
Michigan Technological University Michigan Technological University 

Digital Commons @ Michigan Tech Digital Commons @ Michigan Tech 

Dissertations, Master's Theses and Master's 
Reports - Open 

Dissertations, Master's Theses and Master's 
Reports 

2015 

IMPROVED SENSITIVITY OF RESONANT MASS SENSOR BASED IMPROVED SENSITIVITY OF RESONANT MASS SENSOR BASED 

ON MICRO TILTING PLATE AND MICRO CANTILEVER ON MICRO TILTING PLATE AND MICRO CANTILEVER 

Xiaoyu Song 
Michigan Technological University 

Follow this and additional works at: https://digitalcommons.mtu.edu/etds 

 Part of the Mechanical Engineering Commons 

Copyright 2015 Xiaoyu Song 

Recommended Citation Recommended Citation 
Song, Xiaoyu, "IMPROVED SENSITIVITY OF RESONANT MASS SENSOR BASED ON MICRO TILTING PLATE 
AND MICRO CANTILEVER", Master's Thesis, Michigan Technological University, 2015. 
https://doi.org/10.37099/mtu.dc.etds/934 

Follow this and additional works at: https://digitalcommons.mtu.edu/etds 

 Part of the Mechanical Engineering Commons 

http://www.mtu.edu/
http://www.mtu.edu/
https://digitalcommons.mtu.edu/
https://digitalcommons.mtu.edu/etds
https://digitalcommons.mtu.edu/etds
https://digitalcommons.mtu.edu/etd
https://digitalcommons.mtu.edu/etd
https://digitalcommons.mtu.edu/etds?utm_source=digitalcommons.mtu.edu%2Fetds%2F934&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=digitalcommons.mtu.edu%2Fetds%2F934&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.37099/mtu.dc.etds/934
https://digitalcommons.mtu.edu/etds?utm_source=digitalcommons.mtu.edu%2Fetds%2F934&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=digitalcommons.mtu.edu%2Fetds%2F934&utm_medium=PDF&utm_campaign=PDFCoverPages


 

IMPROVED SENSITIVITY OF RESONANT MASS SENSOR BASED ON MICRO 

TILTING PLATE AND MICRO CANTILEVER 

 

 

By 

Xiaoyu Song 

 

 

 

A THESIS 

Submitted in partial fulfillment of the requirements for the degree of 

MASTER OF SCIENCE 

In Mechanical Engineering 

 

MICHIGAN TECHNOLOGICAL UNIVERSITY 

2015 

 

© 2015 Xiaoyu Song

 

 



 

This thesis has been approved in partial fulfillment of the requirements for the Degree of 

MASTER OF SCIENCE in Mechanical Engineering. 

 

 

Department of Mechanical Engineering-Engineering Mechanics  

  

 Thesis Advisor: Dr. Michele H. Miller 

  

 Committee Member: Dr. Gregory M. Odegard 

 

 Committee Member: Dr. Kathleen A. Feigl 

  

   Department Chair: Dr. William W. Predebon

 

 



 

Table of Contents 
 

List of Figures ................................................................................................................... v 

List of Tables ................................................................................................................ viii 

Acknowledgments ........................................................................................................... ix 

Abstract ............................................................................................................................ x 

CHAPTER I:   Introduction ............................................................................................ 1 

CHAPTER II   Background ............................................................................................. 3 

2.1 MEMS Gas Sensors ............................................................................................................... 3 

2.2 Squeeze film damping ............................................................................................................ 3 

2.3 Definition of Sensitivity ......................................................................................................... 4 

2.4 Analytical models .................................................................................................................. 6 

CHAPTER III:  Resonant Mass Sensor Design Based on Tilting Plate ............................... 8 

3.1 Tilting plate about the y axis .................................................................................................. 8 

3.1.1 Analytical model of tilting plate without holes ....................................................... 8 

3.1.2 Tilting plate about the y axis with a hole in the center ............................................14 

3.1.3 Comparison of the frequency responses of analytical and COMSOL models ............22 

3.2 Square Tilting plate about its diagonal ................................................................................ 27 

3.2.1 Analytical model of square tilting plate without holes ............................................27 

3.2.2 Tilting plate about the y axis with a hole in the center ............................................31 

3.3 Optimization of both tilting plates ....................................................................................... 39 
iii 



 

3.4 Optimization based on capacitance to voltage ..................................................................... 42 

CHAPTER IV:  Resonant Mass Sensor Design Based on Fixed- Free Cantilever ...............46 

4.1 Fixed-Free micro-cantilever without hole............................................................................ 46 

4.2 Fixed- Free micro-cantilever with a hole in the center ........................................................ 51 

4.2.1 Element ‘A’ with two adjacent edges closed .........................................................51 

4.2.2 Plate ‘B1’ with two opposite edges closed along the y axis ....................................55 

4.2.3 Plate ‘B2’ with two opposite edges closed along the x axis .....................................58 

4.2.4 Plate ‘C1’ with three edges closed but venting along the y axis ...............................60 

4.2.5 Plate ‘C2’ with three edges closed but venting along the x axis ...............................62 

4.3 Comparison of the pressure between analytical model and COMSOL model .................... 65 

4.4 Investigation of the boundary condition assumptions .......................................................... 68 

4.5 Investigation of the deflection function ............................................................................... 70 

4.7 Optimization of micro-cantilever by COMSOL .................................................................. 73 

CHAPTER V Conclusion and Future Work ....................................................................76 

 

 

 

 

 

 

iv 



 

List of Figures 

Figure 2.1: The parameter definitions of Qs.......................................................................... 5 

Figure 3.1: The tilting plate about y axis ............................................................................... 8 

Figure 3.2: Free body diagram of tilting plate ......................................................................10 

Figure 3.3: The tilting plate model build in COMSOL ..........................................................12 

Figure 3.4: Mesh of tilting plate .........................................................................................12 

Figure 3.5: The frequency response of tilting plate about y axis .............................................13 

Figure3.6: Model comparison for different sizes of plates that tilt about y axis ........................13 

Figure 3.7: Tilting plate about y axis with a hole in the center ...............................................14 

Figure 3.8: Tilting plate with two adjacent edges closed .......................................................16 

Figure 3.9: Comparison of simulated and analytical results ...................................................16 

Figure 3.10: Compare the simulate result and analytical result ...............................................18 

Figure 3.11: Comparison of the simulated result and analytical result .....................................21 

Figure 3.12: Mesh for the COMSOL model.........................................................................24 

Figure 3.13: The air damping pressure distribution on the surface ..........................................24 

Figure 3.14: The 200(um) *200(um) tilting plate with a hole in the center ...............................25 

Figure 3.15: The 200(um) *200(um) tilting plate with a different hole size in the center ...........26 

Figure 3.16: The tilting plate about its diagonal ...................................................................27 

Figure 3.17: Tilting plate about its diagonal in COMSOL .....................................................30 

Figure 3.18: The frequency response of tilting plate about its diagonal ...................................30 

Figure 3.19: Tilting plate about its diagonal with a hole in the center ......................................31 

Figure 3.20: The air damping pressure distribution on surface ...............................................38 

Figure 3.21: The frequency response of tilting plate about its diagonal with a hole ...................38 

v 



 

Figure 3.22: The 200(um) *200(um) tilting plate with different hole size in the center ..............39 

Figure 3.23: The parameter definitions of  ......................................................................40 

Figure 3.24: Sensor sensitivity  with different hole size for tilting plate about y axis ............41 

Figure 3.25: Sensor sensitivity  with different hole size for tilting plate about diagonal ........42 

Figure 3.26: Sensing and actuating area in tilting plate with a hole in the center .......................43 

Figure 4.1: The fixed-free micro-cantilever without hole....................................................... 46 

Figure 4.2: The free body diagram of cantilever ...................................................................47 

Figure 4.3: Micro-cantilever model was built in COMSOL ...................................................49 

Figure 4.4: Mesh of cantilever is COMSOL ........................................................................49 

Figure 4.5: The frequency response of cantilever without hole ...............................................50 

Figure 4.6: The frequency responses of different sized cantilevers .........................................50 

Figure 4.7: The cantilever with a hole in the center model in COMSOL ..................................51 

Figure 4.8: The micro-cantilever with two adjacent edges closed ...........................................52 

Figure 4.9: Regular cantilever 'A' with two adjacent edges closed ..........................................53 

Figure 4.10: The micro-cantilever with two opposite edges closed along the y axis ..................55 

Figure 4.11: Regular cantilever 'B1' with two opposite edges closed along the y axis................56 

Figure 4.12: The micro-cantilever with two opposite edges closed along the x axis ..................58 

Figure 4.13: Regular cantilever 'B1' with two opposite edges closed along the x axis................59 

Figure 4.14: The micro-cantilever with three edges closed and venting along the y axis ............60 

Figure 4.15: Regular cantilever 'C1' with three edges closed and venting along the y axis .........61 

Figure 4.16: The micro-cantilever with three edges closed and venting along the x axis ............62 

Figure 4.17: Regular cantilever 'C1' with three edges closed and venting along the x axis .........63 

Figure 4.18: Pressure distribution in one element COMSOL cantilever model .........................65 

Figure 4.19: Points used to compare the damping pressure between analytical and COMSOL ...66 

vi 



 

Figure 4.20: Pressure comparison between COMSOL and analytical. .....................................66 

Figure 4.21: Pressure comparison between COMSOL and analytical ......................................67 

Figure 4.22: Cantilever with a hole in the center in COMSOL ...............................................68 

Figure 4.23: Pressure distribution in eight elements cantilever model .....................................68 

Figure 4.24: Pressure comparison between analytical model and COMSOL model with boundary 

walls ..............................................................................................................................69 

Figure 4.25: Pressure comparison between analytical and COMSOL model ............................70 

Figure 4.26: Free body diagram of cantilever with a concentrated load at free edge ..................70 

Figure 4.27: Compare the deflection shape between COMSOL and two analytical models ........71 

Figure 4.28: Pressure comparison between COMSOL and two analytical models.....................73 

Figure 4. 29: The parameter definitions of  .....................................................................74 

Figure 4. 30: Sensor sensitivity  with different hole size for cantilever based on dx/dF .........75 

  

 

 

 

 

 

 

vii 



 

List of Tables 

Table 3. 1: Parameters used in both analytical and simulated tilting plate models .....................11 

Table 3. 2: Parameter used in both analytical and simulated tilting plate models ......................23 

Table 3. 3: Parameter used in both analytical and simulated tilting plate models ......................29 

Table 3. 4: Parameter used in both analytical and simulated tilting plate models ......................37 

Table 3. 5: Parameters used in both tilting plate models. .......................................................40 

Table 4. 1: Parameter used in cantilever without hole ........................................................... 48 

Table 4. 2: Parameter used in cantilever with a hole in the center ...........................................65 

Table 4. 3: Parameters used in COMSOL cantilever model ...................................................74 

  

 

 

 

 

 

 

 

 

 
viii 



 

Acknowledgments 

My heartfelt and deepest gratitude goes first to my supervisor Dr. Michele H. Miller for 
her constant instruction and encouragement during my graduate study. Dr. Michele H. 
Miller walks me through all the difficulties and explains everything in a wise and clear 
way. She is an inspiration herself, doing research in the diverse field systems and stepping 
outside the lab to do brilliant and creative things. 

Second, I would like to extend my sincere appreciation to my committee members Dr. 
Gregory M. Odegard and Dr. Kathleen A. Feigl for sharing their time unselfishly and 
validating of the worthiness of my thesis.  

Thirdly, I must thank for my parents, Mr. Minzhi Song and Mrs. Yulan Niu who have 
supported me mentally, financially. I would also like to thank my wife Mrs. Yaqian Tan 
for always encourage me during my study abroad.   

 
 

 

 

 

 

 

 

 

 

 

 

ix 



 

Abstract 

Vapor sensors have been used for many years. Their applications range from detection of 
toxic gases and dangerous chemicals in industrial environments, the monitoring of 
landmines and other explosives, to the monitoring of atmospheric conditions. Micro-
electrical mechanical systems (MEMS) fabrication technologies provide a way to fabricate 
sensitive devices. One type of MEMS vapor sensors is based on mass changing detection 
and the sensors have a functional chemical coating for absorbing the chemical vapor of 
interest. The principle of the resonant mass sensor is that the resonant frequency will 
experience a large change due to a small mass of gas vapor change. This thesis is trying to 
build analytical micro-cantilever and micro-tilting plate models, which can make 
optimization more efficient. Several objectives need to be accomplished:  

(1) Build an analytical model of MEMS resonant mass sensor based on micro-tilting plate 
with the effects of air damping.  

(2) Perform design optimization of micro-tilting plate with a hole in the center. 
(3) Build an analytical model of MEMS resonant mass sensor based on micro-cantilever 

with the effects of air damping. 
(4) Perform design optimization of micro-cantilever by COMSOL. 

 
Analytical models of micro-tilting plate with a hole in the center are compared with a 
COMSOL simulation model and show good agreement. The analytical models have been 
used to do design optimization that maximizes sensitivity. The micro-cantilever analytical 
model does not show good agreement with a COMSOL simulation model.  To further 
investigate, the air damping pressures at several points on the micro-cantilever have been 
compared between analytical model and COMSOL model. The analytical model is 
inadequate for two reasons. First, the model’s boundary condition assumption is not 
realistic. Second, the deflection shape of the cantilever changes with the hole size, and the 
model does not account for this. Design optimization of micro-cantilever is done by 
COMSOL. 

 

x 



 

CHAPTER I:   Introduction 

Vapor sensors have been used for many years. Their applications range from detection of 
toxic gases and dangerous chemicals in industrial environments to the monitoring of 
landmines and other explosives. Trinitroluene (TNT) [1] leaks out into the surrounding 
environment when a landmine is buried. Detecting this very small leakage of TNT is an 
efficient way of detecting the landmines. Most explosive processes release little vapor and 
it is not possible to detect them effectively by normal methods like a dog’s nose. Due to 
this, the high sensitivity vapor sensors are becoming more necessary.  

Micro-electrical mechanical systems (MEMS) fabrication technologies provide a way to 
fabricate sensitive devices. The vapor sensors have a functional chemical coating for 
absorbing the chemical vapor of interest. In order to develop the vapor sensor, this thesis 
is focusing on building the analytical models of resonant mass micro-cantilever and micro-
tilting plate sensors with capacitive sensing and capacitive actuation. These analytical 
models can be used in design optimization of MEMS resonant mass sensor. 

The principle of the resonant mass sensor is that the resonant frequency will experience a 
large change due to a small mass of gas vapor change. The surface of micro-cantilever and 
micro-tilting plate sensors are coated by chemical materials to absorb chemical vapors, and 
the sensors are actuated by electrostatic force. The air damping force is an important factor 
that has the most influences on the sensitivity of resonant mass sensor.  

The squeeze film damping model can be built by Finite Element Methods. The numerical 
models are potentially more accurate, and it can be run in reasonable times given the speed 
of today’s computers. The analytical model can help people to understand the mechanism 
and physical effects through the model problem. It also can be used to validate the 
numerical model. Compare to analytical model, the numerical model is also time 
consuming.  Therefore, this thesis is trying to build analytical micro-cantilever and micro-
tilting plate models, which can make optimization more efficient. 

Because the air damping force has a significant role in sensor sensitivity for resonant mass 
sensors, how to reduce the air damping force becomes a very important question. There are 
multiple ways to reduce this force such as decreasing the ambient pressure, decreasing the 
temperature, increasing the gap between the cantilevers or tilting plates and substrate, and 
adding a hole in the cantilever or tilting plate. This thesis work kept the ambient pressure, 
the temperature and the gap as constants during simulation. and focused on optimal shape 
as way to reduce the air damping. Adding holes in the cantilever and tilting plate will 
reduce the air damping force, but it also will reduce the electrostatic actuation force and 
reduce the capacitance for sensing. The lost area, due to holes, will also reduce the area for 
chemical coating, which absorbs the chemical vapors. These competing effects 
demonstrate that there will be an optimization hole size in cantilevers and tilting plates.  
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This thesis has the following objectives:  

(1) Build an analytical model of MEMS resonant mass sensors based on micro-tilting plate 
with the effects of air damping.  

(2) Perform design optimization of micro-tilting plate with a hole in the center. 
(3) Build an analytical model of MEMS resonant mass sensor based on micro-cantilever 

with the effects of air damping. 
(4) Perform design optimization of micro-cantilever by COMSOL. 
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CHAPTER II   Background 

2.1 MEMS Gas Sensors 

Micro-electrical mechanical systems (MEMS) fabrication technologies provide a way to 
fabricate sensitive, low power consumption and inexpensive devices. The MEMS gas 
sensors are coated by a chemical layer which is used to absorb a gas of interest.  

Some MEMS sensors are solid-state devices. They detect the mass change by resistance 
and temperature change with no moving parts in devices. Zee et al. [2] describes two types 
of sensor arrays. One design is the silicon substrate coated by an array of ‘wells’, which is 
used to absorb the carbon black gas. In the second one, the surface of silicon wafer are 
coated by an array of high aspect ratio ‘wells’. The resistance of the polymer in the well 
changes when carbon black gas is absorbed. Semancik et al. [3] build a micro hot plate 
chemical sensor. When carbon monoxide is absorbed by a Pt/Sn  sensing film coating, 
the relationship between conductance and temperature changes. Mesoporous 
nanocrystalline [4] tin oxide thin film was embedded on a multi-layer structure for MEMS-
gas sensors. The resistance changes when hydrogen gas is absorbed by the tin oxide thin 
film. Then the temperature change is detected by a platinum heater on a ceramic substrate.  

MEMS gas sensors have also been developed with moving parts based on micro-cantilever 
[5]. Instead of measure the properties change of sensor materials, such as resistance and 
temperature change. This type of MEMS gas sensor measures a mechanical response such 
as deflection, capacitance change and resonant frequency shift. This kind of sensor is also 
coated with a material that can absorb the chemical of interest. In the static model, the 
cantilever will bend on the nanometer scale due to mass added when the sensor layer is 
exposed to an analyte, a capacitance change between the cantilever and substrate can be 
detected by electronic circuit measurement. In the dynamic model, the resonant frequency 
will shift due to chemical vapor mass added. Battiston [6] uses an array of eight silicon 
cantilevers, they are actuated at their resonance-frequency and the surfaces are coated by 
polymer. This sensor can detect a variety of chemical substances, such as water, primary 
alcohol and alkanes. Baselt et al. [7] developed an array of 10 micromachined cantilever 
beams with 90% palladium- 10% nickel coatings to detect hydrogen. 

 

2.2 Squeeze film damping 

The dynamic behavior of a plate is strongly influenced by squeeze film damping effect. 
Newell [8] observed that when a plate was oscillating near a second surface, the air 
damping force will be increased due to the squeeze film damping between these two 
surfaces. When the plate squeeze the gap, the gas in the gap flows out from the venting 
edge, it damps the displacement motion of the plate. Bao et al. [9] studied the basic 
Reynolds equations for squeeze film air damping, observed the air damping force consists 
of two part: the viscous damping force which is related to the moving speed of the plate, 
and the elastic damping force which is related to the displacement of air compression. He 
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mentioned that when the plate oscillate at a very slow frequency, the air film will not be 
compressed and the viscous damping force dominates. When a plate oscillate at a very high 
frequency, the air will be compressed only with no escape, the viscous damping force will 
vanish, and the elastic damping force dominates. Bao’s squeeze film damping model is 
only accurate when the border effect neglect. Which means the surface dimensions are 
much bigger than the air gap. Vermuri et al. [10] observed that the border effect increases 
the damping force, the damping force increase by 35% when the aspect ratios between the 
surface length ‘a’ and gap heigh ‘g’ is equal to 20. Mohite et al. [11] build a new analytical 
model to express the stiffness and the damping coefficients of squeeze film damping force 
based on the perforated back plates. The damping pressure distribution matches very well 
between analytical model and simulated plates with circular pattern holes.  

Kim et al. [12] tested perforated planar microstructures with different size of holes and 
different numbers of holes. The results show that with the same area ratio of hole areas to 
plate area, the bigger number of holes, the less the air damping, and the higher quality 
factor. Pursula et al. [13] simulated a planar gas-damped micro device dynamic behavior 
under electrostatic loading using finite element method. The various reduced-order and 
reduced-dimensional methods can make the simulation time more efficient. Nigro et al. 
[14] compared the analytical model and simulated model by COMSOL Multiphysics for 
the rigid rectangular plate with squeeze film damping phenomenon. The analytical models 
with high holes ratio and high number holes are effective, but its do not always model 
realistic very well. The simulated results are matches the experiment result very well, 
therefore simulate approach are more competitive than analytical methods. Li et al. [15] 
build an analytical model of circular perforated microplates using a modified Reynolds 
equation, the viscous damping and spring coefficient of squeeze film damping equation 
have been found. The analytical model and finite element method results matched very 
well during the smaller perforation ratios (2 / 0.6). Li et al. [16] present an analytical 
model with the squeeze film damping based on perforated torsion microplates. The 
analytical model give good results for the devices with / 0.6. 

 

 

2.3 Definition of Sensitivity 

The vapor sensor is covered by a chemical coating, which is used to absorb the particular 
chemical vapor molecules. The design optimization of a resonant mass sensor requires a 
metric to describe how the frequency response changes due to the mass change caused by 
chemical absorption. There are multiple ways to characterize sensitivity. One common 
measure for sensitivity is the shift of resonant frequency caused by a mass change due to 
chemical absorption [17]. This can be expressed as = . However, for a damped system 
without a sharp resonant peak, the resonant frequency shift is hard to detect. Thus, using 
only the parameter ‘S’ is not a good way to define the sensitivity. Another important factor 
is detectability. Quality factor Q characterizes detectability, which is inversely related to 
damping. [18]. Q is the ratio of resonant frequency without chemical absorption to the 
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bandwidth, and can be expressed as = , where is the frequencies shifts at which 

the amplitude of frequency response is  of the amplitude at resonant frequency. Another 
approach to define the performance of a resonant mass sensor is to calculate the root mean 
square deviation (RMSD) [19] between the frequency responses with and without chemical 

absorption. It can be expressed as RMSD% = ( )( ) . This approach needs a range 

of frequency response points. In order to simplify the calculation, Miller and Li [20] 
defined a new measure Qs, which is to calculate the root mean square deviation for just 
two frequencies: the resonant frequencies with and without chemical absorption. This is 
expressed as below: = ( ) ( )( ) ( ) × 100% (2.1)

Where  and  are the magnitude ratio at the resonant frequencies of the absorbed 
mass system and without absorb system, respectively. Figure 2.1 shows the frequency 
responses for two different systems with and without absorbed chemical vapor mass. It
also shows the parameters in the previous equation.   

Miller and Li [21] compared Qs and RMS for a range of frequency points and found-the 
shape of these two parameter plots to be very close. Also, in a comparison of Qs, S and Q, 
the results show that S does not relate to the damping coefficient. Since Qs considers both 
the sensitivity, and the detectability, this thesis uses this parameter Qs to do the design 
optimization.  

 

 Figure 2.1: The parameter definitions of Qs 
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2.4 Analytical models 

Darling, et al. [22] developed an analytical model of squeeze film damping with different 
venting boundary conditions based on a Reynolds equation and Green’s function approach. 
When two plates move toward each other, the laminar flow of a viscous fluid in the gap 
will be flows out, and the local pressure within the gap can be expressed by Reynolds 
lubrication equation. If the displacement of the plate is much smaller than the gap, then the 
Reynolds lubrication equation can be linearized and expressed as: 

       =       (2.2) 

Where =  is the normalized local pressure variation,  is the ambient pressure. =
 is the normalized local gap variation.  is the nominal gap. =  is a constant. 

 is the viscosity of fluid, and =1 for an isothermal process. The solution of this equation 
e can be expressed as an integral of the Green’s function over the source points.  

0000
0

00 ),(*),,(),(
0

dtdrtrtrtrGtrP
t

V

    (2.3) 

Here, 
0

2

00 4
),(

t
Htr , where ),,( 000 tyxH  is a function of normalized 

displacement and can be expressed as 0' jwteH , then times a coefficient of plate deflection 
function. Such as 1 for the rigid flat plate,  for the regular cantilever and for the regular 
tilting plate about y axis. The Green’s function is expressed as: 

)()()
)(

exp(*)(4),,( 0
*

,
2

0
2

0200 ruru
ttk

tttrtrG mnmn
nm

mn         (2.4) 

Where mnk  is the eigenvalue and mnu  is the eigenfunction, calculated from the two-
dimensional scalar Helmholtz equation, 2 2 0mn mn mnu k u , The eigenvalues and 
eigenfunctions change according to different boundary conditions. Finally, )( 0tt  is the 
unit step function. The net reaction force of the squeeze film damping on the plate can be 
calculated by integrating the pressure over the plate area.  

Darling, et al. derive analytical models of squeeze film damping for rigid rectangular plate 
with six venting boundary conditions, all edges vented, one edges closed, two adjacent 
edges closed, two opposite edge closed, three edges closed, and all edges closed. 
Subsequently, Miller and Li [21] build an analytical model for a square rigid flat plate with 
a hole in the center. This model contains four elements of two adjacent edges closed and 
four elements of two opposite edges closed. In the situation of the ambient pressure is one 
atmospheric pressure, gap underneath the plate is 4 , stiffness of supporting legs is 
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50 / , and material damping is 1 × 10 / . The best square hole size for 200  ×200  square rigid flat plate is 160 × 160  for design optimization. 
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CHAPTER III:  Resonant Mass Sensor Design Based on 

Tilting Plate 

3.1 Tilting plate about the y axis 

Tilting plate structure is one kind of ideal resonant mass sensor models, and it is strongly 
impacted by squeeze film compressive damping. This section derives an analytical squeeze 
film damping model of a tilting plate about the y axis according to the Green’s function 
approach following the derivation of Darling [22]. In order to build the tilting plate model, 
a rigid rectangular plate is connected by two leg beams and it’s considered as a fixed-free 
torsional beam. The gap between the plate and the substrate is uniformly held as a constant 
when the plate is not oscilatting. Design optimization of tilting plate can be done by finite 
element analysis, but it has to build so many simulative models and it’s a time consuming 
task. The analytical model would make the optimization more effective. 

 

3.1.1 Analytical model of tilting plate without holes 

The domain of the tilting plate is < <  and < < , corresponding to a 
rectangular plate with length  and width . The four edges are assumed to have ideal 
venting, and the plate tilts about its midline along the y axis. The plate can be represented 
with a model as shown in Figure 3.1. 

 
Figure 3.1: The tilting plate about y axis 

For this plate, the normalized displacement is approximated as: ( , , ) =       (3.1)
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Where is the normalized magnitude of displacement in direction of z, = , and 

where  is the tip displacement at =  or = . The maximum angle of rotation can 
be described as: = ( )      (3.2) 
Because the boundary condition is ideal venting on four edges in this situation, the 
eigenfunctions and eigenvalues  are calculated by the two-dimensional scalar 
Helmholtz equation and can described as: ( , ) = ( ) ( )    (3.3) 

Where cos is used for ,  =  {1, 3, 5 … . } and sin is used for ,  =  {2, 4, 6 … . }; the 
corresponding eigenvalues are: = +       (3.4) 

The normalized pressure can be calculated by the integral equation shown in Darling’s 
paper: ( , , ) = ( ) / ( )( )/ /     (3.5)  =  {2, 4, 6 … . }   and   =  {1, 3, 5 … . } . The torque is calculated by force times the 
distance, so the normalized restoring torque can be described as: ( ) = ( , , )////        = /      (3.6) 

 is the ambient pressure. 
According to the Hooke’s law, = =        (3.7) 

The rotational angle  is calculated by the maximum displacement at the tip divided by 
half of the length of the tilting plate, = / . The torque can then be rewritten as: ( ) = /                 = /                 = / ( )       

    = / ( )      (3.8) 
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The normalized restoring torque function can be used to find stiffness and damping of air. 
The real part value is the spring component (k) of air, which is calculated by the reaction 
torque divided by the rotational angle ( ). The imaginary part value is the damping 
component (b) of air, which can be calculated by the reaction torque divided by the rotation
angle velocity ( ): = ( )     (3.9)

= ( )     (3.10)

Figure 3.2 is showing the free body diagram of tilting plate about y axis. 

 
Figure 3.2: Free body diagram of tilting plate 

According to the Newton’s second law and the free body diagram, the equation of motion 
for a second order rotational system is:  ( ) + ( ) ( ) + ( ) ( ) = ( )     (3.11) 

Where b is the damping coefficient of air, and k is the sum of stiffness of material and air. = + . I is the mass moment of inertia, which can be calculated by: =       (3.12)

The magnitude ratio function can be expressed as: 

( )( ) = ( ) × ( ) ( ( )× ( )) (3.13)
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Then, the analytical frequency response of the tilting plate can be calculated with 
MATLAB by using the parameters shown in Table 3. 1.  
Table 3. 1: Parameters used in both analytical and simulated tilting plate models 

 101000 Pa 

 1.862× 10  Pa.s 

L 200 m 

W 200 m 

 3 m 

 2330 kg/  

m 2.796× 10  kg 

 4 m 

 2 × 10 /  

 

 

Simulated model in COMSOL MULTIPHYSICS 

The analytical model was validated using a COMSOL model. The steps for creating a 
COMSOL model and comparing its results with the analytical model were as follows: 

1. Sketch a tilting plate in COMSOL MULTIPHYSICS as show in Figure 3.3 using 
the parameters in Table 3.1.  

2. Choose the solid mechanics physics and time dependent model.  
3. According to a COMSOL test, two 30 um × 3 um × 3 um silicon beams which act 

as a folded leg can supply a torsional stiffness ( ) of 2 × 10 / . Set 
the density of the two tiny beams to 1 3 /  so that the mass of the two 
beams is small, it will thus have minimal influence on the mass moment of inertia 
of the tilting plate.  

4. Thin-film damping is put on the bottom surface of the plate. The gap is 4 um and 
the ambient pressure is 1 atmospheric pressure. The original viscosity of air is 22.6 × 10  Pa-s in the room temperature which is 293.15 K.  

5. Make the silicon tilting plate as a rigid plate so that there is no deformation during 
the motion.  

6. Apply two opposite sinusoid forces 1 × 10 ×sin(w×t) N at the connection points 
between tilting plate and legs, this two opposite time dependent forces can make 
the plate tilt about two legs. Make sure the deflection will be in the elastic region.  

7. Collect each maximum displacement value of the free edge in different 
frequencies. The simulated magnitude ratio is equal to the angle  divided by the 
torque . 
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8. Compare the frequency responses of the analytical and COMSOL models. 

 
Figure 3.3: The tilting plate model build in COMSOL 

Figure 3.4 shows the mesh for the COMSOL model. The ‘Free Tetrahedral’ element can 
be used. The element shape is a triangle and it has three node. According to the test, mesh 
dimension of ‘Coarse’ is already reached the mesh optimization, and the mesh at the 
corners are well connected. A finer mesh is not necessary and the coarse mesh will save 
the running time. The number of elements of this model is more than 5000, and it will take 
almost 10-15 minutes to get one frequency response point.  

  
Figure 3.4: Mesh of tilting plate 
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Figure 3.5 is showing the comparison of frequency response. For the analytical results, the 
maximum Magnitude Ratio is 1.023e7 rad/N-m, and the resonant frequency is 4.38e5
rad/s. For the simulated frequency response, the maximum Magnitude Ratio is 1.07 rad/N-
m, and the resonant frequency is 4.37e5 rad/s. For this model, the analytical result is pretty 
close to the simulation result. The analytical model determines this result in just 1 minute, 
and each point of simulative result need at least 10 minutes running time. This can 
demonstrate the efficiency of the analytical model. 

 
Figure 3.5: The frequency response of tilting plate about y axis 

Figure 3.6 shows additional comparisons for different sized tilting plates. The results 
indicate that the analytical model matches the simulation very well. As mentioned before, 
the air damping will influence the magnitude ratio; the magnitude ratio at the resonant 
frequency increases when the air damping decreases. Figure 3.6 shows that the smaller 
tilting plates have less air damping. However, a large plate is better for actuation, sensing 
and also absorbing the chemical materials. Therefore, adding a hole in tilting plate is a 
more efficient way to reduce air damping. 

Figure3.6: Model comparison for different sizes of plates that tilt about y axis 
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3.1.2 Tilting plate about the y axis with a hole in the center 

Adding a hole in the center of tilting plate can reduce the air damping and thus increase the 
Q value significantly. Different hole sizes are tested during the design process. The models 
in Darling’s paper [22], there are five basic boundary conditions with different venting 
edges: all edges vented, one edge closed, two edges closed, three edges closed, and all 
edges closed. All five analytical equations are derived based on Green’s function and 
linearized Reynolds equations.  

 
Figure 3.7: Tilting plate about y axis with a hole in the center 

Figure 3.7 is showing a square tilting plate with a hole in the center. The tilting plate is 
divided into eight kinds of rectangular plates with three different boundary conditions. 
Element ‘A’ has two adjacent edges closed, element ‘B’ has two opposite edges closed 
along the y axis, and element ‘C’ has two opposite edges closed along the x axis. The 
analytical equations of each element can be derived.  
The square plate in Fig 3.7 has length “a” and it tilts about the y axis. The maximum 
displacement in z direction occurs at x=± . The normalized displacement of the plate can 
be described as  ( , , ) =      (3.14)

Where  is the normalized maximum displacement at x=± . 

3.1.2.1 Element ‘A’ with two adjacent edges closed 

The domain of the compressed area of element ‘A’ in Figure 3.7 has two adjacent edges 
closed. To derive the analytical equation of element ‘A’, begin with the equation for the 
regular tilting plate with two adjacent edges closed. The integral procedure is the same as 
the tilting plate shown above; the only things changed are the eigenfunctions and 
eigenvalues corresponding to different boundary conditions. The boundaries of ‘A’ are 
taken to be < < , < < , corresponding to a rectangular plate of dimensions 

a × b. For the two closed adjacent edges, The boundary conditions are expressed as = 0 
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on  = , and = 0 on y = , with ideal venting P=0 along the remaining two edges 

of x =  and y = . The eigenfunctions are:  ( , ) = cos + cos +     (3.15) 

Where , =  {1, 3, 5 … . . }. The corresponding eigenvalues are  = +       (3.16) 

The restoring torque on the plate can be computed as: ( ) = / ( 1) 2a    (3.17) 

The real part is the spring stiffness (k) of air, and the imaginary part value is the damping 
(b) of air. The stiffness of air underneath tilting plate is the spring component of the reaction 
force divided by the tip displacement. 

 = ( )/   

= [ / ( 1) 2a ]   (3.18) 

Similarly, the damping coefficient of air underneath tilting plate can be determined from 
the damping component of the reaction force divided by the tip velocity: 

 = ( )/        

= [ / ( 1) 2a ]  (3.19) 

Using the same analytical magnitude ratio function shown in the regular tilting plate, it can 
be expressed as: 

( )( ) = ( ) × ( ) ( ( )× ( ))     (3.20) 
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Simulated model in COMSOL

The procedure is similar to that for the regular tilting plate. The procedure begins with 
sketching a tilting plate in COMSOL MULTIPHYSICS by using the parameters shown in 
Table 3.1.  Because of the two adjacent edges closed boundary condition in analytical 
equation, a “wall” needs to be created at these edges which blocks any air from crossing. 
It simulates the same boundary condition as in the analytical model. Next, apply a 
sinusoidal torque input and collect the maximum displacement value of the free edge. 
Repeat this for different input frequencies. The simulated magnitude ratio is equal to the 
angle  divided by the torque . 
 

 
Figure 3.8: Tilting plate with two adjacent edges closed 

Figure 3.9 compares the frequency responses between the analytical and COMSOL models. It 
shows a good agreement. 

 
Figure 3.9: Comparison of simulated and analytical results 

After confirming that this model with two adjacent edges works, the model for element ‘A’
in Figure 3.7 can be derived. The domain of the compressed area of element ‘A’ in Figure 
3.7 is taken to be   and  , corresponding to a rectangular plate of 
dimensions a × b, where a = - and b = - . The boundary conditions can be 
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expressed as = 0 at  = , and = 0 at y =  with venting =0 along the other 
two edges of =  and = . According to these boundary conditions, the 
eigenfunctions become:  

 ( , ) = cos ( ) cos ( )    (3.21) 

Where m, n= {1, 3, 5…..}. The associated eigenvalues are  = +       (3.22) 

Following the approach described in Darling’s paper, the normalized pressure distribution 
for this kind of plate can be derived as ( , , ) = ( ) / m ( 1) 2a cos ( ) cos () (3.23) 
The restoring torque on the plate can be computed as: ( ) = ( , , )        = / m ( 1) 2a     (3.24) 

The real part value is the torsional spring stiffness (k) of air, the imaginary part value is the 
torsional damping (b) of air. The stiffness of air underneath tilting plate is the real 
component of the reaction force divided by the tip displacement. 

 = ( ) /  

= [ / m ( 1) 2a ]  (3.25) 

Similarly, the damping coefficient of air underneath tilting plate can be determined from 
the imaginary component of the reaction force divided by the tip velocity: 

 = ( ) /        

= [ / m ( 1) 2a ]   (3.26) 

 
3.1.2.2 Element ‘B’ with two opposite edges closed along the y axis 

The domain of the compressed area of element ‘B’ in Figure 3.7 has two opposite edges 
closed along the y axis. The derivation of the analytical equation for element ‘B’ begins 
with the equation for the regular tilting plate. Following the same procedure as for element 
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‘A’, the two opposite edges closed are expressed as = 0 at y = , y = , with ideal 

venting P=0 along the remaining two edges of x = , x = . The eigenfunctions are:  ( , ) =      (3.27)

Where cos is used for m= odd; sin is used for m= even. The corresponding eigenvalues are  =       (3.28)

The restoring torque on the plate can be computed as: ( ) = /      (3.29)

The stiffness of air underneath the tilting plate is the spring component of the reaction force 
divided by the tip displacement. 

 = ( )/  

= [ / ]     (3.30)

Similarly, the damping coefficient of air underneath the tilting plate can be determined 
from the damping component of the reaction force divided by the tip velocity: 

 = ( )/        

= [ / ]     (3.31)

For the COMSOL model  a “wall” is created at these edges which will block any air flow.

 
Figure 3.10: Compare the simulate result and analytical result 
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Figure 3.10 shows the simulated result and analytical result match well, we can start to 
integral the analytical model of element B shown in Figure 3.7.  

The domain of the compressed area of element ‘B’ in Figure 3.7 is taken to be x  
and y , corresponding to a rectangular plate of dimensions a × b, where a = -

and b = - . The boundary conditions can be expressed as = 0 at y= and y= . 
With venting =0 along the other two edges of x =  and x = . According to these 
boundary conditions, the eigenfunctions become: ( , ) = ( )     (3.32) 

Where cos is used for m= odd; sin is used for m= even. The corresponding eigenvalues are  =      (3.33) 

The normalized pressure distribution for this kind of plate can be derived as ( , , ) =[ / × ( + )( 1) ( ) + / ×( )( 1) ( )]      (3.34) 

 

 

 

The restoring torque on the plate can be computed as: ( ) = ( , , )        = / × ( + ) + / × ( )   (3.35) 

 

 

The real part value is the torsional spring stiffness (k) of air, the imaginary part value is the 
torsional damping (b) of air. The stiffness of air underneath tilting plate is the real 
component of the reaction force divided by the tip displacement. 

 = ( )/         

= [ / × ( + ) + / × ( ) ] 
(3.36) 
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Similarly, the damping coefficient of air underneath tilting plate can be determined from 
the imaging component of the reaction force divided by the tip velocity:  

 = ( )/        

= [ / × ( + ) + / × ( ) ] 
(3.37) 

 

 

3.1.2.3 Element ‘C’ with two opposite edges closed along the x axis 

The domain of the compressed area of element ‘C’ in Figure 3.7 has two opposite edges 
closed along the y axis. The two opposite edges closed are expressed as = 0 at x = , 

x = , with ideal venting P=0 along the remaining two edges of y = , y = , the 
eigenfunctions are:  ( , ) = ( )     (3.38) 

 

Where cos is used n is equal to odd, sin is used for n is equal to even. The corresponding 
eigenvalues are  =        (3.39) 

The normalized pressure distribution for this kind of plate can be derived as ( , , ) = × ( 1) / × cos ( )  (3.40) 

The restoring torque on the plate can be computed as: ( ) = /     (3.41) 

The stiffness of air underneath tilting plate is the spring component of the reaction force 
divided by the tip displacement. 

 = ( )/         

= [ / ]     (3.42) 
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Similarly, the damping coefficient of air underneath tilting plate can be determined from 
the damping component of the reaction force divided by the tip velocity: 

 = ( )/        

= [ / ]    (3.43)

Walls are created in COMSOL to match the boundary conditions. 

 
Figure 3.11: Comparison of the simulated result and analytical result 

Figure 3.11 shows the simulated result and analytical result match well, we can start to 
integral the analytical model of element B shown in Figure 3.7.  

 

The domain of the volume is taken to be x  and y , corresponding to a 
rectangular plate of dimensions a × b, where a = - and b = - . Plate ‘B’ has two 
opposite edges closed along the x axis, the boundary conditions can be expressed as =0 at x = , and x = . With venting =0 along the other two edges of y= and y= . 
According to these boundary conditions, the eigenfunctions become: ( , ) = ( )      (3.44)

Where cos is used for n is equal to odd, sin is used for n is equal to even. Here, = ( ). 
The associated eigenvalues are  =       (3.45)
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The normalized pressure distribution for this kind of plate can be derived as ( , , ) = ( ) / cos ( )   (3.46) 

The restoring torque on the plate can be computed as: ( ) = ( , , )        = / ( )      (3.47) 

 

The stiffness of air underneath tilting plate is the spring component of the reaction force 
divided by the tip displacement. 

 = ( )/        

= [ / ( )]     (3.48) 

Similarly, the damping coefficient of air underneath tilting plate can be determined from 
the damping component of the reaction force divided by the tip velocity: 

 = ( )/        

= [ / ( )]     (3.49) 

 

 

3.1.3 Comparison of the frequency responses of analytical and COMSOL models 

After building the analytical equations of all three elements, the analytical model of tilting 
plate with a hole in the center can be formed. According to the restoring torque of the three 
elements shown above, the  and  are all corresponding to the maximum z 
displacement occurring at x=±a/2 , (H ). So it is reasonable to get the ,  and ,  by adding  and  of the elements together. As shown in Figure 3.7, the 
tilting plate has 8 elements which are combined by 4 of element ‘A’, 2 of element ‘B’ and 
2 of element ‘C’. The total air stiffness and air damping can be expressed as: , = 4 + 2 + 2       (3.50) , = 4 + 2 + 2       (3.51) 

The mass moment of inertia (I) can be calculated by: =      (3.52) 

Where  is the mass of the original plate,  is the length of the original plate. And  
is the mass of the square hole plate, s is the length of the plate as a hole. 
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The transfer function is the same as for the regular tilting plate,  

( )( ) = , ( ) × ( ) , ( )× ( )    (3.53) 

Where b is the damping coefficient of air, and k is the sum of stiffness of support beams 
and air. = + . The support beam torsional stiffness ( ) is 6e-8 N-m/rad in 
the analytical model. 

Then, the analytical frequency response of the tilting plate can be calculated with 
MATLAB by using the parameters shown in Table 3.2.  
Table 3. 2: Parameter used in both analytical and simulated tilting plate models 

 101000 Pa 

 1.862× 10  Pa.s 

L 200 m 

W 200 m 

 3 m 

 2330 kg/  

m 2.796× 10  kg 

 4 m 

 6 × 10 /  

s (hole 
size) 

50 m × 50 m 

 
 

Simulated model in COMSOL MULTIPHYSICS 

The procedure for creating a model that matches the analytical is:  

1. Sketch a tilting plate in COMSOL MULTIPHYSICS using the same parameters 
as in analytical model.  

2. The hole in the center is using Boolean Operations by subtracting the big square 
plate and small square plate (hole) so that this model is one element.  

3. From the time response, collect each maximum displacement value of the free 
edge for different input frequencies. The simulated magnitude ratio is equal to the 
angle  divided by the torque . 
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Figure 3.12 shows the mesh for the COMSOL model. The ‘Free Tetrahedral’ element is
used. The element shape is triangle and it has three nodes. According to the test, mesh 
dimension of ‘Coarse’ is sufficient for the mesh optimization, and the elements at the 
corners of the hole are well connected. This model has 5200 elements; it will take 10-15 
minutes to get one frequency response point.  

 
Figure 3.12: Mesh for the COMSOL model 

Figure 3.13 shows the air damping pressure distribution in COMSOL of 200 m ×200 m tilting plate with a 50 m × 50 m hole in the center. The highest air damping 
pressure occurs at the edge between the two adjacent edges closed element and two 
opposite edges closed element. This is reasonable because no air crosses that edge.  

 
Figure 3.13: The air damping pressure distribution on the surface 
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Figure 3.14 shows the frequency response. This tilting plate is a 200(um)  200(um) square 
plate with a 50(um)  50(um) hole in the center. The results indicate that the analytical 
model matches the simulation very well. Three more models are built in order to identify 
the analytical model. 

 
Figure 3.14: The 200(um) *200(um) tilting plate with a hole in the center 
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Figure 3.15 shows additional comparisons for different hole size tilting plates. The results 
indicate that the analytical model matches the simulation very well. The analytical 
frequency response can be produced in 1 minute, but each point of the simulation result 
needs at least 10 minutes or 90 minutes for the 9 points in Figure 3.13(a).  So the analytical 
model is much more efficient. The air damping will influence the magnitude ratio; the 
magnitude ratio at the resonant frequency increases when the air damping decreases. Figure 
3.15 shows that increasing the hole size reduces the air damping. On the other hand, a large 
hole reduces the plate area available for  actuation, sensing and also absorbing the chemical 
materials. This analytical model can be used to do design optimization. 

        
                                     (a)                                                                            (b) 

 
(c)

Figure 3.15: The 200(um) *200(um) tilting plate with a different hole size in the center 
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3.2 Square Tilting plate about its diagonal 

This section derives an analytical squeeze film damping model of a tilting plate about its 
diagonal according to the Green’s function approach used in previous section. A rigid 
rectangular plate connected by two leg beams at the corner and it’s consider as a fixed-free 
torsional beam. The gap between the plate and the substrate is uniform held as a constant
if the plate is not oscillating.  

 

3.2.1 Analytical model of square tilting plate without holes 

This section builds an analytic damping force model of a square tilting plate about its 
diagonal using the Green’s function. The domain of the tilting plate is < <  and < < , corresponding to a rectangular plate with length  and width . The four 
edges are assumed to have ideal venting, and the plate tilts about its diagonal = . The 
plate can be represented with a model as shown in Figure 3.16. 

 
Figure 3.16: The tilting plate about its diagonal 

For this plate, the normalized displacement is approximated as: ( , , ) =      (3.54)

Where is the normalized magnitude of displacement in z direction, = , and  is 

the displacement occurs at the tip of ( , ) and ( , ). The maximum angle of rotation 
can be described as: = 2 /      (3.55)
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Because the boundary condition is ideal venting on four edges in this situation, the 
eigenfunctions  and eigenvalues  calculated by two-dimensional scalar Helmholtz 
equation can described as: ( , ) = ( ) ( )    (3.56) 

 

Where cos is used for m, n = {1, 3, 5….} and sin is used for m, n = {2, 4, 6….}. The 
corresponding eigenvalues are: = +      (3.57) 

 

The normalized pressure can be calculated by the integral equation shown in Darling’s 
paper: ( , , ) = ( ) / ( )( )/ /  +( )( )/ ( ) / /    (3.58) 

Where m = (2, 4, 6…) and n = (1, 3, 5…). The torque is calculated by force times the 
distance, so the normalized restoring torque can be described as: ( ) = ( , , )////        

     = /        (3.59) 

 is the ambient pressure. 
According to the Hooke’s law, = =       (3.60) 

The rotational angle  is calculated by the maximum displacement at the tip divided by 
half length of the diagonal, = / . The torque can then be rewritten as: ( ) = /               = /                            = / ( )      

                                = / ( )      (3.61) 
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The normalized restoring torque function can be used to find stiffness and damping of air. 
The real part value is the spring component (k) of air, which is calculated by the reaction 
torque divided by the rotational angle ( ). The imaginary part value is the damping 
component (b) of air, which can be calculated by the reaction torque divided by the rotation 
angle velocity ( ): = ( )    (3.62) 

= ( )    (3.63) 

According to the Newton’s second law and the free body diagram, the equation of motion 
for a second order rotational system is:  ( ) + ( ) ( ) + ( ) ( ) = ( )     (3.64) 
Where b is the damping coefficient of air, and k is the sum of stiffness of material and 
air. = + . I is the mass moment of inertia, which can be calculated by: =       (3.65) 

The magnitude ratio function can be expressed as: 

( )( ) = ( ) × ( ) ( ( )× ( ))     (3.66) 

Then, the analytical frequency response of the tilting plate can be calculated with 
MATLAB by using the parameters shown in Table 3.3.  

 

Table 3. 3: Parameter used in both analytical and simulated tilting plate models 

 101000 Pa 

 1.862× 10  Pa.s 

L 200  

W 200  

 3  

 2330 /  

m 2.796× 10  kg 

 4  

 2 × 10 /  
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Simulated model in COMSOL MULTIPHYSICS 

Figure 3.17 is showing the COMSOL model is created as before except that silicon beams 
(representing torsional springs) are connected at two diagonal corners of the plate.  

 
Figure 3.17: Tilting plate about its diagonal in COMSOL 

Figure 3.18 compare the frequency responses of the analytical and COMSOL models. For this 
model, the analytical result are pretty close to the simulation results.  

 
Figure 3.18: The frequency response of tilting plate about its diagonal 
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3.2.2 Tilting plate about the y axis with a hole in the center 

Adding a hole in the center of tilting plate would reduce the air damping and increase the 
Q value. Different hole sizes are tested during the design process. The tilting plate is 
divided into eight kinds of rectangular plates with four different boundary conditions. As 
Figure 3.19 shows, Element ‘A’ has two adjacent edges closed, element ‘B’ has two 
adjacent edges closed, element ‘C’ has two opposite edges closed along the x axis, and 
element ‘D’ has two opposite edges closed along the y axis. The analytical equations of 
each element can be derived.  

 
Figure 3.19: Tilting plate about its diagonal with a hole in the center 

The square plate in Fig 3.19 has length “a” and it tilts about its diagonal. The maximum 
displacement in z direction occurs at the tip of ( , ) and ( , ). It can be described as:( , , ) =       (3.67)

Where  is the normalized maximum displacement at the tip of ( , ) and ( , ). 

Element A with two adjacent edges closed

The domain of the compressed area of element ‘A’ in Figure 3.19 is taken to be x 
and y , corresponding to a rectangular plate of dimensions a × b, where a = -

and b = - . Plate ‘A’ has two adjacent edges closed, the boundary conditions can be 
expressed as = 0 at x = , and = 0 at y = . With venting =0 along the other two 
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edges of x=  and y= . According to these boundary conditions, the eigenfunctions 
become:  ( , ) = cos ( ) cos ( )   (3.68) 

Where m, n= {1, 3, 5…..}. The associated eigenvalues are  = +      (3.69) 

Following the approach described in Darling’s paper, the normalized pressure distribution 
for this kind of plate can be derived as ( , , ) = [ ( + ) × ( 1) 2 × ( 1)2 ( 1) ] / × cos ( ) × cos ( )  (3.70) 

The restoring torque on the plate can be computed as: ( ) = ( ) ( , , )       = / × × ( + ) × ( 1) 2 ×( 1) 2 ( 1)        (3.71) 

The real part value is the spring stiffness (k) of air, the imaginary part value is the damping 
(b) of air. The stiffness of air underneath tilting plate is the spring component of the reaction 
force divided by the tip displacement. 

                           = ( )/           

             = [ / × ( + ) × ( 1)2 × ( 1) 2 ( 1) ]       (3.72)     

Similarly, the damping coefficient of air underneath tilting plate can be determined from 
the damping component of the reaction force divided by the tip velocity: 

                  = ( )/        

          = [ / × ( + ) × ( 1)2 × ( 1) 2 ( 1) ]      (3.73) 

 
Element B with two adjacent edges closed  

The domain of the compressed area of element ‘B’ in Figure 3.9 is taken to be x  
and y , corresponding to a rectangular plate of dimensions a × b, where a = -
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and b = - . Plate A has two adjacent edges closed, the boundary conditions can be 
expressed as = 0 at x = , and = 0 at y = . With venting =0 along the other two 
edges of x=  and y= . According to these boundary conditions, the eigenfunctions 
become:  ( , ) = cos ( ) cos ( )   (3.74) 

Where m, n= {1, 3, 5…..}. The associated eigenvalues are  = +       (3.75) 

The normalized pressure distribution for this kind of plate can be derived as ( , , ) = [ ( + ) × ( 1) + 2 × ( 1)2 ( 1) ] / × cos ( ) × cos ( )  (3.76) 

The restoring torque on the plate is: ( ) = ( ) ( , , )       = / ×  × ( + ) × ( 1) + 2 ×( 1) 2 ( 1)       (3.77) 

 

The real part value is the spring stiffness (k) of air, the imaginary part value is the damping 
(b) of air. The stiffness of air underneath tilting plate is the spring component of the reaction 
force divided by the tip displacement. 

                           = ( )/         

      = [ / × ( + ) × ( 1) + 2 ×( 1) 2 ( 1) ]        (3.78) 

Similarly, the damping coefficient of air underneath tilting plate can be determined from 
the damping component of the reaction force divided by the tip velocity: 

                  = ( )/        

           = [ / × ( + ) × ( 1) +2 × ( 1) 2 ( 1) ]       (3.79) 
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Element ‘C’ with two opposite edges closed along the x axis 

The domain of the volume is taken to be x  and  , corresponding to a 
rectangular plate of dimensions a × b, where a = - and b = - . Plate ‘C’ has two 
opposite edges closed along the x axis, the boundary conditions can be expressed as =0 at x = , and x = . With venting =0 along the other two edges of y= and y= . 
According to these boundary conditions, the eigenfunctions become: ( , ) = ( )     (3.80) 

Where cos is used for n is equal to odd, sin is used for n is equal to even. Here, = ( ). 
The associated eigenvalues are  =        (3.81) 

The normalized pressure distribution for this kind of plate can be derived as ( , , ) = × ( 1) × / × sin ( ) +( ) × ( 1) × / × cos ( )    (3.82) 

The restoring torque on the plate can be computed as: ( ) = ( ) ( , , )        = / × + / × × ( ) ( )   
(3.83) 

 

The real part value is the spring stiffness (k) of air, the imaginary part value is the damping 
(b) of air. The stiffness of air underneath tilting plate is the spring component of the reaction 
force divided by the tip displacement. 

                           = ( )/            

      = [ /  × + / ×× ( ) ( ) ]         (3.84) 

Similarly, the damping coefficient of air underneath tilting plate can be determined from 
the damping component of the reaction force divided by the tip velocity: 

                  = ( )/         

                 = [ / × + / ×× ( ) ( ) ]      (3.85) 

34 



 

Element ‘D’ with two opposite edges closed along the y axis 

The domain of the compressed area of element ‘D’ in Figure 3.19 is taken to be x  
and  , corresponding to a rectangular plate of dimensions a × b, where a = -

and b = - . Plate ‘D’ has two opposite edges closed along the y axis, the boundary 
conditions can be expressed as = 0 at y= and y= . With venting =0 along the other 
two edges of x =  and x = . According to these boundary conditions, the eigenfunctions 
become: ( , ) = ( )     (3.86) 

Where cos is used for m= odd; sin is used for m= even. The corresponding eigenvalues are  =        (3.87) 

Following the approach described in Darling’s paper, the normalized pressure distribution 
for this kind of plate can be derived as ( , , ) = × ( 1) × / × sin ( ) +( ) × ( 1) × / × cos ( )    (3.88) 

As the same integral way showed in Darling’s paper, the restoring torque on the plate can 
be computed as: ( ) = ( ) ( , , )       = / × + / ×× ( ) ( )   (3.89) 

 

The real part value is the spring stiffness (k) of air, the imaginary part value is the damping 
(b) of air. The stiffness of air underneath tilting plate is the spring component of the reaction 
force divided by the tip displacement. 

 = ( )/  

= [ / × + / ×× ( ) ( ) ]          (3.90) 
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Similarly, the damping coefficient of air underneath tilting plate can be determined from 
the damping component of the reaction force divided by the tip velocity: 

                  = ( )/        

      = [ / × + / ×× ( ) ( ) ]        (3.91) 

 

Compare the frequency responses of analytical and COMSOL 

After building the analytical equation of all four elements, the analytical model of tilting 
plate with a hole in the center can be got. According to the restoring torque of the three 
elements showed above, the  and  are all corresponding to the maximum z 
displacement occurring at the tip of ( , ) and ( , ). So it is reasonable to get the ,  and ,  by add  and  of each elements together. As showing in 
Figure 3.19, the tilting plate has 8 elements which are combined by 2 of element ‘A’, 2 of 
element ‘B’, 2 of element ‘C’ and 2 of element ‘D’. The total air stiffness and air damping 
can be expressed as: , = 2 + 2 + 2 + 2      (3.92) , = 2 + 2 + 2 + 2      (3.93) 

 

As before, the mass moment of inertia (I) can be calculated by: =      (3.94) 

Where is the mass of the original plate is,  is the length of the original plate. And 
 is the mass of the square hole plate, s is the length of the plate as a hole. 

The same transfer function showed in regular tilting plate, the frequency response of the 
tilting plate with a hole can be got.  

( )( ) = , ( ) × ( ) , ( )× ( )      (3.95) 
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Then, the analytical frequency response of the tilting plate can be calculated with 
MATLAB by using the parameters shown in Table 3.4.  
  

Table 3. 4: Parameter used in both analytical and simulated tilting plate models 

 101000 Pa 

 1.862× 10  Pa.s 

L 200 m 

W 200 m 

 3 m 

 2330 kg/  

 4 m 

 6 × 10 /  

s (hole 
size) 

50 m  50 m 

 
Simulated model in COMSOL MULTIPHYSICS 

Sketch a tilting plate in COMSOL MULTIPHYSICS by using the parameters the same as 
in analytical model. As the plate was assembled by 8 elements, make sure add a wall 
between each element connecting edges, make sure the flow rate cross the edges equal to 
zero so that no air cross that edges, it satisfied the same boundary condition assumption as 
in the analytical model.  
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Figure 3.20 shows the air damping pressure distribution in COMSOL of 200  ×200  tilting plate with a 50  × 50  hole in the center. The highest air damping 
pressure occurs at the two adjacent edges closed element. This is reasonable because this 
element experiences the largest compression displacement and no air cross that edge.  

 
Figure 3.20: The air damping pressure distribution on surface 

Figure 3.21 shows the frequency response by Frequency (rad/s) versus Magnitude Ratio. 
This tilting plate is a 200(um) × 200(um) square plate with a 50(um) × 50(um) hole in the 
center. The results indicate that the analytical model matches the simulation very well.
Three more models are built in order to identify the analytical model.  

 
Figure 3.21: The frequency response of tilting plate about its diagonal with a hole 
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Figure 3.22 shows additional comparisons for different hole size tilting plates. The results 
indicate that the analytical model matches the simulation very well. This analytical model 
can be used to do design optimization. 

              
                                 (a) (b) 

 
(c) 

Figure 3.22: The 200(um) *200(um) tilting plate with different hole size in the center 

3.3 Optimization of both tilting plates 

The vapor sensor is covered by a chemical coating, which is used to absorb the particular 
chemical vapor molecules. The mass of the tilting plate will increase due to the absorbed 
chemical vapor. The goal is find the optimum hole size which has low air damping force
and large chemical coating area for absorbing the chemical vapor. In order to simplify the 
calculation, Miller and Li [21] defined a new measure Qs, which is just need two points of 
the root mean square deviation (RMSD) measurement. It is expressed as below: =  ( ) ( )( ) ( ) × 100%    (3.96)
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Where  and  are the magnitude ratio at the resonant frequencies of the absorbed 
mass system and without absorb system, respectively. Figure 3.23 shows the frequency 
responses for two different systems with and without absorb chemical vapor mass. And 
also shows the parameters in the previous equation.   

Figure 3.23: The parameter definitions of  

The tilting plate is coated with a polymer chemical coating that will absorb the particular 
chemical vapor. For example, in [17], the plate is coated by PPEOsNa+ polymer to absorb 
nerve gas analog (DMMP). The DMMP will be absorbed approximately 5.6 mg/m2 by 100 
nm thick polymer coating. Because the coating area corresponds to the tilting plate area, in 
this case, I assume that the absorbed chemical vapor adds 10% to the mass of the plate. 
This thesis is focus on how the hole size will influence the Qs of tilting plate. The table 3.5
below shows the parameters that used in the optimization design of both tilting plate.  
Table 3. 5: Parameters used in both tilting plate models. 

 101000 Pa

 1.862× 10  Pa.s 

L 200 m 

W 200 m 

 3 m 

 2330 kg/  

 4 m 

 6.2 × 10 /  

 1 × 10 Nms/rads
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In the transfer function equation for the tilting plate with a hole in the center,  and 
 represents the magnitude ratio with 10% chemical vapor mass absorption and 

without chemical mass absorption, respectively.   = ( )( )= 1+ , ( ) × (1 + 10%) × ( ) + ( , ( ) + ( ) × ( )  

= ( )( ) = 1+ , ( ) × ( ) + ( , ( ) + ( ) × ( )  

Figure 3.24 shows how the  change with different hole size of tilting plate about y axis. 
The highest  is 73% with the hole size of 170 .  

 
Figure 3.24: Sensor sensitivity  with different hole size for tilting plate about y axis 
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Figure 3.25 shows how the change with different hole size of tilting plate about 
diagonal. The highest  is 68.42% with the hole size of 170 . 

Figure 3.25: Sensor sensitivity with different hole size for tilting plate about diagonal 

Compared the tilting plate about y axis, tilting plate about diagonal in terms of . In the 
same situation with the 10% mass is added to the entire surface of the model, tilting plate 
about y axis model gives the highest  value which is 73%, tilting plate about diagonal 
gives  value of 68%. The reason is that for the same size plate, tilting about diagonal has 
more damping force than tilting about y axis.  

3.4 Optimization based on capacitance to voltage 

The frequency response discussed above does not relate to the electronic actuation force 
and capacitance sensing area. The magnitude ratio is calculated by dividing a rotation angle 
by a torque, or . For an electronic actuated with capacitance sensing resonant mass sensor, 
the input should be voltage, and the output should be capacitance. The magnitude ratio of 
interest is . According to [17], this new magnitude ratio can be found from: =        (3.97)

42



Figure 3.26 shows the tilting plate is oscillated with small rotation about an offset angle , 
which is caused by a DC offset voltage . For the lowest energy consumption, the 
electrostatic voltage should be close to the free edge with the smallest gap. Therefore, the 
red area is used for capacitance, and the green area is used for actuating.   

 

 
Figure 3.26: Sensing and actuating area in tilting plate with a hole in the center

The equation for capacitance is: = ×       (3.98)

Where  is the capacitance area,  is the permittivity of air,  is the gap between actuator 
and substrate. Because  is a small angle, so that = . = × . Where 
is the width of the tilting plate.  =        (3.99)

The domain of the capacitance area is < < , The equation for the capacitance 
force is: =   

=   

   = log( + )       (3.100)

= log( ) log( )     (3.101)

Where  is the length of tilting plate, and s is the length of the hole.  
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In order to obtain an expression for , differentiating the C equation: 

= log( 0 2) log( 0 2)
  

                      = 0+ 0 2 0+ 0 2     (3.102) 

 

The domain of the actuating area is < < , the equation for the actuating area is 
showing blow. = ( )       (3.103) 

 

Where  is the actuating area,  is the permittivity of air,  is the gap between actuator 
and substrate. And = × . Where  is the width of the tilting plate. Then 
converting the force to torque: = = ( )       

= ( )        

= ( + log ( ))      (3.104) 

= + log log   (3.105) 

Where  is the length of tilting plate, and s is the length of the hole. This equation indicates 
that the angle  is dependent by the hole size . The tilting plate with different size hole, it 
will have different offset angle.  

In order to obtain an expression for , substitute =  into the equation shows above. + log log = 2      

+ log log = 2 ( )   (3.106) 
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Differentiating this equation gives: 

( ) ( )( ) ( )  = 2   

= ( ) ( )( ) ( )     (3.107) 

Substitute =  into the equation shows above.  At the set point of   , the slope is: 

= ( ) ( )( ) ( )     (3.108) 

 

 

For the rotational angle to the torque, the transfer function is: =       (3.109) 

Combining these three equations,  

= = ×   

× ( ) ( )( ) ( )     (3.110) 

 

According to this equation,  depends on the hole size . As mentioned before, it’s 
more efficient if the actuating area is close to the free edge near the substrate (assuming an 
offset voltage is applied). Therefore, assuming that the actuation area and sensing area are 
constant and not dependent on hole size, then the variable  in previous equation is a 
constant. Then  is a constant. It indicates that the  frequency response for  differs 

from   only by a constant multiple. Therefore, it will not influence the Qs shape in 
previous section.  
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CHAPTER IV:  Resonant Mass Sensor Design Based on Fixed- 

Free Cantilever 

4.1 Fixed-Free micro-cantilever without hole 

The fixed-free micro-cantilever structure is a common resonator design, and it is strongly 
impacted by squeeze film compressive damping. This section derives an analytical squeeze 
film damping model of a micro-cantilever according to the Green’s function approach [22]. 
The fixed-free cantilever with no hole can be represented with the model shown in Figure 
4.1. The electrostatic actuating force is assumed to be a concentrated force at the tip. 

 
Figure 4.1: The fixed-free micro-cantilever without hole

According to the Green’s function, the net reaction force is calculated as ( ) = (1 )    (4.1)

For m, n= {1, 3, 5……}, and the corresponding eigenvalues are  = +       (4.2)

Where  is the vibration frequency,  is the ambient pressure,  and  are the length and 
width of the cantilever, respectively. The length of  is the plate dimension in the direction 
of bending. The “ ” is the normalized maximum deflection of the cantilever at the free-
end. Based on the isothermal condition, the = 1. According to the squeeze number 
function, =  where  is the viscosity of air.  

The real part value is the spring stiffness (k) of air and the imaginary part value is the 
damping (b) of air. The stiffness of air is the spring component of the reaction force divided 
by the tip displacement.  = ( )/  = ×Re[ (1 ) ]                         (4.3)
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The damping coefficient of air underneath a cantilever can be determined by the damping 
component of the reaction force divided by the tip velocity: 

  = ( )/  = ×Imag[ (1 ) ]                     (4.4)
After obtaining the stiffness and damping coefficient of air, the analytical model can be 
built. As mentioned before, the electrostatic force is assumed as a concentrated load at the 
free end of the cantilever as shown in Figure 4.2.  

 
Figure 4.2: The free body diagram of cantilever 

According to Newton’s Second Law and the free body diagram, the equation of motion is:( ) = + + (4.5)

The transfer function can be expressed as: ( )( ) =       (4.6) 

Where m is the effective mass of the cantilever, b is the damping coefficient of air, and k
is the sum of stiffness of material and air. = + . V(s) is the maximum 
displacement at the free end of the cantilever and F(s) is the maximum sinusoid force, 
where ( )( ) is the magnitude ratio. 

Substitute s=j  into the transfer function, the magnitude ratio was calculated by: ( )( ) = |( ) ( ) | = ( ( ) ) ( ( ) )      (4.7) 

Because the sinusoid force was applied at the free end of cantilever, the stiffness of material

should be calculated by the equation: =       (4.8) 
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Where L is the length of the cantilever, E is the young’s modulus which is equal to 170 ×10   due to the property of silicon. I is the moment of inertia of the cantilever, which 
equals to  , where b is the width and h is the height of the cantilever. The effective mass 
can be calculated by the equation shown below: = .        (4.9) 

=       (4.10) 

Where  is the resonant frequency of the cantilever, A is the cross-section area and k is the 
stiffness of the cantilever. We can then get the effective mass.  

The analytical frequency response of the cantilever was calculated with MATLAB using 
the parameters shown in Table 4.1.  
Table 4. 1: Parameter used in cantilever without hole 

 101000 Pa 

 1.862× 10  Pa.s 

L 300 m 

W 50 m 

 3 m 

 2330 kg/  

 4 m 
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Simulated model in COMSOL MULTIPHYSICS 

The procedure for creating a simulation model in COMSOL was the following: 

1. Choose the solid mechanics physics and time dependent model to sketch a 300 um 
× 50 um × 3 um cantilever.  

2. Set the thin-film damping on the bottom surface of the cantilever with a gap of 4 
um, the ambient pressure is 1 atmospheric pressure and the viscosity of air is 22.6 ×10  Pa.s in a room temperature of 293.15 K.  

3. The material of the cantilever is silicon. 
4. Apply the sinusoidal load 1 × 10 ×sin( ×t) N/m at the free edge of the cantilever. 

Make sure the deflection will be in the elastic region, and make sure the tip 
deflection is smaller than the gap.  

5. Collect each tip displacement value at the free edge in different frequencies. From 
that, the magnitude ratio is equal to the tip displacement divided by the total edge 
load. 

 
Figure 4.3: Micro-cantilever model was built in COMSOL 

Figure 4.4 shows the mesh for the COMSOL model. Again, the ‘Free Tetrahedral’ element 
can be used. According to the test, mesh dimension of ‘Coarse’ is sufficient for the mesh 
optimization. This model has more than 5000 elements; it takes 10-15 minutes to get one 
frequency response point.  

 
Figure 4.4: Mesh of cantilever is COMSOL 
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Figure 4.5 compares the frequency responses between the analytical and COMSOL models. The 
analytical result is close to the simulation results. Like before, the analytical model outputs 
a result in just 1 minute, and each point of the simulation result requires at least 10 minutes 
running time. 

Figure 4.5: The frequency response of cantilever without hole 

Figure 4.6 shows additional comparisons for different sized cantilever. The results indicate 
that the analytical model matches the simulation very well. As mentioned before, the air 
damping will influence the magnitude ratio; the magnitude ratio at the resonant frequency 
increases when the air damping decreases. Figure 4.6 shows that with the same length of 
300 , narrowing the cantilever reduces the air damping. But more areas are needed for 
actuation, sensing and also absorb the chemical materials. Therefore, add a hole in tilting 
plate is a more efficient way to reduce air damping. 

 
Figure 4.6: The frequency responses of different sized cantilevers 
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4.2 Fixed- Free micro-cantilever with a hole in the center 

In order to reduce the air damping, a square hole was added in the center of the cantilever. 
As shown in Figure 4.7, the cantilever was divided into 8 small plates with five kinds of 
elements in total.  Element ‘A’ has two adjacent edges closed, Element ‘B1’ has two 
opposite edges closed along the y axis and element ‘B2’ has two opposite edges closed 
along the x axis. Element ‘C1’ has three edges closed but venting along the y axis, element 
‘C2’ has three edges closed but venting along the x axis. According to the element 
equations with different boundary conditions [22], the analytical equation of each element 
shown in Figure 4.7 can be obtained. 

 
Figure 4.7: The cantilever with a hole in the center model in COMSOL 

The cantilever is fixed at the left side with the maximum displacement in z direction 
occurring at the right edges. The normalized displacement of the plate can be described as  ( , , ) = ( )      (4.11)

Where L is the length of the cantilever and  is the maximum displacement at the free end.  

 

 
4.2.1 Element ‘A’ with two adjacent edges closed  

The domain of the compressed area of element ‘A’ in Figure 4.7 has two adjacent edges 
closed. To derive the analytical equation of element ‘A’, begin with the equation for the 
regular cantilever with two adjacent edges closed as shown in Figure 4.8. The integral 
procedure is the same as the cantilever shown above. The only things changed are the 
eigenfunctions and corresponding eigenvalues corresponding to different boundary 
conditions. The domains of element ‘A’ are taken to be 0 < < ,  < < ,
corresponding to a rectangular cantilever of dimensions a × b. The two adjacent edges 
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closed are expressed as = 0 at y = , and = 0 at x =0, with ideal venting P=0 along 

the remaining two edges of x =  and y = .

 
Figure 4.8: The micro-cantilever with two adjacent edges closed 

The eigenfunctions are:  ( , ) = cos ( ) cos +     (4.12)

Where m, n = {1,3,5…..}. The associated eigenvalues are  = +        (4.13)

The concentrated force at the tip of the plate can be expressed as: ( ) = / ( 8)    (4.14)

The real part is the spring stiffness (k) of air, and the imaginary part value is the damping 
(b) of air. The stiffness of air underneath cantilever is the spring component of the reaction 
force divided by the tip displacement.  = ( )/  = Re[ ( 8) ]   (4.15)

Similarly, the damping coefficient of air underneath cantilever can be determined from the 
damping component of the reaction force divided by the tip velocity:  = ( )/  = Im[ ( 8) ]   (4.16)

The magnitude ratio function shown below,  ( )( ) = |( ( ) ) ( ( ) ) | = ( ( ) ) ( ( ) )      (4.17)

Where m is the effective mass of the cantilever, b is the damping coefficient of air, and k 
is the sum of stiffness of material and air. V( ) is the maximum displacement at the free 
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end of the cantilever and F( ) is the maximum sinusoid force, where ( )( )  is the 
magnitude ratio. 

Simulated model in COMSOL

Build a 300 um × 50 um × 3 um cantilever in COMSOL as it is shown in the regular 
cantilever part. Create the boundary conditions “wall” at the two adjacent edges that can 
make sure no air cross those edges. It will satisfy the same boundary condition as two 
adjacent edges closed in the analytical model. Collect each maximum displacement value 
of the free edge in different frequencies. The simulated magnitude ratio is equal to the free 
end displacement  divided by the applied sinusoid force . 

 
Figure 4.9: Regular cantilever 'A' with two adjacent edges closed 

The simulate result and analytical result are fit good in Figure 4.9, that demonstrated that 
the analytical model of regular cantilever ‘A’ is worked. Then we can start to integral the 
analytical model of element ‘A’ showed in Figure 4.7.  

The domain of the volume is taken to be x  and y , corresponding to a 
rectangular plate of dimensions a × b, where a = - and b = - . Plate ‘A’ has two 
adjacent edges closed, the boundary conditions can be expressed as = 0 at x = , and = 0  at y = . With venting =0 along the other two edges of x=   and y= . 
According to these boundary conditions, the eigenfunctions become 

( , ) = cos ( ) cos ( )   (4.18)

Where m, n= {1,3,5…..}. The associated eigenvalues are  = +       (4.19)
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Following the approach described in Darling’s paper, the normalized pressure distribution 
for this kind of plate can be derived as ( , , ) =    ( ) / ( 8 )( 1) 4 ama cos () cos ( )      (4.20) 

As the same integral way showed in Darling’s paper, the concentrated force at the tip of 
the plate can be computed as: ( ) = ( ) ( , , )   = / ( 8 )( 1) 4 ama   

 (4.21) 

The stiffness of air underneath tilting plate is the real component of the reaction force 
divided by the tip displacement.  = ( )/        = [ / ( 8 )( 1) 4 ama ]     (4.22) 
Similarly, the damping coefficient of air underneath tilting plate can be determined from 
the imaging component of the reaction force divided by the tip velocity:  = ( )/        = [ / ( 8 )( 1) 4 ama ]  (4.23)         
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4.2.2 Plate ‘B1’ with two opposite edges closed along the y axis 

The domain of the compressed area of element ‘B1’ in Figure 4.7 has two opposite edges 
closed along the y axis. Derive the analytical equation of element ‘B1’. Begin with the 
equation for the regular cantilever with two opposite edges closed as shown in Figure 4.10. 
The same integral procedure as shown in element ‘A’. The two adjacent edges closed are 
expressed as = 0 at y = , y = , with ideal venting P=0 along the remaining two 
edges of x = 0, x = ,  

 
Figure 4.10: The micro-cantilever with two opposite edges closed along the y axis 

The eigenfunction is:  ( , ) = ( )     (4.24)

Where cos is used for n= odd; sin is used for n= even. The corresponding eigenvalues are  =        (4.25)

Following the approach described in Darling’s paper, the normalized pressure distribution 
for this kind of plate can be derived as ( , , ) = / ( 4)( 1) × cos +

/ ( 1) × sin     (4.26)

The concentrated force at the tip of the plate can be expressed as: ( ) = ( n 4) + /
(4.27)
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The air stiffness and air damping can be known using force function. Then compared the 
simulate result with analytical result using magnitude ratio. 

 
Figure 4.11: Regular cantilever 'B1' with two opposite edges closed along the y axis

The simulate result and analytical result are fit pretty good shown in Figure 4.11, that 
demonstrated that the analytical model of regular cantilever ‘B1’ is worked. Then we can 
start to integral the analytical model of element ‘B1’ showed in Figure 4.7.  

The domain of the volume is taken to be x  and y , corresponding to a 
rectangular plate of dimensions a × b, where a = - and b = - . Element ‘B1’ has
two opposite edges closed along the y axis, the boundary conditions can be expressed as = 0 at y= and y= . With venting =0 along the other two edges of x =  and x =

. According to these boundary conditions, the eigenfunctions become:( , ) = ( )     (4.28)

Where cos is used for n= odd; sin is used for n= even. Here, = ( ). The associated 
eigenvalues are  =        (4.29)

Following the approach described in Darling’s paper, the normalized pressure distribution 
for this kind of plate can be derived as ( , , ) = / m ( + ) 4a ( 1) cos ( ) +

/ ( )( 1) sin ( )    (4.30)
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As the same integral way showed in Darling’s paper, the concentrated force at the tip of 
the plate can be computed as: ( ) = ( ) ( , , )   = / m ( + ) 4a +

/ ( )          (4.31) 

The real part value is the spring stiffness (k) of air, the imaginary part value is the damping 
(b) of air. The stiffness of air underneath cantilever is the spring component of the reaction 
force divided by the tip displacement. 

                     = ( )/     = [ m ( + ) 4a +( ) ]      (4.32) 
 

 

Similarly, the damping coefficient of air underneath cantilever can be determined from the 
damping component of the reaction force divided by the tip velocity: 

 

                   = ( )/   = [ m ( + ) 4a +( ) ]     (4.33)          
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4.2.3 Plate ‘B2’ with two opposite edges closed along the x axis 

Begin with the equation for the regular cantilever with two opposite edges closed along the 
x axis as shown in Figure 4.12. The same procedure shows above. The two adjacent edges 
closed are expressed as = 0 at x= 0, x = , with ideal venting P=0 along the remaining 

two edges of y = , y = ,  

 
Figure 4.12: The micro-cantilever with two opposite edges closed along the x axis 

The eigenfunction is:  ( , ) = ( )      (4.34)

Where cos is used for n= odd; sin is used for n= even. The associated eigenvalues are  

=        (4.35)

Following the approach described in Darling’s paper, the normalized pressure distribution 
for this kind of plate can be derived as ( , , ) = / ( 1) cos ( )   (4.36)

The concentrated force at the tip of the plate can be computed as: ( ) = ( ) ( , , )    
                                  = /       (4.37)
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The air stiffness and air damping can be known using force function. Then compared the 
simulate result with analytical result using magnitude ratio. 

 
Figure 4.13: Regular cantilever 'B1' with two opposite edges closed along the x axis 

The simulated result and analytical result match well as shown in Figure 4.13; that 
demonstrated that the analytical model of regular cantilever ‘B2’ works.  

Then we can start to derive the analytical model of element ‘B2’ shown in Figure 4.7.  The 
domain of the volume is taken to be   and  , corresponding to a 
rectangular plate of dimensions a × b, where a = - and b = - . The boundary 
conditions of element B2 can be expressed as = 0 at x = , and x = . With venting 

=0 along the other two edges of y= and y= . The eigenfunctions becomes: ( , ) = cos ( )     (4.38)

Where n= {1,3,5…..}. Here, = ( ). The associated eigenvalues are  =        (4.39)

The normalized pressure distribution for this kind of plate can be derived as ( , , ) = / ( 1) cos ( )     (4.40)

The concentrated force at the tip of the plate can be computed as: ( ) = ( ) ( , , )= /      (4.41)
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The stiffness of air underneath cantilever is the spring component of the reaction force 
divided by the tip displacement.  = ( )/                        = [ / ]         (4.42)
Similarly, the damping coefficient of air underneath cantilever can be determined from the 
damping component of the reaction force divided by the tip velocity: 

                 = ( )/                            = [ / ]      (4.43)
4.2.4 Plate ‘C1’ with three edges closed but venting along the y axis 

As shown in Figure 4.14, the derivation begins with the equation for the regular cantilever 
with three edges closed but venting along the y axis. The boundary condition can be 
expressed as = 0 at x = 0, x = , and = 0 at y = ,  with ideal venting P=0 along the 

remaining two edges of y = ,  

 
Figure 4.14: The micro-cantilever with three edges closed and venting along the y axis 

The eigenfunctions is:  ( , ) = +      (4.44)

Here cos is used for n = odd. The associated eigenvalues are  =        (4.45)
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The normalized pressure distribution for this kind of plate can be derived as = / ( 1) × cos +     (4.46)

The concentrated force at the tip of the plate can be expressed as: ( ) = /     (4.47)

The air stiffness and air damping can be found from the force function. Then the simulated 
and analytical frequency responses can be compared.. 

 
Figure 4.15: Regular cantilever 'C1' with three edges closed and venting along the y axis 

The simulated result and analytical result match well as shown in Figure 4.15, thus 
demonstrating that the analytical model of regular cantilever ‘C1’ works. 

Then we can start to derive the analytical model of element ‘C1’ shown in Figure 4.7. The 
domain of the volume is taken to be and y , corresponding to a 
rectangular plate of dimensions a × b, where a = - and b = - . Plate ‘C’ has three 
edges closed but venting along with y axis, the boundary conditions can be expressed as = 0 at y= , and = 0 at x= , . With venting =0 along the edge of x= . The 
eigenfunctions become: ( , ) = ( ) (4.48)

Here cos is used for n = odd. The associated eigenvalues are  =        (4.49)

The normalized pressure distribution for this kind of plate can be derived as ( , , ) = / ( 1) cos ( 1)   (4.50)
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The concentrated force at the tip of the plate can be expressed as: ( ) = ( ) ( , , )   = /       (4.51)

The stiffness of air underneath cantilever is the spring component of the reaction force 
divided by the tip displacement.  = ( )/                        = [ / ]        (4.52)
Similarly, the damping coefficient of air underneath cantilever can be determined from 
the damping component of the reaction force divided by the tip velocity:  = ( )/                            = [ / ]      (4.53)
4.2.5 Plate ‘C2’ with three edges closed but venting along the x axis 

The derivation begins with the equation for the regular cantilever with three edges closed 
but venting along the x axis as shown in Figure 4.16. The boundary conditions for three 
edges closed but venting along with x axis are expressed as = 0 at x = 0, and = 0 at 

y = , y= . With ideal venting P=0 along the remaining two edges of x = ,  

 
Figure 4.16: The micro-cantilever with three edges closed and venting along the x axis 

The eigenfunction is: ( , ) = 2 2 ( )      (4.54)

Here cos is used for n= odd. The associated eigenvalues is:  =        (4.55)
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The normalized pressure distribution for this kind of plate can be derived as ( , , ) = / ( n 8)( 1) × cos ( )   (4.56)

The concentrated force at the tip of the plate can be expressed as: ( ) = ( / ( n 8) )     (4.57)

The air stiffness and air damping can be known using force function. Then compared the 
simulate result with analytical result using magnitude ratio. 

 
Figure 4.17: Regular cantilever 'C1' with three edges closed and venting along the x axis 

The simulated result and analytical result match well as shown in Figure 4.17, thus
demonstrating that the analytical model of regular cantilever ‘C2’ works.  

Then we can start to derive the analytical model of element ‘C2’ showed in Figure 4.7. The 
domain of the volume is taken to be   and y , corresponding to a 
rectangular plate of dimensions a × b, where a = - and b = - . Plate ‘C2’ has three 
edges closed but venting along with x axis, the boundary conditions can be expressed as = 0 at y= ,  and = 0  at x= . With venting =0 along the edge of x = . 
According to these boundary conditions, the eigenfunctions become: ( , ) = cos ( )     (4.58)

Where m = {1,3,5…..}. The associated eigenvalues are  =        (4.59)
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Following the approach described in Darling’s paper, the normalized pressure distribution 
for this kind of plate can be derived as ( , , ) = / ( m 8a )( 1) 4 cos () (4.60) 

 

Following the approach in Darling’s paper, the concentrated force at the tip of the plate can 
be computed as: ( ) = ( ) ( , , )       

= / ( m 8a )( 1) 4  (4.61) 

 

The stiffness of air underneath cantilever is the spring component of the reaction force 
divided by the tip displacement. 

                 = ( )/          
          = [ / ( m 8a )( 1) 4 ]      (4.62) 

Similarly, the damping coefficient of air underneath cantilever can be determined from the 
damping component of the reaction force divided by the tip velocity: 

               = ( )/          
        = [ / ( m 8a )( 1) 4 ]      (4.63) 
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4.3 Comparison of the pressure between analytical model and COMSOL model 

For the cantilever with a hole in the center, COMSOL and analytical models were used to 
compare the damping pressure at several points. The damping pressure of analytical model 
can be calculated according by the each element equation with the parameters showed in 
Table 4.2.  
Table 4. 2: Parameter used in cantilever with a hole in the center 

 101000 Pa 

 1.862× 10  Pa.s 

L 300 m 

W 100 m 

 3 m 

 2330 kg/  

 4 m 

s (hole size) 50 m × 50 m 

 

Figure 4.18 is showing the air damping pressure distribution in cantilever with a hole in 
the center.  The hole in the center is using Boolean Operations by subtracting the 
rectangular cantilever and square plate so that this model is one element. The red area 
represents the high air damping pressure, and the air damping pressure in the blue area is 
small. This pressure distribution is reasonable, because the area close to the free edge goes 
large displacement, which means the air underneath was compressed more. This model is 
close to the realty.  

 

 
Figure 4.18: Pressure distribution in one element COMSOL cantilever model 
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The air damping pressure of several points on each element in COMSOL model and 
analytical model are compared at the frequency of 10000rads/s. This frequency is at the 
very beginning of the frequency response, which means it has the lowest difference in 
pressure compared to at other frequencies.  

 
Figure 4.19: Points used to compare the damping pressure between analytical and COMSOL 

Figure 4.20 shows the pressure comparison at element ‘A’, element ‘B2’ and element ‘C1’.
They are dependent on the x and y coordinates. The differences between analytical and 
COMSOL are large even though this model is oscillating at 10000 rads/s, which is a very 
low frequency. The pressures on element ‘A’ and element ‘B2’ increase with x because of 
the increasing displacement along x axis. The analytical pressure of element ‘C1’ also 
increases with x. The COMSOL pressure goes down at the end of element ‘C1’ because of 
the hole. The air can flow out from the hole and thus reduce the damping pressure.  

  

 
Figure 4.20: Pressure comparison between COMSOL and analytical. 
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Figure 4.21 compared the air damping pressure of several points on element ‘B1’ and 
element ‘C2’. Analytical model shows that the damping pressure will not change by y axis, 
because the analytical boundary conditions of element ‘B1’ and element ‘C2’ are 
symmetric about x axis. But the pressure of COMSOL will changed along y axis. The 
points closer to the middle line of cantilever model, the larger distance from the edge.  

 

Figure 4.21: Pressure comparison between COMSOL and analytical 

The comparison above indicates that the analytical model does not match reality. There are 
two reasons for these results, the first is the boundary conditions assumption. The air 
underneath the cantilever can cross each edge in the real life, but the boundary conditions 
of analytical model prohibit the air cross the closed edges. Secondly, the deflection shape 
function of cantilever. The analytical shape function is  in previous analytical model, but 
this equation is the simplest way to describe the bending shape in cantilever. Some more 
models need to be compared.   
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4.4 Investigation of the boundary condition assumptions  

The same micro-cantilever was modeled in COMSOL with the parameters shown in Table 
4.2. The cantilever was divided into 8 small plates with five kinds of elements in total.  The 
COMSOL model was adjusted to mimic the analytical model in terms of the boundary 
conditions. For example, Element ‘A’ has two adjacent edges closed, Element ‘B1’ has 
two opposite edges closed along the y axis and element ‘B2’ has two opposite edges closed 
along the x axis. Element ‘C1’ has three edges closed but venting along the y axis, element 
‘C2’ has three edges closed but venting along the x axis. A narrow element with a width 
of 0.1 m was used to separate neighboring elements, and the damping on these narrow 
elements was set to zero. This creates a “wall” between elements that has the same effect 
as the analytical boundary conditions shown in Figure 4.22. A sinusoidal edge load 1 ×10 ×sin( ×t) N/m is applied at the free edge of the cantilever. Several points at the 
bottom surface of cantilever are created. The damping pressures at these points were found
for different input frequencies.  

   
Figure 4.22: Cantilever with a hole in the center in COMSOL 

Figure 4.23 shows the air damping pressure distribution in cantilever with a hole in the 
center. The pressure distribution is not as smooth as the first model. This model is close to 
the analytical model, but not reality. 

 
Figure 4.23: Pressure distribution in eight elements cantilever model 
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For a very low frequency of 10000rads/s, Figure 4.24 shows the damping pressure of the 
three elements ‘C1’, ‘B2’ and ‘A’.  They all change with x and y. Element ‘B1’ has the 
large damping pressure (about 10 Pa) and small difference (about 20%) compared to the 
other elements. It is because the element ‘B1’ is close to the free edge so that it has the 
highest compressional displacement and its own boundary condition. Element ‘C1’ and 
element ‘B2’ have smaller damping pressures.  The pressures decrease toward the venting 
edge in the y axis and increase along the x axis because of increasing compression.  

 
 
 

 
Figure 4.24: Pressure comparison between analytical model and COMSOL model with boundary 

walls 
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Figure 4.25 shows that the damping pressure on element ‘C2’ and element ‘B1’ are 
independent of y axis, which is reasonable because these two elements are symmetric about
the x axis. 

 
Figure 4.25: Pressure comparison between analytical and COMSOL model

These results indicate that the analytical model and the COMSOL model with walls 
match fairly well. The difference is up to 20%. This COMSOL model is not a realistic 
model because of the boundary conditions. The closeness of the analytical and 
COMSOL pressures demonstrates that the boundary condition assumptions that 
worked well for other geometries cause a problem in the model of cantilever with a 
hole in the center.  
 
4.5 Investigation of the deflection function 

The deflection of the cantilever is approximated as  in Darling’s paper. This assumption 
is different from the real analytical function. Because of the concentrated load applied at 
the free end of cantilever in COMSOL simulated model, the analytical deflection equation 
can be found. 

 
Figure 4.26: Free body diagram of cantilever with a concentrated load at free edge 

Figure 4.26 shows the deflection model, The moment and curvature equations are: ( ) = ( )    (4.64) ( ) = ( ) = ( )    (4.65) 
70



Integrating twice to find the displacement V in the y direction produces: ( ) = ( )       = +      (4.66)( ) = + +     (4.67)

The boundary condition of the cantilever is (0) = 0, (0) = 0. 
C1=0, C2=0. 

The boundary conditions of the cantilever are (0) = 0, (0) = 0.   From these, the 
integration constants are: ( ) = = ( ) ( ( )) = (3 )  ( ( )) = ( ) =   ( ) = ( )    (4.68)

Figure 4.27 compares the cantilever displacements between COMSOL, simple 
approximate  and polynomial approximation . The cantilever is 300 ×100  with a 0.01 N/m load applied at the free end edge. The polynomial approximation 
plot goes through all the COMSOL results. The difference between these two results is 
between -1.12% to 1.92%. The difference between COMSOL and the   model result is 
almost 20%. This demonstrates that the polynomial equation gives a very good 
approximation of the cantilever deflection that is much better than the simple 
approximation..  

 
Figure 4.27: Compare the deflection shape between COMSOL and two analytical models  
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4.6 Pressure comparisons with different deflection equations 

The boundary conditions for the one edge closed cantilever are expressed as = 0 at x = 0, with ideal venting P=0 along the other three edges. The eigenfunction is expressed as: ( , ) = ( ) × cos ( )    (4.69) 

Where cos is used for m, n = odd; The associated eigenvalues are  = +      (4.70) 

The normalized displacement of the plate can be described as  

jwteH
L
x

L
xtyxH '

3

3

2

2

)3(
2
1),,(      (4.71) 

Where L is the length of the cantilever and  is the maximum displacement at the free end.  

The normalized pressure distribution for this kind of plate can be derived as ( , , ) = / ( )( 1) 24 ( 1) × cos ×
 (4.72) 

The concentrated force at the tip of the plate can be computed as: ( ) = ( )( 1) 24    (4.73) 
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Figure 4.28 compares the damping pressures of the analytical model using the two different 
deflection equations to COMSOL. The cantilever is 300 × 50 × 3 . A load of1 × 10 ×sin( ×t) N/m is applied at the free end edge. Figure 4.27 shows the pressures 
for a frequency of 10000 rad/s. The polynomial results are closer to COMSOL results; the 
difference between these two models is almost around 11%. The difference between 
COMSOL and the analytical model with the simple deflection approximation  is almost 
25%. 

 
Figure 4.28: Pressure comparison between COMSOL and two analytical models 

This figure demonstrates that the deflection function influences the damping pressure. 
There is no doubt to say that the deflection equation   is one of the reasons that explains 
why the damping pressure is different in the model of cantilever with a hole in the center.  

4.7 Optimization of micro-cantilever by COMSOL 

The vapor sensor is covered by a chemical coating, which is used to absorb the particular 
chemical vapor molecules. The mass of the cantilever will increase due to the absorbed 
chemical vapor. The goal is find the optimum hole size which has low air damping force
and large chemical coating area for absorbing the chemical vapor. Following the parameter
Qs defined by Miller and Li [21], which is just need two points of the root mean square 
deviation (RMSD) measurement. It is expressed as below:  = ( ) ( )( ) ( ) × 100% (4.74)
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Where  and  are the magnitude ratio at the resonant frequencies of the absorbed 
mass system and without absorb system, respectively. Figure 4.29 shows the frequency 
responses for two different systems with and without absorb chemical vapor mass. And 
also shows the parameters in the previous equation.   

Figure 4. 29: The parameter definitions of  

The cantilever is coated with a polymer chemical coating that will absorb the particular 
chemical vapor. For example, in [17], the plate is coated by PPEOsNa+ polymer to absorb 
nerve gas analog (DMMP). The DMMP will be absorbed approximately 5.6 mg/m2 by 100 
nm thick polymer coating. Because the coating area corresponds to the cantilever area, in 
this case, I assume that the absorbed chemical vapor adds 10% to the mass of the plate. 
This thesis is focus on how the hole size will influence the Qs of cantilever. The table 4.3 
below shows the parameters that used in the optimization design of cantilever by COMSOL.  
Table 4. 3: Parameters used in COMSOL cantilever model 

 101000 Pa 

 2.26× 10  Pa.s 

L 300 m 

W 100 m 

 3 m 

2330 kg/  

 4 m 

 Calculated by COMSOL 
Automatically  

 Calculated by COMSOL 

Automatically 
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The steps for creating a COMSOL model and got the  value were as follows: 
1. Sketch a cantilever with a hole in the center in COMSOL MULTIPHYSICS as 

show in Figure 4.19 using the parameters in Table 4.3.  
2. Choose the solid mechanics physics and eigenfrequency model.  
3. Set the thin-film damping on the bottom surface of the cantilever with a gap of 4 

um, the ambient pressure is 1 atmospheric pressure and the viscosity of air is 22.6 ×10  Pa.s in a room temperature of 293.15 K. The material of the cantilever is 
silicon.  

4. Find the first model of eigenfrequency that is the resonant peak frequency with no 
absorption as show in Figure 4.29. And record this frequency value. 

5. Run the time dependent model. Apply the sinusoidal load 1 × 10 ×sin( ×t) N/m
at the free edge of the cantilever with the frequency of eigenfrequency got last step.

 shown in Figure 4.29 can be got by collect the maximum displacement value 
of the free edge.  

6. Add 10% mass to the entire cantilever,  shown in Figure 4.29 can be got by 
repeat step 5.  

7. Run the eigenfrequency model again to find the resonant peak frequency with 10% 
mass absorption as show in Figure 4.29. And record this frequency value. 

8. Repeat step 5,  shown in Figure 4.29 can be got by collect the maximum 
displacement value of the free edge.  

9.  can be got by repeat step 5 with no absorption. 
10. One point of  value can be got by the equation 4.74.  

Figure 4.30 shows how the  change with different hole size of fixed-free cantilever. The 
highest  is 5.207% with the square hole size of 60 .  

 
Figure 4. 30: Sensor sensitivity  with different hole size for cantilever based on dx/dF 
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CHAPTER V Conclusion and Future Work 

The ambient pressure, temperature and gap all influence the air damping force. This thesis 
work keeps these factors as constants while focusing on optimal shape as a way to reduce 
the air damping. The goal is to build an analytical model and use it to perform design 
optimization.  

This research has developed analytical models of squeeze film damping for three kinds of 
resonant mass sensor shapes. The first type is a rigid tilting plate about y axis with a hole 
in the center. Frequency dependent spring constants and damping coefficients of air can be 
found using a compact squeeze film damping model with appropriate boundary conditions. 
The k and b values for multiple elements can be added together to produce models for more 
complex geometries, such as a tilting plate with a hole.  The analytical frequency responses 
were calculated by a lumped parameter system in MATLAB. To validate the analytical 
model, COMSOL was used to create simulated frequency responses. The analytical results 
and simulated results for the tilting plate with hole in the center matched well. The 
analytical model can be used to find the best hole size that would maximize the resonant 
mass sensor parameter Qs, which includes both detectability and sensitivity parameter of 
sensor. Qs is a two point RMS calculated from the magnitude ratio at two resonant 
frequencies with and without absorption. Instead of optimization by finite element method, 
the analytical model really makes the optimization more efficient. 

The second type of resonant mass sensor is a rigid tilting plate that rotates about its diagonal. 
The same modeling approach was used. The frequency responses of analytical model and 
COMSOL model match very well. The analytical model is subsequently used for design 
optimization.  

The third type of resonant mass sensor is a fixed-free micro-cantilever with a hole in the 
center. In this case, the frequency responses generated from the analytical and numerical 
models did not agree.  The discrepancy was explored further by comparing the analytical 
and COMSOL pressures of several points on the cantilever. The comparison showed that 
the boundary condition assumptions, necessary to derive the analytical model, do not hold 
up well.  Also, the shape of the cantilever deflection changes as the hole size changes; thus, 
an analytical model would need the added complexity of a variable shape.  

The models were used to make comparisons of the tilting plate about y axis, tilting plate 
about diagonal, and cantilever in terms of . Comparing the same size tilting plates and 
same parameters used shown in Table 3.5, with a 10% mass added to the entire surface, 
the tilting plate about y axis gives the higher  value at 73% versus the tilting plate about 
diagonal  value of 68%. The reason is that for the same size plate, tilting about diagonal 
has more damping force than tilting about y axis. The cantilever with a hole in the center 
shown in Table 4.3 gives  value of 5.2%.  It is low because only the mass added near the 
free edge has a big influence on the resonant frequency shift.  

Several possible extensions of this research remain as future work:  
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1. For both rigid tilting plates, the analytical models of squeeze film damping focus on a 
square hole in the center. Additional work needs to be done for changing the location of 
the hole, the shape of the hole such as circle, hexagon and also multiple holes.  

2. For micro-cantilever, some new boundary condition elements need to be created that 
better approximate realistic flow conditions.  

3. With a viable analytical model, the effects of multiple holes and different locations of 
holes can be explored in order to achieve more optimal designs. 

4. For the tilting plate and micro-cantilever designs, the analytical capacitance-actuation 
equation needs to be simplified, so that electrostatic actuation and capacitive sensing can 
be included in the model (thus  can be calculated in addition to dx/dF). 
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