a.

In the next two sections, we describe HAO* and LAO* planning algorithms, which

implement probabilistic over-subscribed planning and plans with loops, respectively.

9

Figure 2.4: Fourth expansion of the AND/OR graph.

2.1.1 HAO*: Planning with Continuous Resources

HAO* (Hybrid AO*) is an extension of the AO* search algorithm for probabilistic

over-subscription planning problems that involve continuous resources [41]. In an

over-subscription problem, the agent tries to achieve as many goals as possible given

the constraints on the resources. Each goal has an associated numeric reward indicating

its importance. Due to the constraints of the resources, the agent can only achieve a

subset of the goals. Selecting the optimal subset is an NP-hard problem. In the HAO*

framework, each action consumes some resources and the total available resources are

limited. Therefore, the search graph is bounded by the resource constraints. The expansion

stops when the resources are completely consumed or all the rewards have been collected.

HAO* finds the optimal plan which maximizes the total expected rewards.

The HAO* framework assumes that the resources can not be replenished and each action

consumes at least one kind of resource. If this assumption holds, the search graph does

not have any cycles because subsequent states always have fewer resources. Therefore, we

can use AO* to solve over-subscription probabilistic planning problems. Furthermore, the

10

Figure 2.5: Example of AO* hyperarcs.

heuristic functions that make use of the constraints on the resources can be designed to

greatly reduce the search space.

The main contribution of HAO* is that it gives a method to integrate the continuous state

variables representing continuous resources into the framework of AO* algorithm. In

HAO*, a planning state consists of a discrete component and a continuous component.

The discrete component includes all the discrete variables of the state. The continuous

component describes the continuous resources of the state. The domain of each particular

resource is an interval of the real number line. The exact form of the continuous component

is a vector of continuous variables defined over a hypercube which is bounded by the

domains of the resources. Because the continuous component is uncountable, the states

in HAO* can not be represented as graph nodes directly. Instead, the nodes in the

HAO* search graph are aggregates of the states which have the same discrete component.

Therefore, each node represents a region of the state space. A node contains a probability

distribution on the values of the continuous component. It specifies the reachability of a

particular value of the continuous component from the root node. Each node also includes

a value function to represent the expected future reward of the states within the aggregate.

For a new node which has not been expanded, this value function is a heuristic estimate for

the states within the node. For the expanded nodes, the value function can be computed

precisely by a dynamic programming algorithm that solves the Bellman optimality equation

with the continuous integral.

HAO* search starts with the root node which may contain only one state. The probability

distribution of the continuous component can also be set to represent a group of possible

initial states. When a node is expanded, based on the probability distribution of the

continuous resources, only the actions which are possible for this node are considered.

The unreachable states are ignored. HAO* expands the search graph and updates the value

function and probability distribution of the continuous component along the way. Because

11

a node is an aggregate of the states, it can have different best actions for different subsets

of the states within it. Due to the same reason, sometimes an already expanded node may

need to be re-expanded after a new path which changes the probability distribution of the

continuous component is found.

HAO* is a novel approach to solving planning problems that involve continuous resources.

It puts all states with the same discrete component into the same node and use the

probability distribution to track their reachability. It exploits the fact that although the

states in one node are uncountable, but they can be partitioned into different regions and

the states within the same region have the similar behaviors.

In HAO* or classic AO*, the search graph is an acyclic AND/OR graph which does not

have loops. However, it is common that infinite horizon planning problems contain loops

in the search graph. For those problems, backward propagation of values does not work.

LAO*, which is described in the next section was designed to address this issue.

2.1.2 LAO*:A Heuristic Search Algorithm that Finds Solutions with
Loops

In many cases, it is hard to guarantee that there are no cycles in the search graph for a

probabilistic planning problem. Sometimes there are loops even in the optimal solution

plans due to the uncertainty of the probabilistic actions. In a deterministic world, it does

not make sense to go back to a state that was already visited and thus form a loop. In a

probabilistic world, however, this may be unavoidable because an action may have many

possible outcomes. For example, an action may fail. If it fails, the state does not change

forming a cycle that starts and ends in the same state. The classical AO* algorithm can not

search in a cyclic graph. If there exist cycles in the search path, its backwards propagation

of the values results in endless loops. To fix this problem, the LAO* algorithm was

developed to handle the updating of the values in a cyclic search graph [42].

Instead of doing backward propagation, LAO* uses dynamic programming methods such

as value iteration or policy iteration [43, 44, 45] to update the values for all the nodes

directly or indirectly linked to the newly expanded nodes. In value iteration, state values

are updated iteratively by the greedy selection of the best action given the values of other

states in the previous iteration. This update step is written as follows:

12

Vi+1(s) = besta∈A(∑
s′

Pa(s,s′)(Ua(s,s′)+ γVi(s′)))

where Vi is the value function in iteration i, A is the action set, s′ is a child state when

applying action a in state s, P is the probability or reaching state s′, U is the single step

utility function, and γ is the discount factor. To determine when the iteration can stop, an

error bound is calculated as follows. For all states, if the value difference between two

iterations is less than ε , then the maximum difference between the values in the current

iteration and their optimal values are bounded by 2εγ/(1 − γ). In policy iteration, the

iterative updates are made directly to improve the policy, which is a mapping between the

states and their best actions. Each iteration consists of 2 steps. In the first step, for the

current policy π , the following linear equations are solved to find all the optimal values for

all states under the current policy.

Vπ(s) = ∑
s′

P(s,s′)(U(s,s′)+ γVπ(s′)))

In the second step, the policy is updated based on the updated state values. The iterations

continue until there is no change on the policy between two iterations. The final policy

found is guaranteed to be optimal. Algorithm 2 presents LAO*.

LAO* is a generalization of AO* in that it relaxes the condition that the search graph of the

problem must be acyclic. It maintains a working graph and a solution graph. The working

graph contains all the states generated. The solution graph has the initial state as the root

node and consists of the best action arcs and their children states. It is re-constructed

every time the values of the new states and their ancestor states are updated by dynamic

programming. When the algorithm stops, the solution graph represents the solution of the

planning problem.

In the remaining sections, we first explain Sapaps, an over-subscription deterministic

planner [26]. Afterwards, we explain three recent probabilistic planners that can generate

plans with parallel actions: ActuPlan deals with uncertainty in action duration [46, 47], and

coMDP and CPTP deal with uncertainty in action outcomes [20].

13

Algorithm 2 LAO* Algorithm

1: The working graph G initially consists of the start state s.

2: while the partial solution contains non-goal terminal states: do
3: Expand the working graph: Expand a non-goal terminal state in the partial solution

using its current best action so that the best action and all the new successor states

are added into the working graph.

4: Create a set Z that contains the expanded state and all of its ancestors in the working

graph along with the best action arcs (only include ancestor states from which the

expanded state can be reached by following the current best actions).

5: Perform dynamic programming (policy iteration or value iteration) on the states in

set Z to update the state values and then determine the best action of each state.

6: Re-construct the partial solution.

7: end while
8: Convergence test: If policy iteration was used in step 5, go to step 9. Otherwise,

perform value iteration on the states in the partial solution. Continue until one of the

following two conditions is met.

(i) If the maximum error falls below the error bound, go to step 9.

(ii) If the solution graph changes so that it has an unexpanded non-goal terminal node,

go to step 2.

9: Return an optimal(or ε-optimal) solution.

2.2 Sapaps: Solving Deterministic Over-Subscription
Planning Problems

Sapaps is an A* heuristic search planner designed to solve deterministic over-subscription

planning problems [26]. The target problem of Sapaps is slightly different from the

oversubscribed problems discussed in previous section. In a Sapaps problem, the resource

consumption is represented by the costs of the actions. The cost of each action is a single

number. Therefore, Sapaps can represent at most one type of resource. SapaMps is an

extension of Sapaps to handle numerical goals and soft/hard goal constraints [34]. The

solution to a Sapaps or SapaMps planning problem is a plan that has a good trade-off

between the reward achieved and the total cost of the actions in the plan. The term

“good” rather than “best” is used here because Sapaps is not an optimal planner due to

its inadmissible heuristic function.

Despite being inadmissible, Sapaps’s heuristic function is very informative. To find a

heuristic value of a state, Sapaps generates a relaxed plan graph with this state as the root.

The plan graph is relaxed in the sense that the delete effects of actions are ignored [48, 49].

The plan graph is expanded until a fixed point is reached. Then a relaxed plan is extracted

14

from this graph by regression from the goals to the propositions in the initial state. In

this extraction, the most cost-effective action is chosen for each goal and the subgoals

derived from the goals. The cost of an action includes both the cost of executing this action

and the cost of achieving its preconditions. The cost of the preconditions is computed

additively. However, an action that supports precondition A may also support precondition

B. Therefore, computing the total cost additively may over-estimate the actual cost. This is

the reason that the heuristic function is not admissible. After the relaxed plan is generated,

it is analyzed to find out which actions support which goals. The result is a mapping from

the subsets of actions to the subsets of goals where each subset of actions only supports

the goals in the corresponding goal subset. Based on this mapping, Sapaps forms a subset

of goals that is most cost-effective. The net benefit of this subset of goals is taken as the

heuristic value of the start state.

In summary, Sapaps employs an inadmissible heuristic function to guide its A* search

algorithm in finding the plans. It trades optimality for efficiency. It can efficiently generate

relatively good plans for over-subscription planning problems.

In our work, we also solve oversubscription planning problems. The heuristic functions

we developed use a relaxed planning graph to estimate the rewards for the new states. The

difference is that our planning framework is capable of handling concurrent probabilistic

actions and our heuristic functions are admissible.

2.3 ActuPlan: Planning with Continuous Probabilistic
Action Durations

ActuPlan is a recent planner which explores the planning domains with both action

concurrency and uncertainty on action duration. In its current version, it assumes the action

effects are deterministic and the uncertainty is only with action durations [46, 47]. ActuPlan

uses a continuous time model where time is represented using random variables instead of

a series of discrete time intervals. For each action, two random variables are created to

represent the start event and the end event. For example, suppose that there are two actions

a1 and a2 in the plan and a1 needs to be executed before a2. Further suppose that r1s ,

r1e, r2s, and r2e represent the start and the end of actions a1 and a2, respectively. Then the

dependency between the actions is represented as r1e < r2s and this constraint is factored

into a Bayesian network. This Bayesian network is used in the evaluation of the plan’s

makespan.

The ActuPlan algorithm returns the plan which achieves all the goals and has the shortest

15

makespan. The main algorithm is a forward chaining search algorithm guided by a relaxed

planning graph based heuristic function which estimates the lower bound of the cost (plan

makespan) to satisfy the goals. Along with the expansion of the plan, the random variables

are generated and added into the Bayesian network. This Bayesian network is also used

by the heuristic function to calculate the probability of satisfying the goals within a certain

makespan.

ActuPlan can run in two modes: conformant mode and contingent mode. In the conformant

mode, the agent does not have any visibility on the actual action duration and the steps in

the plan are fixed. In contingent mode, the agent has full observability and can take different

paths based on the actual action duration. In the contingent mode, contingent sub-plans are

included in the plan. In ActuPlan, deadlines can also be attached to goal conditions. In this

case, the plan needs to meet these deadlines while trying to minimize the overall makespan.

2.4 CoMDP and CPTP: Planning with Concurrent
Actions in the MDP Framework

CoMDP and CPTP are recent MDP-based planners that can generate plans with concurrent

actions considering uncertainty in action outcomes. CoMDP uses actions that have a

unit duration, CPTP uses actions with numeric durations. Both planners are based on

Markov decision process (MDP) framework. Therefore, we begin by reviewing the MDP

algorithms [43].

A probabilistic planning problem with full observability can be modeled as an MDP

because it satisfies the Markov property in that the decision of choosing the next action only

depends on the current state and has nothing to do with the state history. In probabilistic

planning, besides the initial state there is a set of goal states. The ultimate goal of the agent

is to enter a goal state. The actions are probabilistic. Each action has a cost associated

with it. The agent also wants to minimize the total cost of entering a goal state. Going into

a dead end state where no action can be applied should be avoided by the agent since it

means the failure of entering a goal state.

To formulate a probabilistic planning problem as an MDP problem, actions are represented

as a transition function which specifies the probability of going from one state to another

under some action a. The goal states and the dead end states are taken as the terminal states.

When the agent enters a terminal state, it stays there forever. The solution of the resulting

MDP problem is a policy that dictates which action should be taken for each state reachable

from the initial state such that the expected total future cost for each state is minimal. This

16

policy is equivalent a contingent plan for the corresponding probabilistic planning problem.

Several techniques have been developed to reduce the search space size by modeling

the MDP problem in a more compact way. One approach is to utilize a dynamic
Bayesian network (DBN) to represent the actions instead of using a tabular transition

function [50, 51, 52, 53]. The state space can then be factored into a set of abstract states

based on the common outcomes under the actions. Another approach is to symbolically

represent the entire MDP problem using algebraic decision diagrams (ADDs) [54, 55, 56].

Actions, reward function, value function and policy are all represented in the form of

ADDs. Through ADD manipulation, the value function and policy are updated without

enumerating the underlying states.

Many algorithms have been developed to solve MDP problems. Among them, Real-Time
Dynamic Programming (RTDP) is an asynchronous value iteration algorithm that exploits

the reachability property of the states to speed up the search [57]. Instead of

indiscriminately updating every state in the state space, it focuses on updating the states that

are more likely to be visited. RTDP can quickly produce a policy that is relatively good.

The drawback of RTDP is that it converges very slowly because the rarely visited states

are infrequently updated but they are needed for full convergence. To fix this problem,

the Labeled RTDP (LRTDP) algorithm was developed [14] . LRTDP marks the states that

have already converged so that the computation efforts can be switched to states that have

not yet converged. Another approach is to generate an approximate solution. Sampled

RTDP only simulates the scenarios that are likely to happen and ignores the ones that are

less likely [58]. It alleviates the problem of exponential explosion of the search space.

However, the solution found is not guaranteed to be optimal.

LRTDP was originally developed to solve regular (non-parallel) probabilistic planning

problems and was then extended to solve the concurrent probabilistic planning problem

where actions can be executed in parallel. In concurrent probabilistic planning, the state

transitions are based on action combinations rather than individual actions. Thus, at each

state, the agent needs to decide which subset of actions should be applied. The key step

in formulating a concurrent probabilistic planning problem as an MDP problem which

LRTDP can solve is to create the set of applicable action combinations for each state.

Action combinations are sets of compatible actions that are applied in parallel similar

to the individual actions in regular probabilistic planning problems. The MDP problem

constructed from a concurrent probabilistic planning problem is called a CoMDP [21].

After a concurrent probabilistic planning problem is transformed into a CoMDP, LRTDP

can be used to solve it.

Concurrent probabilistic temporal planning (CPTP) is a planning model that represents

actions with different durations. If we let the duration of an action combination to be the

17

duration of the longest action in it, then a lot of time is wasted in waiting for the longer

actions to finish. CPTP solves this problem by augmenting each state to include not only

the discrete logical variables but also the unfinished actions together with their remaining

durations. When a state is expanded, the time is advanced by the duration of the shortest

action in the union of the applied action combination and the set of unfinished actions in

this state. All the remaining unfinished actions are put into the set of unfinished actions

of its children states. When any single action finishes, it is time to consider applying new

action combinations.

CPTP uses two heuristic functions. In the first heuristic function, the base MDP problem is

solved to find the cost. The cost is then divided by the maximum number of concurrent

actions and is used as the initial cost for CPTP. The second heuristic function solves

a relaxed version of CoMDP generated from the CPTP problem by ignoring the action

duration and the mutual exclusivity (mutex) between the actions. Both heuristics are

admissible. The second heuristic function is more informative because concurrency is taken

into account.

In the next Chapter, we describe the details of the planning problem that we solve and

then introduce the CPOAO* algorithm which we developed. Our base CPOAO* algorithm

can be considered as an extension of HAO*. In contrast with HAO*, we use hyperarcs

to represent action combinations rather than individual actions. Actions can be executed

in parallel and can be aborted in the middle of execution. Because the planning problems

we solve have time and resource constraints and actions consume at least some time, we

can safely use backward propagation to update the values. One simplification we make is

to use a discrete time model and not include uncertainty on action durations. This is an

interesting feature to add in the future research because many actions are expected to have

variable durations in the real world.

18

Chapter 3

CPOAO*: Solving Concurrent,
Probabilistic, Over-Subscribed Planning
Problems with AO* search 1

CPOAO* is a planner that allows concurrent execution of probabilistic actions with discrete

durations[59]. The goals have associated reward values which enable the planner to select

the optimal set of goals to be achieved. CPOAO* uses an input and domain description

language similar to PPDDL (Probabilistic Planning Domain Definition Language) [60, 24].

We extended PPDDL to include time, resources, and numeric reward values for the

goal conditions. The planning algorithm conducts a state-space search using the AO*

framework. In this Chapter, we describe the representation and algorithm CPOAO* uses.

3.1 The Planning Problem

A concurrent, probabilistic, over-subscribed planning problem is defined as a five-tuple

(S, A, s0, R, tmax), where,

• A is the set of actions,

• S is the state space,

1 c©2008 AAAI. Portions reprinted with permission, from Li Li, Nilufer Onder, “Generating Plans
in Concurrent, Probabilistic, Over-Subscribed Domains”, in Proceedings of the Twenty-Third AAAI

Conference on Artificial Intelligence (AAAI 2008), pp. 957–962.

19

• s0 is the initial state,

• R is the reward set, and

• tmax is the maximum time allowed for plan execution.

The action set A contains all the actions that are available to the agent. Each action in

set A consists of a precondition list lpre, an outcome list lo, a time duration t, and a list

of resource consumption requirements lres. The precondition list represents the logical

requirements that must hold for the action to be applied in a state. An outcome on is defined

as a triple (addn,deln, probn) denoting the add list, the delete list, and the probability that

this outcome happens. The total probability of all the outcomes in the outcome list of an

action should be 1. For each outcome, the add-list contains the propositions that will be true

after the execution of the action. The delete-list contains the propositions that will be false

after the execution of the action. We assume that every action has non-zero duration. This

assumption is often the case in the real world and we use it to guarantee the termination of

our algorithm.

We adopt the common semantics for action execution. Before an action can be executed

in a state, the preconditions must hold, the required resources specified in the resource

consumption list must be available, and the remaining time must be greater than or equal to

the time duration of the action. After an action is executed and completed, the result is a set

of new states which correspond to the list of outcomes. For each outcome, a new child state

is generated where the propositions in the add list are added, the propositions in the delete

list are deleted, the resources used are subtracted, and the new time is recorded according

to the duration of the action. The probability of the new state generated by outcome on
from state s j is the probability of s j multiplied by the probability of outcome on.

In some situations, the best choice is to remain in a particular state to guarantee the

maximum total reward. Therefore, CPOAO* domains include a special “Do-nothing”

action in the action set A. The result of applying the “Do-nothing” action is a new child

state that is exactly the same as the parent state but is flagged as a terminal state. No actions

can be applied in a terminal state. In addition to the states resulting from the “Do-nothing”

actions, the second type of terminal state in our framework are the states where all the

rewards have been collected and thus there is no need to execute further actions.

CPOAO* provides a mechanism to stop actions before they finish executing. If an action

is aborted, then the add and delete lists are not applied and the only impact is the resources

used so far. The consumption is calculated in proportion to the elapsed execution time. For

example, consider an action that has a duration of 5 time units and requires 4 power units to

complete the execution. If this action is aborted after 3 time units, then it consumes 4*(3/5)

= 2.4 power units.

20

Figure 3.1: Mars rover map.

The actions in the action set A can be executed in parallel if they are compatible. A pair

of actions are considered to be compatible if they don’t have contradictory effects or one

action doesn’t delete a precondition of the other. Executing actions in parallel has value

in the real world because usually time is a very critical resource in a task. In addition, in

a domain where action results are uncertain, we can exploit parallelism to make the plan

more robust. For example, we can execute two actions in parallel for the same goal to

increase the probability of achieving the goal.

S represents the set of all states that are in the agent’s environment. Each state in S is

a 4-tuple (sp,sa, t,sr) where sp is a set of propositions which are true in this state, sa is

the set of currently executing actions, t is the available time, and sr is a list of numeric

resource values. The propositions in sp are similar to the state variables in classical

planning problems. For example, the proposition At_Location_A represents whether the

agent is at location A or not. Because we allow actions to run in parallel, when one action

finishes, there might be some other actions still running. Set sa is used to track these

unfinished actions. An unfinished action is an action with the additional information about

the remaining time duration and resource requirements. Variables t and sr have numeric

values and represent the remaining time and resource levels in a state, respectively.

Each reward in R is a proposition-value pair. In a state, if a reward proposition is true,

the corresponding reward value is counted as an achieved reward and is added to the total

rewards. In our model, we do not have the concept of hard goals, i.e., goals that must be

achieved, because the actions are probabilistic and the results are uncertain. Therefore, a

plan that guarantees the achievement of a goal with probability 1 might not exist. Instead,

important goals are represented by assigning very high rewards. The last item in the

problem definition is tmax, which defines a time limit for plan execution to finish.

In the initial state s0 = (sp0, sa0, t0, sr0), the propositions in sp0 are true, the resources have

the initial values given in the resource list sr0, no actions have been started so sa0 is empty,

and t0 is the time limit given to the problem.

21

Table 3.1
Actions in the Mars rover domain.

Action Time

Required

Energy

Required

Success

Probability

Description

move 5 5 100% Move the rover from one

location to another location

collect-sample 6 6 70% Collect soil sample at a

location

take-picture-long 4 4 60% Take a picture at a location

(higher success probability)

take-picture-short 3 3 50% Take a picture at a location

(lower success probability)

As our running example, we use the Mars rover domain which is a popular planning domain

that has been used widely [21]. In this domain, a Mars rover has landed on Mars and has a

list of tasks to complete. In our first example, the Mars rover needs to collect soil samples

and take pictures. At the beginning, it is at location A. It can travel to locations B, C and D
as shown in Figure 3.1. At location B, it can collect a soil sample and can take a picture. At

location C, it can collect a soil sample. At location D, it can take a picture. To collect the

soil sample, the Mars rover needs to execute the collect-sample action. To take a picture,

it can either execute take-picture-long action or take-picture-short action. Both of them

can take a picture but they have different durations, energy costs, and success probabilities.

Table 3.1 shows the details of these actions.

The action space consists of all the ground actions (instantiated actions). In the following,

we show example actions from the action space. The collect-sample action is probabilistic

and has two outcomes, with probabilities 0.7 and 0.3. Outcome o1 is the successful outcome

with the desired effect achieved. Outcome o2 is the failure case. The move action is

deterministic and has one outcome.

22

collect-sample(B)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

lpre = {At_Location_B}

lo =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

o1 =

⎧⎪⎨
⎪⎩

add1 = {Sample_Collected_B}
del1 = /0

prob1 = 0.7

o2 =

⎧⎪⎨
⎪⎩

add2 = /0

del2 = /0

prob2 = 0.3

t = 6

lres = {energy = 6}

move(A,B) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

lpre = {At_Location_A}

lo =

⎧⎪⎨
⎪⎩o1 =

⎧⎪⎨
⎪⎩

add1 = {At_Location_B}
del1 = {At_Location_A}
prob1 = 1

t = 5

lres = {energy = 5}

The rover has 20 energy units at the beginning and is given 11 time units to work on the

task list. The goal is to maximize the reward points collected. When we translate the above

planning problem description into the formal definition given in this Chapter, we have the

following.

The initial state s0 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

sp0 = {At_Location_A}
sa0 = /0

t0 = 11

sr0 = {energy = 20}

The state space includes all the possible states which can be reached from the initial state.

For example, by taking action move(A,B) to move from Location A to Location B, the

Mars rover will reach state s1 shown below.

s1 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

sp1 = {At_Location_B}
sa1 = /0

t1 = 6

sr1 = {energy = 15}

23

From state s1, the Mars rover can start 3 actions at the same time, which

are collect-sample(B), take-picture-long(B), and take-picture-short(B). Because

take-picture-short(B) is the shortest action, it will complete first. After it completes,

the Mars rover will be in state s2. In this state, collect-sample(B) and take-picture-long(B)

are unfinished actions. The remaining time duration for collect-sample(B) is 3 time units.

The remaining time duration for take-picture-long(B) is 1 time unit.

s2 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

sp1 = {At_Location_B,Picture_Taken_B}
sa1 = {(collect-sample(B), time = 3),(take-picture-long(B), time = 1)}
t2 = 3

sr2 = {energy = 6}

The reward proposition-value pairs for this example are listed below. A high reward value

is assigned to At_Location_A to make sure that the rover moves back to the start location.

R =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(At_Location_A,10)

(Sample_Collected_B,3)

(Picture_Taken_B,3)

(Sample_Collected_C,3)

(Picture_Taken_D,3)

In general, there are two cases in which we can use parallel execution to achieve the

planning goals. We illustrate this with an example from the Mars rover domain. In

this setting, the Mars rover is currently located in location A. There are two rewards

“Picture-Taken-A1” and “Picture-Taken-A2” the Mars rover can collect at location A. The

time allowed is 5 units. Consider a situation where each picture reward has a value of

10. In this case, the best strategy is to execute take-picture-long to achieve one reward

and execute take-picture-short to achieve another. The total expected reward will be

10×60%+10×50% = 11. In this case, we execute actions in parallel to achieve different

rewards. Because all the actions need to finish to collect the rewards, we call it the

case of all-finish. In another situation, suppose one picture reward has a value of 100

and the other has a value of 10. Then the best strategy is to use both take-picture-long

and take-picture-short to achieve the same reward which has the value of 100. The

expected reward for action take-picture-short is 100× 50% = 50. The take-picture-short

finishes earlier than the take-picture-long. The expected remaining unachieved reward after

take-picture-short finishes is 100× (1− 50%) = 50. So, the expected reward for action

take-picture-long is 50× 60% = 30. Therefore, the total expected reward is 50+ 30 = 80

which is the maximum expected reward. In this case, if take-picture-short succeeds in

achieving the target reward, we can abort take-picture-long immediately. Because we use

concurrent actions to achieve the same target reward and we will abort all other actions

24

after the earliest successful action finishes, we call it the case of early-finish.

Another example of using redundant actions comes from ProPL, a process monitoring

language where processes might include redundant parallel actions such as seeking task

approval from two managers when one approval is sufficient [61]. The focus of ProPL is

on expressing and monitoring such actions. Our focus is in generating plans that can use

redundant actions, as well as marking the actions that need to be terminated.

The solution to the planning problem defined in this section is a contingent plan that

produces the maximum expected total reward for the initial state s0. Different from the

policies created by classic MDP planning programs, each plan step in our planning problem

is a set of concurrent actions which we call a concurrent action set (CAS). The plan consists

of pairs of states and CASs. In a CAS, 3 sets are maintained, i.e., start action set lstart ,

terminating action set lterm, and ongoing action set longoing. The start action set includes all

the new actions that are going to be started. The terminating action set has the actions

that will be aborted. The ongoing action set includes the actions that can continue to

execute. The actions in the union of start action set and ongoing action set are required to

be compatible with each other. The duration of a CAS is determined by taking the shortest

duration from the actions in the start action set and the remaining duration of the actions

in the ongoing action set. At the end of the application of a CAS, new children states

are created by applying the outcomes of the finished actions in the CAS. The remaining

unfinished actions are added into the unfinished action list of the new children states.

Using the Mars rover example, suppose that the current state si is the following.

si =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

spi = {At_Location_B}
sai = {(collect-sample(B), time = 5),(take-picture-long(B), time = 3)}
ti = 5

sri = {energy = 11}

An example of applicable CAS for state si is

CASx =

⎧⎪⎨
⎪⎩

lstart = {(take-picture-short(B), time = 3)}
lterm = {(collect-sample(B), time = 5)}
longoing = {(take-picture-long(B), time = 3)}

lstart can be an empty set, but the union of lterm and longoing is aways equal to the set

of unfinished action sai. Below we present another example to illustrate how the CAS

outcomes are computed.

25

CASy =

⎧⎪⎨
⎪⎩

lstart = /0

lterm = {(collect-sample(B), time = 5)}
longoing = {(take-picture-long(B), time = 3)}

Both CASs above have a duration of 3 time units. At the end of a CAS, the outcomes of

all finished actions are applied and merged to create new children states. For CASx, the two

children states are the following.

si+1 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

spi = {At_Location_B,Picture_Taken_B}
sai = {(collect-sample(B), time = 2)}
ti = 2

sri = {energy = 2}

(probability = 80%)

and

si+2 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

spi = {At_Location_B}
sai = {(collect-sample(B), time = 2)}
ti = 2

sri = {energy = 2}

(probability = 20%)

Applying CASy would generate the same children states but with different probabilities

which are 60% and 40%.

In a valid CAS, the union of lstart and longoing should never be empty. In the case where

there are no applicable actions, the start action set lstart will have the do-nothing action in

it. If the start action set of a CAS includes do-nothing, it generates a terminal state with

100% probability. Below is an example CAS that generates a terminal state.

CASz =

⎧⎪⎨
⎪⎩

lstart = {(do-nothing, time = 0)}
lterm = {(collect-sample(B), time = 5),(take-picture-long(B), time = 3)}
longoing = /0

The optimal solution is the plan that maximizes the expected total reward of initial state s0.

In the next section we explain the CPOAO* planning algorithm.

26

3.2 The CPOAO* Algorithm

We developed a new algorithm named CPOAO* (Concurrent Probabilistic Oversubscribed

AO*) which can find the optimal solution plan for the planning problems defined in this

Chapter. This algorithm searches in the state space of the planning problem and maintains

two AND/OR graphs. The first graph is the working graph, WORK-G, which contains the

entire search space explored. The second graph is the solution graph, SOLN-G, which is a

sub-graph of WORK-G and represents the current best plan according to the working graph

expanded so far. The nodes in these two graphs are the states and the hyper-arcs are the

CASs. Each CAS starts from a parent state and ends in an “and” set of states which consists

of all the possible children states. The “or” relations between CASs in the WORK-G model

the fact that for a given parent state there are multiple choices of CASs that can be taken.

Initially, both WORK-G and SOLN-G only contain the initial state s0. Then WORK-G

is expanded iteratively by applying all the applicable concurrent action sets on the

unexpanded states which are also included in graph SOLN-G. When a state si is expanded

and multiple CASs and their corresponding sets of children states are added into WORK-G,

an admissible function is used to estimate the expected reward for each newly generated

child state. The CAS which gives the maximum expected reward for state si is selected as

the best CAS and the expected reward of state si is thus updated. After this, the expected

total reward and the best CAS are re-calculated for each ancestor state of state si. If the

expected reward of an ancestor state sa changes, the parent states of sa also have their

expected reward re-calculated and best CAS re-selected. Finally, the solution plan graph

SOLN-G is re-constructed by starting from the initial state and following the best CAS

along the way. This process is repeated until every state in SOLN-G is either expanded or

is a terminal state. At that time, SOLN-G is the optimal solution plan. This plan returns

the maximum expected reward for the initial state. It specifies which CAS should be taken

for each state that are reachable following the plan. It is a contingent plan because it takes

care of both the success and failure outcomes of an action. The algorithm is shown in

Algorithm 3.

The main loop of the search starts at Line 3, and continues until the solution graph doesn’t

have any non-terminal, unexpanded states. From Line 5 to Line 15, all the non-terminal

unexpanded states in the current solution graph SOLN-G are expanded. To expand a

state s, first the set of all applicable concurrent action sets is generated for state s. Then,

every applicable CAS is applied to create the child states. Following that, an upper bound

estimate of the expected reward is calculated for each new state and the best CAS is found

for state s. At the end of the expansion, the parent states of the expanded state are added

into the set Z. At Line 16 through Line 24, all states in set Z and their ancestor states are

traversed bottom-up to re-calculate the best CAS and expected reward. In the last part of

27

Algorithm 3 CPOAO* Main Algorithm

1: The working graph WORK-G initially only contains the initial state s0.

2: The solution graph SOLN-G initially only contains the initial state s0.

3: while SOLN-G has unexpanded non-terminal states do
4: Let Z be the empty set.

5: for all s which is an unexpanded non-terminal state in SOLN-G do
6: Generate the set of all applicable CASs for state s, denoted as Cs, by calling the

Generate Concurrent Action Sets procedure

7: for all c in Cs do
8: Apply c on state s to generate the child states of s.

9: Calculate the upper bound of expected rewards for newly generated child states

using heuristic functions.

10: end for
11: Find the best CAS for state s. The best CAS is the one that provides the the

maximum expected reward based on the estimated rewards of the child states.

12: Mark the best CAS on graph WORK-G.

13: Update the estimated expected reward of state s based on its best CAS.

14: Add the parent states of s into set Z if the estimated expected reward of s has

changed.

15: end for
16: while Z is not empty do
17: Choose a state s′ ∈ Z that has no descendant in Z.

18: Re-select the best CAS for state s′
19: Update the estimated expected reward of s′ using the new best CAS

20: if The estimated expected reward of s′ has changed then
21: Add the parent states of s′ into Z.

22: Remove state s′ from Z
23: end if
24: end while
25: Re-generate SOLN-G by following the best CASs from the initial state s0 to the leaf

states in the graph.

26: end while
27: When every state in SOLN-G is either expanded or is a terminal state,

SOLN-G contains the optimal plan,

Return SOLN-G.

the algorithm, SOLN-G is re-generated from initial state following the path of the updated

best CASs.

At the terminal states, plan execution stops and the total rewards are calculated by adding

up the rewards specified in the reward proposition-value pairs for the true propositions.

Because an achieved reward in a non-terminal state can be removed in order to achieve

28

some other reward, we don’t calculate the exact total reward for non terminal states using

reward proposition-values. For non terminal states, we calculate the expected total rewards

by adding up the expected total rewards of its children states weighted by probability. Given

a plan, the expected total reward of a state, E(si), is calculated using the following formula:

E(si) =

{
∑s j∈C(si)P(i, j)E(s j) if si is not a terminal state

Rsi if si is a terminal state

where C(si) is the set of child states of si after applying the corresponding CAS in the plan,

P(i, j) is the probability of entering state s j from state si according to the plan, and Rsi is the

exact total reward achieved in the terminal state si.

At Line 6, the procedure shown in Algorithm 4 is called to generate the set of applicable

concurrent actions sets. First, the set of all applicable actions for state s is created. This

set contains all candidate actions to put into the start action set of the new CAS. Then the

actions which are also an unfinished action in state s are removed from this set because there

is no benefit in aborting an executing action restart it immediately. Afterwards, two power

sets are built: one from the newly starting actions and one from the unfinished actions.

Each power set contains all the combinations of the actions from the base set. From the

power set of newly starting actions, the incompatible action combinations are removed.

This is not needed for the power set of unfinished actions because they must be compatible

given the fact that they are already running at the same time. Next, a Cartesian product is

taken between the two power sets. This creates the set which has pairs of start action set

and ongoing action set. Finally, the pairs are extended to include terminating action set by

subtracting the ongoing action set from the set of unfinished actions in state s. The output

of this procedure is the set of applicable concurrent action sets for state s. In the worst

case, when all actions are applicable and are also compatible with each other, the number

of applicable CASs is 2n, where n is the number of actions. Any technique which can

safely prune the set of applicable CASs is highly desired. In the next Chapter, we present

a technique which can reduce the size of the set of applicable CASs when time is the only

constraint.

In Figures 3.2 to 3.8, we show how the working graph and the solution graph are generated

by the CPOAO* algorithm with the Mars rover example. At each iteration, we expand the

tip unexpanded non-terminal states in the current solution graph. After the expansion, the

expected total rewards are updated and the solution graph is recomputed. These iterations

continue until there are no unexpanded non-terminal states in the solution graph. In this

example, we only show the first 3 iterations.

At the beginning, both working graph and solution graph only contain the initial state

s0 (Figure 3.2). In this example, the initial expected total rewards of the new states are

29

Algorithm 4 Procedure: Generate applicable concurrent action sets for state s
1: Create set APs that includes all the applicable actions for state s.

2: Let AUs be the set of unfinished actions in state s.

3: Delete from APs all the actions that exist in AUs.

4: Create set APs
p which is the power set of APs.

5: Delete from APs
p all the action combinations that are not compatible.

6: Create set AUs
p which is the power set of AUs.

7: Create the product set ASs
p = {(x,y) : x ∈ APs

p;y ∈ AUs
p}.

8: Delete from ASs
p all the (x,y) pairs that are not compatible.

9: Extend each pair in ASs
p to be a triple by adding the termination action set z which

equals AUs - y.

10: The resulting set ASs
p = {(x,y,z) : x ∈ APs

p;y ∈ AUs
p;z = AUs − y} is the set of all

applicable CASs for state s.

Return ASs
p.

calculated using a hypothetical admissible heuristic function h. After a state is expanded,

the expected total reward is calculated from its children states.

Figure 3.2: Initial state.

Figure 3.3 shows the result of the first iteration after the initial state is expanded and all

the applicable CASs are applied. The do-nothing action is also added (shown in dashed

lines). All the new states except for s4 are non-terminal states. s4 is a terminal state where

expansion stops. Its expected reward is calculated based on the state propositions rather

than using the heuristic function. s4 has zero reward because it doesn’t have any reward

propositions.

30

Figure 3.3: Expansion of s0 (first iteration).

After the expansion, the expected rewards are re-calculated for all the ancestor states of

the new states (Figure 3.4). The maximum reward returned by one of the CASs is used

as the expected reward of the parent state. In the example, Move(A,B) is the best CAS,

so the expected reward of s0 is updated to 6. The solution graph is regenerated to include

Move(A,B) and s0.

Figure 3.5 shows the next iteration where the unexpanded state s1 in the solution graph is

expanded. New states from s5 to s9 are added into working graph.

After the expected reward update, s1 has a reward of 2.5 which is less than the expected

reward for state s2. As a result, the new solution graph doesn’t include s1 and Move(A,B).

Instead it has s2 and Move(A,C) (Figure 3.6) .

Figure 3.7 shows the expansion of state s2. As a result of expected reward update, state

s2 now has a reward of 1.4 (Figure 3.8). Therefore, the solution graph is re-generated to

switch back to s1 and its child states. State s3 is never expanded because it has a low

expected reward.

We can see that there is no need to expand the states that have lower expected rewards than

the total expected rewards given by the current solution graph. This example shows that

several search branches can be pruned by utilizing a good heuristic function. In the next

31

Figure 3.4: Update the expected reward for s0, re-generate the solution

graph.

section, we present the heuristic functions we have developed.

32

Figure 3.5: Expansion of s1 (second iteration).

33

Figure 3.6: Update the expected reward for s1 and s0, re-generate the

solution graph.

34

Figure 3.7: Expansion of s2 (third iteration).

35

Figure 3.8: Update expected reward for s2 and s0, re-generate solution

graph.

36

Chapter 4

Heuristic Functions 1

Heuristic functions play an important role in search algorithms because they can reduce the

search space significantly by steering away from non-promising branches. A good heuristic

function is informative, admissible, and easy to compute. However, it is often not possible

to achieve all of these characteristics, and tradeoffs must be made. For example, Sapaps,

an over-subscription planner, calculates the heuristic value of a state s by constructing the

relaxed planning graph with state s as the root node and propagating the action costs to the

goals [34]. This heuristic value is not admissible because it uses the summation of the costs

of the preconditions to compute the cost of an action. An inadmissible heuristic function

can produce a sub-optimal plan which might not be desirable in critical tasks such as in the

case of Mars rover. Inadmissible heuristics are useful when they are more informative than

their admissible counterparts and the level of suboptimality is acceptable.

The HAO* planner described in Chapter 2 computes the heuristic values by solving a

relaxed problem, which is a deterministic version of the original problem, using the same

algorithm and a trivial heuristic function. The maximum reward of each state is saved in the

memory. It uses the rewards found in the deterministic problem as the heuristic value for the

states in the original problem. If it can not find a matching state in the relaxed problem for

some state s in the original problem, it simply solves the relaxed problem again with state s
as the initial state. The resulting heuristic values are admissible. While solving the relaxed

problem is relatively easy compared to solving the original problem, it is still hard to solve.

In addition, the heuristic might not be informative because ignoring the uncertainty of the

probabilistic actions might generate heuristic values too far away from their actual values.

1 c©2008 AAAI. Portions reprinted with permission, from Li Li, Nilufer Onder, “Generating Plans
in Concurrent, Probabilistic, Over-Subscribed Domains”, in Proceedings of the Twenty-Third AAAI

Conference on Artificial Intelligence (AAAI 2008), pp. 957–962.

37

In this dissertation we focus on admissible heuristic functions and develop two groups

of heuristics. The first group is developed for domains that have only time constraints.

The second group contains heuristic functions that are more general and are applicable to

domains with both time and resource constraints. We describe the heuristic functions we

developed in the next two sections and describe the experimental evaluation in Chapter 5.

4.1 Heuristic Functions for Domains Constrained only by
Time

The branching factor in CPOAO* search is very high because it needs to consider

concurrent action sets (CASs) rather than individual actions. A CAS is a member of the

power set of the action set A, and thus the size of the state space increases exponentially.

To make the search space smaller, we apply a pruning technique to decrease the number

of branches when time is the only constraint. This technique is based on the fact that we

do not need to have a branch for a CAS if there is another CAS which is always better
than it. We say concurrent action set CASi is better than concurrent action set CAS j if

the expected total rewards which could be collected by following the concurrent action set

CASi is always greater than following the concurrent action set CAS j. For example, the

concurrent action set {collect-sample(A), take-picture-long(A), take-picture-short(A)} is

always better than the concurrent action set {take-picture-long(A), take-picture-short(A)}

or {collect-sample(A)} if the actions do not consume any resources. For simplicity, we

write concurrent action set as an union of start action set and ongoing action set in this

chapter. Starting the actions earlier is always better than having the agent stay idle. We can

abort an action at any time if it turns out that there is no need to wait for its completion.

The following two rules can be used to determine whether two concurrent action sets have

the “better” relation.

• Rule 1: If the shortest action a in CASi does not delete any propositions, then

concurrent action set CASi is always better than concurrent action set CAS j which

contains all the actions in CASi except action a.

• Rule 2: Suppose CASi and CAS j are two concurrent action sets and CASi = CAS j ∪
{b}. If b is not the shortest action in CASi, then CASi is always better than CAS j.

The first rule is saying that if an action does not delete any proposition, it does not harm to

start it as early as possible. The second rule is saying that even if an action deletes some

proposition, it is still safe to start it as early as possible as long as it is not the shortest

38

action in the concurrent action set. If it is not the shortest action, there will still be a chance

to abort it before it makes any deletions. These two rules are used to reduce the size of

applicable CAS set by keeping only the CASs that are better than others. This “better”

relation is transitive. These two rules can be applied more than once to find out if one

concurrent action set is better than another one. For example, if the concurrent action set

CASi shown in the following is better than CAS j by rule 1 and CAS j is better than CASk by

rule 2, then CASi is better than CASk.

CASi = {take-picture-short(A), take-picture-long(A), collect-sample(A)}

CAS j = {take-picture-long(A), collect-sample(A)}

CASk = {take-picture-long(A)}

In addition to the CAS pruning technique above, we developed a heuristic function called

relaxed forward probability update or forward-relax in short for domains which have only

time constraints. forward-relax returns an estimated expected reward for a given state. The

main idea of this heuristic function is to estimate the probabilities of individual propositions

at future states given the initial state. To find the probability of a particular proposition at a

future state, one way is to add up the probabilities of all future states (at a particular future

time point) in which this proposition is true. However, because of the uncertainty of the

actions, the number of child states grows exponentially as time moves forward. It is not

feasible to track all of the future states. To avoid dealing with the large quantity of future

children states the idea of forward-relax is to attach probabilities to propositions rather than

states. When time moves forward and actions are applied, the probabilities of propositions

are continuously updated. Several relaxing rules are employed to make the updates easier

while keeping the admissibility of the heuristic function.

To calculate the heuristic value, a proposition set and an action set are created for each time

point. The first time point is time 0, which corresponds to the target state s for which we

want to calculate the expected total reward. All of the propositions in this state are added

into the initial proposition set. Each of these initial propositions have a probability of 1.

Then, based on these propositions, all applicable ground actions are found and inserted into

the initial action set. An action may have multiple effects. Each effect has its probability,

an add list and a delete list. The add list contains the propositions that should be added

(positive consequences) whereas the delete list contains the propositions that should be

deleted (negative consequences). In our heuristic function, all the negative consequences

are ignored. By ignoring the negative consequences we don’t need to split the proposition

set to cope with effects that have different negative consequences. For each action, we keep

its duration and the probabilities of its positive consequences. The probability of a positive

consequence of proposition x is calculated using the following formula:

39

Px = Paction ×Pe f f ect

where Px is the probability of the positive consequence of proposition x, Paction is the

probability that the action will be executed, and Pe f f ect is the probability of the effect given

that the action is executed.

To calculate Px, we need to calculate the conditional probability that all the preconditions

of the action are true given the fact that the proposition x is not true. In a domain where

every proposition can be achieved by only one type of action, knowing the truth value of

proposition x will not provide any additional information about the probabilities of the

preconditions. In such domains, the conditional probability becomes an unconditional

probability. In other domains where one proposition can be achieved by multiple actions,

we need to modify the action instances in a particular way while generating the plan graph

so that we can convert the conditional probabilities into unconditional probabilities. In

our testing domain, every proposition can be achieved by only one action. Thus, we can

safely ignore the given condition that proposition x is not true and use Paction. But it is

still complicated to calculate the exact value of this probability because the preconditions

can be correlated. To simplify the calculation, we use an approximate probability. The

probability of the precondition with the minimum probability is taken as Paction. Because

this approximate probability is always greater than the exact probability, admissibility is

maintained. Pe f f ect is the probability of the effect which contains proposition x. This

probability is a constant number.

To calculate the proposition set and the action set of the next time point, the first step is

to copy the proposition set and the action set of the previous time point. Then, the time

duration of the actions in the action set are decremented by 1. If an action has zero duration

after decrementing, it is removed from the action set and its positive consequences are

added into the proposition set. If a positive consequence introduces a new proposition,

this proposition will be directly added into the proposition set with the consequence’s

probability. If the proposition already exists in the proposition set, its probability is updated

using the following formula:

Pxnew = Pxold +(1−Pxold)×Px

where Pxnew is the updated probability of proposition x and Px is the probability of the

positive consequence of proposition x.

40

After all positive consequences of zero duration actions are incorporated into the

proposition set, the proposition set for the new time point is created. Based on the new

proposition set we search for all applicable ground actions. If an applicable action is not

part of the current action set, it is added into the action set. If an applicable action already

exists in the copied action set, we calculate the Paction for this action. At any given moment,

only one instance of a ground action is allowed to run. If the Paction of a new instance of

the action is equal to the Paction of the existing instance of the action, the new instance of

the action is ignored and will not be inserted into the action set because we won’t get any

benefits by canceling the existing action and starting the new action. If the Paction of the new

instance is greater than the Paction of the existing instance, then the positive consequences of

the new instance will have higher probabilities. Therefore, it may lead to a higher expected

total reward by canceling the existing instance and starting the new instance. So we need to

add the new instance of the action into the action set. However, the probabilities of positive

consequences are modified to offset the effects of the existing instance. The probability of

the positive consequence of proposition x is calculated as follows:

Pxi2new
= (Pxi2 −Pxi1)/(1−Pxi1)

where, Pxi2new
is the updated probability of the positive consequence of proposition x in the

new instance,

Pxi2 is the initially calculated probability of the positive consequence of proposition x in the

new instance, and

Pxi1is the probability of the positive consequence of proposition x in the existing instance.

Although obviously it is impossible to execute two different ground actions which are

generated from the same lifted action at the same time, we relax this restriction and allow

them to be executed simultaneously in our calculation of the heuristic function because we

do not know which one is the better choice. After all applicable actions are analyzed and

the suitable ones are added into the action set based on the above logic, the action set is

constructed for the new time point. This process continues to run and builds the proposition

set and action set for the ensuing time points until the time limit of the target state s is

reached. The proposition set of the final time point is used to calculate the expected total

rewards (ETR) for the target state s:

ET Rs = ∑(Rx ×Px)

41

where Rx is the reward of proposition x, and

Px is the probability that proposition x is true at the final time point.

4.2 Heuristic Functions for Domains Constrained by both
Time and Resources

For domains which have both time and resources constraints, we developed two heuristics.

The first heuristic, reachability test, is based on relaxed plan graph generation. A relaxed
plan graph is a structure that ignores negative effects of actions [62, 48, 49]. When

the negative effects are ignored, the structure contains all the solutions to the original

problem and possibly more, and the solutions are easier to extract [1, 63]. To compute the

heuristic value, we check if a proposition can be achieved but ignore the exact probability

of achieving it. Starting with the propositions in the initial state, a relaxed plan graph is

iteratively generated by applying the applicable actions. An action is applicable if all of

its preconditions have been achieved and the time and resource requirements are satisfied.

For each achieved proposition, we keep track of the maximum possible remaining time

and resources after this proposition is achieved. For propositions in the target state, the

maximum remaining time and resource levels are set to the specifications given in that

state.

To check if time is sufficient to apply an action, we take the minimum of the maximum

time left among all the preconditions and use that value, ta, as the time available for the

action. If ta is greater than the time required, the time requirement is met. Similarly, for

each resource, we take the minimum of the maximum resource remaining among the all

preconditions and compare it to the required resource usage to find out if the resource

requirement is satisfied. Once an action is applied, all of the propositions in its outcomes

are merged into the plan graph. If a proposition is new, it is added with time and resource

values obtained by subtracting the time and resource usage of the action from the values

available to the action. If a proposition already exists in the plan graph, the current time and

resource values in the plan graph are compared to the new values calculated. If a new value

is greater than the existing value in the plan graph, the proposition is updated with the new

value. For an action to qualify for selection, at least one of its preconditions should be a

new proposition or one that has been updated in the previous iteration. The expansion stops

when no actions can be applied. After the plan graph is generated, all the goals that are

included in the final planning graph are considered to be reachable and their corresponding

reward values are added together to calculate the heuristic value.

The second heuristic for domains which have both time and resources constraints is called

42

all-resource forward-relax. It also solves an easier problem but considers probabilistic

outcomes, time span constraints, and resource constraints. The basic idea is to first find all

possible ways to achieve each goal. Then we calculate the upper bound of the probability

to achieve the goal based on the available time and resources. The more resources and time

are given, the higher the probability will be, because the failed actions can be retried. At

the end, the total probability for each goal is calculated and we use those values to calculate

the total expected reward.

In this heuristic function, the planning problem is relaxed in the following ways:

1. All the “delete” outcomes are ignored.

2. All the actions are allowed to execute concurrently except that actions cannot be

executed at the same time with their predecessor actions or children actions.

3. When there are multiple ways to achieve the same goal, we treat each of them

independently and give them full access to the time allowed and other resources.

Then we combine them together to get the total probability assuming that the events

of achieving the goals are independent among the different ways of achieving the

same goal. Time constraint check and resource constraint check are only applied to

the same group of actions that are in the same causal link chain to achieve a single

goal.

Because all of the above relaxations result in a higher probability of achieving the goals,

we are calculating the upper bound of achieving the goals. Therefore, the heuristic function

is an admissible function.

The detailed procedure is described as follows. First, we generate a relaxed planning graph

by expanding forward from the start state. This planning graph consists of alternate layers

of propositions and actions. All the propositions that are true in the start state form the first

layer of the planning graph, and they are marked as “New” propositions. Next, we derive all

the actions that are applicable. This group of actions form the second layer. The third layer

is generated by adding the propositions in the outcomes of actions. During the iterations, a

proposition is marked as “New” when it is freshly added into the graph. Later its status is

changed to “Expanded” when the next layer of actions is added into the graph. An action

can be added into the action layer only when all of its preconditions are in the graph and

at least one of them is marked as “New”. This iteration continues until either there are no

“New” propositions left, or the resource or time limit has been reached. After that, for each

goal, we extract all possible ways of achieving it from the planning graph. Each unique

way of achieving a goal is represented by a planning subgraph which consists of all the

required actions to achieve that goal. All of the actions in the extracted subgraph have to

43

be successful in order to achieve the goal. Then for each goal-specific action subgraph, we

calculate the upper bound of the success probability using the action outcome probability

and the chances to retry the failed branch. Finally, we combine all probabilities together to

calculate the probability of achievement and use that value to calculate the total expected

reward.

To illustrate the process of calculating the heuristic values using this approach, we use the

Mars rover example. Figures 4.1 to 4.4 show how the heuristic value is calculated for initial

state s0.

Figure 4.1: Relaxed planning graph.

Figure 4.1 shows the relaxed planning graph. The graph consists of action nodes and

proposition nodes. The same action can be applied again if new precondition propositions

are generated. At each proposition node, we keep track of the remaining time and

resources available after achieving this proposition. These values are calculated based on

the consumption of the actions and the available resource levels of the preconditions. For

an action which has multiple preconditions, the lowest time or resource level is taken. In

the expansion, the loops are removed, e.g., At_Location_A under action Move(B,A) has

been crossed out. The expansion stops when no new actions can be added.

44

Figure 4.2: Constructing the causal action networks.

In Figure 4.2, two action graphs are extracted for the reward Picture_Taken_B. These two

graphs represent the two different ways to achieve Picture_Taken_B. Each action has two

outcomes. One represents the outcome where the desired proposition is achieved. This

outcome is called the success outcome. The other outcome represents the rest of all possible

cases and it is called the failure outcome. These action graphs consist of only actions and

represent the causal relations between the actions. We call them causal action networks.

Figure 4.3 shows the full expansion of all possible scenarios of action execution following

each causal action network. The actions are labeled with the time and resource levels

available after their execution. When an action fails, the same action can be repeated if

there are sufficient time and resources to support it. For each fully expanded execution

graph, the probabilities of all success scenarios are added together to find the total success

probability of the corresponding causal action network. In Figure 4.3, graph 1 has 60%

as the success probability, graph 2 has 75%. At the end, these causal action network level

success probabilities are combined to find the final probability of achieving the reward

Picture_Taken_B. Because we want to have an upper bound of the final success probability

so that we can keep the heuristic function admissible, we relax the resource restriction and

assume that both of causal action networks can be executed at the same time and have full

access to resources. Therefore, we use the addition law of probability and calculate the

final probability as 60%+(1−60%)×75% = 90%.

In the above example, the actions are simple as they only have one precondition. Next, we

show a more complicated example where actions have more than one precondition. We

introduce a new action called Drill which needs to be executed before a Collect_Sample

45

Figure 4.3: Generating all execution scenarios.

action can be executed. Figure 4.4 shows a portion of the relaxed planning graph expanded

for reward Sample_Collected_B. When there are multiple preconditions, the minimum time

and resource values of the preconditions are taken to calculate the time and resource levels

after applying the action.

Figure 4.4 (b) shows the causal action network to achieve goal Sample_Collected_B.

Figure 4.4 (c) is the execution graph following this causal action network. When one

action is supported by multiple parent actions, the minimum success probability of the

parent actions is taken as the probability to calculate the scenario success probability. For

example, the scenario represented by the left branch of the execution graph has success

probability of 20% × 80% × 60% =9.6%. The scenario represented by the right branch of

the execution graph has success probability of 80% × 60% =48%.

In the next Chapter, we present the experimental evaluation of CPOAO* and related

planners.

46

Figure 4.4: Example with actions that contain more than one precondition

47

Chapter 5

Empirical Evaluation

We designed and conducted three sets of experiments to evaluate the CPOAO* algorithm

and heuristics. In the first set, we tested the strengths and limitations of CPOAO* using

different heuristic functions across multiple domains. We designed three planning domains

and several planning problems. For each domain, we designed a set of problems that are

easily solved and gradually increased the problem complexity by adding more propositions

and actions as well as raising the time and resource limits until the algorithm is not able

to produce the optimal plan within 5 hours. This set of tests allows us to see how each

heuristic function performs and the scalability of CPOAO* in general.

In the second set of experiments, we show the results of an additional pruning technique

which can be applied when time is the only constraint. The performance of using this

technique is compared to the performance of not using it. We demonstrate that this

technique can greatly improve the efficiency of the planner.

In the last set of experiments, we examine two recent planners that solve planning problems

similar to CPOAO*. These planners are ActuPlan (Actions Concurrency and Time

Uncertainty Planner) and CPTP (Concurrent Probabilistic Temporal Planning) described

in Sections 2.3 and 2.4, respectively. We describe the similarities and differences between

these two planners and CPOAO*. We show the results of running them with domains and

problems that are adapted from the CPOAO* tests. The objective of these experiments

is to see how these two planners scale in domains which have similar structures in terms

of actions and state variables. Note that the purpose is not to compare the performance

of the planners because the problems they solve are not exactly the same as explained in

Section 5.3.

48

5.1 Running CPOAO* in multiple domains

We tested CPOAO* across several different planning domains including the Mars Rover

domain that we have described in the previous chapters. All of these domains have been

used as the benchmark problems in the experiments done for other planners and have been

coded originally in PPDDL (Probabilistic Planning Domain Definition Language) [64, 65].

We extended PPDDL to include time, resources, and numeric reward values for goal

conditions. We coded three domains as explained below, and shown in Table 5.1.

In the Mars Rover domain, a Mars rover navigates a network of locations to perform tasks

such as taking pictures or collect soil samples. The task of taking a picture can be achieved

by two different actions with different costs and success probabilities. The locations to take

pictures or collect soil samples are specified in the planning problem as goals. The rover

wants to receive the maximum total reward given the limited time and resources. This

domain involves both map navigation and early finish concurrency.

In the Machine Shop domain, there are multiple machines which have different capabilities

such as lathe, polish, smooth, and paint. One machine may have one or more capabilities.

The goal is to work a group of raw material pieces into finished parts which are shaped,

polished, smoothed and painted. The agent needs to move parts around to maximize the

utilization of machines. This domain encapsulates a scheduling problem since one machine

cannot work on multiple pieces at the same time. Many real world planning and scheduling

problems bear similarities to this domain.

In the File World domain, there are multiple agents trying to organize files, namely, putting

files into correct folders. An agent can only perform one task at a time, so the agents need

to cooperate with each other to get the job done. For example, one agent can get the file

and recognize the file type while another agent opens the folder. We include this domain

as an example of a multi-agent planning problem. The coding of each domain is shown in

Appendix A.

In Table 5.1 we show the planning problems coded in each domain. The problem features

include the number of ground propositions, the number of ground actions, the time limit

and the resource limit. All these factors contribute to the complexity of the problem. The

number of ground propositions, the time limit and the resource limit determine the size of

the state space. The number of ground actions control the number of branches coming from

each non-terminal state. In the last column of the table, we include the number of states in

the final optimal plan because it gives a hint on the difficulty of the problem.

49

Table 5.1
Problem features (MR: Mars Rover, MS: Machine Shop, FW: File World)

Problem Actions Propositions Time Limit Resource Limit States

MR 1-1 36 35 20 25 17

MR 1-2 25 30 30

MR 1-3 30 35 42

MR 1-4 35 40 89

MR 2-1 65 60 20 25 24

MR 2-2 25 30 43

MR 2-3 30 35 56

MR 2-4 35 40 101

MR 3-1 126 112 20 25 24

MR 3-2 25 30 43

MR 3-3 30 35 63

MR 3-4 35 40 109

MR 4-1 207 180 20 25 24

MR 4-2 25 30 43

MR 4-3 30 35 63

MR 4-4 35 40 109

MS 1-1 22 18 11 13 9

MS 1-2 12 14 9

MS 1-3 13 15 18

MS 1-4 14 16 22

MS 2-1 42 26 11 13 9

MS 2-2 12 14 9

MS 2-3 13 15 18

MS 2-4 14 16 22

MS 3-1 62 34 11 13 9

MS 3-2 12 14 9

MS 3-3 13 15 18

MS 3-4 14 16 22

MS 4-1 82 42 11 13 9

MS 4-2 12 14 9

MS 4-3 13 15 18

MS 4-4 14 16 22

FW 1-1 34 28 8 12 15

FW 1-2 12 16 61

FW 1-3 16 20 142

FW 1-4 20 24 298

FW 2-1 42 35 8 12 15

FW 2-2 12 16 61

FW 2-3 16 20 142

FW 2-4 20 24 316

FW 3-1 50 42 8 12 15

FW 3-2 12 16 61

FW 3-3 16 20 142

FW 3-4 20 24 316

FW 4-1 58 49 8 12 15

FW 4-2 12 16 61

FW 4-3 16 20 142

FW 4-4 20 24 316

50

We ran each problem using three heuristic functions: Time Only Reachability Test (TORT),

Time Only Forward Relax (TOFR), and All Resource Forward Relax (ARFR). We included

a baseline heuristic function called “No heuristic”, which always returns the sum of all

rewards as the estimate of the total achievable rewards. The Reachability Test heuristic was

initially designed to support both time and resources. However, during testing we found

that including resources in the calculations does not provide much information gain. This

is because allowing the resources to be reused when they are not on the same critical path

provides estimates that are too far away from the actual resource requirement. Therefore,

we used Reachability Test as a “time-only” heuristic in our experiments.

In Tables 5.2 and 5.3 we show the elapsed running time and the number of states generated

for each planning problem. The number of states expanded for each problem is shown

in Appendix B. From the experimental results, we can see that All Resources Forward

Relax (ARFR) always has much fewer number of expanded states compared to Time Only

Reachability Test (TORT) and Time Only Forward Relax (TOFR). This shows that this

heuristic function indeed provides more informative guidance to the search. On the other

hand, All Resources Forward Relax (ARFR) employs the most complicated calculations

so it may take more time to find the results in some cases. In particular, the complexity

of All Resource Forward Relax increases exponentially when the number of actions and

the number of propositions increase. When there are a large number of actions and

propositions, All Resource Forward Relax takes longer to calculate the heuristic value.

This is the reason All Resources Forward Relax is taking more time to solve the problems

than other heuristic functions in the Mars Rover domain. In the Machine Shop and File

World domains, it performs better than other heuristic functions because the number of

actions or the number propositions are much fewer. The elapsed time of the two hardest

problems from each domain are shown in Figure 5.1.

In Table 5.4 we show the pruning ratio for each heuristic taking “No heuristic” as the

baseline. The results are in agreement with the results shown in Tables 5.2 and 5.3: All

Resources Forward Relax (ARFR) consistently has a much higher ratio of pruned states.

In our implementation, we use an artificial action called ‘Do Nothing’ to generate terminal

states where working graph expansion stops even though time and resource may still be

available. When calculating the ratio of states being pruned, these terminal states should be

excluded because they would never need to be expanded. Since every expanded state has

such a corresponding terminal state, the pruning ratio is calculated as shown below:

Ratio of state pruning =
(number of states generated - 2× number of states expanded)

(number of states generated - number of states expanded)

51

Table 5.2
Elapsed running time

Problem No heuristic TORT heuristic TOFR heuristic ARFR heuristic

MR 1-1 1s < 1s < 1s < 1s

MR 1-2 1s 1s < 1s 1s

MR 1-3 8s 2s 2s 6s

MR 1-4 57s 9s 17s 37s

MR 2-1 < 1s < 1s < 1s 1s

MR 2-2 6s 3s 4s 10s

MR 2-3 1min 41s 1min 2min

MR 2-4 17min 9min 15min 13min

MR 3-1 1s < 1s < 1s 4s

MR 3-2 10s 8s 11s 33s

MR 3-3 2min 2min 3min 5min

MR 3-4 36min 28min 49min 48min

MR 4-1 1s 1s 1s 5s

MR 4-2 11s 15s 19s 55s

MR 4-3 3min 4min 6min 9min

MR 4-4 65min 50min 89min 83min

MS 1-1 < 1s < 1s < 1s < 1s

MS 1-2 < 1s < 1s < 1s < 1s

MS 1-3 1s < 1s < 1s < 1s

MS 1-4 1s < 1s < 1s < 1s

MS 2-1 7s 2s 1s < 1s

MS 2-2 25s 5s 4s 2s

MS 2-3 2min 28s 22s 8s

MS 2-4 5min 59s 41s 11s

MS 3-1 3min 38s 35s 7s

MS 3-2 10min 3min 3min 33s

MS 3-3 35min 12min 11min 3min

MS 3-4 >300min 35min 28min 5min

MS 4-1 21min 5min 4min 28s

MS 4-2 224min 20min 20min 3min

MS 4-3 > 300min > 300min 293min 16min

MS 4-4 > 300min > 300min > 300min 53min

FW 1-1 < 1s < 1s < 1s < 1s

FW 1-2 5s 3s 3s 1s

FW 1-3 1min 49s 2min 19s

FW 1-4 12min 5min 26min 2min

FW 2-1 1s < 1s 1s 1s

FW 2-2 2min 16s 7s 4s

FW 2-3 16min 2min 3min 2min

FW 2-4 19min 17min 62min 7min

FW 3-1 1s < 1s 1s 1s

FW 3-2 13s 9s 14s 6s

FW 3-3 3min 3min 7min 1min

FW 3-4 155min 35min 141min 13min

FW 4-1 2s < 1s 1s 1s

FW 4-2 18s 16s 24s 11s

FW 4-3 5min 4min 12min 2min

FW 4-4 > 300min 72min 273min 23min

52

Table 5.3
Generated states

Problem No heuristic TORT heuristic TOFR heuristic ARFR heuristic

MR 1-1 3968 747 606 982

MR 1-2 31294 6579 3754 5427

MR 1-3 242632 33038 14304 19088

MR 1-4 1841042 139723 115520 113316

MR 2-1 13426 2539 2211 2486

MR 2-2 163514 37398 27323 20948

MR 2-3 1806442 420000 306554 156877

MR 2-4 19039098 4856299 3489036 1203673

MR 3-1 18064 2943 2491 3372

MR 3-2 243542 47669 37709 30844

MR 3-3 2964758 627014 527766 298111

MR 3-4 34577730 8469617 6620039 2655556

MR 4-1 18558 2951 2494 3433

MR 4-2 255414 48139 38157 31946

MR 4-3 3159176 641686 547198 322224

MR 4-4 37371910 8766900 7158058 2993419

MS 1-1 2929 291 187 101

MS 1-2 4993 766 367 161

MS 1-3 10247 1268 847 287

MS 1-4 19019 1943 1429 537

MS 2-1 133418 19009 13570 1688

MS 2-2 343858 60571 35591 6309

MS 2-3 1894714 390905 193475 36254

MS 2-4 5121026 678101 288569 46635

MS 3-1 3920094 439313 280324 20394

MS 3-2 13073814 1707567 1137302 106634

MS 3-3 42987842 7631263 4721078 494212

MS 3-4 >49282591 20730732 10075700 976828

MS 4-1 24027806 2407880 1626192 66515

MS 4-2 91340862 10567139 7630804 467355

MS 4-3 > 111042556 54829104 33709944 2741289

MS 4-4 > 119343772 > 87852206 > 69720903 5909975

FW 1-1 8858 884 884 1382

FW 1-2 100886 21922 13640 3089

FW 1-3 1062098 299558 248652 36388

FW 1-4 11141318 2941568 2914577 155552

FW 2-1 13274 1478 1478 2114

FW 2-2 163238 42908 27647 5549

FW 2-3 1824686 759555 458997 59879

FW 2-4 20650178 8100935 6657556 457747

FW 3-1 18626 2180 2180 2990

FW 3-2 243734 67124 52112 11903

FW 3-3 2860754 1217646 1019828 90275

FW 3-4 34757366 14031529 13774160 972588

FW 4-1 24914 2990 2990 4010

FW 4-2 343670 104690 91025 15955

FW 4-3 4203350 1865121 1615572 133925

FW 4-4 >36157627 23712246 22927210 1504605

53

Table 5.4
Pruning ratio

Problem TORT heuristic TOFR heuristic ARFR heuristic

MR 1-1 0.71 0.71 0.71

MR 1-2 0.66 0.68 0.73

MR 1-3 0.64 0.69 0.73

MR 1-4 0.67 0.69 0.74

MR 2-1 0.69 0.72 0.78

MR 2-2 0.64 0.64 0.81

MR 2-3 0.58 0.59 0.82

MR 2-4 0.51 0.55 0.82

MR 3-1 0.72 0.75 0.80

MR 3-2 0.67 0.69 0.82

MR 3-3 0.61 0.62 0.83

MR 3-4 0.55 0.58 0.84

MR 4-1 0.72 0.75 0.80

MR 4-2 0.68 0.69 0.82

MR 4-3 0.62 0.63 0.83

MR 4-4 0.56 0.59 0.83

MS 1-1 0.68 0.71 0.78

MS 1-2 0.64 0.70 0.78

MS 1-3 0.64 0.67 0.77

MS 1-4 0.64 0.66 0.8

MS 2-1 0.65 0.72 0.92

MS 2-2 0.63 0.70 0.90

MS 2-3 0.61 0.67 0.91

MS 2-4 0.62 0.71 0.92

MS 3-1 0.73 0.82 0.95

MS 3-2 0.72 0.79 0.95

MS 3-3 0.69 0.76 0.95

MS 3-4 0.69 0.76 0.96

MS 4-1 0.79 0.87 0.97

MS 4-2 0.77 0.82 0.97

MS 4-3 0.74 0.81 0.97

MS 4-4 0.88 0.89 0.99

FW 1-1 0.5 0.5 0.92

FW 1-2 0.73 0.79 0.93

FW 1-3 0.45 0.67 0.91

FW 1-4 0.27 0.64 0.93

FW 2-1 0.53 0.53 0.93

FW 2-2 0.73 0.79 0.95

FW 2-3 0.49 0.64 0.93

FW 2-4 0.32 0.58 0.94

FW 3-1 0.58 0.58 0.94

FW 3-2 0.74 0.77 0.96

FW 3-3 0.47 0.59 0.94

FW 3-4 0.31 0.53 0.94

FW 4-1 0.61 0.61 0.94

FW 4-2 0.74 0.79 0.96

FW 4-3 0.48 0.58 0.94

FW 4-4 0.31 0.52 0.94

54

Figure 5.1: Elapsed Time

As the problems are getting harder when more time and resources are allowed, All

Resources Forward Relax scales better than the other heuristic functions. A sample of

this is shown in Figure 5.2 using the hardest problems in the Mars Rover domain. The

x-axis shows a series of problems sorted from easiest to the hardest. The y-axis shows

the increase ratio of elapsed time compared to the immediate preceding problem in the

series. In almost similar graphs, All Resources Forward Relax (ARFR) has the lowest

increase ratio. Therefore, we believe that All Resources Forward Relax will provide better

trade-offs for harder problems and hence give better overall performance.

In the Machine Shop domain, to make the problem more complex, we added more actions

and propositions into the domain. We noticed that these new actions are not being used

in the final optimal plan, i.e., there is no change on the number of states in the optimal

plan. However, the elapsed time and the number of generated state increase dramatically

because the planner still needs to explore these new options and rule them out. It might be

beneficial if we have a pre-planning phase to rule out the actions that will never contribute

to achieving any goal. This will greatly improve the planner performance because the

number of actions is a primary factor of problem complexity. We will consider this as our

future research.

Overall, in all 3 domains tested, the planning complexity and elapsed time grow

exponentially as the number of actions, the number of propositions, the resource and time

limit increase. This exponential increase is hard to avoid because the planning problem

is NP-hard. Thus, the heuristic functions plays a very important role to provide guidance

in the planning process. Therefore, we believe the design of an efficient and informative

55

heuristic functions should be a focus of future research.

Figure 5.2: Mars Rover 4 Increase Ratio of Elapsed Time

5.2 Pruning Technique for Time Only problems

When time is the only restricting condition, we can apply an additional pruning technique

to improve the planner’s performance. We used the CAS pruning rules described in

Section 4.1 to remove the CASs whose effects are covered by other CASs. We tested

this technique by running the hardest problems from the 4 subgroups of each domain. In

Table 5.5 we show the effect of CAS pruning on top the Time Only Forward Relax (TOFR)

heuristic.

The experimental results show that the pruning technque greatly improves the performence.

In the Mars Rover and Machine Shop domains where the number of compatible actions are

higher, the improvements are more than 100 fold in terms of both elapsed time and total

number of generated states. For problem MarsRover2-4, CPOAO* with pruning takes

23 seconds to solve the problem and generates 108,294 states in total. When pruning

is disabled, it takes 281 minutes and has to generate 122,848,455 states to solve the same

problem. Similar results are found for problem MachineShop3-2. Elapsed time is shortened

from 269 minutes to 1 minute and the number of total generated states is reduced from

134,841,177 to 565,472. In File World domain, there are fewer actions that can be executed

concurrently. Therefore, the improvement is less significant than the other two domains.

However, the elapsed time and total number of generated states are still cut in half.

56

Table 5.5
CAS Pruning

Without CAS pruning With CAS pruning

Elapsed States Elapsed States

Problem Time Generated Time Generated

MR 1-4 8s 56334 2s 7306

MR 2-4 281min 122848455 23s 108294

MR 3-4 > 300min > 34998365 2min 198134

MR 4-4 > 300min > 30234565 3min 238713

MS 1-2 < 1s 1319 < 1s 314

MS 2-2 3min 2095500 1s 20113

MS 3-2 269min 134841177 1min 565472

MS 4-2 > 300min > 107462155 22min 7872300

FW 1-2 10s 56905 6s 35222

FW 2-2 33s 184847 16s 82597

FW 3-2 1min 343575 36s 166685

FW 4-2 3min 826417 2min 475005

5.3 Comparison to Other Planners

CPTP and ActuPlan are two recent planners that can generate plans with concurrent actions.

Each planner solves a slightly different category of problems. CPTP considers uncertainty

in both action effects and action durations. It models the planning problem as an MDP

(Markov Decision Process) and uses RTDP (Real Time Dynamic Programming) trials to

iteratively update the state values until they converge. ActuPlan focuses on the uncertainty

of action duration and uses a continuous time mode. The dependency relationships between

the actions are represented by a series of random variables linked in a Bayesian network.

We show a comparison of these two planners and CPOAO* in Table 5.6.

Similar to CPOAO*, CPTP solves planning problems with probabilistic action effects. An

action can have multiple effects and each effect has an associated probability. The total

probability is always 1. In ActuPlan, the action effects are deterministic i.e., it is certain

that the effects will happen at the end of the action. As for action duration, CPTP also

considers the uncertainty on action duration. Different than CPOAO, in which the time

an action takes to complete is a constant number, CPTP support several probabilistic time

models such as normal distribution and uniform distribution. CPTP uses these time models

to calculate the probability of completing the action at a time point. For example, if an

action’s time specification is (uniform 6 9), then this action may take 6, 7, 8, or 9 time units

to complete and each outcome has a probability of 25%. In CPTP, new states are added

57

Table 5.6
Comparison to other planners

CPTP ActuPlan CPOAO

Action effects Probabilistic Deterministic Probabilistic

Discrete Continuous Discrete

Action duration probabilistic probabilistic deterministic

Resource Resource

consumption Not considered Not considered constrained

All finish and

Concurrency All Finish All Finish arly finish

Forward chaining

Main Algorithm Sampled RTDP search AO*

Heuristic guided Yes Yes Yes

to represent each possible case of action duration. ActuPlan also considers uncertainty on

the action duration and uses a similar denotation such as (uniform 10 15) or (normal 6 1)

for duration specification. But unlike CPTP, ActuPlan does not instantiate time as discrete

time points and time is continuous. ActuPlan uses a set of random variables to represent the

action durations and action start or end events. All these random variables are connected

in a Bayesian network. When needed, this Bayesian network is queried to calculate the

probability of any event. Both CPTP and ActuPlan only consider time as a cost factor in

the search for optimal plan. In CPOAO*, in addition to the time constraint, an unlimited

number of resource types are supported.

All three planners support concurrent actions. One difference between CPOAO* and the

other two planners is CPOAO* also allows the action abortion. In the case of “Early Finish”

parallelism an action can be aborted in the middle if continuing to execute the action does

not add any value based on the outcomes of other actions. In CPTP and ActuPlan, all

actions have to continue to run until they finish regardless of the outcomes of the other

actions.

All three planners search in state space starting from the initial state and going forward.

Also, all have heuristic functions to guide the search. CPTP uses a dynamic programming

algorithm called RTDP (Real Time Dynamic Programming). Each RTDP trial starts from

the initial state and simulates action execution until either a dead end is reached or all goal

conditions are satisfied. At each decision point, CPTP selects the best action combination

according to the values of the children states. When the action has more than one children

state, one is randomly picked. The values of the states are updated in the trial and CPTP

repeats the trials until all the state values in the plan converge. ActuPlan performs a depth

first search and backtracks if the probability of reaching a goal state before the deadline

does not meet the threshold or the plan found is not optimal. ActuPlan uses a heuristic

58

Table 5.7
Experiment results with CPTP

Domain Problem States Elapsed

Problem name specification specification generated time (sec.)

2 locations

5 lifted actions 2 soil targets

MarsRover-CPTP-p1 6 predicates 2 picture targets 3590 95

3 locations

5 lifted actions 3 soil targets

MarsRover-CPTP-p2 6 predicates 3 picture targets 11224 148

4 locations

5 lifted actions 4 soil targets

MarsRover-CPTP-p3 6 predicates 4 picture targets 74526 499

5 locations

5 lifted actions 5 soil targets not not

MarsRover-CPTP-p4 6 predicates 5 picture targets solved solved

6 lifted actions 1 piece

MachineShop-CPTP-p1 8 predicates 2 machines 308 15

6 lifted actions 2 pieces

MachineShop-CPTP-p2 8 predicates 2 machines 13616 64

6 lifted actions 3 pieces

MachineShop-CPTP-p3 8 predicates 2 machines 390885 2016

6 lifted actions 4 pieces not not

MachineShop-CPTP-p4 8 predicates 2 machines solved solved

13 lifted actions 2 files

FileWorld-CPTP-p1 16 predicates 2 agents 23286 54

13 lifted actions 3 files

FileWorld-CPTP-p2 16 predicates 2 agents 167916 368

13 lifted actions 4 files

FileWorld-CPTP-p3 16 predicates 2 agents 769371 3979

13 lifted actions 5 files not not

FileWorld-CPTP-p4 16 predicates 2 agents solved solved

function to select the best action to apply.

To calculate the heuristic value, CPTP solves a relaxed CoMDP problem in which the

information about unfinished actions are ignored. It still tracks when the action effects will

become true but the mutexes between the new action and the unfinished actions do not

need to be considered. ActuPlan uses a Relaxed GraphPlan (RGP) based heuristic function

which is adapted from Fast Forward (FF) planner. In this heuristic function, the “delete”

effects are ignored. The scalar values calculated from action duration probabilities are used

as expected action durations. Same as CPOAO*, both heuristic functions are admissible.

59

Table 5.8
Experiment results with ActuPlan

Domain Problem States Elapsed

Problem name specification specification generated time (sec.)

5 locations

4 lifted actions 2 soil targets

MarsRover-Actu-p1 6 predicates 3 picture targets 236 0.3

7 locations

4 lifted actions 4 soil targets

MarsRover-Actu-p2 6 predicates 5 picture targets 9387 4.5

8 locations

4 lifted actions 5 soil targets

MarsRover-Actu-p3 6 predicates 6 picture targets 47828 185

9 locations

4 lifted actions 6 soil targets

MarsRover-Actu-p4 6 predicates 7 picture targets 260305 1202

10 locations

4 lifted actions 7 soil targets not not

MarsRover-Actu-p5 6 predicates 8 picture targets solved solved

10 lifted actions 1 piece

MachineShop-Actu-p1 8 predicates 2 machines 13 0.2

10 lifted actions 2 pieces

MachineShop-Actu-p2 8 predicates 2 machines 541 0.3

10 lifted actions 3 pieces

MachineShop-Actu-p3 8 predicates 2 machines 68478 113

10 lifted actions 4 pieces

MachineShop-Actu-p4 8 predicates 2 machines 2283521 851

6 lifted actions 5 pieces not not

MachineShop-Actu-p5 8 predicates 2 machines solved solved

15 lifted actions 2 files

FileWorld-Actu-p1 13 predicates 2 agents 305 0.2

15 lifted actions 4 files

FileWorld-Actu-p2 13 predicates 2 agents 9674 0.9

15 lifted actions 6 files

FileWorld-Actu-p3 13 predicates 2 agents 90569 11

15 lifted actions 8 files

FileWorld-Actu-p4 13 predicates 2 agents 729933 121

15 lifted actions 10 files not

FileWorld-Actu-p5 13 predicates 2 agents 1305722 solved

60

We performed experiments with ActuPlan and CPTP using planning domains similar to the

ones that we have used in the CPOAO* experiments. We adapted the planning problems to

suit the requirements of these planners but kept most of the domain features. In Table 5.7

and Table 5.8 we show the scalability to see the scalability of these planners. The results are

shown in Table 5.7 and Table 5.8. Similar to CPOAO*, we can see that, for both planners,

the number of states generated and the time taken to solve the problem grow exponentially

as the problem complexity increases linearly. In CPTP’s implementation, before the start

of the RTDP trials, all the ground actions are instantiated and a transition function is

calculated beforehand. This is designed to speed up the generation of new states in the

process of RTDP trials. However, at the time this transition function is calculated, there is

no information about which states are reachable. Therefore, all the possible ground actions

have to be generated resulting in a large number of actions. Calculating the transition

function for all the ground actions not only takes time but also consumes a lot of memory. In

our experiments, many problems were not solvable because the system ran out of memory

in the phase of generating the transition function for all ground actions. This problem can

be avoided by generating the transition function just in time, creating it when the action is

actually being applied.

ActuPlan can run in both conformant mode and contingent mode. Also it can run with

or without the deadlines assigned to the goal conditions. In our experiments, we ran it in

contingent mode with deadlines, which we believe is the most complicated scenario for

ActuPlan. ActuPlan needs to generate a large number of random variables to track the

dependency relationships between the actions and events, occasionally causing memory

issues. Some of our testing failed due to memory limitations. In all three planners

including CPOAO*, the difficulty of planning problem grows exponentially with respect to

the complexity of the planning problem definition. In many cases, adding one more object

into the problem adds 10 times as much time to solve the problem or renders the problem

not solvable within a reasonable time. This is expected because all three planners deal with

concurrency and uncertainty. Making a small change to the domain or problem can cause a

big change on the search space. Thus, having an efficient and informative heuristic function

is very important in curbing the explosion of the search space and it should be considered

as one of the main directions of future research.

61

Conclusion

In this dissertation, we presented CPOAO*, a model and framework for plan generation

in concurrent, probabilistic, and oversubscribed domains with durative actions. The main

contributions of this thesis are threefold. First, we designed and implemented an AO*

search based planner that can find plans with early-finish and all-finish parallelism. Second,

we explored the notion of interruptible actions. Third, we developed and evaluated several

domain independent heuristics that can work with temporal and resource constraints. Our

research improves artificial intelligence planning research as evidenced by the empirical

evaluation we presented.

CPOAO* generates plans with concurrent actions by considering action combinations

rather than individual actions at each choice point of the search. The duration of each action

combination is the duration of the shortest action in the action combination. The states

are augmented to include the unfinished actions together with their remaining executing

time. At the end of an action combination, all the unfinished actions are put into the set of

unfinished actions of the resulting states. The best action combination is chosen from the

set of applicable actions and the set of unfinished actions of the current state. This gives

the planner the ability to abort ongoing actions if necessary. CPOAO* addresses both the

early-finish and all-finish cases of the concurrent actions.

The difficulty of concurrent planning lies in the exponential number of action combinations

that are applicable at each decision point. We provide a pruning technique that can decrease

the number of applicable action combinations and several heuristics that decrease the

number of states explored. The main factor that determines the performance of a heuristic

function is the trade-off between the time spent on calculating the heuristic value and

the accuracy of the heuristic value. Among the heuristic functions we developed, Time

Only Reachability Test is fast but is less informative. Forward Relax heuristics give better

estimates but require more time to calculate. When time is the only constraint, running

CPOAO* with CAS pruning and Time Only Forward Relax together provides the best

performance. When both time and resource constraints need to be respected, the time

horizon and the number of actions are the two important factors affecting the performance

of the heuristic function. In general, when the time horizon is short and the number of

62

ground actions is high, it is better to use the Reachability Test heuristic to avoid expensive

heuristic value calculation. On the other hand, for problems with long horizons or fewer

actions, Forward Relax heuristics are a better choice because they can prune more states

early on and save time in the long run.

Another factor to consider in plan generation is the memory usage. CPOAO* running with

Reachability Test needs to generate more states and requires more memory as a result. For

complex problems, running with Forward Relax heuristics requires less memory. Between

the two Forward Relax heuristic functions, when resources are indeed the bottleneck

constraints, Forward Relax Time and Resource perform better than Forward Relax Time

Only as shown by our experiments.

As part of future work, the CPOAO* framework can benefit from a pre-processing phase

that rules out the actions that will never contribute to achieving any goal. This can greatly

improve the planner performance because the number of actions is a primary factor of

problem complexity. This dissertation work can be extended by representing and reasoning

with actions that have continuous durations and resources. The notion of interruptible

actions can be integrated with a plan execution and monitoring framework to monitor

changes in the environment and adapt the plan in response.

The problem of plan existence for deterministic domains is PSPACE-complete [66]

whereas the extensions to probabilistic domains are EXP-complete for full

observability [67] and 2-EXP-complete for partial observability [68]. Therefore,

heuristic functions play a very important role to provide guidance in the search process.

Consequently, a crucial focus of future research is the design and development of efficient

and informative heuristic functions.

63

References

[1] M. Ghallab, D. Nau, and P. Traverso, Automated Planning: Theory and Practice. San

Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2004.

[2] D. S. Weld, “An introduction to least commitment planning,” AI Magazine, vol. 15,

no. 4, pp. 27–61, 1994.

[3] D. S. Weld, “Recent advances in AI planning,” AI Magazine, vol. 20, no. 2,

pp. 93–123, 1999.

[4] D. S. Nau, “Current trends in automated planning,” AI Magazine, vol. 28, no. 4,

pp. 43–58, 2007.

[5] U. Visser and P. Doherty, “Issues in designing physical agents for dynamic

real-time environments world: Modeling, planning, learning, and communicating,”

AI Magazine, vol. 25, no. 2, pp. 137–138, 2004.

[6] D. Simchi-Levi, P. Kaminsky, and E. Simchi-Levi, Designing And Managing The
Supply Chain. McGraw-Hill, 2007.

[7] K. Sampath, A. Tezabwala, A. Chabrier, J. Payne, and F. Tiozzo, “Integrated

operations (re-)scheduling from mine to ship,” in Proceedings of the 23rd
International Conference on Automated Planning and Scheduling (ICAPS-2013),
pp. 416–424, 2013.

[8] C. Larman and V. R. Basili, “Iterative and incremental development: A brief history,”

IEEE Computer, vol. 36, no. 3, pp. 47–58, 2003.

[9] R. Castano, T. Estlin, R. C. Anderson, D. M. Gaines, A. Castano, B. Bornstein,

C. Chouinard, and M. Judd, “Oasis: Onboard autonomous science investigation

system for opportunistic rover science,” Journal of Field Robotics, Special Issue on
Space Robotics, Part III, vol. 24, no. 5, pp. 379–397, 2007.

[10] T. Estlin, R. Castano, R. C. Anderson, D. Gaines, F. Fisher, and M. Judd, “Learning

and planning for Mars rover science,” in Proceedings of the International Joint

64

Conference on Artificial Intelligence (IJCAI) Workshop on Issues in Designing
Physical Agents for Dynamic Real-Time Environments: World Modeling, Planning,
Learning, and Communicating, 2003.

[11] T. Estlin, D. M. Gaines, C. Chouinard, R. Castano, B. Bornstein, M. Judd, I. Nesnas,

and R. C. Anderson, “Increased Mars Rover autonomy using AI planning, scheduling

and execution,” IEEE International Conference on Robotics and Automation,

pp. 4911–4918, 2007.

[12] J. L. Bresina, R. Dearden, N. Meuleau, S. Ramakrishnan, D. Smith, and

R. Washington, “Planning under continuous time and resource uncertainty: A

challenge for AI,” In Proc. UAI-02, pp. 77–84, 2002.

[13] B. Bonet and H. Geffner, “GPT: A tool for planning with uncertainty and partial

information.,” in International Joint Conference on Artificial Intelligence (IJCAI)
Workshop on Planning with Uncertainty and Partial Information, pp. 82–87, 2001.

[14] B. Bonet and H. Geffner, “Labeled RTDP: Improving the convergence of real-time

dynamic programming,” in Proceedings of the 13th International Conference on
Automated Planning and Scheduling (ICAPS-2003), pp. 12–21, 2003.

[15] B. Bonet and H. Geffner, “mGPT: A probabilistic planner based on heuristic search,”

Journal of Artificial Intelligence Research, vol. 24, pp. 933–944, 2005.

[16] N. Kushmerick, S. Hanks, and D. Weld, “An algorithm for probabilistic planning,”

Artificial Intelligence, vol. 76, pp. 239–86, 1995.

[17] N. Onder, G. C. Whelan, and L. Li, “Engineering a conformant probabilistic planner,”

Journal of Artificial Intelligence Research, vol. 25, pp. 1–15, 2006.

[18] C. Boutilier, T. Dean, and S. Hanks, “Decision theoretic planning: Structural

assumptions and computational leverage,” Journal of Artificial Intelligence Research,

vol. 11, pp. 1–94, 1999.

[19] F. Bacchus and M. Ady, “Planning with resources and concurrency: A forward

chaining approach,” in Proceedings of the International Joint Conference on Artificial
Intelligence (IJCAI 2001), p. 417, 2001.

[20] Mausam and D. Weld, “Concurrent probabilistic temporal planning,” in Proceedings
of the International Conference on Automated Planning and Scheduling (ICAPS
2005), 2005.

[21] Mausam and D. Weld, “Planning with durative actions in stochastic domains,” Journal
of Artificial Intelligence Research, vol. 31, pp. 33–82, 2008.

[22] I. Little and S. Thiebaux, “Concurrent probabilistic planning in the Graphplan

framework,” In Proc. ICAPS-06, pp. 263–272, 2006.

65

[23] C. Boutilier, “Planning, learning and coordination in multiagent decision processes,”

in Proceedings of the Sixth Conference on Theoretical Aspects of Rationality and
Knowledge, pp. 195–210, 1996.

[24] M. Fox and D. Long, “PDDL2.1: An extension to PDDL for expressing temporal

planning domains,” Journal of Artificial Intelligence Research, vol. 20, pp. 61–124,

2003.

[25] P. Haslum and H. Geffner, “Heuristic planning with time and resources,” in

Proceedings of the IJCAI-01 Workshop on Planning with Resources, 2001.

[26] M. Do and S. Kambhampati, “Sapa: A multi-objective metric temporal planner,”

Journal of Artificial Intelligence Research, vol. 20, pp. 155–194, 2003.

[27] S. Edelkamp, “Taming numbers and duration in the model checking integrated

planning system,” Journal of Artificial Intelligence Research, vol. 20, pp. 195–238,

2003.

[28] F. Bacchus and F. Kabanza, “Taming numbers and duration in the model checking

integrated planning system,” Journal of Artificial Intelligence Research, vol. 20,

pp. 195–238, 2003.

[29] J. Baier, F. Bacchus, and S. McIlraith, “A heuristic search approach to planning with

temporally extended preferences,” in Proceedings of the Twentieth International Joint
Conference on Artificial Intelligence (IJCAI 2007), pp. 1808–1815, 2007.

[30] J. Baier and S. McIlraith, “Planning with first-order temporally extended goals

using heuristic search,” in Proceedings of the 21st National Conference on Artificial
Intelligence (AAAI 2006), pp. 788–795, 2006.

[31] J. Baier and S. McIlraith, “Planning with temporally extended goals using heuristic

search,” in Proceedings of the 16th International Conference on Automated Planning
and Scheduling (ICAPS 2006), 2006.

[32] D. E. Smith, “Choosing objectives in over-subscription planning,” in Proceedings of
the International Conference on Automated Planning and Scheduling (ICAPS 2005),
2004.

[33] M. Van Den Briel, R. Sanchez, M. B. Do, and S. Kambhampati, “Effective approaches

for partial satisfaction (over-subscription) planning,” in Proceedings of AAAI-04,

pp. 562–569, 2004.

[34] J. Benton, M. B. Do, and S. Kambhampati, “Over-subscription planning with numeric

goals,” in Proceedings of the International Joint Conference on Artificial Intelligence
(IJCAI 2005), 2005.

[35] N. Nilsson, “Problem solving methods in artificial intelligence,” McGraw-Hill, 1971.

66

[36] N. Nilsson, Principles of artificial intelligence. Morgan Kaufmann, 1980.

[37] J. Pearl, Heuristics: Intelligent Search Strategies for Computer Problem Solving.

Addison-Wesley, 1984.

[38] P. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the heuristic determination

of minimum cost paths,” IEEE Transactions on Systems Science and Cybernetics,

vol. SSC4 4 (2), pp. 100–107, 1968.

[39] S. J. Russell and P. Norvig, Artificial Intelligence: A Modern Approach. Prentice Hall,

2002.

[40] N. J. Nilsson, Artificial Intelligence: A New Synthesis. Morgan Kaufmann, 1998.

[41] Mausam, E. Benazera, R. Brafman, N. Meuleau, and E. A. Hansen, “Planning with

continuous resources in stochastic domains,” in Proceedings of the International Joint
Conference on Artificial Intelligence (IJCAI 2005), 2005.

[42] E. Hansen and S. Zilberstein, “Lao*: A heuristic search algorithm that finds solutions

with loops,” Artificial Intelligence, vol. 129(1-2), pp. 35–62, 2001.

[43] R. Bellman, “A Markovian decision process,” Journal of Mathematics and
Mechanics, vol. 6, 1957.

[44] R. A. Howard, Dynamic Programming and Markov Processes. The M.I.T. Press,

1960.

[45] M. L. Puterman, Markov Decision Processes: Discrete Stochastic Dynamic
Programming. John Wiley & Sons, 1994.

[46] E. Beaudry, F. Kabanza, and F. Michaud, “Planning with concurrency under resources

and time uncertainty,” in Proceedings of the European Conference on Artificial
Intelligence (ECAI 2010), 2010.

[47] E. Beaudry, F. Kabanza, and F. Michaud, “Planning for concurrent action executions

under action duration uncertainty using dynamically generated bayesian networks,” in

Proceedings of the International Conference on Automated Planning and Scheduling
(ICAPS 2010), 2010.

[48] J. Hoffmann and B. Nebel, “The FF planning system: Fast plan generation through

heuristic search,” Journal of Artificial Intelligence Research, vol. 14, pp. 253–302,

2001.

[49] J. Hoffmann, “The metric-FF planning system: Translating “ignoring delete lists”

to numeric state variables,” Journal of Artificial Intelligence Research, vol. 20,

pp. 291–341, 2003.

67

[50] C. Boutilier, R. Dearden, and M. Goldszmidt, “Exploiting structure in policy

construction,” Proceedings of IJCAI-95, pp. 1104–1111, 1995.

[51] S. H. Craig Boutilier, Thomas Dean, “Decision-theoretic planning: Structural

assumptions and computational leverage,” Journal of Artificial Intelligence Research,

vol. 11, pp. 1–94, 1999.

[52] C. Guestrin, D. Kolle, R. Parr, and S. Venkataraman, “Efficient solution algorithms

for factored mdps,” Journal of Artificial Intelligence Research, vol. 19, pp. 399–468,

2003.

[53] A. Raghavan, S. Joshi, A. Fern, P. Tadepalli, and R. Khardon, “Planning in

factored action spaces with symbolic dynamic programming,” in Proceedings
of the Twenty-Sixth National Conference on Artificial Intelligence (AAAI 2012),
pp. 1802–1808, 2012.

[54] J. Hoey, R. St-Aubin, A. Hu, and C. Boutilier, “Spudd: Stochastic planning using

decision diagrams,” in Proceedings of the 15th Conference on Uncertainty in Artificial
Intelligence (UAI 1999), pp. 279–288, 1999.

[55] Z. Feng, E. A. Hansen, and S. Zilberstein, “Symbolic generalization for on-line

planning,” in Proceedings of the 19th Conference on Uncertainty in Artificial
Intelligence (UAI 2003), pp. 209–216, 2003.

[56] S. Sanner, K. V. Delgado, and L. N. de Barros, “Symbolic dynamic programming

for discrete and continuous state MDPs,” in Proceedings of the 27th Conference on
Uncertainty in Artificial Intelligence (UAI 2011), (Corvallis, Oregon), pp. 643–652,

AUAI Press, 2011.

[57] A. Barto, S. Bradtke, and S. Singh, “Learning to act using real-time dynamic

programming,” Artificial Intelligence, vol. 72, no. 1–2, pp. 81–138, 1995.

[58] Mausam and D. Weld, “Solving concurrent Markov decision processes,” in

Proceedings of the Nineteenth National Conference on Artificial Intelligence (AAAI
2004), pp. 716–722, 2004.

[59] L. Li and N. Onder, “Generating plans in concurrent, probabilistic, over-subscribed

domains,” in Proceedings of the Twenty-Third National Conference on Artificial
Intelligence (AAAI 2008), pp. 957–962, 2008.

[60] H. L. S. Younes and M. L. Littman, “PPDDL 1.0: An extension to

PDDL for expressing planning domains with probabilistic effects,” Tech. Rep.

CMU-CS-04-167, School of Computer Science, Carnegie Mellon University, 2004.

[61] A. Pfeffer, “Functional specification of probabilistic process models,” in Proceedings
of the Twentieth National Conference on Artificial Intelligence (AAAI 2005),
pp. 663–669, 2005.

68

[62] A. L. Blum and M. L. Furst, “Fast planning through planning graph analysis,”

Artificial Intelligence, vol. 90, pp. 1636–1642, 1995.

[63] D. Byrce and S. Kambhampati, “A tutorial on planning graph-based reachability

heuristics,” AI Magazine, vol. 28, no. 1.

[64] D. Long and M. Fox, “The 3rd international planning competition: Results and

analysis,” Journal of Artificial Intelligence Research, vol. 20, pp. 1–59, 2003.

[65] M. L. Littman and H. L. S. Younes, “Introduction to the probabilistic planning track,”

2004.

[66] T. Bylander, “The computational complexity of propositional STRIPS planning,”

Artificial Intelligence, vol. 69, pp. 165–204, 1994.

[67] M. L. Littman, J. Goldsmith, and t. . M. Mundhenk”

[68] J. Rintanen, “Complexity of planning with partial observability,” in Proceedings of
the 14th International Conference on Automated Planning and Scheduling (ICAPS
2004), 2004.

69

Appendix A

CPOAO* Domain and Problem

A.1 Mars Rover Domain

(define (domain mars-rover-domain)
(types location pTgt sTgt)
(resource-types power)
(predicates (rover-at location)

(picture-site location pTgt)
(sample-site location sTgt)
(path location location)
(shot pTgt)
(collected sTgt))

(action move
(var (location : loc1 loc2))
(preconditions (path loc1 loc2)

(rover-at loc1))
(time 4)
(resources (power 4))
(effects

(1 (add (rover-at loc2))
(del (rover-at loc1)))))

70

(action sample
(var (location : loc1)

(sTgt : sTgt1))
(preconditions (sample-site loc1 sTgt1)

(rover-at loc1))
(time 7)
(resources (power 7))
(effects

(0.7 (add (collected sTgt1))
(del))

(0.3 (add)
(del))))

(action picture-l
(var (location : loc1)

(pTgt : pTgt1))
(preconditions (picture-site loc1 pTgt1)

(rover-at loc1))
(time 6)
(resources (power 6))
(effects

(0.6 (add (shot pTgt1))
(del))

(0.4 (add)
(del))))

(action picture-s
(var (location : loc1)

(pTgt : pTgt1))
(preconditions (picture-site loc1 pTgt1)

(rover-at loc1))
(time 5)
(resources (power 5))
(effects

(0.5 (add (shot pTgt1))
(del))

(0.5 (add)
(del)))))

71

A.2 Mars Rover Problem

(define (problem simple-mars-rover)
(domain mars-rover-domain)
(objects

(location : loc-a loc-b loc-c loc-d loc-e)
(pTgt : pTgt-1 pTgt-2 pTgt-3)
(sTgt : sTgt-1 sTgt-2))

(init (rover-at loc-a)
(path loc-a loc-b)
(path loc-a loc-c)
(path loc-a loc-d)
(path loc-a loc-e)
(path loc-b loc-a)
(path loc-b loc-c)
(path loc-b loc-e)
(path loc-c loc-a)
(path loc-c loc-b)
(path loc-c loc-d)
(path loc-d loc-a)
(path loc-d loc-c)
(path loc-d loc-e)
(path loc-e loc-a)
(path loc-e loc-b)
(path loc-e loc-d)
(picture-site loc-c pTgt-1)
(picture-site loc-d pTgt-2)
(picture-site loc-e pTgt-3)
(sample-site loc-d sTgt-1)
(sample-site loc-e sTgt-2))

(time 25)
(resources (power 30))
(goals ((rover-at loc-a) 20)

((shot pTgt-1) 5)
((shot pTgt-2) 2)
((shot pTgt-3) 6)
((collected sTgt-1) 3)
((collected sTgt-2) 5)))

72

A.3 Machine Shop Domain

(define (domain MachineShop)
(types Piece Machine)
(resource-types power)
(predicates (shaped Piece)

(painted Piece)
(smooth Piece)
(polished Piece)
(canpolpaint Machine)
(canlatroll Machine)
(cangrind Machine)
(at Piece Machine)
(on Piece Machine)
(hasimmersion Machine)
(free Machine))

(action polish
(var (Piece : piece-1)

(Machine : machine-1))
(preconditions (canpolpaint machine-1)

(on piece-1 machine-1))
(time 7) (resources (power 10))
(effects

(0.9 (add (polished piece-1))
(del))

(0.1 (add)
(del))))

(action spraypaint
(var (Piece : piece-1)

(Machine : machine-1))
(preconditions (canpolpaint machine-1)

(on piece-1 machine-1))
(time 8) (resources (power 6))
(effects

(0.8 (add (painted piece-1))
(del))

(0.2 (add)
(del))))

73

(action immersionpaint
(var (Piece : piece-1)

(Machine : machine-1))
(preconditions (canpolpaint machine-1)

(on piece-1 machine-1)
(hasimmersion machine-1))
(time 3) (resources (power 4))
(effects

(0.57 (add (painted piece-1))
(del))

(0.38 (add (painted piece-1))
(del (hasimmersion machine-1)))

(0.02 (add)
(del (hasimmersion machine-1)))))

(action lathe
(var (Piece : piece-1)

(Machine : machine-1))
(preconditions (canlatroll machine-1)

(on piece-1 machine-1))
(time 5) (resources (power 5))
(effects

(0.9 (add (shaped piece-1))
(del (painted piece-1)

(smooth piece-1)))
(0.1 (add)

(del))))

(action grind
(var (Piece : piece-1)

(Machine : machine-1))
(preconditions (cangrind machine-1)

(on piece-1 machine-1))
(time 4) (resources (power 4))
(effects

(0.9 (add (smooth piece-1))
(del))

(0.1 (add)
(del))))

74

(action buyimmersion
(var (Machine : machine-1))
(preconditions (canpolpaint machine-1))
(time 3) (resources (power 5))
(effects

(1 (add (hasimmersion machine-1))
(del))))

(action place
(var (Piece : piece-1)

(Machine : machine-1))
(preconditions (at piece-1 machine-1)

(free machine-1))
(time 1) (resources (power 1))
(effects

(1 (add (on piece-1 machine-1))
(del (free machine-1)

(at piece-1 machine-1)))))

(action move_from_place
(var (Piece : piece-1)

(Machine : machine-1 machine-2))
(preconditions (at piece-1 machine-1))
(time 3) (resources (power 3))
(effects

(0.9 (add (at piece-1 machine-2))
(del (at piece-1 machine-1)))

(0.1 (add)
(del))))

(action move_from_machine
(var (Piece : piece-1)

(Machine : machine-1 machine-2))
(preconditions (on piece-1 machine-1))
(time 3) (resources (power 3))
(effects

(0.9 (add (at piece-1 machine-2)
(free machine-1))

(del (on piece-1 machine-1)))
(0.1 (add (free machine-1))

(del (on piece-1 machine-1))))))

75

A.4 Machine Shop Problem

(define (problem machine-shop-problem)
(domain MachineShop)
(objects

(Piece : piece-1 piece-2)
(Machine : machine-1 machine-2))

(init
(at piece-1 machine-1)
(at piece-2 machine-1)
(canpolpaint machine-1)
(cangrind machine-2)
(canlatroll machine-2)
(free machine-1)
(free machine-2))
(time 12)
(resources (power 13))
(goals ((shaped piece-1) 5)
((painted piece-1) 5)
((shaped piece-2) 5)
((painted piece-2) 5)))

76

A.5 File World Domain

(define (domain file-world)
(types file agent true)
(resource-types power)
(predicates (A-File file)

(B-File file)
(C-File file)
(A-Folder-open true)
(B-Folder-open true)
(C-Folder-open true)
(A-Folder-closed true)
(B-Folder-closed true)
(C-Folder-closed true)
(Get-Folder-A agent)
(Get-Folder-B agent)
(Get-Folder-C agent)
(Type-Unknown file)
(Free agent)
(Get-File agent file)
(Filed file))

(action get-file-type
(var (file: file1)

(agent : agent1))
(preconditions (Free agent1)

(Type-Unknown file1))
(time = 3)
(resources (power 4))
(effects (0.4 (add (A-File file1)

(Get-File agent1 file1))
(del (Type-Unknown file1)

(Free agent1)))
(0.3 (add (B-File file1)

(Get-File agent1 file1))
(del (Type-Unknown file1)

(Free agent1)))
(0.3 (add (C-File file1)

(Get-File agent1 file1))
(del (Type-Unknown file1)

(Free agent1)))))

77

(action open-folder-A
(var (agent : agent1)

(true : true1))
(preconditions (Free agent1)

(A-Folder-closed true1))
(time = 2)
(resources (power 4))
(effects (0.8 (add (A-Folder-open true1)

(Get-Folder-A agent1))
(del (Free agent1)

(A-Folder-closed true1)))
(0.2 (add)

(del))))
(action open-folder-B

(var (agent : agent1)
(true : true1))

(preconditions (Free agent1)
(B-Folder-closed true1))

(time = 2)
(resources (power 4))
(effects(0.8 (add (B-Folder-open true1)

(Get-Folder-B agent1))
(del (Free agent1)

(B-Folder-closed true1)))
(0.2 (add)

(del))))
(action open-folder-C

(var (agent : agent1)
(true : true1))

(preconditions (Free agent1)
(C-Folder-closed true1))

(time = 2)
(resources (power 4))
(effects (0.8 (add (C-Folder-open true1)

(Get-Folder-C agent1))
(del (Free agent1)

(C-Folder-closed true1)))
(0.2 (add)

(del))))

78

(action close-folder-A
(var (agent : agent1)

(true : true1))
(preconditions (Free agent1)

(A-Folder-open true1))
(time = 2)
(resources (power 4))
(effects (0.8 (add (A-Folder-closed true1)

(Get-Folder-A agent1))
(del (Free agent1)

(A-Folder-open true1)))
(0.2 (add)

(del))))
(action close-folder-B

(var (agent : agent1)
(true : true1))

(preconditions (Free agent1)
(B-Folder-open true1))

(time = 2)
(resources (power 4))
(effects (0.8 (add (B-Folder-closed true1)

(Get-Folder-B agent1))
(del (Free agent1)

(B-Folder-open true1)))
(0.2 (add)

(del))))
(action close-folder-C

(var (agent : agent1)
(true : true1))

(preconditions (Free agent1)
(C-Folder-open true1))

(time = 2)
(resources (power 4))
(effects (0.8 (add (C-Folder-closed true1)

(Get-Folder-C agent1))
(del (Free agent1)

(C-Folder-open true1)))
(0.2 (add)

(del))))

79

(action leave-folder-A
(var (agent : agent1))
(preconditions (Get-Folder-A agent1))
(time = 2)
(resources (power 4))
(effects (1 (add (Free agent1))

(del (Get-Folder-A agent1)))))

(action leave-folder-B
(var (agent : agent1))
(preconditions (Get-Folder-B agent1))
(time = 2)
(resources (power 4))
(effects (1 (add (Free agent1))

(del (Get-Folder-B agent1)))))

(action leave-folder-C
(var (agent : agent1))
(preconditions (Get-Folder-C agent1))
(time = 2)
(resources (power 4))
(effects (1 (add (Free agent1))

(del (Get-Folder-C agent1)))))

80

(action insert-folder-A
(var (agent : agent1)

(true : true1)
(file : file1))

(preconditions (A-Folder-open true1)
(Get-File agent1 file1)
(A-File file1))

(time = 4)
(resources (power 4))
(effects (0.7 (add (Filed file1)

(Free agent1))
(del (Get-File agent1 file1)))

(0.3 (add)
(del))))

(action insert-folder-B
(var (agent : agent1)

(true : true1)
(file : file1))

(preconditions (B-Folder-open true1)
(Get-File agent1 file1)
(B-File file1))

(time = 4)
(resources (power 4))
(effects (0.7 (add (Filed file1)

(Free agent1))
(del (Get-File agent1 file1)))

(0.3 (add)
(del))))

(action insert-folder-C
(var (agent : agent1)

(true : true1)
(file : file1))

(preconditions (C-Folder-open true1)
(Get-File agent1 file1)
(C-File file1))

(time = 4)
(resources (power 4))
(effects (0.7 (add (Filed file1)

(Free agent1))
(del (Get-File agent1 file1)))

(0.3 (add)
(del))))

81

A.6 File World Problem

(define (problem file-world-problem-1)
(domain file-world)
(objects

(file : f1 f2 f3)
(agent : a1 a2)
(true : T))

(init
(A-Folder-closed T)
(B-Folder-closed T)
(C-Folder-closed T)
(Free a1)
(Free a2)
(Type-Unknown f1)
(Type-Unknown f2)
(Type-Unknown f3))

(time 12)
(resources (power 16))
(goals

((Filed f1) 1)
((Filed f2) 1)
((Filed f3) 1)))

82

Appendix B

Experimental Data

Table B.1
Mars Rover Expanded States

No TORT TOFR ARFR

Problem heuristic heuristic heuristic heuristic

1-1 1984 108 87 140

1-2 15641 1110 592 728

1-3 121316 5944 2174 2508

1-4 920521 22738 17713 14623

2-1 6713 396 306 262

2-2 81757 6745 4916 2039

2-3 903221 87981 62540 14355

2-4 9519549 1186813 788852 107061

3-1 9032 406 311 333

3-2 121771 7634 5895 2801

3-3 1482379 121262 99711 25626

3-4 17288865 1899310 1382671 218206

4-1 9279 406 311 336

4-2 127707 7639 5900 2888

4-3 1579588 121741 100684 27703

4-4 18685955 1918370 1456119 247674

83

Table B.2
Machine Shop Expanded States

No TORT TOFR ARFR

Problem heuristic heuristic heuristic heuristic

1-1 1464 46 27 11

1-2 2494 138 54 18

1-3 5112 228 139 33

1-4 9491 350 241 55

2-1 66705 3356 1875 67

2-2 171929 11164 5262 306

2-3 947172 77168 31505 1720

2-4 2554196 129252 41711 1820

3-1 1960047 59996 24006 504

3-2 6536745 239530 116646 2678

3-3 21493432 1187605 562921 11341

3-4 >24640000 3222702 1195344 21166

4-1 12013903 258274 108610 1078

4-2 45669855 1220166 692143 7421

4-3 >55520000 7149781 3226530 38719

4-4 >59670000 >9130000 >6970000 78870

84

Table B.3
File World Expanded States

No TORT TOFR ARFR

Problem heuristic heuristic heuristic heuristic

1-1 4429 223 223 55

1-2 50443 2951 1411 103

1-3 531049 81970 39849 1489

1-4 5546179 1063000 517527 5336

2-1 6637 343 343 73

2-2 81619 5617 2839 139

2-3 912343 192890 82459 2149

2-4 10294489 2748260 1375839 14543

3-1 9313 463 463 91

3-2 121867 8647 5957 235

3-3 1430377 323024 207626 2895

3-4 17341963 4862669 3204565 30659

4-1 12457 583 583 109

4-2 171835 13171 9373 283

4-3 2101675 485214 342797 3841

4-4 >16200000 8163609 5451835 44679

85

Appendix C

AAAI Publication Copyright
Information

86

87

88

	GENERATING PLANS IN CONCURRENT, PROBABILISTIC, OVER-SUBSCRIBED DOMAINS
	Recommended Citation

	LiLi2015APR30.pdf

