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Preface 
 

 Chapter 2 of this dissertation contains novel analysis of data collected by 

Perelman and Mueller (2014), presented in Section 2.1, and Mueller, Perelman, Tan, and 

Thanasuan (manuscript under review), presented in Section 2.2. These individuals 

contributed to the research efforts in the following ways. Section 2.1 contains a re-

visitation of data originally collected by Brandon S. Perelman and his advisor, Shane T. 

Mueller. Shane T. Mueller provided supervisory input on the experiment design, the 

spatial problem stimuli used in that study, and data analysis. Brandon S. Perelman 

programmed the experimental tasks, designed the experiment, collected the data from 

participants during the study, analyzed the data, and wrote Section 2.1. For the present 

dissertation, participant solutions were subjected to a number of analyses (Pathmapping 

analysis, multidimensional scaling, and Gaussian mixture modeling) which were 

conducted collaboratively by Brandon S. Perelman and Shane T. Mueller.  

Shane T. Mueller, Brandon S. Perelman, Yin-Yin Tan and Kejkaew Thanasuan all 

contributed to the research effort that produced the data described in Section 2.2. Yin-Yin 

Tan and Kejkaew Thanasuan collected data from 16 of the participants. Shane T. Mueller 

designed the experiment, conducted the analyses, and wrote the manuscript submitted as 

Mueller, Perelman, Tan, and Thanauan (manuscript under review). Brandon S. Perelman 

collected data from the remainder of the participants. For the present dissertation, 

Brandon S. Perelman independently analyzed the data, and wrote Section 2.2.  
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Abstract 

 Planning, navigation, and search are fundamental human cognitive abilities central 

to spatial problem solving in search and rescue, law enforcement, and military operations. 

Despite a wealth of literature concerning naturalistic spatial problem solving in animals, 

literature on naturalistic spatial problem solving in humans is comparatively lacking and 

generally conducted by separate camps among which there is little crosstalk. Addressing 

this deficiency will allow us to predict spatial decision making in operational environments, 

and understand the factors leading to those decisions. The present dissertation is comprised 

of two related efforts, (1) a set of empirical research studies intended to identify 

characteristics of planning, execution, and memory in naturalistic spatial problem solving 

tasks, and (2) a computational modeling effort to develop a model of naturalistic spatial 

problem solving. The results of the behavioral studies indicate that problem space 

hierarchical representations are linear in shape, and that human solutions are produced 

according to multiple optimization criteria. The Mixed Criteria Model presented in this 

dissertation accounts for global and local human performance in a traditional and 

naturalistic Traveling Salesman Problem. The results of the empirical and modeling efforts 

hold implications for basic and applied science in domains such as problem solving, 

operations research, human-computer interaction, and artificial intelligence.  
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Executive Summary 
 

 The spatial problem solving tasks of search and navigation have been investigated 

in many basic and applied communities. For example, these tasks are often described as 

pathfinding in the basic psychology literature, whereas in the applied literature they are 

referred to as wayfinding or routing. While the underlying research questions are similar, 

the terminology, methods, and approaches to modeling used by all of these communities 

vary widely, and there is very little fruitful intercommunication among these 

communities. Modelers in these communities have yet to produce functional agent-level 

accounts of human behavior that are useful in applied settings. One major deficiency of 

prior modeling efforts is an inability to account for multiple optimization criteria; the 

models generally attempt to solve the problem according to a single success criterion, 

while the human data suggests that multiple criteria influence spatial problem solving. 

The purpose of this dissertation is to create a computational model of human navigation 

and search that uses strategic planning and bottom-up heuristic pathfinding processes to 

approximate human behavior.  

 

Defining the Problem Space 

The problem is most chiefly one of scope – the basic science community does not 

typically produce models applicable to human behavior, and the applied science 

community does not produce accounts of spatial problem solving that are sufficient to 

explain individual agents’ behavior. While basic science has focused largely on the 

minutiae of the neurobiological processes underlying spatial problem solving (i.e., 
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pathfinding), it has essentially ignored higher level cognitive components that humans 

use to solve these tasks. The end results of this effort are models that, with a very high 

degree of biological fidelity, are capable of making accurate predictions of non-human 

(typically rodent) behavior. In contrast, applied approaches to modeling search and 

navigation (i.e., wayfinding) have focused largely on group dynamics. So while these 

approaches approximate aggregate human behavior fairly well, they fail to account for 

the behavior of individuals. This is critical, as these models are often applied in domains 

in which lives are at stake. Some approaches to modeling human behavior account for 

higher cognitive human capabilities in spatial problem solving, however these models 

typically address combinatorial optimization problems like the Traveling Salesman 

Problem (TSP) rather than spatial navigation and search. In short, to date, no modeling 

efforts have filled this capability gap.  

The goal of this dissertation is to merge aspects of models of pathfinding, routing, 

and wayfinding to create a naturalistic computational model that (1) provides a strong 

account of human behavior in planning and execution in navigation and search, and 

memory related to search, (2) uses heuristic processing to remain computationally 

inexpensive and viable for multi-agent simulations, and (3) drives agent behavior to 

create useful predictions to real-world problems.   

 

Generating a Naturalistic Computational Model 

 Creating such a model requires integrating a number of aspects from models 

developed in disparate fields. Pathfinding models offer simple, biologically plausible 
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mechanisms for driving local decision making in navigation, and for encoding and 

retrieving context and sequence memories crucial for navigation and spatial memory. 

However, prior research in modeling soldiers’ behaviors during search operations 

(Mueller, Perelman, & Simpkins, 2013) indicates that applying these mechanisms to 

account for human behavior in spatial tasks requires higher level planning.  

While specific mechanisms for constructing these plans have yet to be 

implemented in published human pathfinding models, models of spatial problem solving 

use high level planning to solve combinatorial optimization problems (e.g., Pizlo, 

Stefanov, Saalweachter, Haxhimusa, & Kropatsch, 2006). These models of problem 

solving involve subdividing the problem space hierarchically into either clusters (e.g., 

Pizlo et al., 2006) or linear representations (e.g., MacGregor, Ormerod, & Chronicle, 

2000). These models are biologically inspired but not necessarily plausible, or useful in 

multi-agent simulations, because they use computationally expensive brute force 

computation at certain levels of processing. These models represent computational 

approaches to problem solving, and are not intended to model biological processes. By 

substituting computationally inexpensive biologically plausible pathfinding algorithms 

for these brute force computations, we can provide a reasonable heuristic account of how 

humans form and execute spatial plans.  

Finally, wayfinding models emphasize the importance of environmental features 

in human spatial navigation. Pathfinding models assume that cognitive maps (i.e., an 

agent’s spatial conceptualization of the environment) are created through exploration, 

ignoring the importance of environmental context salience in the cognitive map 
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construction process. In essence, the probability of encoding any two environmental 

contexts are equal. In contrast to that approach, wayfinding models assume that spatial 

navigation is nearly entirely facilitated by environmental cues, though few have 

provisions for allowing the agent to encode and retrieve cues. That is, agents in most 

wayfinding models follow signs to specific locations, such as exits, but are incapable of 

forming their own cue-context associations that would allow them to navigate (i.e., “turn 

left at the room with the large potted plant in the corner.”). The wayfinding approach will 

be used to inform a model with a capability to weigh the probability of encoding 

environmental contexts based on environmental cues, and to use that information to 

inform plan construction and execution during spatial navigation (c.f., “handrails” in 

orienteering) and the agent’s memory for where it searched and what it found.  

In summary, these fields in spatial problem solving all have something to offer in 

constructing a computational model that is useful for making predictions about human 

behavior (see Figure 2). Before the relevant components contributed by each of these 

fields can be integrated, however, empirical studies are needed to elucidate specific 

details of this process. Specifically, the routing literature offers two distinct types of 

solutions for modeling high level planning - cluster versus linear representations. The 

empirical task lies in disambiguating these two possibilities found in prior studies 

(Perelman & Mueller, 2013a). Studies 2 and 3 of this dissertation achieve this 

disambiguation, and identify differences in plan construction and execution as it is done 

in third-person routing tasks (Study 2), and in first-person spatial navigation in a 

naturalistic task similar to a hasty search conducted during search and rescue operations. 
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This information on high level planning in spatial navigation and search tasks determines 

which of two candidate modeling approaches better represent plans in these tasks – 

cluster or linear planning dynamics.  

 

Figure 1. Prior and current empirical and modeling research intended to inform the 
computational modeling effort, and potential uses for the model. For potential methods 
for applying this model to other domains, see Chapter 5.  

 
 

The end result of this effort is a naturalistic computational model capable of 

approximating human considerations in planning and executing spatial navigation and 

search routes. The final section of this dissertation contains design recommendations for 

integrating the model in service of other domains, such as multi-agent egress simulations 

and search and cordon operations in the military and law enforcement. The goal of this 

modeling effort is to effectively approximate human performance in the task used by 

Perelman and Mueller (2014) to distinguish optimization strategies for problem solving 

in a path planning task.  
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Introduction 

 Both basic and applied researchers have attempted to understand, or create 

algorithms for controlling, an agent’s navigation through an environment. In the basic 

psychology community, this process is often called pathfinding. This research primarily 

seeks to understand how organisms form and use cognitive maps (Tolman, 1948) by 

identifying the neural, cognitive, and physical processes by which pathfinding is 

accomplished. In the applied human factors literature, a similar problem is often called 

wayfinding (Lynch, 1960), and this research seeks to understand environmental cues that 

direct the flow of humans through an environment. Human performance in these tasks 

shares many similarities with other types of spatial and sequential problem solving, for 

example the TSP (e.g., MacGregor & Ormerod, 1996) and the Tower of Hanoi (e.g., 

Samsonovich & Ascoli, 2005). One component tying together all of these problems is 

planning, or mental simulation.  

A key assumption of this dissertation is that solving complex problems requires 

planning to subdivide the problem space into elements that can each be solved in turn, 

reducing the agent’s cognitive burden and allowing it provide near-optimal solutions to 

otherwise intractably complex problems. Many hierarchical models of problem solving 

achieve this subdivision deterministically through a process of continually subdividing 

the problem space into increasingly fine components, whereas the present argument states 

that this subdivision requires only two levels, the higher level containing the plan 

representation, and the low level at which the detailed plan is executed. In both cases, 

breaking up the problem space is designed overcome memory limitations, and is 
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peripherally similar to what Miller (1956) first described as chunking in immediate 

memory.  

Carrying this to a greater extreme, in many applied spatial problem solving 

domains, wherever possible the information is offloaded from the human entirely. As I 

will discuss in Chapter 3, GPS logging tools allow wilderness search and rescue 

(WiSAR) operators to view where they have searched without having to remember the 

details (SME 1, May 15, 2014), and command and control elements track the movement 

of units in military operations (SME 5, March 7, 2015). Likewise, bail bonds enforcers 

construct databases to organize the information they use to constrain their searches (SME 

2, May 13, 2014).  

 The theory described herein proposes that a mechanism (or mechanisms) used for 

pathfinding and spatial planning decomposes general spatial constructs into sequentially 

ordered memory representations, a process necessitated by memory limitations, through 

which the agent can plan a trajectory. This is different from chunking, which refers to 

grouping items based on semantic or perceptual similarities. This thesis posits that the 

representations used in the aforementioned tasks are hierarchically subdivided into 

smaller components, the characteristics of which will be revealed by sequence errors in 

the appropriate tasks. One assumption of this argument is that the spatial representations 

used in planning are identical to those remembered after completing a spatial task. This 

argument is based on empirical evidence indicating similarities between spatial memory 

and list memory (Perelman & Mueller, 2013a), and the responsibility of the same 

structure, the hippocampus, for both episodic memory and mental simulation in spatial 
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navigation (Lyon & Gunzelmann, 2011; Lyon, Gunzelmann, & Gluck, 2008; 

Samsonovich & Ascoli, 2005; Takahashi, 2013). The empirical research in this 

dissertation will characterize these representations in generalizable spatial problem 

solving tasks.  

It is important to draw a distinction between the actual search process (i.e., 

probing locations in the environment to find one or more targets, a process optimized by 

minimizing the estimated time to find, or the average distance among those points), 

which I propose relies on sequence memory, and foraging behaviors that are more closely 

linked to semantic memory processes (e.g., Hills, Todd, & Goldstone, 2008).  The present 

thesis is reconciled with that work by drawing a distinction between the cognitive 

mechanisms used for semantic search and spatial foraging, and the cognitive mechanisms 

recruited for sequence memory and navigation (i.e., choosing the best route among a set 

of points, a process optimized by minimizing path length) using mental simulation. While 

this manuscript will not empirically investigate foraging, certain tasks in applied settings 

that relate to the present research are closely tied to semantic search and foraging (see 

Chapter 3, Section 2, below).  

For the purpose of this dissertation, a distinct definition of the term optimization 

differentiates it from the term as typically used in mathematical contexts, such as 

operations research. Traditionally, optimization refers to finding the best solution from all 

feasible solutions, maximizing or minimizing a reward or cost function. For this 

dissertation, this definition should be expanded to include the phrase, “…or the best 

solution produced after a process of satisfaction according to specific criteria.” Therefore, 
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optimization criteria refers to linearly-related parameters by which a given solution may 

be evaluated. And, the result of an optimization process according to a specific 

optimization criterion may not, in fact, be the global optimal solution according to that 

criterion. While this approach is similar to that used to model decision making according 

to multiple optimization criteria (c.f., Emmerich & Deutz, 2006), the terminology used 

herein should not be viewed as interchangeable with the terminology as used by 

researchers in those fields (e.g., operations research and economics).  

 

Modeling Spatial Problem Solving 

Models have value in predicting human search trajectories and memory effects, 

investigating effects of environmental characteristics on search and memory (e.g., when 

should search professionals trust their “gut instincts” for generating search plans versus 

using planning software? When should search professionals trust their memory for where 

they searched, versus when is it necessary to meticulously record actual search 

trajectories using a system like GPS?), and utility in building heuristic search algorithms 

for machine cognition. The explicit purpose of the present modeling endeavor is to 

construct a biologically plausible cognitive agent capable of realistic spatial problem 

solving across multiple domains.  

While predicting human behavior in operational (i.e., military, law enforcement, 

and first responder) environments is useful, an ecologically valid cognitive agent holds 

the most utility for civilian applications. Predicting human navigation behavior based on 

the learnability of an environment is useful in civil engineering applications such as 

16 
 



 

public transportation system design and emergency egress modeling, domains currently 

serviced predominantly by flow models. Because the pathfinding mechanisms described 

herein are computationally inexpensive, they can be used in multi-agent simulations. 

While agent-based simulations exist for modeling emergency egress, intelligence in these 

models is often implemented in the form of information use (e.g., Viswanathan, Lees, & 

Aydt, 2012) rather than experiential learning, therefore, very few (e.g., Hajibabai, 

Delavar, Malek, & Frank, 2007) take into account differences between egress routes 

selected by experts and novices (i.e., individuals who frequent a building who know it 

very well versus those who do not). Legion, a popular Egress model, takes only 

destination, speed, separation from other agents, and reaction time as input parameters 

(Pan, Dauber, Han, & Law, 2006), and thus makes no attempt to model agent behavior 

based on knowledge of the environment, psychological responses to stress, or other 

factors. Modeling these differences is important for predicting egress flow in 

environments where the ratio of regular workers and new visitors is relatively constant, 

such as hospitals.  

In sum, current models are inadequate for describing human navigation and 

search in the real world. Many pathfinding models, created in service of 

neuropsychology, are intended to approximate the neural bases of rodent behavior, while 

many biologically-inspired human models are designed to solve combinatorial 

optimization problems. Conversely, models used for solving real-world problems fail to 

incorporate important cognitive aspects that impact agent behavior. This modeling effort 

will produce an intelligent human-like agent capable of solving these types of problems. 
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The utility of this model lies in its generalizability to many domains in which spatial 

navigation is critical, such as egress modeling, urban planning, and instructional design 

for military and law enforcement personnel engaged in cordon and search operations.  

During the course of this dissertation proposal I will provide (1) a literature 

review of human spatial problem solving performance, neural correlates, and modeling 

approaches, (2) new analysis of prior empirical research, (3) a series of interviews, 

laboratory studies, and a naturalistic study investigating human performance in spatial 

problem solving, (4) a discussion of prior computational approaches to solving this 

problem, and (5) a model of planning and plan execution that is capable of solving the 

types of naturalistic problems for which current models of spatial problem solving are 

inadequate. The unique contribution of this dissertation is a computational model of 

planning and execution in spatial problem solving, applicable across multiple domains, 

that bridges the gap between biologically plausible pathfinding models, and ecologically 

valid wayfinding models.  

 

Chapter 1: Literature Review 

1.1 Lines of Research in Spatial Problem Solving 

 While basic neuroscientists who study spatial problem solving are primarily 

concerned with comparative psychology approaches (i.e., studying animal behavior), 

scientists with an eye on application have investigated navigation in humans in several 

main domains or lines of research (see Table 1). The first, pathfinding, is primarily 

studied in the animal literature; the human literature is comparatively underdeveloped. 
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The second, wayfinding, as it is called in the human factors literature, is concerned with 

investigating environmental cues (i.e., landmarks) that facilitate learnability. Third, sports 

psychologists often study orienteering from the expert / novice perspective. Finally, route 

planning has been investigated extensively by researchers interested in visual memory. 

 

Table 1. Relevant domains and lines of research examining spatial problem solving.  
Domain  Characteristics Agent Goals What to 

optimize? 
Example 

Contributors 

Pathfinding 
(functional 

neuroanatomy 
and modeling 

literature) 

Basic science approach (comparative 
psychology and neuroscience) 
 
Experiential learning 
 
Focus on the agent 

Localization 
Learn environment 
& encode objects in 
the environment 
Mental Simulation 

Path length / 
distance 
 
“Effort” and 
efficiency 

Hasselmo 
Samsonovich  
Rolls 
McNaughton 
Burgess 
Levy 
O’Keefe 
Gunzelmann 

Wayfinding 
(human 
factors 

approach) 

Applied science approach (e.g., 
emergency egress models) 
 
Rule-based flow through 
environment  
 
Focus on the environment (e.g., cue 
salience, learnability, landmarks, 
signage) 

Localization 
Navigate to goal 
locations in the 
environment (often 
at first-pass through 
environment) 

Signage salience 
(location and type) 
and environment 
layout 
 
Environmental 
flow 

Caduff 
Timpf 
Gaisbauer  
Frank 
Rüetschi 
Klüpfer 

Traveling 
Salesman 
Problem 

 

Intractably complex problems to 
which humans generate near-optimal 
solutions 
 
Performance modeled using various 
types of models (nearest-neighbor, 
cluster-based models, and trajectory / 
convex hull models) 

Generate a solution 
among all of the 
target locations 
having the shortest 
path length 

Path length 
(shortest) 

Pizlo 
Graham 
Tenbrink 
MacGregor 
Stefanov 
Kong 
Schunn 

Naturalistic / 
Applied 

Traveling 
Salesman 
Problems 

“Applied” version of TSP. Goal is to 
hit targets as early as possible. 
 
Applied to domains like orienteering, 
robot navigation, wilderness search 
and rescue, etc.  
 
Used in situations where the distance 
that can be traveled is limited and 
possibly uncertain, traveling requires 
effort (distance-reward tradeoff), and 
where rewards dynamically degrade 
or change 

Generate a solution 
that maximizes the 
number of targets hit 
in the minimum 
distance. 

Average distance 
between nodes 
 
Estimated Time to 
Find 

Blum  
Charikar 
Tenbrink  
Albers 
Goel 
Lin 
Goodrich 
Adams 
Waharte 
Trigoni 

Orienteering 

Uncertain goal locations (controls) 
 
Requires that humans use “handrails” 
to permit localization 
 
Orienteer must consult the map, 
monitor the terrain, and move 
simultaneously. Requires heuristics 
(start-forward, end-back). 

Navigate through 
waypoints (controls) 
to a destination. 
Maintain efficient 
routes. 
Maintain 
localization. 
Set control flags 

Path efficiency 
(fastest time)  
 
Speed / difficulty 
tradeoff  
 
“Control flag 
placement 

Blum 
Eccles 
Mottet 
Saury 
Vicente 
Wang 
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Table 1 Continued 

Spatial 
Memory 

Participants’ memory for locations 
and what is contained within them.  
 
Localization and path planning 
research.  
 
Generally, human spatial memory 
believed to be hierarchical – coarse 
and fine grained structure. 
Geographical errors are one example 
of this.  

Reconstruct a path, 
or landmarks along a 
path 
Recall or reconstruct 
a top-down map 
Distance estimates 

Correct routes / 
sequences 
 
Recall for relative 
geographic 
locations 
 
Distance estimates 

Wiener 
Mallot 
McNamara 
Collett 
Wehner 
Stevens & Coupe 
Hirtle & Jonides 

Foraging 

Animals search for resources 
distributed in patches.  
 
Mechanisms sometimes compared to 
semantic foraging in human memory 
retrieval  

Minimize energy 
expenditure (i.e., 
maximize reward 
versus time) 

Energy 
expenditure 
 
Time spent in a 
particular patch 

Hills 
Todd 
Jones  
Charnov 
Stephens 

Machine 
Navigation 

How to most efficiently get from 
Point A to B 
 
How to cover the search space the 
best  
 
Biomimicry approach: colony based 
(bees, bacteria, ants, etc.) 

Robot must navigate 
from one location to 
another 
Many robots must 
coordinate 
movement / search 
together  

Path efficiency 
(ETA) 
 
Estimated Time to 
Find 
 
Coverage  

Van den Berg 
Lin 
Wong 
Bourgault 
Verscheure 
Zhang 
Evers  
Nilsson 

 

1.1.1 Pathfinding 

 Pathfinding describes an agent’s ability to find the shortest or least effortful path 

among locations in a problem space (Mueller et al., 2013). Pathfinding can be further 

subdivided into two distinct fields – comparative psychology research that seeks to 

understand how an agent navigates through an environment using mental simulation, and 

machine cognition or artificial intelligence, in which the goal is to provide mechanisms 

for driving a robot. Early approaches to pathfinding in the AI community include 

Dijkstra’s (1959) algorithm, and the A* algorithm developed for the robot Shakey (Hart, 

Nilsson, & Raphael, 1968). Empirically, while pathfinding is mainly studied in animals, 

however Mueller et al. (2013) investigated and modeled pathfinding in dismounted 

infantry conducting cordon and search operations in an urban environment using models 

of varying complexity. This work indicated that simple models similar to those used to 

approximate rodent behavior can be applied to certain human tasks.  
20 

 



 

 

 

1.1.2 Wayfinding 

 Wayfinding is human navigation as studied in the human factors community, and 

it is typically studied from the points of view of landmark navigation and information 

processing (Montello, 1993). As such, wayfinding depends heavily on environmental 

features such as landmarks and context salience (Caduff & Timpf, 2008). The goal of 

wayfinding research is to inform design, such as in city planning (Gaisbauer & Frank, 

2008) and public transportation networks (Rüetschi, 2007; Timpf, Rüetschi, & Caduff, 

2005). Designs are typically improved by creating intuitive flow (Rüetschi, 2007; Timpf, 

Rüetschi, & Caduff, 2005) or improving the salience, accessibility, and legibility of 

signage (Hajibabai et al., 2007). Wayfinding can be understood as the study of how the 

environment facilitates navigation, and is typically studied for its applications in civil 

engineering, specifically public transportation system engineering and emergency egress 

modeling.  

 

1.1.3 Orienteering  

 Orienteering is studied from a sports psychology perspective, with the goal of 

improving athlete performance. Orienteers face a problem similar to that studied in the 

wayfinding literature. However, the key differences are that landmarks (i.e., 

environmental cues) are typically natural rather than man-made, and that a topographical 

map is provided to participants to facilitate planning and localization. In the wayfinding 
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domain, the burden lays on the human factors engineers and designers to create an 

environment that is easily navigable. In orienteering, the burden lies on the agent (i.e., the 

competitor), creating a challenge that fosters competition.  

 In orienteering, participants compete for the fastest time using a north-up 

proprietary orienteering map to navigate among waypoints called controls (Eccles, 

Walsh, & Ingledew, 2002). Some styles of this game involve the participants locating 

control flags, whereas others require the participants to place control flags accurately 

(Mottet & Saury, 2013). The maps used in orienteering depict five levels of vegetation 

density, which serve as a measure of how easily a competitor can traverse a location. 

Therefore, orienteers must consider speed vs. distance and speed vs. effort tradeoffs 

during route planning. Orienteering is regarded as cognitively demanding because 

orienteers must simultaneously move (often run), pay attention to local terrain, and 

consult their maps (Eccles et al., 2002). Because many orienteering competitions use a 

fixed time limit, it is possible that competitors will not reach all of the controls. For this 

reason, orienteering is described as a Discounted-Reward Traveling Salesman Problem 

(Blum et al., 2007) and is mathematically similar, in terms of optimization strategy, to 

more general search problems such as wilderness search and rescue. This problem 

paradigm can be applied to other route planning tasks as well.  

 

1.1.4 Combinatorial Optimization Problems 

 The Traveling Salesman Problem (TSP) belongs to a family of problems known 

as combinatorial optimization problems. The TSP, formulated in the 1930s (Schrijver, 
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2005), requires that the solver create the shortest path among a series of points (cities). A 

main goal of TSP researchers is to understand how humans employ heuristics to solve a 

computationally intractable problem. TSP is regarded as NP-hard or computationally 

intractable, because a “brute force” (i.e., exhaustive) approach to solving it requires 

generating (n – 1)! / 2 separate trajectories. A number of heuristic algorithms have been 

devised for solving this particular routing problem (see below). TSP-like problems such 

as the Vehicle Routing Problem (Dantzig & Ramser, 1959) are often used in operations 

and management and other applied settings.  

  One particular characteristic of routing problems that separates them from 

pathfinding is perspective. Pathfinding is often studied in domains where the agent 

perceives the environment in the first person, whereas routing problems require the agent 

to solve a problem from an overhead, third person perspective. Evidence that 

optimization occurs independently of problem space perception (i.e., in the first or third 

person) contradicts traditional models of spatial problem solving, and necessitates a novel 

approach comparing data from first and third person implementations of the same task 

(see Chapter 3, Studies 2 and 3, below).   

Though there is little crosstalk between researchers investigating routing and 

pathfinding problems, one study in the comparative psychology literature attempted to tie 

together TSP-solving dynamics and pathfinding in the rat. In a novel experiment, de 

Jong, Gereke, Martin, & Fellous (2011) tasked rats with completing a TSP, substituting 

food pellets for cities. The results of this study indicated that rats learned to optimize their 

solutions (i.e., minimize their path lengths) over repeated exposures to problems 
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consisting of food pellets. The results of this study indicate that perhaps optimization 

occurs separately from problem space perception. This is important as many models of 

TSP-solving in humans assume that optimization occurs mainly during perception (see 

below). Additionally, this study indicates that TSP-solving through pathfinding, in the 

first person, is optimized in a similar way to traditional TSP-solving, accomplished in the 

third person from an overhead view.  

 

1.1.5 Navigation vs. Search 

 At this point, it is critical to draw a distinction between two spatial problem 

solving behaviors: search and navigation. In navigation tasks, the agent must solve a 

problem that bears many resemblances to a TSP. In these problems, (1) the agent is 

tasked with visiting every location, (2) the rewards (i.e., the probability of finding a 

target) associated with all of the locations are equal and static, and (3) optimal 

performance was assumed to minimize overall path length. Prior attempts at modeling 

human search behavior (e.g., Mueller et al., 2013; Perelman & Mueller, 2013b) have set 

the problem space with TSP-like (i.e., navigation-goaled) characteristics. Note, however, 

that unlike a traditional TSP, the agents in these models did not have the return to base 

requirement.  

 Nevertheless, search problems are quite different from navigation. Specifically, 

(1) the agent does not need to visit every location, and can end its search as soon as it 

satisfies the search criteria (e.g., finding one or more hidden objects), (2) the rewards 

associated with each location may be different (i.e., the probability of finding the target in 
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one location may be more than the next). Furthermore, if the target is mobile (as is the 

case in many applied settings, such as wilderness search and rescue), then the reward 

associated with each possible target location is dynamic. Finally, (3) the agent typically 

wants to optimize its trajectory to minimize the estimated time to find the target. For 

these reasons, search tasks have many characteristics in common with orienteering.  

 In tasks such as aerial intelligence, surveillance, target acquisition and 

reconnaissance, in military applications, and aerial search in civil search and rescue 

operations, experts construct probability maps to define the search space. However, once 

this space is complete, the procedure for plotting a route through that probability space is 

far less formulaic, being executed “off-hand” by either the incident commander (in civil 

operations) or the pilot (in military and intelligence operations; see Chapter 3, Section 2).  

Routing a path through a probability space is functionally similar to E-TSP. The 

difference lies in constraints within the problem space – E-TSP focuses on optimizing for 

the shortest path length, whereas real-world search and navigation tasks might incorporate 

other constraints. For example, a shopping trip involves visiting a number of destinations, 

the order of which should be determined by environmental constraints such as food 

spoilage (it is better to buy food later so it will not sit in a hot car), weight (if you must 

carry all of the items, then it is better to buy the heavier items last), and other constraints 

such as store hours. Applied (e.g., Evers, Dollevoet, Barros, & Mansuur, 2011) and 

naturalistic (Perelman & Mueller, 2014; Ragni & Wiener, 2012; Tenbrink & Seifert, 2011) 

studies have investigated human performance in these types of search tasks, but the 
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literature in this area is notably sparse. One purpose of this dissertation is to further 

understand and model human behavior in this type of task.  

1.2 Function and Purpose of the Hippocampus 

 Traditionally, human problem solving (Newell & Simon, 1972) and spatial 

navigation (Marr, 1971) have been treated primarily as a hippocampus-based behavior 

due to the requirement for mental simulation (i.e., exploring and comparing possible 

future moves, and selecting from among them; Samsonovich & Ascoli, 2005). In 1957, 

Scoville and Milner published the results of follow-up studies on psychosurgery patients, 

one of whom is well known in the neuropsychology literature as H.M. Following bilateral 

medial temporal lobe resections, which destroyed roughly two thirds of the hippocampus, 

the amygdala, and other adjacent structures, H.M. and another patient who had received a 

similar surgical intervention exhibited profound memory deficits. Comparing these 

observations with those of patients receiving similar but less radical surgeries, who also 

displayed memory deficits, Scoville and Milner (1957) concluded that the hippocampal 

formation is vital for memory formation.  

 

1.2.1 Problem Solving: Spatial and Visual Memory 

 Serial memory is believed to play a role in many processes such as language 

learning, planning, social behaviors, and motor skills (Hurlstone, Hitch, & Baddeley, 

2014). The body of literature concerning serial memory in the verbal domain is rather 

extensive compared to the visual and spatial domains, about which comparatively little is 

known. To inform our understanding of memory in those domains it is necessary to draw 
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analogs from the verbal memory literature. For an in-depth discussion of memory 

characteristics, refer to Baddeley, Eysenck, and Anderson (2009). In this section I will 

discuss the spatial and visual memory literature in the context of problem solving.  

 Problem solving often requires mentally simulating future possible problem states 

and planning based upon those simulations. For example, the Tower of London task 

(Shallice, 1982), which is often used to test for cognitive deficits in planning, requires 

that the subject rearrange a set of disks. The Tower of London necessitates mentally 

simulating the transitional states between the current and goal configurations. 

Samsonovich and Ascoli (2005) modeled human performance in a similar task, the 

Tower of Hanoi. While these problems are excellent diagnostic tools, they tell us little 

about how humans represent objects in memory, how they can use these representations 

to construct plans, and why constructing a plan might be necessary in the first place.  

 One characteristic of human memory that has been clear since the earliest days of 

memory research is that it has limits. Problem solving often requires that people mentally 

simulate series of “moves”, as is the case in the aforementioned tower problems and in 

Rubik’s Cube solving, for example. This is similar to the problem described by Miller 

(1956) in which comparisons among stimuli are limited by the subject’s ability to store 

representations of those stimuli in memory. To fully understand the utility of planning in 

problem solving, we should take the example of a very difficult problem: the TSP.  

 The Euclidean Traveling Salesman Problem (E-TSP) is described as an NP-hard 

computationally intractable problem. Despite the difficulty of the problem, human 

subjects generate near-optimal heuristic solutions to this problem (MacGregor & 
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Ormerod, 1996). Furthermore, these solutions may be optimizing criteria that are 

irrelevant in E-TSP, but useful in spatial problem solving (see Chapter 2).   

Most computational accounts of TSP-solving (see below) assume that humans are 

able to produce these near-optimal solutions by splitting the problem into more 

manageable pieces (e.g., clusters of points or a higher level linear plan) in two or more 

hierarchically arranged layers. I assume that this process is equivalent to the chunking 

mechanism described by Miller (1956) which allows humans to increase the amount of 

information available in memory. Recent research (Pizlo & Stefanov, 2013) indicates that 

relatively large TSP problems are solvable even when the agent is afforded a limited 

working memory capacity.  

 In the visual and spatial domains, the exact mechanism by which memories are 

created and represented remains unclear. Visual and spatial memory representations share 

certain characteristics with verbal working memory representations. Object 

representations exhibit degradation in memory (Osugi & Takeda, 2013). Investigations 

(Zhang & Luck, 2008) suggest that these object representations are not resources that can 

be scored according to resolution-number tradeoffs. Rather, visual working memory 

permits storage of a discrete number of fixed-resolution representations. In visual and 

spatial recall, humans exhibit primacy and recency effects (Parmentier, Andres, Elford, & 

Jones, 2006). Furthermore, errors in these tasks are often similar to the transpositions 

seen in list memory research; subjects are more likely to swap serial positions of closely 

grouped stimuli during serial recall they are of more distant stimuli, an effect known as 

locality constraint (Hurlstone et al., 2014). This effect has been observed in an abstract 
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dot task (Parmentier et al., 2006), the Corsi block task (data not yet published), and a 

simulated aerial search task (Perelman & Mueller, 2013a). Effects of serial position on 

recall have also been noted in a spatial visualization task (Lyon et al., 2008). If this 

general memory mechanism underlies all sequence completion problems, then we should 

expect similar errors in spatial navigation tasks.  

 

1.2.2 Navigation 

 Navigation can be conceptualized as the retrieval and reordering of past-encoded 

spatial memories into a logical sequence that begins with the current location and ends 

with the goal destination. This sequence then provides a basis for mental simulation from 

the agent’s current location to its destination. Tolman (1948) first labeled the abstracted 

environments, through which mental simulation would allow an organism to navigate, 

“cognitive maps.” O’Keefe & Dostrovsky (1971) provided neural evidence for cognitive 

maps, later organized into a comprehensive theory by O’Keefe & Nadel (1978), through 

their single cell recordings of freely moving rats. Place cells, as they are called in rodents, 

are spatially sensitive hippocampal pyramidal cells. Subsequent work has identified other 

spatially sensitive cells in rodents, such as boundary vector cells (O’Keefe & Burgess, 

1996) and head directions cells (Taube, Muller, & Ranck, 1990), spatial view cells (Rolls, 

Robertson, & Georges-François, 1997) in humans, and grid cells (Hafting, Fyhn, Molden, 

Moser, & Moser, 2005) which are common to many mammals, including rodents and 

humans. Environmental representations from all of these spatially sensitive hippocampal 
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place cells comprise the “cognitive map” that the organism uses to navigate through the 

environment. 

 

1.3 Hippocampus Neuroanatomy 

 In order to accomplish its function in encoding and retrieving information, the 

hippocampus must receive information from afferent structures. The nature of these 

connections gives insight into information representations relevant to the present 

research.  

 

1.3.1 Afferent Structures 

 Environment perception necessary for navigation is facilitated via a combination 

of idiothetic (e.g., motor feedback, proprioception, and vestibular input) and allothetic 

(e.g. vision, olfaction, etc.) information that allows environmental landmark perception 

and path integration (Whitlock, Sutherland, Witter, Moser, & Moser, 2008). The role of 

the visual system is to provide spatial (e.g., topographic relationships) and nonspatial 

(e.g., object recognition) information via the dorsal and ventral streams, respectively, to 

the hippocampus by way of the perforant path, with the peri- and postrhinal cortices 

forming the bridges between the neocortex and the entorhinal cortex (EC; Wang, Gao, & 

Burkhalter, 2011). While visual input is exceedingly useful for navigation and 

localization, it may not be a requirement. In humans, verbalized spatial information (i.e., 

auditory presentations of direction words, such as “left,” or “right”) produces spatial 

memory effects equal to those produced during virtual self-motion in an environment 
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devoid of landmarks (Lyon & Gunzelmann, 2011). In terms of neural evidence, rats that 

are deafened and blindfolded still show spatially selective place cell activation when 

traversing an environment (Hill & Best, 1980), indicating that, at least in rodents, place 

cells can be activated using idiothetic information alone.  

 

1.3.2 Hippocampal Formation - Gross Neuroanatomy 

 Most afferent information enters the hippocampal formation through the perforant 

path. The perforant path provides a connection between the hippocampus and the EC, 

which may be subdivided into the highly interconnected medial EC (MEC) and lateral 

EC (LEC) regions. The LEC receives input mainly from the perirhinal cortex, but also 

receives input from the olfactory and insular cortices as well as the amygdala. 

Functionally, the LEC processes olfactory, visual, and tactile information. The MEC 

receives input primarily from the postrhinal cortex, but also from the presubiculum (i.e., a 

region that processes information necessary for the function of head direction cells), the 

occipital lobe, and the retrosplenial cortex (Witter at al., 2000). In rodents, the LEC 

receives projections from the lateromedial visual field via the temporal cortex (i.e., the 

ventral stream) while the MEC receives input from the anterolateral visual field via the 

posterior parietal cortex (i.e., the dorsal stream; Wang et al., 2011). This is consistent 

with prior observations of high spatial selectivity in the MEC (Hafting et al., 2005) and 

low spatial selectivity in the LEC (Hargreaves, Rao, Lee, & Knierim, 2005).  

Information from the EC is transmitted into Cornu Ammonis (CA) hippocampal 

layers 1 and 3. In addition, the perforant pathway transmits information to the dentate 
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gyrus (DG), which itself projects to CA3 through unmyelinated axons known as mossy 

fibers. The DG is a highly plastic structure within the hippocampal formation that is 

believed to facilitate encoding and consolidation of spatial memories and drive 

exploration (Saab et al., 2009). Projections from both the LEC and MEC into CA1 are 

separate, whereas projections into CA3 directly and through the DG converge, forming a 

combined “object + place” representation (Knierim, Lee, & Hargreaves, 2006).    

 

1.3.3 Hippocampal Formation – Cells and Functions 

 CA1 and CA3 pyramidal cells have long been recognized as spatially sensitive 

and important for navigation (O’Keefe & Dostrovsky, 1971). Activity in these areas has 

been recorded in many environments and under different environmental conditions such 

as darkness (for a comprehensive review, see Redish, 1997). Importantly, firing in these 

cells depends upon environmental cues, so rotating cues in the environment causes the 

spatial fields to rotate as well (Burgess & O’Keefe, 1996). Spatial sensitivity in these 

cells has been observed in rodents (O’Keefe & Dostrovsky, 1971) and primate species 

(Rolls & O’Mara, 1995) including humans (Ekstrom et al., 2003), though some research 

suggests a greater importance of parahippocampal regions in humans (Aguirre, Detre, 

Alsop, & D’Esposito, 1996).   

Neuroanatomical research and computational modeling work have elucidated the 

roles of these cells in tasks involving memory. Early models, based primarily on 

connectivity in CA3, focused on the hippocampus’ role in performing cognitive functions 
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such as sequence prediction (Levy, 1989; Levy, Colbert, and Desmond, 1990; Levy, 

1996; Lisman & Jenson, 1996), a task used in both problem solving and navigation.  

 

1.3.4 Network Dynamics in the Hippocampus 

The aforementioned models, and subsequent models (e.g., Samsonovich & 

Ascoli, 2005), assume that the hippocampus works through a phenomenon called phase 

precession. Theta rhythm is a continuous oscillatory pattern of neural activity. The peak 

of each theta cycle can be defined as the time point of maximum neural activity within 

the network (Skaggs, McNaughton, Wilson, and Barnes, 1996). As an organism explores 

the environment, it moves through the receptive fields of individual place cells, known as 

place fields. As the organism traverses a specific place field, the phase at which that place 

cell fires with respect to the theta peak advances. This phase precession can be said to 

encode the organism’s specific location relative to its progression through the place field.  

Samsonovich & McNaughton (1997) propose an alternative (or perhaps 

complimentary) function for this phase precession. This alternative function is based 

upon two-dimensional characteristics of phase precession that can only be identified via 

averaging cumulative network activity data iteratively. Specifically, phase precession is 

modulated by the head direction of the animal and, cumulatively, generates a fan-like 

pattern at various points in the environment. The proposed alternative function of phase 

precession, espoused by contemporary models (e.g., Ascoli & Samsonovich, 2013; 

Mueller et al., 2013), is that the direction of phase precession reflects potential future 

choices. In the navigation domain, this corresponds to potential future directions. Our 
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modeling efforts in the problem solving domain assume that phase precession provides 

strategic options for higher-level planning. The purpose for describing this neuroanatomy 

is (1) to illustrate the extent to which a layered neural structure can facilitate planning (2) 

to show the extent to which navigation, problem solving, and memory encoding and 

retrieval are all considered to be bottom-up hard wired processes. This pattern will be 

apparent in other models inspired by biology outside of the hippocampus (e.g., Pizlo et 

al., 2006; see below).  

 

1.4 Hippocampus-Based Neural Network Models 

 Generally, computational models of the hippocampus use data structures that 

represent individual brain regions or cell types. That is, they do not attempt to faithfully 

represent the true complexity of the hippocampal formation and its afferents especially in 

terms of interconnectivity. Rather, cognitive models make specific assumptions regarding 

the roles and functions of brain structures, then “fill in the blanks.” For example, 

NeuroNavigator (Ascoli & Samsonovich, 2013) uses an array of 1,000,000 neurons 

representing the DG, CA1 and CA3 regions, which is far greater than the ~180,000 

neurons estimated in the hippocampus proper, discounting the DG (Akdogan, Unal, & 

Adiguzel, 2002). Earlier models focused upon network dynamics in CA3.  

 

1.4.1 Early Models – Sequence Prediction 

 Early computational models of the hippocampus (Levy, 1989; Levy, Colbert, & 

Desmond, 1990) used mainly CA3 network dynamics to facilitate sequence completion, 
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treating CA1 primarily as a decoder about which many arbitrary assumptions were 

necessarily made (Levy, 1996). Due to the computational simplicity of the problems, and 

computing limitations of the day, networks were rather small (e.g., ~500 neurons; Levy, 

1996). Despite their apparent simplicity, these early models were capable of a number of 

complex sequence prediction operations, including finding short cuts and one-trial 

learning (Levy, 1996). The latter, specifically, is congruent with the short term synaptic 

plasticity necessary for forming recency traces in navigation (Mueller et al., 2013).  

A number of these early modeling observations remain in many contemporary 

models. First, asymmetry, especially among CA3-CA3 connections, is viewed as 

beneficial in solving sequence prediction-like problems (cf., symmetrical networks such 

as Hopfield networks, which typically stabilize into one of two states; Hopfield, 1982). 

Second, problem space learning is a Hebbian process of strengthening synaptic weights. 

Third, the actual path construction algorithms, or sequence predictions, are applied to the 

CA3 layer, though the CA1 layer plays either a late role, as a decoder, or an early role, as 

a data structure containing goal states (cf., Mueller et al., 2013).  

 

1.4.2 Hippocampus-based Navigation Models 

 Navigation entails joining individual perceptual contexts sequentially via mental 

simulation to create routes by which an organism can move from one location to another. 

Through a similar mechanism, a cognitive architecture capable of sequence prediction is 

also capable of spatial navigation. Hippocampus-based models capable of spatial 

navigation use place cell dynamics to simulate rodent trajectories, from starting locations 
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to experientially-learned reward sites (i.e., goal locations). In these models, the 

environment is typically represented using a grid (Burgess, Recce, & O’Keefe, 1994). 

One of the early models by Burgess and O’Keefe (1996) illustrates the mechanisms 

common among these models: Through exploration, the simulated agent encounters a 

reward location to which it may later like to return. A downstream “goal cell” is activated 

by features contained within that location. In a rat, this might be simply food or water, or 

perhaps a particularly interesting mating scent trace. A one-shot neural mechanism 

increases the connection weights between that goal representation and the place cells 

active when the rat is in that location, binding together what (the reward) and where (the 

rat’s location where it found the reward). Moving away from this goal location causes a 

monotonic decrease in place cells with associations to the goal location. In two-

dimensional space, we can assume that each goal location has excitability placed in a 

Gaussian distribution on top of the reward’s location. In the Burgess & O’Keefe (1996) 

model, the agent navigates the topography created by these distributions (i.e., proximities 

to each goal) via simple hill-climbing.  

 Many research groups have focused on dynamics specifically intended to model 

rodent behavior. These include models using boundary vector cell theory (Barry et al., 

2006), and the spiking neuron models CATACOMB (Cannon, Hasselmo, & Koene, 

2002) and NeuroNavigator (Ascoli & Samsonovich, 2013). By comparison, models of 

human navigation are relatively sparse.  
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1.4.3 Modeling Human Behavior 

Researchers have modeled aspects of navigation in humans, such as localization, 

using cognitive architectures designed specifically to approximate human behavior 

(ACT-R; Lyon & Gunzelmann, 2011; Lyon et al., 2008). However, most attempts to 

model the full pathfinding and search processes executed by humans have relied upon 

adaptations of non-hierarchical, two-dimensional rodent models. Results from these 

studies indicate that rodent models are inadequate to meaningfully predict human 

behavior. Specifically, these models do not incorporate hierarchical planning or mental 

simulation capability (e.g., Samsonovich & Ascoli, 2005). Mueller et al. (2013) used an 

architecture based on a model created by Samsonovich and Ascoli (2005) to approximate 

search behavior by dismounted infantry soldiers conducting cordon and search operations 

in an urban environment. The model used in this study assumes that the CA3 layer 

contains the experientially-learned cognitive map, while the CA1 layer contains the goal 

representations that are used to activate the appropriate CA3 cells. Mueller et al. (2013) 

used algorithms of varying complexity, including random walk, novelty-seeking, goal-

driven, and exhaustive models. The model that produced reasonable approximations of 

human behavior required that a high level plan be generated by the experimenter and 

programmed into the model. The agent did not generate the high level plan itself, and this 

dissertation proposes that this functionality is necessary for approximating human 

behavior.  

At the execution level, all of these models used similar dynamics to the model 

originally implemented by Burgess and O’Keefe (1996). Goal locations generated 
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“activation” which diffused throughout the learned CA3-CA3 interconnections. The 

agent then used simple hill-climbing to navigate among these locations. While the agent 

makes decisions based upon diffused information, its decisions are essentially myopic. 

For this reason, the spreading activation model is essentially a nearest neighbor model 

that constrains trajectories on the basis of environmental barriers (i.e., walls). The model 

that produced human-like trajectories placed a goal location in each room of the search 

space (functionality encoded by experimenters), constituting a higher level planning that 

could be executed using a relatively simple mechanism. However, this higher level 

planning appears necessary to approximate human behavior. Further research in this area 

outside of the infantry domain (see below) has elucidated many of the shortcomings of a 

two-dimensional spreading activation mechanism for modeling human trajectories. Given 

the results, and the similarity of this problem to others such as E-TSP, it seems that 

perhaps a problem-solving model, as opposed to a navigation model, may provide 

inspiration for modeling human behavior in such tasks.  

 

1.5 Computational Approaches to Modeling Problem Solving 

 Spatial problems requiring navigation among points in a problem space, such as 

the Vehicle Routing Problem, TSP, and naturalistic versions of this problem (e.g., 

Perelman & Mueller, 2014) are combinatorial optimization problems often referred to as 

NP-hard or NP-complete due to the requirement of brute force to solve them optimally. 

However, humans solve such problems near-optimally every day during the course of 

their daily errands, but also in operational environments such as WiSAR and land 
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navigation. In order to solve such problems, it is necessary to process the problem space 

at multiple levels (i.e., hierarchically) to break the problem into more manageable pieces. 

This section contains a review of the literature on spatial problem solving in the first 

person (i.e., wayfinding and land navigation) and third person (i.e., E-TSP), including 

evidence for hierarchical spatial representations and approaches to modeling human 

problem solving in these areas.    

  

1.5.1 E-TSP: Problem Solving in the Third Person 

 As mentioned, E-TSP is a routing task in which participants must plot the shortest 

route, returning to the starting location, through a number of nodes, or cities. The deep 

structure of the task is similar to naturalistic routing problems (Perelman & Mueller, 

2014). In contrast with first person navigation, this problem space is different in a number 

of key ways. First, the entire environment is available to the subject. Second, the subject 

must solve the problem using vision alone. In E-TSP, but not in naturalistic tasks that 

closely resemble E-TSP, the only optimization criteria is path length. Furthermore, the 

nodes among which the participant must plot the route are identical – there are no 

semantic bases upon which to categorize these points aside from visual characteristics 

(i.e., Euclidean distance from other points within the problem space). Finally, as 

previously mentioned, analysis of data collected by Mueller, Perelman, Tan, and 

Thanasuan (manuscript under review) suggests that a characteristic of human behavior in 

this task is a tendency to bias optimization criteria, such as estimated time to find, even if 
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the criteria are irrelevant. Therefore, it seems that people are applying multiple heuristics 

simultaneously.  

Computational models for solving E-TSP often involve nearest-neighbor, cluster, 

region, or trajectory-based hierarchical planning strategies, whereby the agent solves the 

problem at varying grain sizes. It is important to note that while they are not necessarily 

inspired by hippocampus neuroanatomy, the hierarchical E-TSP models involve planning 

mechanisms; by recoding the problem in terms of manageable chunks, the models 

provide heuristic near-optimal solutions similar to those created by humans.   

Nearest-neighbor models provide suboptimal solutions to E-TSPs, but are often 

used because they are able to provide a different solution for each starting point, creating 

a range of solutions that better approximates human behavior (MacGregor & Ormerod, 

1996). Retrospective verbal report research indicates that humans use this strategy to 

some degree during TSP solving (Tenbrink & Wiener, 2009). It is worth noting that 

nearest-neighbor models behave very similarly to spreading activation models where the 

goal locations are sparse and unable to reinforce one another (spreading activation 

models allow multiple nearby goals to reinforce one another, making highly dense 

clusters of goal locations more attractive to the agent given similar distances to first 

contact). Nearest-neighbor mechanisms provide a connection between path-planning (i.e., 

with a bird’s eye view) and navigation (i.e., with an egocentric view), as many models of 

navigation use spreading activation.  

Some computational models of problem solving targeting E-TSP use a cluster-

based hierarchical architecture (e.g., Graham, Joshi, & Pizlo, 2000; Pizlo et al., 2006) 
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corresponding to traditional metaphors of visual attention as a zoom lens (Eriksen & St. 

James, 1986), retrospective verbal report (Tenbrink & Wiener, 2009), and observations of 

human subjects solving E-TSP (Pizlo, Rosenfeld, & Epelboim, 1995) indicating that 

human subjects evaluate problems at multiple grain sizes, scanning for both global and 

local attributes. A basic one-dimensional (as each successive approximation is twice as 

fine as its parent grain) hierarchical model for solving E-TSP solves the problem at 

increasingly finer resolution using bisection. This architecture forms a pyramid by which 

the problem is conceptualized at many different grain sizes. Advantageously, hierarchical 

architectures permit the agent to generate near-optimal heuristic solutions to route-

planning problems while reducing the amount of information (analogously, cognitive 

demand) handled by the agent at any given time. That is to say that, while the entire TSP 

is computationally intractable, an agent can generate excellent solutions by optimally 

solving a number of less complex problems. And, importantly, such models exhibit 

statistically equivalent behaviors to human subjects. Recent modeling efforts (e.g., Pizlo 

et al., 2006) advance biological plausibility by incorporating non-uniform acuity within 

the hierarchy, corresponding to photoreceptor configuration in the human eye.  

Cluster-based models require assumptions about how humans solve the higher 

(i.e., between-clusters) and lower (i.e., within-clusters) level problems. Often this is 

explained by assuming that humans can exhaustively solve the simplified problems. 

However, retrospective self-report studies indicate that humans sometimes solve TSPs 

without exhaustive brute force solutions. One empirically supported way to accomplish 

this is by first forming a higher-level trajectory using Gestalt-style top-down processing 
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that incorporates strategic optimization criteria, then solve the decomposed problems at a 

finer resolution (i.e., for individual points) using bottom-up hardwired perceptual systems 

or nearest-neighbor heuristics (Tenbrink & Wiener, 2009). One way to conceptualize the 

higher level trajectory is as an evolving convex hull (MacGregor et al., 2000) or a linear 

plan based upon a trajectory passing through multiple cluster centroids (Kong & Schunn, 

2007). In this approach, a convex hull is drawn around the problem as a coarse plan. This 

plan is then modified to include individual locations. The modeling approach used in the 

present dissertation is a computational adaptation of this general approach (see Chapter 4, 

Section 4.2).  

  

1.5.2 Wayfinding and Navigation – Problem Solving in the First Person 

First person navigation and wayfinding, such as that used in daily errands, sports 

(e.g., orienteering), and operational environments (e.g., land navigation), seems to require 

at least a two-layer structure in which spatial representations can be dissociated into 

coarse- and fine-grained representations of the environment (Hirtle & Jonides, 1985; 

Hochmair & Frank, 2000; Huttenlocher et al., 1991; Plumert & Hund, 2001; Stevens & 

Coupe, 1978; Weng, Jiang, & Qu, 2008; Werner & Diedrichsen, 2002). These separate 

representations are typically referred to as clusters (e.g., Hirtle & Mascolo, 1986), 

although their shapes are often recognized as irregular (i.e., non-Gaussian; Stevens & 

Coupe, 1978).  

Evidence for this dissociation may be found in the human literature using tasks 

that differ greatly from E-TSP. These tasks include estimating the relative directions of 
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cities (Stevens & Coupe, 1978) or locations within cities (Huttenlocher, Hedges, & 

Duncan, 1991), or even the relative locations of buried objects in small environments like 

sandboxes (Huttenlocher, Newcombe, & Sandberg, 1994). In these tasks, humans 

typically use landmarks for travel vectors and self-localization, but may also draw on 

visual (e.g., optic flow), olfactory, somatosensory, vestibular, and proprioception cues. In 

these tasks, the entire environment is likely unavailable to the participant, in which case 

they may be forced to operate using mental models or beliefs about the problem space 

(Hochmair & Frank, 2000). There may be semantic reasons to cluster certain locations, 

for example membership to a superordinate national category (Stevens & Coupe, 1978) 

or some other kind of association regarding that location (e.g., associating the grocery 

store, bank, and beverage distributor as your pre-football game errand route. These 

associations may include experiential and semantic clustering criteria; Hirtle & Jonides, 

1985).  

This two-level hierarchical structure differs from the hierarchical structures 

suggested in the largely visual models proposed for solving E-TSP (e.g., Graham et al., 

2000; Pizlo et al., 2006) in that the aforementioned E-TSP models require multiple 

hierarchical levels as compared with only two. Second, E-TSP algorithms depend entirely 

upon vision for clustering whereas wayfinding does not require vision at all; given 

opportunity to explore an environment using non-visual modalities, blind and vision-

impaired people perform similarly (i.e., exhibit the same types of errors) to healthy 

controls (Loomis et al., 1993). Furthermore, as mentioned before, clustering (i.e., 

categorization) in wayfinding may be accomplished using criteria that are entirely 
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nonspatial (e.g. Hirtle & Jonides, 1985; Stevens & Coupe, 1978). Finally the problem 

spaces are not necessarily Euclidean, but may also include networks like city streets 

(Hochmair & Frank, 2000), and may even include optimization criteria such as traffic on 

those streets (Weng, Jiang, & Qu, 2008).  

 

1.5.2.1 Levels of Encoding – Fine & Coarse Categorization and Errors in Representation 

 The human wayfinding literature suggests a two-level hierarchical system (e.g. 

the Category Adjustment model, Huttenlocher, et al., 1991), whereby spatial encoding is 

accomplished in a fine to coarse fashion in which humans perceive the physical locations 

of objects in the environment and then categorize them based on some higher order 

criterion. The neuropsychological literature suggests a similar mechanism for encoding 

spatial information, and the opposite mechanism for retrieval. Specifically, during 

encoding afferent information enters the hippocampus mainly unidirectionally from the 

EC to the DG, to the CA3 layer (encoding relative locations) and finally to CA1 

(encoding location contents; Amaral & Lavenex, 2006). In this line of research, error 

distributions are used to infer characteristics of the representations used in these spatial 

tasks. Parallels between the present distributions and other distributions, such as those 

seen in verbal memory (e.g., Hirtle & Jonides, 1985) and episodic memory (e.g., 

Huttenlocher et al., 1991) are used to further extrapolate on these characteristics.  

 Errors evidencing spatial representations appear within less than a second from 

stimulus presentation (Werner & Diedrichsen, 2002), about the duration of iconic 

memory (Sperling, 1960), indicating that at least some of the distortion found in object 
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representation occurs during encoding. Generally speaking, spatial representations tend to 

emphasize memory for the coarse categorizations over the fine grained estimates. For 

example, where locations are clustered according to semantic criteria, within-cluster 

distance estimates tend to be underestimated, while across-cluster distances are 

overestimated (Hirtle & Jonides, 1985; Hirtle & Mascolo, 1986). In addition, in memory 

the relative directions of cities, judgments tend to be distorted by the superordinate 

geographical units of each city’s state (Stevens & Coupe, 1978). Straight paths are 

generally remembered as shorter (Hochmair & Frank, 2000) and curves are 

underestimated or omitted (a characteristic which holds implications for our path 

reconstruction task presented in Perelman & Mueller, 2013a). In addition, directional 

judgments are often distorted to conform to cardinal or orthogonal directions (i.e., 0, 90, 

180, and 270 degrees; Sadalla & Montello, 1989), producing underestimations of wide 

angles and overestimation of tighter angles (Loomis et al., 1993). Huttenlocher et al. 

(1991) asked participants to recall the location of a dot within a circle, finding that 

participants spontaneously subdivided the circle into quadrants, tending to drift the dot’s 

placement toward the prototypical center of each quadrant. These results, taken together, 

indicate that humans tend to encode memories for specific locations poorly, 

supplementing these relatively low fidelity fine grained encodings with high fidelity 

encoded-higher level representations. While empirical studies examine these 

representations in the context of error, is it possible that these errors reflect heuristics that 

enable humans to make reasonable judgments given biological information processing 

constraints?   
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1.5.2.2 Superordinate Distortions – Evidence of Heuristics?  

 Heuristics are simple decision-making processes, perhaps biases, which can 

enable good decision-making in complex environments that are often intractably complex 

(Cokely, Schooler, & Gigerenzer, 2009). Or, when misapplied, these heuristics can 

produce errors. Examining the body of literature concerning biases in spatial 

representations, it is easy to conclude that these biases are errors that, at best, allow 

researchers to make inferences about memory representations. However, one study’s 

conclusions illustrate how these biases may be viewed as computational heuristics, every 

bit as clever as those applied to E-TSP. Take, for example, the predicament often faced 

by protagonists in television and movies – there are two ways to reach the destination; 

one is through a scary tunnel filled with threats, while the other involves traversing a far 

safer but longer route. In short, the path through the tunnel involves a high cost over a 

short distance, whereas the path around involves a low cost over a long distance. 

Kosslyn, Pick, and Fariello (1974) tested human distance judgments across barriers, and 

found that distance estimates across barriers were grossly overestimated. Clearly a bias in 

experimental settings, this bias may represent a heuristic in naturalistic settings for 

solving cost-reward evaluations for persons faced with a similar task –attempt to traverse 

the barrier, or to try and go around it? 

  Within the wayfinding literature, researchers have identified a number of other 

heuristics used to solve these otherwise computationally intractable problems. Golledge, 

Jacobson, Kitchin, and Blades (2000) break the problem space into two specific tasks; 

wayfinding, which they define as selecting segments from possible routes between two 
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points, and navigation, which consists of the lower level decision making that occurs 

dynamically to produce the followed course. According to this definition, navigation 

requires self-localization within the environment, whereas the wayfinding stage appears 

to accept strategic input considerations. These strategic input considerations constitute 

strategies or heuristics, among which the authors identify a number of interesting 

considerations, such as minimizing turns (c.f., the Least-Angle heuristic; Hochmair & 

Frank, 2000), optimizing for effort (as in orienteering), optimizing for path length, 

minimizing intersections (c.f. 2-Opt TSP algorithm; Croes, 1958). However, additional 

heuristics for solving this problem have been identified, most of which are at least at face 

value similar to the Category-Adjustment Model (Huttenlocher et al., 1991), which states 

that in cases of uncertainty, recalling distances (and perhaps other spatial information) 

may be accomplished by taking the remember value for that specific location and 

weighting it by the category-wise value. This heuristic for spatial encoding permits the 

judgment of distances with reasonable accuracy as it presumes low fidelity in the fine 

grain memories of object locations, and high fidelity in the (comparatively fewer) higher 

level representations.  

 

Chapter 2: New Analysis of Prior Empirical Research 

 Developments in this present line of research inspired us to revisit data collected 

in prior studies, specifically the dataset collected by Perelman and Mueller (2014), in 

which participants attempted to optimize for path length or time-discounted reward in 

TSP problems designed to disambiguate strategic optimization criteria, and the dataset 
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collected by Mueller, Perelman, Tan, and Thanasuan (manuscript under review), in 

which participants completed traditional TSP problems in the PEBL implementation of 

the task in order to form a normative dataset. Novel analysis of the data collected in these 

two studies has inspired the research and modeling approaches presented below.  

 

2.1 Criteria Selection 

Perelman and Mueller (2014) created problems containing spatial target layouts 

designed to disambiguate two types of solutions, one optimizing for path length, and the 

other optimizing for estimated time to find. Participants (n = 28) in that study completed 

the problems under two instruction conditions, one designed to encourage path length 

optimization, and the other designed to encourage participants to minimize the estimated 

time to find a target hidden among those points, a distance-discounted reward TSP. 

Perelman and Mueller (2015) further explored this dataset using a pathmapping approach 

to calculate pairwise divergence among all drawn paths within each problem to create a 

symmetrical divergence matrix (similar to a distance matrix), projecting this onto a 

metric space using Kruskal’s Non-Metric Multidimensional Scaling (via the isoMDS 

function of the MASS package; Venables & Ripley, 2002), and using stepwise flexible 

mixture modeling to identify solutions associated with particular mental models of the 

problem space. The authors then aggregated these solutions by cluster, and plotted them 

in an overlaid fashion (see Figure 2).  

 

 

48 
 



 

2.1.1 Perelman & Mueller 2014 Results Interpretation 

The results of this study indicated that participants strategically adapted 

optimization criteria according to instructions, although participants typically produced a 

variety of solutions in each instruction condition. Refer to Figure 2, Problem 2 (first row); 

when provided with shortest path length instructions, most participants produced a 

solution that involved tracing the loop clockwise (Cluster 5), while the remainder of 

solutions in this group fell into Cluster 4, which consisted mainly of a shoelace-style 

trace across the bottom portion of the problem space. Conversely, when participants were 

instructed to minimize estimated time to find, they produced solutions that fell into 

Clusters 1 and 3, which represent two separate approaches to solving the bottom portion 

of the problem space in rows, with the remainder falling into Clusters 2 and 4, which 

contain shoelace solutions and other suboptimal strategies.   

 For Problem 4 (Figure 2, row 2), when asked to generate shortest path solutions, 

participants nearly all (27/28) completed the Z-shaped problem by initially traveling left, 

then solving for the Z in lines. When instructed to minimize estimated time to find, four 

participants adopted a strategy that emphasized distance to first contact (the 

mathematically optimal solution to this problem optimizing time-discounted reward). Of 

the remaining participants, roughly half adopted variations on this strategy, some of 

which were very poor, and the other produced the same paths that they had when 

optimizing for path length. 

 Problem 5 (Figure 2, row 3) contained a similar Z-shaped problem appended with 

clusters on each of the vertices and the character’s tail. When asked to generate shortest 

49 
 



 

path solutions, participants generally (aside from a few cases that appear to be errors) 

solved the problem using the route used in Problem 4, Cluster 3, but the local solutions to 

the points within the clusters varied. The remainder of the participants produced paths for 

Problem 5 that fell into Cluster 3, the cluster containing the greatest variance in that set. 

When attempting to minimize estimated time to find, most (18) participants’ solutions 

fell into Clusters 2 and 4, which are very similar to the optimal estimated time to find 

solution to this problem globally, but differ locally (i.e., on a point-by-point basis).  

 Finally, Problem 7 consisted of a V with clusters at each point. When instructed to 

provide shortest path solutions, participants produced responses (Clusters 1 and 2) that 

are similar to the global optimal shortest path solution, differing mainly in local solutions. 

Cluster 2 contains paths similar to those in Cluster 1 with the exception that the first 

move is to the right rather than the left, respectively. When instructed to minimize 

estimated time to find, participants’ solutions generally fell into Cluster 2 (i.e., the same 

solutions they provided for shortest path) and Cluster 3, the globally optimal solution for 

this problem minimizing estimated time to find. Paths falling into Cluster 4, representing 

paths from both instruction sets roughly equally, mostly contain the highly suboptimal 

shoelace strategy.  

 

2.1.2 Perelman & Mueller 2014 Discussion 

 The results of this analysis indicate a number of interesting phenomena. First, 

participants’ solutions reflected strategic thinking, rather than automatic application of 

rigid bottom-up processing to engage the problem space. In Problems 2 and 7, some 
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participants applied the highly inefficient shoelace strategy. In some cases, solutions 

reflect a nearest-neighbor strategy that emphasizes distance to first contact (e.g., Problem 

4, Cluster 2). Second, given options that are equal in terms of global efficiency, 

participants seem to apply different reasonable strategies (see Figure 2, Problem 2, 

Clusters 1, 3, and 5) as well as others that are suboptimal (Clusters 2 and 4). Third, 

comparing solutions to each of the instruction sets, the differences appear to reflect 

global rather than local planning differences. For example, in Problem 4, Cluster 1, 

participants’ solutions followed the same global trend (down, to the vertex of the top 

angle of the Z, then split off to the tail somewhere down the segment connecting the two 

vertices), but differed in terms of local solutions given that global plan.  
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Figure 2. Mixture modeling results for four candidate problems.  Leftmost panel in each 
row shows the isoMDS solution, and remaining panels show clusters of solutions (plotted 
with jitter). Title indicates the number of solutions in cluster, along with the breakdown 
between the two instructions (path length / estimated time to find).  Details of each solution 
are discussed in the text.

52 



 

2.2 Multiple Optimization Criteria in TSP Solutions 

 Optimal solutions to the TSP minimize the path length in a solution that starts at 

any point and returns to home. Mueller, Perelman, Tan, and Thanasuan (manuscript 

under review) tested 29 subjects in 50 computerized fixed starting location TSPs 

consisting of six (five trials), 10, 20, and 30 (15 trials each), to create a normative dataset 

for the PEBL implementation of the problem. In this section, I reanalyze their data to 

detect the influence of another optimization criteria, specifically estimated time to find 

(i.e., time-discounted reward), on their solutions.  

 This section contains the method for this analysis, which I will refer to as the 

reverse solution analysis paradigm. Since TSP solutions are closed loop, a solution and 

its reverse (e.g., solving the problem space clockwise vs. counter clockwise) have an 

equal path length. However, the two solutions may differ in terms of other temporal 

criteria, such as distance to first contact and estimated time to find (i.e., time-discounted 

reward). Given that participants are asked to generate solutions on the basis of path 

length optimization alone, the observations of the two equally-good candidate solutions 

(the participant-generated solution and its reverse) should be equal between the solution 

that is better, in terms of that other optimization criteria, and its reverse. To investigate 

the intrusion of other optimization criteria into TSP solutions, the reverse paradigm 

solution calculates the efficiency of the reverse solution against its participant provided 

solution, where a skew away from .5 for a given solution indicates a bias, or the intrusion 

of that other optimization criteria.   
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2.2.1 Results – Estimated Time to Find / Time-Discounted Reward Intrusion 

 As per the reverse solution procedure described above, estimated time to find 

estimates were calculated for each solution and its reverse as the sum of the cumulative 

sum of each node distance in the solution multiplied by the number of segments – the 

order of that segment (i.e., counting down by one from the total number of segments in 

the solution). This time (or distance, in a TSP) discounted value increases with the 

average distance required to visit each location, so better (i.e., lower) values are achieved 

by covering more of the problem space as early as possible in the total solution. Of the 

1358 solutions suitable for analysis, 861 (63.40%) were consistent with the form that was 

superior in terms of estimated time to find, indicating the intrusion of time-discounted 

reward strategies into traditional TSP solutions. An exact binomial test indicated that this 

difference was significant from the expected distribution given chance, p < .001.  

 Given that both solutions (i.e., the participant-generated solution and its reverse) 

are equally good in terms of path length, is using a time-discount optimized strategy 

impairing or helping participants’ ability to generate good path length solutions? In order 

to investigate this question, I applied the reverse solution paradigm to only the solutions 

that matched the optimal solution for that problem. If applying time-discount strategies to 

TSP is helping participants, then we should see a greater skew toward this strategy in the 

problems that are solved optimally versus problems generally, and some of the worse 

solutions (those with path lengths 15% longer than optimal). Of the 317 optimal solutions 

in this dataset (23.34% of all solutions), 206 (64.98%) were also superior in terms of 
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estimated time to find. Of the 93 solutions containing path lengths at least 15% worse 

than optimal, 66 (70.97%) favored the solution form with superior estimated time to find.  

 One possibility for this behavior is that a bias toward ETF-optimization occurs 

throughout the problem solving process. Another possibility is that the bias is the result 

of a lack of foresight – that is, the bias appears because participants underweight the 

segment returning to home at the end of the tour. To investigate this second possibility, I 

performed the aforementioned analysis with the exception that the last segment in each 

tour was omitted, eliminating any variance attributable to the last segment’s length. 

Removing the final segment, participants favored the solution form with superior 

estimated time to find in only 52.28% of trials, an effect that was only approach 

significance according to a binomial test, p = .098. However, a binomial test did reveal a 

significant effect for the optimal solutions, p = .018, with 56.78% of them favoring the 

form with superior estimated time to find. No such effect was found for the poor 

solutions, p = .534. The results of this analysis indicate that a great portion, but not all, of 

the variance in the observed bias is attributable to participants’ inability to account for the 

return to home.  

 

2.2.2 Results – Distance to First Contact Intrusion 

 Distance to first contact is the primary consideration of the nearest-neighbor 

algorithm. Distance to first contact for each solution and its reverse were calculated 

according to the reverse solution paradigm described above. Of 1358 total trials, 

participants selected the solution form favoring distance to first contact in 931 (68.56%) 
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of those. An exact binomial test found this effect to be significant, p < .001. In addition, 

of the 317 optimal solutions, 213 (67.19%) favored distance to first contact, and 75 

(80.65%) of the 93 inefficient (i.e., path length at least 15% greater than optimal) 

solutions favored distance to first contact. These results suggest that distance to first 

contact also intruded into participants’ solutions. 

  

2.3 General Discussion 

 Analysis of human performance in a computer implementation of the TSP 

indicates the intrusion of irrelevant optimization criteria, specifically time-discounted 

reward and distance to first contact (Section 2.2). This quality is reflected in the mental 

models with which participants approach global optimization, as seen in Section 2.1. 

These results, taken together, indicate that computational models of human problem 

solving in TSP-like naturalistic tasks should be capable of producing similar solutions 

given the input of multiple, perhaps competing, optimization criteria.  

 Regarding the analysis in Section 2.2, the proportions of trials favoring time 

discounted reward and distance to first contact were roughly the same for the all trials 

and the optimal trials, but the proportions of bias were higher by roughly 10% for the 

very poor trials, indicating that this bias toward irrelevant optimization criteria may, in 

some cases, be deleteriously affecting participants’ ability to solve TSP solutions 

optimally. Further research will be required to explore this hypothesis.  
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Chapter 3: Empirical Research 

 In naturalistic tasks, the optimization criteria may be defined in terms of very 

specific goals. In some cases, these goals are unitary. For example, if the task is to plot a 

route for an unmanned aerial vehicle (UAV) designed to deliver items to consumers, then 

assuming that there are no issues with air traffic, the problem space appears largely like a 

traditional E-TSP. However, if that same UAV is tasked with searching for a missing 

person, the problem space appears more like a time-discounted TSP (Perelman & 

Mueller, 2014) in which the optimal strategy is to search as many locations as early as 

possible to maximize the probability of finding the target before it moves, or otherwise 

perishes. The purpose of this empirical research is to build on prior research in the areas 

of third and first-person problem solving, and provide evidence for either Gaussian or 

linear spatial representations in naturalistic problem spaces. This research is designed to 

inform computational models of human problem solving.  

 

3.1 Rationale & Hypotheses 

 The purpose of this dissertation is to investigate and model human planning and 

memory in naturalistic search tasks. The literature contains a clear consensus that 

memory is required for pathfinding, as it is in essence experiential learning in the spatial 

domain. However, the ways in which memory is required for solving problems that 

require planning and mental simulation is less clearly established in the literature. Key 

assumptions, moving forward, are that (1) near-optimal human performance in problem 

solving tasks cannot be explained by bottom-up mechanisms alone, and solving such 
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problems requires top-down planning, and (2) that these top-down plans are a product of 

hierarchically organized (i.e., at least two-layer) memory structures that allow complex 

problems to be subdivided into manageable pieces.  

It is worth noting that one consequence of these assumptions, which is beyond the 

empirical scope of this dissertation, is that patients with memory deficits should exhibit 

degraded performance in solving problems such as the TSP. This assertion is supported 

by simulated lesion studies using transcranial magnetic stimulation in healthy controls 

(Cutini, Di Ferdinando, Basso, Bisiacchi, & Zorzi, 2008), as well as subjects suffering 

closed-head traumatic brain injuries (Basso, Bisiacchi, Cotelli, & Farinello, 2001).  

Although the present studies investigate human performance in tasks that are 

ecologically valid and used in the real world, the investigative substrate of this 

dissertation is memory, more specifically memory representations involved in, and 

resulting from, planning during search operations. Three human subject studies will 

investigate the following research questions:     

1. What planning-based issues do professionals face in search and rescue 

domains? What role does memory play in actual search operations?  

2. What are the characteristics of memory representations in search? Are 

these memory representations based on contextual sequencing? Does the 

planning stage influence the memory representations either through 

proactive interference or providing scaffolding for retrieval, or are they 

simply subject to decay?  
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3. Does planning and plan execution differ in the first person, as opposed to 

2-D topographical environments? Do memory representations differ 

between the two environments?  

 

3.2 Study 1 – Subject Matter Expert Interviews 

During the course of their operations, professionals working in domains such as 

wilderness search and rescue, bail enforcement, and firefighting create and execute 

complex plans. These plans permit the operators to execute relatively complex searches 

by simplifying (i.e., chunking) those complex trajectories into relatively simple 

representations.  

 

3.2.1 Study 1 – Method 

The first study of this dissertation consisted of six interviews with subject matter 

experts (SMEs), recruited via convenience sampling from the author’s professional 

network, designed to improve our understanding of planning during search operations in 

the aforementioned domains. This number of experts follows the recommended 

guidelines for cognitive task analysis (Clark, Feldon, Van Merrienboer, Yates, & Early, 

2008). Information gleaned from these interviews was used to define the domain 

boundaries for the present empirical and modeling approaches. Each interview lasted 

roughly one hour. The SMEs provided input on various aspects of planning and executing 

plans in search and rescue operations. Some sample interview questions include,  

1. How are plans constructed for search operations? 
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2. How detailed are search plans? 

3. During search operations, to what extent are operators allowed to exercise 

initiative to deviate from the plan? 

4. During search operations, how do operators adhere to the plan?  

5. During search operations, in what ways do the actual search trajectories differ 

from the planned trajectories?  

6. During search operations, how do operators remember where they have searched, 

and what they have found?  

7.  Do you currently use any tools for constructing a plan, logging your routes, and 

logging what you have found?  

8. Simulation Interview: Without naming any individuals, locations, or 

organizations, please describe a typical search and rescue operation from start to 

finish.  

The basic structure of the interviews followed a structured interview for knowledge 

pertaining to search, followed by an incident-based simulation interview based upon the 

Knowledge Audit technique (Militello & Hutton, 1998). However, the present line of 

questioning treats plan construction, rather than the domain-specific job (e.g., bail bonds 

enforcement), as the expert task. These interviews departed from applied cognitive task 

analysis methods, such as the Knowledge Audit and Critical Decision Method (Crandall, 

Klein, & Hoffman, 2006), because their goal is not to elicit job-specific knowledge, but 

rather to elicit domain-independent knowledge about planning and provide ecological 

context to the human subjects studies and modeling. The subject matter experts 
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interviewed include an experienced bail bonds enforcer, two WiSAR operators, and a 

geospatial intelligence analyst, and two military specialists (see Table 2).  

 

Table 2. Subject matter experts, their relevant experiences, and critical observations 

SME Interview Number 
and Date 

Domain & Experience Critical Observations 

SME 1 MI Upper Peninsula Wilderness 
Search and Rescue, ~2 years 

Optimal exploration vs. 
exploitation strategies may 
include executing both 
simultaneously (i.e, conducting a 
hasty search while constructing 
the probability map for a more 
detailed search).  

SME 2 Bail Bonds Enforcer Information constraining search 
offloaded to databases wherever 
possible.  
 
Exploration vs. Exploitation: 
Optimal time spent in each phase 
determined by domain-specific 
characteristics. In bail bonds 
enforcement, most time is 
devoted to establishing the 
target’s location and confirming 
that location via multiple 
information sources.  

SME 3 Geospatial Intelligence Analysis 
in US Army, Navy, Air Force, 
and Marine Corps. Enlisted 21 
years, officer 12 years.  

Probability map construction and 
search execution are 
independent.  
 
Probability map construction 
depends upon training 
(geospatial analysts vs. imagery 
analysts).  
 
Probability maps are solved (i.e., 
directing intelligence-gathering 
assets) informally by the flight 
commander using heuristics.  
 
Optimization criteria includes 
probability of detection, not just 
target presence in a given 
location. 

SME 4 Newfoundland, Canada 
Wilderness Search and Rescue, 
2.5 years 

Optimal exploration vs. 
exploitation strategies may 
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include executing both 
simultaneously. 
 
Probability maps constructed 
using combination of human 
input and software, such as GIS 
programs.   
 
Human operators test-fit lost 
person model parameters. Trust 
in automation is relatively low.  
 
Searchers employ technology to 
offload information about where 
they have searched (using GPS 
trackers) and what they found in 
those locations (using digital 
cameras, sometimes with 
geotagging) 

SME 5 US Army, 13 years, 11B 
(infantry), Sergeant First Class. 
 4 years Airborne Infantry (2 

deployments to Iraq)  
 9 years National Guard (NJ; 

1 deployment to Iraq, 2 to 
Afghanistan) 

 Currently an Operations 
Advisor to Republic of 
Albania’s Defense Forces 
training Afghan National 
Army in Afghanistan 

 Experience as Platoon 
Regimental Tactical Officer, 
Team Leader, Squad Leader 
in a Recon Platoon, 
Weapons Squad Leader, Iraq 
Army Transition Team NCO 
(2008-2009) Assistant 
Battalion Operations NCO, 
Heavy Weapons Platoon 
Sergeant, and Advisor Team 
Engineer NCO 
(Afghanistan, 2011-2012).  

 Experience in nearly all 
aspects of light infantry 
warfare and urban mobility / 
breaching operations.  

Probability map construction 
expertise depends heavily on the 
unit’s command level, with the 
highest quality intelligence 
training found at the battalion 
level and above, and the greatest 
area of operations familiarity at 
the platoon level and below.  
 
Plans are often constrained by 
doctrine, usually in service of 
preventing fratricide.  
 
Patrols relay information on 
targets and location in real-time 
at the appropriate unit level, so 
there is no need to retain that 
information in memory / it is not 
subject to decay or error upon 
retrieval.  
 
Training deficiencies present a 
serious boundary to appropriate 
probability map construction.  

SME 6 US Army, 9 years, Cav Scout to 
Brigade and Threatre-level 
Intelligence via Branch Detail 
Program. 15 Years contractor to 
US Army.  

Plans provided to assets are kept 
as simple as possible to 
maximize agent initiative in 
local decision making. 
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 Experience as an 
intelligence officer in 
operations from theatre to 
brigade level, with 
experience in policing 
actions in South America.  

Problem space is mathematically 
more complex than time-
discounted reward. Searching for 
mobile targets involves 
temporally and spatially pairing 
named areas of interest (NAIs) 
with assets in a collection 
matrix.  
 
Optimization incorporates 
probability of detection based 
upon the expected signatures at 
the NAI (i.e, heat, electronic, 
etc.) and the asset’s capabilities 
(e.g., thermal or electro-optical) 
 
Assets are not always deployed 
to high probability locations, but 
often to routes of travel.   

 

These SMEs were selected for a number of reasons. First, they span the civilian, law 

enforcement, and military domains in which search occurs. Second, the search problems 

facing operators in all of these domains are similarly time-discounted in some way, 

unlike many routing problems in which all locations must be visited, and the order of 

visitation does not matter. Finally, while they operate at various organizational and 

command levels (i.e., bounty hunters often act as individuals, WiSAR operators in small 

teams of roughly squad size, or 6-12 men, and military operations can occur at all unit 

sizes up to brigade-level), they are all executing roughly the same task – find a missing 

person. 

 

3.2.1.1 Wilderness Search and Rescue 

 WiSAR operations begin with the report of a missing person, often by a 

loved one, last known to be in a remote environment. WiSAR operators are often 

volunteers, but they employ (wherever possible) other assets such as rotary and fixed-
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wing aerial assets, and search and rescue dogs. To aid their search operations, WiSAR 

operators construct a probability map of where they would expect to find the target, 

centered around the point where the target was last seen, and weighted by environmental 

factors, such as terrain and weather, and characteristics of the missing person, such as 

physical fitness, mental state, and wilderness experience (Ferguson, 2008; Lin & 

Goodrich, 2010; Perkins, Roberts & Feeney, 2003). Typically these structured search 

operations are conducted in parallel with a heuristic hasty search, which checks the 

highest probability locations independent of other factors. 

 

3.2.1.2 Geospatial Intelligence Analysis   

 Military intelligence operations are often aided by manned and unmanned aerial 

reconnaissance assets. These assets are capable of capturing real-time visual data, from 

the air. Geospatial intelligence is collected as a two-step process. In the first step, analysts 

(either geospatial analysts or imagery analysts) construct probability maps of the search 

space. In the second step, the flight commander executes the search with or without 

referencing the analysts’ specific recommendations as a guide. Importantly, the specific 

route of the intelligence asset (e.g., UAV) is planned and executed heuristically as a time-

discounted TSP. The main difference in probability map construction lies in training – 

geospatial analysts use databases that cross-reference layers of evidence to build target 

location probabilities, whereas imagery analysts construct probability maps in a heuristic 

fashion, relying mainly on visual cues from satellite images. For example, the SME in the 

present study, trained in geospatial analysis, reported participating in the high profile 
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search for Osama Bin Laden. Based upon Bin Laden’s medical requirements as a dialysis 

patient, the geospatial analysts discerned that he should be located in an area with direct 

access to shelter, fresh water, and power. As these locations are relatively sparse in 

remote regions of Afghanistan and Pakistan, the analysts succeeded in cutting down two 

nations totaling over 550,000 square miles to a number of discrete regions totaling 

roughly 3 square miles.  

 

3.2.1.3 Bail Bonds Enforcement 

 Bail bonds enforcers, also known as bounty hunters, are charged with recovering 

fugitives from justice. Similarly to WiSAR operators, they are charged with locating 

individual persons, however the problem spaces in which they operate are somewhat 

different. While WiSAR operators often search for missing persons who attempt to 

increase their visibility to searchers, bail bonds enforcers often search for fugitives who 

not only will attempt to evade capture, but will actively deceive the searcher by providing 

false addresses and contacts who can alert them to the bondsman’s attempts at 

investigation.  

Fugitive recovery operations begin with the report of a “skip,” or a suspect on 

bail, who has violated the terms of their release or failed to appear for court. At a 

minimum, the bail bonds enforcer begins his investigation using the information 

contained in the bail application that the suspect submitted to the court. However, the 

information contained within the application is rarely verified, and is often deliberately 

deceptive. Due to the lack of available up-front information, and the high risk associated 
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with physically searching the wrong locations, bail bonds enforcers spend far more time 

in exploration (i.e., research) than exploiting that information (i.e., searching addresses). 

Research substrates include, but are not limited to, telephone numbers, physical 

addresses, social media accounts, billing records, and internet activity. While researching 

suspects, bail bonds enforcers will also research the suspect’s friends and family. To help 

them deal with this large quantity of data, verify pieces of information using multiple 

sources, and juxtapose individual pieces of data to build evidence for specific theories, 

bail bonds enforcers often use proprietary databases to offload and manipulate the 

information.  

 

3.2.1.4 Search in Military Operations  

 Deployed infantry units plan search missions for high value targets, weapons 

caches, and other enemy assets within their area of operations with the help of maps and 

databases of significant activity (SIGACTS), such as the Tactical Ground Reporting 

System (TIGR) and the Combined Information Data Network Exchange (CIDNE). 

Intelligence gained during patrols is logged into these databases, and intelligence staff, 

non-commissioned officers (NCOs), and officers at various levels of command (battalion, 

company, and platoon) use these databases to plan future operations. As with WiSAR 

operations, mission planning based on intelligence consists of first constructing the 

probability space during a phase called Intelligence Preparation of the Battlefield (IPB), 

and then executing that probability space and updating the intelligence resources with 

information gleaned from that mission.  
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 During operations, soldiers relay intelligence in real time to the appropriate unit-

level command, and also discuss SIGACTS occurring during the operation in debriefings. 

In this way, the intelligence gathering process can be viewed as a cycle. During the 

search process, at higher levels of command (i.e., battalion level and up, though soldiers 

with intelligence training operating at the company level as part of a company 

intelligence support team, or COIST, will also do this), search is planned by assigning 

assets (i.e., units) to named areas of interest (NAIs), analogous to high probability regions 

on a probability map. This task is accomplished by creating a collection matrix, and 

plotting available assets against NAIs. Assets are assigned to NAIs (i.e., data collection 

plans are optimized) based on a combination of factors (i.e., optimization criteria), such 

as congruency between the NAI’s signature and the asset’s capabilities (for example, an 

aerial asset cannot collect intelligence on search areas that are underground, though they 

can collect intelligence on ingress and egress routes from underground locations), factors 

of convenience such as the distance between the asset’s staging area and the NAI, and 

temporal aspects such as overlap between unit availability and capabilities, and expected 

signature at those times from the NAIs. While it is rare that one unit will be assigned to 

multiple NAIs at a time, an aerial asset such as a UAV may be tasked with flying a route 

or visiting multiple open air locations, and in these cases the flight plan is constructed 

heuristically by the UAV commander.  

 At lower levels of command, such as Company and below, the assets will often be 

infantry units operating with little real-time information. Company-level missions 

sometimes receive help from battalion-level reconnaissance assets, but at the platoon 
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level, units must conduct their own reconnaissance, or engage in search missions without 

prior reconnaissance on the ground. In dismounted search operations, such as through 

small neighborhoods or villages, one of the strongest criterion for optimization is to 

minimize the probability of fratricide, and search plans are often heavily constrained by 

doctrine.    

 

3.2.2 Study 1 - Results  

These interviews have revealed a number of interesting findings. First, in applied 

settings, search is sometimes planned heavily before it is executed, and the extent of that 

planning is domain-specific. Second, due to the complex nature of the search 

environments and human memory constraints, operators often offload information to 

tools such as databases or mapping interfaces. Third, in many of the domains described 

above, the agents executing the search are not the same agents creating the probability 

map. Fourth, many of these domains incorporate software that cannot be modified on-the-

fly to incorporate the most contemporary techniques, or cannot easily incorporate 

information that operators have learned or been trained to detect. Therefore, operators’ 

trust in automation is somewhat low, and the use of technology is tempered in these 

domains by adjusting probability maps post-hoc.   

 

3.2.2.1 Identifying Target Locations versus Search Implementation 

 Operators attempting to solve search problems must maintain a balance between 

time spent identifying better target locations (i.e., constraining the search space) and time 
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spent in planning and execution. This tradeoff bears dynamics similarities to classic 

exploration versus exploitation problem in reinforcement learning, in which the agent 

must balance strategy evaluation and implementation. In applied search tasks, the 

situation is such that the operator must balance time spent researching the target (i.e., 

constraining the search space) and searching those available areas for the target.  

 Appropriate exploration-exploitation balance appears to be domain specific. Due 

to the nature of their targets, bail bonds enforcers want to be certain of the target’s 

location before searching the possible locations. Because they do not want to be found, 

fugitives will often lie about their addresses, or list addresses of friends and family who 

will warn them if a bail bondsman inquires regarding their whereabouts. These conditions 

necessitate a great deal of time spent constraining the search space (i.e., exploration) 

before the operator can plan a sequence in which to visit those locations (i.e., exploit that 

information).  

 Wilderness search and rescue operators address this problem by conducting both 

early and late searches. Immediately upon arriving on scene, WiSAR operators will 

conduct a hasty search in which they will quickly search the most obvious locations. 

While the hasty search is occurring, the incident commander will research the target 

individual and construct a detailed probability map that can be used to a guide a more 

carefully planned search, should the hasty search fail. Finally, it is important to note that 

WiSAR operators are sometimes looking for targets who attempt to evade detection as 

well (M. Hoekstra, personal communication, July 25, 2012), so it may be more 
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appropriate to describe search location constraint versus search tradeoffs as mission-

specific rather than domain-specific.  

 In military operations, the great wealth of personnel available for a particular 

mission often exceeds that seen in bail bonds enforcement and WiSAR, permitting 

command staff to allocate operators to a small number of locations, perhaps even a single 

location, as circumstances permit. The extent to which the problem space is explored 

prior to search (i.e., IPB construction) is largely a function of the unit-level of the 

operation, with larger-scale operations (i.e., battalion and above) having access to the best 

trained intelligence analysts and assets for collecting intelligence. Conversely, in small 

unit operations, the unit’s leaders often make intelligence products themselves. These 

small unit leaders have first-hand information of the problem space, similar to 

experienced, WiSAR operators, and so may have a better understanding of the area of 

operations than higher level command and intelligence staff despite less sophisticated 

training.  

These data indicate that a dichotomy lies in location selection versus 

prioritization, which may be temporally separated. Operators select possible subject 

locations based upon a search which is largely driven by semantic information in a 

process akin to location selection in foraging (Hills et al., 2008), and represents the 

operator exploring the problem space. This early effort is contrasted with planning for the 

actual search operations, in which the operator selects an order in which to visit the 

possible locations. This later planning and search execution effort may be accomplished 

using sequence memory cognitive machinery, and indicates that the operator is exploiting 
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knowledge learned during exploration. Study 2 (see below) is designed to test this 

hypothesis. 

 

3.2.2.2 Offloading Search Information and Constructing the Probability Space  

 During the course of a search, operators benefit from access to a wealth of 

information ranging from aspects of their search through the environment (i.e., where 

they have searched and what they found) to characteristics of the target, which may be 

dynamic (e.g., preparedness for weather conditions, or quantity of perishable foodstuffs 

remaining). To alleviate the memory burden, operators use tools designed to offload and 

organize this information. This information then factors into the construction of the 

probability space.  

 In bail bonds enforcement, operators must constrain the search space through 

heavy research. In order to store and organize the necessary information, operators create 

proprietary databases or purchase commercial software. The key benefit to these 

databases is that they allow bail bondsmen to crosscheck information from multiple 

sources, which is critical when some sources of information are either intentionally 

deceptive or merely inaccurate.      

 WiSAR operators use tools for both constructing probability maps, and for 

planning and logging search information. Probability map construction is based on 

analyses of the lost person, and operator prior knowledge of the target area (M. Hoekstra, 

personal communication, July 25, 2012). The latter point relates directly to past search 

plans and implementations. WiSAR operators often use mapping tools, called geographic 
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information systems (GIS), to log past and current searches, and use digital cameras 

(sometimes equipped with geotagging capability, that links images to specific GPS 

coordinates) to document what they found in specific locations. Offloading precise 

information is advantageous in this domain, and even before the use of computers, many 

WiSAR organizations mandated the use of notebooks to log search information. 

Offloading information permits operators to overcome human memory limitations and 

create collective target area-specific histories. In addition to improving information 

sharing, this means that, should an operator retire or move, their knowledge of the target 

area is not lost. These histories allow WiSAR operators to analyze the spatial data to 

detect target area-specific patterns, driving future predictions and planning.  

In military operations, patrol intelligence is collected at the Company level. The 

Company Command Post radio telephone operator (RTO) tracks elements moving 

through that Company’s area of operations, logging the patrol’s path. During the patrol, 

NCOs often write written notes or relays SIGACTS to the Company RTO. These actions 

permit the patrol to offload information from memory during the search. After the search, 

patrols conduct internal debriefings, and if the findings are minor they are passed up the 

chain of command via email, or if they are significant, discussed immediately between 

the patrol’s platoon leader and sergeant, and the Battalion S-2. Collecting information in 

this way prevents the patrol from having to store important information in memory. 

Prior to search missions in military operations, intelligence and command staff 

use intelligence collected during patrols and uploaded to TIGR to complete the IPB task. 

The IPB consists of geographical information (often maps derived from Geoquest), and 
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intelligence comprising a Modified Combined Obstacle Overlay, containing multiple 

overlays such as key terrain, mobility corridors (including egress points from buildings), 

and engagement areas (including weapons ranges and effects). This task is analogous to 

the probability map construction tasks in WiSAR and military geospatial intelligence 

analysis, however wherever possible the prior intelligence is augmented by real-time 

reconnaissance assets providing up-to-date information on the area of interest. 

Importantly, the quality of assets available to the unit depend upon the command level of 

the mission assignment. For example, highly trained mapping and geospatial intelligence 

analysts are assigned only at the brigade level. At the battalion level, IPB is conducted by 

the battalion S-2, an intelligence branch captain, and senior NCOs and officers who are 

not necessarily trained. At the company level, COIST conducts the IPB in conjunction 

with the company Executive Officer (XO). COISTs are often comprised of untrained 

infantrymen who do not understand the flow of operations as well as the NCOs and 

officers doing IPB at the battalion level, and COISTs are not necessarily trained in using 

the required databases and mapping software. The result is that most company-level 

intelligence products consist of nothing more than a Geoquest map screenshot with 

graphics overlaid in MS Powerpoint. Finally, at the platoon level, IPB is done by the 

platoon leader (an officer) and platoon sergeant. Typically requests for intelligence 

pushed up the chain of command are not fruitful, so the IPB product is again typically a 

map with Powerpoint graphics overlays. Importantly, however, the relatively small size 

of the operations permits the platoon leader and sergeant to create a highly detailed 

product compared with those produced at the company level.  
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3.2.2.3 Solving the Probability Space 

 In WiSAR, probability maps are often constructed using a combination of 

software (to model lost person behavior given personal and environmental variables) and 

heuristic processes that rely upon familiarity with the operational environment. In 

military intelligence analysis, probability maps are constructed differently depending 

upon the analysts’ training (i.e., as imagery analysts or geospatial analysts). In WiSAR, 

the problem space is often created and solved by command staff, whereas in aerial 

military intelligence, analysts create the probability spaces, but the problem spaces are 

solved by pilots or commanders operating the aircraft. Sometimes the flight commanders 

discard the analysts’ recommendations altogether. The significance of this dissociation or 

integration is beyond the scope of this dissertation, but if plan formation is tied to plan 

execution and the memory for targets and the traveled route, then it stands to reason that 

dissociating these roles will produce memory effects that differ from those observed in 

domains where they are integrated.  

In ground military operations, after the unit’s intelligence team has completed the 

IPB task, problem space solutions are far more constrained than those generated in 

WiSAR due to the number of assets available to military units and domain-specific 

requirements. Physical plans in military search operations are constructed differently at 

various levels of command. As discussed above, trained intelligence officers, typically 

found at the battalion level or higher, will construct a collection matrix plotting NAIs 

(high probability locations) against assets, and pairing assets with locations based on 

optimization criteria such as probability of detection, temporal factors such as availability 
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and expected time of arrival if the target is mobile, and the asset’s exposure during the 

task. That is to say that the task difficulty generally lies in assigning assets to individual 

locations rather than routing elements through multiple high probability locations. To 

minimize the probability of fratricide, solutions are necessarily constrained by doctrine, 

and therefore often consist of searching areas such as small neighborhoods or villages in 

rows or columns so that unsearched structures will remain in front of the unit, with 

friendly forces remaining behind or parallel, and therefore permitting commanders to 

engage the enemy without accidentally engaging friendly forces.   

 

3.2.2.4 Trust in Automation versus Training 

 In WiSAR, operators benefit greatly from the use of software, but do not trust 

model recommendations blindly. For example, when constructing probability maps, 

command staff will often use software to build evidence for or against their own mental 

models, developed via experience and training in lost person behavior. This process 

consists of adjusting model parameters to account for a variety of possible conditions, 

and modifying model predictions (i.e., probability maps) post-hoc in a heuristic fashion.  

 In military intelligence, geospatial intelligence analysts use GIS software to 

model probable target locations. Again, model parameters are often test fit to compare to 

the analysts’ mental models that incorporate additional information. SME 3 reported that 

GIS software he had used in searching for targets did not incorporate psychogeography 

(Debord, 1955), therefore he would refine the model predictions post-hoc to incorporate 

this type of information. The issue presented here is that software may not allow for the 
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most contemporary techniques to be used in modeling target behavior. To overcome this 

shortcoming, operators adjust model predictions to incorporate this information.  

 

3.2.3 Study 1 – Conclusions 

 The results of Study 1 indicate that memory plays a key role in generating 

problem spaces used for naturalistic tasks, and wherever possible, the information 

required for generating that problem space is offloaded into a database of some sort to 

unburden the operator. For this reason, the problem spaces used in the aforementioned 

naturalistic tasks do not need to be “chunked,” or hierarchically subdivided, and therefore 

are protected from bias at the problem space generation level, much the same way that 

instruments such as GPS systems and compasses protect direction and distance estimates 

from bias as they remove “error baggage” between actual and believed spatial 

relationships (Colledge et al., 2000).  

 While problem space generation in military intelligence and WiSAR benefits 

greatly from technology, solving those problem spaces is largely accomplished by 

treating the problem as a combinatorial optimization problem, and applying traditional 

problem solving heuristics. Though operators will generally define a search plan in terms 

of segments drawn among “hot spots” or NAIs on a probability map, the actual 

trajectories traversed by the searching parties tends to be malleable, and subject to 

“recon-pull” or information available to the searcher once it reaches the destination. 

Problem space generation is incredibly complex, and requires domain-specific 

knowledge, and the greatest opportunities for advancement most likely lie in 
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technological, rather than human, advances. Therefore, this dissertation will focus on 

coarse-grain high-level plan formation and fine-grain low level plan execution for solving 

the combinatorial optimization problems presented by domain-independent problem 

spaces of discrete points in Euclidean space.  

 The results of Study 1 hold modeling implications for a general model of 

naturalistic planning and spatial problem solving. First, since planning and execution 

operations are separate in many operational domains (e.g., WiSAR, geospatial 

intelligence collection and analysis, and military operations), the model should be 

capable of planning and execution in isolation. Many existing models of problem solving 

(e.g., Pizlo et al., 2006; MacGregor et al., 2000) provide an integrated solution that is at 

odds with this dissociation. Second, models of planning must generate plans that are 

sufficiently flexible to allow for changes in operational considerations. For example, in 

military operations, plans are ideally concrete enough to produce the desired outcome, 

but sufficiently malleable to permit changes. Therefore, the modeling effort in this 

dissertation will focus on producing a model that can develop plans strategically based 

upon optimization criteria, with functionality for multiple approaches to local decision 

making.  

 

3.3 Study 2 – Laboratory Investigation of Planning and Memory Representations 

 One serious barrier to modeling planning in search and navigation tasks is 

understanding the mechanism participants use to construct high level plans for search. 

Even for a single task, such as TSP for example, authors propose multiple dynamics all of 
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which are biologically plausible. No study to date has attempted to compare these high 

level planning dynamics directly. The second study of this dissertation will provide 

direction for my modeling efforts, distinguishing between cluster and linear planning 

dynamics, by characterizing participants’ plan representations through error 

identification. Error distribution parallels between spatial and other types of memory, for 

example verbal memory (e.g., Hirtle & Jonides, 1985) and episodic memory (e.g., 

Huttenlocher, et al., 1991), have been used in prior studies to infer characteristics of 

spatial memory representations. Therefore, wherever possible I will draw parallels 

between spatial memory, and characteristics of other types of memory such as episodic 

and semantic memory. The experimental stimuli for this study will be implemented using 

a navigation task coded in the Psychology Experiment Building Language (PEBL).  

Prior research (Perelman & Mueller, 2013a) has identified two types of spatial 

errors committed while participants attempt to retrieve target locations in a naturalistic 

TSP. Each of these error types maps onto one of two distinct types of memory 

representations in the literature: general spatial confusions, which suggest that target 

memory shares characteristics of semantic memory, and predict Gaussian error 

distributions around the actual target location, linear spatial confusions, transpositions 

(decreasing in recall probability with serial position), and primacy and recency effects, 

which suggest a link between target memory and episodic memory, and predict linear or 

ellipsoidal (skewed) error distributions centered on the actual target location, and drawn 

along the organism’s route of advance through the problem space.  
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Identifying which of these distributions, or in what proportion, best describe 

human errors in this task is critical not because this knowledge would reduce operator 

error, but because it provides insight into the characteristics of target memories and plan 

representations. For the purpose of this dissertation, the term “cluster” will be used to 

describe Gaussian distributions whereas the term “linear” will be used to describe the 

aforementioned ellipsoidal skewed distributions. These two distinct possible 

representations map closely onto different approaches to modeling planning in 

navigation, with cluster models (e.g., Pizlo et al., 2006) using dynamics very similar to 

semantic memory (c.f., Hills et al., 2006), and linear and convex hull models (e.g., Kong 

& Schunn, 2007; MacGregor et al., 2000) using dynamics similar to episodic memory.  

The aforementioned errors have been identified in spatial tasks, such as the Corsi 

block task and a dynamic aerial search task, and non-spatial tasks such as list memory. 

Mueller (results not yet published) noted spatial transposition errors in a Corsi block task 

that were similarly identified by Perelman and Mueller (2013a) in a simulated aerial 

search task through multiple possible target locations. Through qualitative analysis of the 

data, the authors identified two types of errors: transposition errors (i.e., when a subject 

reported that a target was found at a possible target location previously or subsequently 

visited to the actual target location) and proximity errors (i.e., when a subject reported 

that a target was found in a possible target location adjacent to the actual target location). 

Transposition errors are commonly seen in the verbal memory literature (Hurlstone et al., 

2013), and proximity errors may be viewed as related to semantic proximity errors (i.e., 

phonological similarity in the verbal domain and item similarity in the visual domain, 
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though Hurlstone et al. [2013] note that these types of spatial errors have yet to be 

identified in spatial problems involving sequential presentation). We suspect that a third 

type of error, plan-based errors, may account for some error variance that occurs as a 

result of the participant resorting to the simpler “plan” representation during recall (c.f., 

Category-Adjustment Model; Huttenlocher et al., 1991). This error involves participants 

recalling target positions as erroneously closer in proximity to the higher level simplified 

plan trajectory. By quantitatively and systematically investigating these errors, this study 

will drive the modeling efforts to either cluster or linear dynamics, or perhaps a hybrid of 

both.  

 

3.3.1 Study 2 –Method  

 This study is methodologically informed by prior tests of human performance on 

problems designed to force participants to strategically adapt search strategies based on 

instruction and confuse existing biologically inspired computational models (Perelman, 

2014; Perelman & Mueller, 2014). For these experiments, we created spatial problems 

(see Figure 3, panel A) designed to disentangle the aforementioned memory errors (i.e., 

proximity, transposition, and plan-based errors). In two experiments, 22 (Experiment 1) 

and 46 (Experiment 2) Michigan Technological University undergraduate students were 

recruited via SONA systems, incentivized to satisfy course credit for introductory 

psychology courses. In Experiment 1, participants used a blue “plan line” to provide 

global guidance through the problem space. In Experiment 2, participants were allowed 
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to solve each problem without any guidance. For more on the differences between these 

two experiments, see Table 3 (below).  

 

Table 3. Experimental Protocol Differences – Experiments 1 and 2 

Experiment 1 Experiment 2 
n = 22 n = 46 
Participants guided via blue “plan line” Participants received no global guidance 
5 Conditions, 15 trials each 

 Condition 1: Cued recall, 
proximity and plan foils only 

 Condition 2: Cued recall, targets 
only 

 Condition 3: Free recall 
 Condition 4: Cued recall, 

proximity foils and targets only 
 Condition 5: Cued recall, plan 

foils and targets only 

4 Conditions, 20 trials each 
 Condition 1: Cued recall, 

proximity and plan foils only 
 Condition 2: Cued recall, targets 

only 
 Condition 3: Free recall 
 Condition 4: Cued recall, 

proximity foils and targets only 
 

Targets generated a fixed distance from 
“plan line”  

Targets generated randomly within each 
“leg” 

 

Participants completed the PEBL-coded experimental task under two main conditions 

differing in terms of the required memory task: cued recall with and without foils, and 

free recall. These conditions were further subdivided (see Table 3, above) to include 

varying types of foil and target combinations.  
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Figure 3. Screenshots of PEBL experimental task used in Experiment 1. Panel A shows 
the search task, while Panel B shows the memory task in the multiple decision with no 
correct choice condition (condition 1). In the second condition, participants manually 
place the target locations. Errors are coded as proximity-based, plan-based, or 
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transposition errors based upon their distance to the aforementioned foil locations. Note 
that Experiment 2 was visually identical, however the blue plan line was omitted.  
 
 
 In the search task, participants search (Figure 3, panel A) for targets (simulated 

camera view right of the topographical map) by clicking on the possible target locations 

(blue circles). When the search task is complete, participants see a mask over the display 

(100 ms) followed by the memory test for that condition. In the memory test, some target 

locations are added and others removed systematically to disentangle error types (see 

below for an in-depth explanation). In the first condition, participants complete a memory 

task in which they indicate which of the possible locations contained targets (Figure 3, 

panel B). In cued recall conditions, participants select which of the possible target 

locations presented contained targets. The cues presented depend upon condition (see 

below for an explanation). In the free recall condition, participants must manually 

indicate the target locations.  

 The foils used in this study (see Figure 4) are designed to disentangle three types 

of errors, transpositions (corresponding to linear errors), proximity errors (corresponding 

to Gaussian errors), and plan-based errors (corresponding to problems with hierarchical 

processing). These errors hold functional relevance for modeling human planning. 

Transposition errors are indicated when participants recall the target as located in a 

possible target location preceding or following the actual target location in terms of serial 

order of visitation (i.e., of locations that the participant actually visited). These errors 

indicate that the memory representation is based on sequential mental simulation (i.e., a 

rough position along the actual path encodes the target’s location), and suggest that 
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planning would be better modeled using trajectory-based models (e.g., Kong & Schunn, 

2007; Perelman, 2014). Note that these errors are derived from the serial position of 

visitation and therefore are not added to the map during the recall task. Spatial proximity 

errors are indicated by participants recalling the target in a possible target location near 

the actual target location that they did not ever actually visit (i.e., the location is added for 

the memory test), and does not lie close to the plan line used to constrain the search 

trajectory. These errors are expected if the target memory representation is merely low 

fidelity (i.e., the memory representation is coarse and confined only to a rough location 

on the topographical map). Such representations are ideally modeled using a cluster 

model (e.g., Perelman & Mueller, 2014). Finally, in Experiment 1 (where participants are 

shown the plan line), plan-based errors are indicated when the participant recalls the 

target in a location that is close to the plan line rather than the target location. These 

errors are expected if the memory representation used to store target information is bound 

to the higher order memory representation of the path. Reasons for this include the 

possibilities that the plan may provide proactive interference for encoding and retrieving 

the actual target’s location, or that it may provide a cue to which the participant can 

scaffold the target’s location. In the second experiment, plan-based errors indicate 

generalization of the target’s position as they are positioned at the center of the target 

cluster in each leg.  
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Figure 4. A magnified section of the search space with the actual trajectory and “plan” 
indicated by the red and blue lines, respectively. The target location is indicated with the 
red X. Note that the actual target location’s presence during the memory test depends on 
the condition, while across both forced choice conditions (i.e., 1 and 2) the spatial 
proximity error location (P) and plan-based error location (PL) are added during the 
memory test. Incorrect recall of the target location indicates either a spatial proximity 
error (P), a transposition error (T), or a plan-based error (PL). 
    

 After completing the above task, participants completed the Berlin Numeracy 

Test (BNT; Cokely, Galesic, Schulz, Ghazal, & Garcia-Retamero, 2012). Numeracy is 

relevant to decision making in search in a number of ways. First, numeracy is highly 

correlated with working memory capacity, which we expect plays a critical role in 

planning. Therefore, BNT scores should positively correlate with performance on the 

memory task. Second, judgments such as those made during the Decision Test paradigm 

(Perelman & Mueller, 2013a) require weighing distance-discounted rewards. In that 

study, in aggregate, participants probability-matched the cost ratio associated with the 
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two possible routes. While the aforementioned problems should constrain the 

participants’ search paths, it is unlikely that we will find individual differences in search 

performance. However, it is worth mentioning that since numeracy correlates with 

decision making in risk evaluations (Cokely & Kelley, 2009), we should also expect that 

BNT scores will positively correlate with performance in general search tasks.  

  

3.3.2 Study 2 – Data Collection and Analysis 

 The computer task script continually logs participant trajectories and response 

times for each location clicked during the search task, and participant responses during 

the memory task. In the cued recall conditions, participants’ responses matched discrete 

points on the map, making error type identification simple (i.e., if a participant 

erroneously suggests a location indicating a transposition error, then the response is 

logged as a transposition error). In the free recall condition, participants’ responses were 

characterized in terms of the raw response information, and the responses were also 

discretized to the closest actual target location presented to them in the search task. This 

transformation was trivial as the PEBL stimulus script logs all pertinent data, including 

target and foil locations, participant trajectories, and participant clicks during the memory 

task.  

 

3.3.3 Study 2 - Hypotheses 

 The objective of these two experiments was to (1) plot serial position and 

Euclidean distance curves for the errors, and map them in relation to the target locations, 
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the traveled trajectory, and the higher order plan, in order to (2) determine the extent to 

which human memory representations in this task share characteristics with sequences of 

events, as in episodic memory, or noisy encoding and retrieval, as in semantic memory.  

 The primary hypothesis pertains to the error distributions relative to the target 

locations, and states that if recalled locations are normally or uniformly distributed 

around the actual target location (H0), then human memory representations for target 

locations in this task are not tied to the route through the environment (i.e., sequence of 

events). However, if these recalled locations are not normally or uniformly distributed 

around the actual target location (Ha), but are rather skewed linearly, it seems reasonable 

to conclude that participants’ memory representations are tied to the path they took 

through the environment. For the cued recall conditions, this means a greater proportion 

of errors along the route of travel than perpendicular to it. For the free recall conditions, 

this means a skewed distribution with less variance along than route of travel than 

perpendicular to it. While this admittedly a dual processes approach (c.f., Cokely, 2009) 

to what is most likely a far more complicated problem, the utility of this approach is to 

provide evidence toward one of two possible modeling directions – one which represents 

higher level plans linearly, and the other which represents them as clusters. 

Additionally, we should expect that the error distributions are consistent with 

existing literature on serial memory. Specifically, if the cognitive machinery employed in 

this task is similar to that used for list memory, we should expect typical serial order 

effects (i.e., decreasing probability of recall with increasing serial position from the 

actual location), and primacy and recency effects. Finally, since performance in these 
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tasks requires risk calculation, we expect a significant correlation between task and BNT 

performance.  

 

7.3.4 Study 2 - Experiment 1 Results 

 Participant performance in a cued recall condition without foils (Condition 2) 

provides an estimate of normative performance in this task. Generally, participants 

correctly remembered the locations of ~75% of the targets (see Table 4, below). The errors 

followed a Gaussian distribution around the actual target location, with probability of 

erroneously recording the target location decreasing in terms of both serial position (Figure 

5) and Euclidean distance (Figure 6) from the actual target location, and no strong primacy 

effect, but a possible recency effect, were observed in comparing the probability of 

successful recall with serial position of the target in Condition 2 (Figure 7). Due to the 

random nature of target generation in the present study, however, set sizes of targets at 

each serial position were grossly inconsistent so this data should be interpreted with caution 

(see Figure 7, left panel). Similar distributions were also seen in the free recall condition 

(Condition 3). Two-sample Kolmogorov-Smirnov tests indicated significant differences 

between the recall probability distributions for cued recall and the raw free recall points (D 

= 0.83, p < .001), but this difference disappeared when the freely recalled points were 

discretized to real locations in the map space (D = 0.05, p = .15). Similarly, the two 

conditions showed no significant differences regarding the probability of recall given serial 

position (D = 0.05, p = .19). Levene’s test revealed differences in homoscedasticity 

between the cued and discrete, F(1, 2028) = 5.60, p = .018, but not the cued and raw, F(1, 
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2028) = 2.35, p = .13, target recall probability distributions. Levene’s test also revealed 

significant differences between the cued and free recall probability distributions in terms 

of serial position, F(1, 1915) = 10.14, p = .001. Participants effectively used the plan line 

to encode their responses, as in the cued condition (Condition 2) they never provided a 

response that lay on the side of the line opposite the target, and in free recall (Condition 3) 

they committed this type of error in only 7.17% of trials.  

 

Figure 5. Free and Cued Recall Serial Position Effects. 

Figure 6. Free and Cued Recall Euclidean Distance Effects.  
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Figure 7. Probability of recall given serial position of the target. The panel on the left 
indicates the number of trials in which a target appeared in that serial position (whole bar), 
and the proportion of those trials on which participants responded correctly (dark portion 
of bar). The light portion of the bar represents error. The panel on the right shows the 
probability of recall given serial position.  
 
 Conditions 1 (Plan and proximity foils; no targets), 4 (Proximity foils and targets), 

and 5 (Plan foils and targets) each provide different clues to the memory representations 

participants created and used during recall (see Table 4). The results of Condition 4 indicate 

that participants were able to discriminate between the actual target location, and a 

proximity foil placed touching the actual target location. In fact, participants were more 

likely to commit a transposition error than to confuse the proximity foil with the actual 

target location, despite the close proximity. In Table 4, in Conditions 1 and 4, participants 

were more likely to erroneously select the proximity foil when it lay along, rather than 

perpendicular to, the line of travel. However, a Chi Square test of independence showed 
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that these differences for Conditions 1, 2 = .03, p = .84, and 4, 2 = .11, p = .74, were not 

significant. 

 Participants responded most accurately in Condition 5. This may be because the 

plan foils, placed at the same distance along the plan line as the target, provided a retrieval 

cue to the actual target locations. These results should be contrasted with those of Condition 

1. Note that participants were instructed to recall the closest point to the actual target 

location. According to these instructions, recalling the target location as the proximity foil 

would actually be correct. In Condition 1, by this criterion, participants were able to 

achieve equal accuracy using proximity foils and the actual target locations; again, 

presumably this effect was caused by the retrieval cue provided by the plan foils.  

 The proximity foils were generated by deviating the actual target location by 30 

pixels across the X and/or Y axes. Therefore, proximity foils could be subdivided into three 

groups – foils perpendicular to, parallel to, and diagonal to the plan line relative to the 

target location. The free recall results indicate that participants were able to encode the 

target distance from the plan line more accurately than the target distance along the plan 

line, though Mardia’s test did not detect significant multivariate skew (Mardia’s skewness 

coefficient = .004, p = .27). This null finding is unsurprising, as Mardia’s test often 

produces high rates of Type II error when applied to short-tailed non-normal elliptical 

distributions (Gutjahr, Henze, & Folkers, 1999), such as the one produced by participants 

in the present study.   

If participants’ memory for distance relative to the plan line was the sole cue used 

for retrieval, we might expect more errors in proximity foils falling parallel with the plan 
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line, as participants’ free recall responses indicated more parallel (S.D. = 60.92 pixels) than 

perpendicular variance (S.D. = 47.48 pixels). This effect was not seen (see Table 4) in 

Condition 4, where participants were presented with the actual target locations, or 

Condition 1, where the proximity foil was the most correct answer as per the instructions. 

The relatively low number of target-proximity foil confusions in Condition 1 indicates that 

participants draw on more than just line-relative spatial cues to discriminate between 

locations they actually visited and those that they did not.  

 Table 4. Percentage of responses, by condition, for each of the locations. Note that 
responses for Condition 3 (free recall) have been recoded as discrete by assigning the free 
responses to the closest real point in the map space. The light gray cells refer to the 
proportion of trials, featuring the proximity foil in a particular orientation with respect to 
the plan line, on which the participants selected that foil.   
 

Condition Correct 
Answers 

Other 
Errors 

Plan 
Foils 

Proximity 
Foil: 

Parallel to 
Plan 

Proximity Foil: 
Perpendicular 

to Plan 

Proximity 
Foil: 

Diagonal 

All 
Proximity 

Foils 

Foils Only 
(1)  14.11 10.13 80.97 79.83 70.30 75.77 

Cued 
Recall (2) 75.34 24.66      

Free Recall 
(3) 78.61 21.39      

Targets and 
Prox Foils 

(4) 
76.00 12.05  14.90 13.47 9.26 11.95 

Targets and 
Plan Foils 

(5) 
84.60 11.92 3.48     

  

3.3.5 Study 2 - Experiment 2 Results 

 The purpose of Experiment 2 was to replicate the findings of Experiment 1 

without providing participants with global guidance, to determine whether or not 

participant-generated global plans would impact memory performance. In addition, the 

task environment was slightly more challenging; as targets were generated at random 
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distances from an invisible center line, participants could neither anchor on that center 

line (the blue plan line in Experiment 1), nor on the target’s location on the screen 

relative to static terrain features.  

Participant memory performance in this task was better than that in the first 

experiment, with participants correctly remembering the locations of ~88% of the targets 

in the cued recall task, and ~83% of the targets in the free recall task (see Table 5, below). 

The errors were distributed similarly to those in Experiment 1, approximating a somewhat 

Gaussian distribution according to serial position (Figure 8) and Euclidean distance (Figure 

9) from the actual target location. In Table 5, in Conditions 1 and 4, note that as in 

Experiment 1 participants were more likely to erroneously select the proximity foil when 

it lay along, rather than perpendicular to, the line of travel. However, a Chi Square test of 

independence showed that these differences for Conditions 1, 2 = .01, p = .92, and 4, 2 = 

.79, p = .37, were not significant.  

In the second experiment, two-sample Kolmogorov-Smirnov tests indicated 

significant differences between recall probability distributions between cued and free recall 

using both raw (D = 0.88, p < .001) and discretized (D = 0.05, p < .001) free recall points 

(see Figure 8). However, this test showed no significant differences between cued and free 

recall regarding the probability of recall given serial position (D = 0.05, p = .19). Levene’s 

test was used to identify differences in homoscedasticity between the above experimental 

distributions, and found significant differences between the cued and discretized free recall 

probability distributions, F(1, 5218) = 11.37, p < .001, but no significant differences 

between the cued and raw free recall probability distributions, F(1, 5218) = 0.95, p = .33, 
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and a near-significant difference between the free and cued recall serial position 

distributions, F(1, 5200) = 3.69, p = .055.  

 

Figure 8. Free and Cued Recall Serial Position Effects, Experiment 2.  

 

Figure 9. Free and Cued Recall Euclidean Distance Effects, Experiment 2.  
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Figure 10. Probability of recall given serial position of the target. The panel on the left 
indicates the number of trials in which a target appeared in that serial position (whole bar), 
and the proportion of those trials on which participants responded correctly (dark portion 
of bar). The light portion of the bar represents error. The panel on the right shows the 
probability of recall given serial position. 
 

 During free recall in the first experiment, participants’ responses showed a higher 

variance along their route than away from it. This indicates two possibilities – either this 

effect is dependent upon the presence of the plan line (i.e., they used the plan line as a 

retrieval cue, and it was easier for them to determine distance from that line than the target’s 

distance along it), or it is independent of that line. In the second experiment, conducted 

without the presence of the plan line during search and recall, variance along the route of 

travel was higher (S.D. = 55.44 pixels) than variance perpendicular to the route of travel 

(S.D. = 35.95), and Mardia’s test detected a significant multivariate skew in the distribution 

(Mardia’s skewness coefficient = 0.12, p < .001). This demonstrates that this effect is not 

an artifact of the line used to guide participants’ paths, and that participants are able to 

encode the target location’s relative distance to the plan line better than that target’s 
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location along the plan line, lending credence to a linear quality of their memory 

representations used in this task. 

Table 5. Percentage of responses, by condition, for each of the locations. Note that 
responses for Condition 3 (free recall) have been recoded as discrete by assigning the free 
responses to the closest real point in the map space. The light gray cells refer to the 
proportion of trials, featuring the proximity foil in a particular orientation with respect to 
the plan line, on which the participants selected that foil. Condition 5 has been eliminated 
from Experiment 1. Most interestingly, the absence of a plan line caused the number of 
plan-based errors to increase dramatically in Condition 1, indicating that participants 
were using the plan line to detect plan foils.  
 

Condition Correct 
Answers 

Other 
Errors 

Plan 
Foils 

Proximity 
Foil: Parallel 

to Plan 

Proximity Foil: 
Perpendicular 

to Plan 

Proximity 
Foil: 

Diagonal 

All 
Proximity 

Foils 
Foils Only 

(1)  16.47 41.63 47.47 47.07 35.17 41.90 

Cued Recall 
(2) 88.14 11.86      

Free Recall 
(3) 82.77 17.23      

Targets and 
Prox Foils 

(4) 
74.81 12.40  16.08 14.29 9.51 12.79 

 

 Finally, BNT performance on this task, measured in terms of percent correct, was 

slightly lower than the theoretically ideal score of .50 (M = 44.19, SD = 23.68), and 

roughly close to the expected normative score in empirical research (see Cokely et al., 

2012). Pearson’s correlations were used to investigate a relationship between task and 

BNT performance. No significant correlations were detected between BNT performance 

and Condition 2 (cued recall), r(41) = .08, p = .63, BNT performance and Condition 3 

(free recall, responses discretized to closest actual point), r(41) = -.07, p = .64, or 

aggregate Condition 2 and 3 performance scores, r(41) = -.01, p = .93. However, 

participant performance between Conditions 2 and 3 was found to be highly 
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intercorrelated, r(41) = .84, p < .001, indicating that strong performance in one task often 

corresponded to strong performance in the other.  

 

3.3.6 Study 2 - Discussion 

 The purpose of Study 2 was to determine chiefly if the traveled route will 

influence a person’s memory for target locations in a search task, to inform 

computational models of human performance in these search tasks. Specifically, if 

participants’ free (Hypothesis 1) and cued (Hypothesis 2) recall error distributions cluster 

normally around actual target locations, it would suggest that their memory for targets 

and their locations is not tied to the traveled route. However, if there is a skew in the error 

distributions such that participants are more likely to place targets at incorrect distances 

along the traveled route, rather than perpendicular to it, it would suggest that participants’ 

memory for targets is tied to the traveled route. It is important to note here that each 

possible outcome has an analogue in the memory literature; a route-dependent memory 

should share characteristics, such as context-dependency, with episodic memory (Godden 

& Baddeley, 1975). Contrarily, an absence of route-dependency in memory for this task, 

leaving only distance effects (such as normal serial position and Euclidean distance error 

distributions), would indicate the recruitment of more general visuospatial memory 

structures for this task.  

The results of Study 2 indicate that serial order and distance do influence the 

probability of recall (see Figures 4-9), and there is a detectable effect of the participants’ 

traveled route whereby targets are more likely to be erroneously recalled along the route 
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of travel than perpendicular to it. The Condition 3 results strongly support this conclusion 

– free recall of the targets is clearly skewed along participants’ higher level 

representations of the problem space.  

The statistically significant skew in freely recalled (i.e., Condition 3) target 

locations along the route of travel in both Experiments 1 and 2 supports the hypothesis 

that participants’ traveled routes will influence their memory for targets. It could be 

argued that participants’ error distributions were driven largely by the presence of the 

blue plan line – perhaps participants were able to judge distance from the path better than 

the target’s location along the path, and that contributed to the skew error distribution 

along the route of travel. Therefore, Experiment 2 was conducted without the presence of 

the blue plan line. Still, effects detected in Experiment 1 persisted through Experiment 2. 

The clear effect of coarse-grained plan indicates that these tasks require, and use, 

comparatively low fidelity high-level problem space representations to minimize 

cognitive burden.  

In the cued recall conditions (i.e., Conditions 1 and 4) of both Experiments 1 and 

2, when presented with proximity foils, participants were somewhat more likely to 

erroneously select foils lying along the traveled route than those perpendicular to it (see 

Tables 4 and 5, respectively), though these differences were not statistically significant. 

One possible explanation for the lack of significant results here is that in Condition 1, 

participants were not provided with the actual target location as a possible choice, so 

would select the “best fit” point whether or not they recognized that it was incorrect. Both 

proximity foils lying along, and perpendicular to, the route of travel would be considered 
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the “best fit” in this situation. In Condition 4, the error rate was relatively low (see Tables 

4 and 5), so while the data were trending in the expected direction, a small number of 

observations (38 vs. 33 in Experiment 1, 123 and 103 in Experiment 2). Note that the 

Experiment 2 analysis presented above approached statistical significance, owing largely 

to the greater number of observations.  

One interpretation of the difference in statistical significance between the cued (1 

and 4) and free (3) recall conditions is the number of observations. In the free recall 

condition, every recalled point provides a data point whereas only the errors provide 

clues to route dependent memory in the cued recall conditions. However, the results 

presented above all trended in the same direction, lending credence to the hypothesis that 

encoding target locations depends on the traveled route.  

Finally, in Experiment 2, far more participants selected the plan foil than in 

Experiment 1 (see Table 5). One potential reason for this is that, because the target 

locations were generated randomly with respect to their distance from the plan line, the 

plan foil was often as good a fit for the target location as the proximity foil. Another 

interpretation of this data is that, in the absence of a plan line to provide a visual 

landmark against which to test candidate target locations, participants resorted to the 

coarse-grain, higher level encoding of the problem space. This interpretation is consistent 

with the point estimation and wayfinding literature (see Chapter 1, Section 1.5).  
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3.4 Study 3 – Naturalistic Investigation of Planning and Memory Representations 

 The third and final human subjects study of this dissertation involves a naturalistic 

implementation of the above experiment that is functionally identical to the task of a 

hasty search (i.e., following trails close to the missing person’s point last seen) in 

wilderness search and rescue (SME 1, May 15, 2014; SME 4, December 14, 2014), and 

shares commonalities with other physical search tasks such as trail following in hiking. 

This implementation is necessary to demonstrate (1) the extent to which plan 

representations in the first person overlap with those generated in the third person, and 

(2) the generalizability of the experimental design used in Study 2 to ecologically 

relevant tasks. 

A naturalistic implementation is a critical departure from the PEBL 

implementation in a number of ways. First, a naturalistic implementation allows us to test 

whether plan representations differ in terms of first person and third person spatial 

navigation. In third person tasks, such as the experimental task in Study 2, the entire 

environment is available to the participant at any given time, and the path is constructed 

using purely visual information. In first person navigation, only a subset of the 

environment, determined by local view, is available to the agent. However, the agent can 

draw upon stimuli across many sensory modalities (e.g., proprioceptive and olfactory 

feedback) to bind targets with locations. Second, there are temporal differences between 

first and third person navigation. In the task described in Study 2, the agent crosses 

instantly among points, whereas in naturalistic setting navigating the environment takes 

time, which can be a critical parameter in tasks such as orienteering (Eccles et al., 2002), 
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foraging (Hills et al., 2006), and WiSAR (Lin & Goodrich, 2009). Testing participants in 

a naturalistic setting will indicate the similarities between actual navigation and a route 

planning task, given the same experimental paradigm, and demonstrate the extent to 

which the findings of Study 2 can generalize to naturalistic, ecologically valid task 

environments.  

While it is possible that participants will perform similarly in both tasks, 

performance discrepancies will highlight task-specific differences in plan representations. 

Regarding the modeling effort, these differences will constrain the extent to which the 

model is generalizable across tasks relevant to applied science communities. Empirically, 

these differences will highlight task-specific differences in spatial navigation, informing 

pathfinding research in the basic science community.  

 

3.4.1 Study 3 - Method  

18 Michigan Technological University undergraduate students were recruited via 

SONA systems, incentivized to satisfy course credit for introductory psychology courses, 

and from the Michigan Technological University Applied Cognitive Science and Human 

Factors graduate program, incentivized with food. The Portage Loop section of the 

Michigan Technological University’s Nordic Trails (1.1 km) was selected as a test venue 

for similar problems to those in Study 2. During the course of this study, participants 

walked the Portage Loop in the Nordic Trails searching for targets (small colored rubber 

ducks) placed in red plastic cups on the side of the trail. The Portage Loop was divided 

into three legs, each containing seven targets (see Figure 11), then further subdivided into 
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problems containing two, three, four, five, or seven targets (see Figure 12). At the end of 

each problem, participants located a station at which they answered questions about the 

completed problem. To prevent subvocal rehearsal, participants executed a counting task 

similar to that used in the Brown-Peterson task (Brown, 1958; Peterson & Peterson, 

1959) in which they counted backwards by three from a given number for each step they 

took while searching for targets on each leg.  

 

Figure 11. The Portage Loop, divided into three legs. The green route is the GPS route 
traveled by each participant, and each target’s location is indicated by a green flag.   
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After completing each problem and arriving at that problem’s station, participants 

(Task 1) attempted to recall the serial position of each target on the leg (i.e., sort them 

into the correct order given the target’s color), then (Task 2) were shown an overhead 

abstracted image of each leg (see Figure 12) and provided forced-choice responses to 

which of two possible locations contained the target. The first task was designed to test 

for serial position effects, while the second task is a pen-and-paper implementation of the 

cued recall task in Study 2.  

 

Figure 12. Forced choice stimuli used in Study 3, Task 2. 
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3.4.2 Study 3 – Hypotheses 

 The objective of the third study is to determine the extent to which the results of 

Study 2, a third person task executed via computer, will generalize to a naturalistic search 

task. To the extent that the two processes are similar, I expect that error distributions, by 

both serial position and Euclidean distance, will be similar to those found in Study 2. 

Specifically, Task 1 suggests an effect of serial position on target recall such that the 

probability of participants recalling a target in an incorrect location will decrease with 

increasing serial position from its actual location. A second hypothesis regarding Task 1 

performance concerns primacy and recency; if the present task uses the same cognitive 

machinery and serial order tasks, we should expect clear primacy and recency effects. 

Finally, in Task 2, if the participant’s route influences his memory for targets, participant 

errors are more likely in forced choice options when the foil lies along, rather than 

perpendicular to, the participant’s direction of travel.  

 

3.4.3 Study 3 – Task 1 Results 

 Task 1 tested participants’ ability to recall found targets in the correct order, and 

the results are intended to compare with the serial position results of Study 2. Generally, 

overall performance in Task 1 was similar to participant performance in Study 2 (percent 

correct M = 83.73, SD = 27.01). One-way ANOVA was used to investigate Task 1 

performance, and found an effect of problem length, F(1, 87) = 25.64, p < .001 , whereby 

participant performance decreased with increasing numbers of targets when using either 

elements or problems correct as a metric (see Figure 13).  
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Figure 13. Performance, as percent correct, by problem size (number of targets). Actual 
percent correct values and problem sizes are shown in the table. Error bars reflect 
standard deviation.  

 

In addition, participant serial position curves in this naturalistic study matched the serial 

position results of Study 2 (see Figure 14). Kolmogorov-Smirnov tests failed to find any 

significant differences between the present Study’s (naturalistic) serial position 

distribution and those generated in Experiments 1, D = 0.03, p = .995, and 2, D = 0.02, p 

= .992, of Study 2. Similarly, Levene’s test revealed no differences in homoscedasticity 

between the present Study’s serial position distribution and Experiments 1, F(1, 1304) = 

0.99, p = .321, and 2, F(1, 2939) = 0.31, p = .576, of Study 2.  
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Figure 14. Probability of recall given serial position from the actual location for Study 3, 
Task 1.  
 

 In order to investigate the probability of target recall by distance, GPS coordinates 

of the test site were transformed into Euclidean coordinates (100 pixels measures 13 

meters) to allow a more direct comparison to the results of Study 2. Two-sample 

Kolmogorov-Smirnov tests investigated the similarities between these transformed 

probability distributions (see Figure 15), and the free and cued probability distributions 

generated in Study 2, finding no significant differences between it and cued, D = 0.82, p 

= .055, and free, D = 0.65, p = .219, distributions from Experiment 1.  
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Figure 15. Probability of recall for Study 3 locations, transformed to Euclidean 
coordinates. At this scale, 100 pixels corresponds to 13 meters of actual space.  
 
 
However, the tests detected significant differences between the Study 3 distance 

distribution and cued, D = 0.10, p = .004, and free, D = 0.09, p = .011, distributions in 

Experiment 2. Visual inspection of the aforementioned distributions suggests that the 

differences lay mainly in the tail, with the (naturalistic) Study 3 distribution having a 

slightly elevated (but still very low) probability of recall for targets up to 1000 pixels 

away.  Note that both Experiment comparisons were trending in the same direction, but 

Study 2 Experiment 2 had greater statistical power due to its greater n.  

 Serial position curves for each station are presented in Figure 16. Participants 

were able to recall the serial order of targets in the two- and three-target problem sets. 
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Problems consisting of four or five problems produced inconsistent serial position curves. 

However, participants exhibited both primacy and recency effects on the seven-target 

problem. We may be seeing a ceiling effect in the smaller trials that, when removed, 

reveals that memory for targets in a naturalistic search task has similar characteristics to 

that of list (i.e., serial) memory.  

 

Figure 16. Serial position curves by problem set size. Title indicates the number of 
targets in the problem. Data series indicate serial position of that target, while the Y axis 
indicates the probability of recall for the target at that serial position. Clear primacy and 
recency effects are visible in the largest problems.  
 

3.4.4 Study 3 – Task 2 Results 

Task 2 tested participants’ performance in a forced-choice localization test. This 

Task provides an analogue to Study 2, testing the dependency of participants’ memory 

for target locations on the traveled route. Across all three legs, 10 foils lay parallel to the 

traveled route, while 11 lay perpendicular to it. Of those 11, seven crossed over the 

traveled path (i.e., the actual target location and the foil location lay on opposite sides of 

the trail). This task proved exceptionally difficult, with performance just above chance as 

measured by percent correct (M = 51.00, SD = 49.62). In partial support of the 

aforementioned hypothesis, participants made slightly fewer correct answers when the 

foils were presented along the route of travel (M = 50.56, SD = 49.62) than against it (M 

108 
 



 

= 54.55, SD = 49.47), however this difference is not statistically significant, 2 = .45, p = 

.50. Similarly, of the cases where the foils lay perpendicular to the participants’ direction 

of travel, participants tended to perform better when the foil was located on the opposite 

side of the trail from the target (M = 56.35, SD = 49.79) rather than on the same side (M = 

51.39, SD = 50.33), though this difference was also not statistically significant, 2 = .28, 

p = .60. Some foils were presented directly adjacent to the actual target locations, 

whereas others were separated by a space equal to the diameter of the “hot zone” of each 

of the possible target locations. Whether or not the foil was touching the actual target 

location did not influence localization accuracy, 2 = .77, p = .38. While it is difficult to 

draw any statistically significant conclusions from participant performance in Task 2, 

likely due to reasons of statistical power, statistically speaking, the data trended in the 

directions suggested by the aforementioned hypotheses, and the morphology indicated 

characteristics consistent with the study hypotheses.  

 

3.4.5 Study 3 – Discussion 

 The purpose of this study was to replicate the findings of Study 2 in a different, 

but similar, naturalistic search task. It is often difficult to collect sufficient data in 

naturalistic settings to generate statistically significant results for a number of reasons, 

including time required for data collection, subjects’ willingness to participate in a 

physically rigorous study, and environmental constraints such as weather (note that the 

present study’s n of 18 is roughly half that of each of the experiments in Study 2). 
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Therefore, the data above should be evaluated insofar as they trend in the appropriate 

directions given the experiment hypotheses.   

 Task 1 was a serial memory task in which participants attempted to recall the 

targets in the correct order. This task maps onto the serial memory aspects of Study 2. 

Performance in this task was found to be the same as in Study 2, with respect to serial 

position, but slightly different in terms of the error distributions by Euclidean distance; 

specifically, the error distribution had a longer tail, indicating that participants 

erroneously recalled targets at greater distances that they had in Study 2. There are two 

possible explanations for this. First, it is possible that this effect is an artifact of the 

problem space; the maximum distance in Study 2 (from corner to corner) is 848. 53 

pixels, whereas the maximum distance between targets in Study 3 is 1067.95 pixels. The 

second explanation is that participants’ memory for target locations in this naturalistic 

task was simply not as good as their memory in Study 2. This explanation is supported by 

task factors, such as task duration (each three-legged trial of Study 2 required less than 

one minute, whereas each participant took about an hour to complete the Study 3 

problem), the presence of a distractor task in Study 3, and the use of a greater number of 

targets (7 vs. 1 per leg) in Study 3. This result should be interpreted cautiously, as while it 

is statistically significant, the tail consists of only a handful of observations. 

Nevertheless, gross performance in both Studies 2 and 3 was largely similar, producing 

statistically similar serial position error curves and morphologically similar error curves 

by Euclidean distance. Finally, the serial position data given the larger problem sizes 

indicated clear primacy and recency effects in the serial position curves, providing 
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evidence for the theory that this task uses similar cognitive machinery to that employed 

for list (i.e., serial) memory.  

 Task 2 consisted of a forced-choice localization task, in which participants 

attempted to assign points to their proper locations given an overhead map of the 

previously completed problem. Translating from first to third person, in the search and 

recall tasks, proved exceptionally difficult, and in most cases participants performed 

barely above chance. Other studies featuring spatial forced-choice tasks indicated that 

participant performance in such tasks in typically poor (Allen, 1981). However, in 

support of the study hypotheses, participants were more likely to erroneously select foils 

lying along their route of travel than those lying perpendicular to it. It is worth noting 

that, juxtaposing these results with those of Study 2, this effect, seen in both Studies 2 

and 3 tasks, is relatively small but consistent. These results, taken together, indicate that 

participants’ traveled route influences their memory for targets they found along the way.  

 

Chapter 4: Modeling Search Behavior 

 This chapter contains two main sections, the first (4.1) consisting of a discussion 

of prior modeling work, and the second (4.2) presenting the development of the 

computational model developed over the course of this dissertation. Section 4.1 contains 

first a description of lessons learned from other authors’ attempts to model human 

performance in navigation and search, followed by a discussion of our prior modeling 

efforts. The purpose of this section is to elucidate the successes and shortcomings of 
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existing modeling approaches, and to frame the process by which we decided upon the 

modeling approach described in Section 4.2.  

 

4.1 Prior Efforts Modeling Navigation and Search 

Taken together, the modeling efforts described in Chapter 1 Section 5 reveal a 

number of interesting points regarding the suitability of existing models for 

approximating human behavior. First, approximating human behavior requires a 

hierarchical structure. The literature above demonstrates this necessity in route planning, 

but other authors (e.g., Takahashi, 2013) have proposed that other functions, such as 

encoding and retrieving contexts used in episodic memory, reflect hierarchical 

organization. In terms of neurobiology, hierarchical structures are ubiquitous in human 

information processing systems in both the peripheral and central nervous systems. For 

example, visual information is processed hierarchically as early as the human retina. 

Similarly, the hippocampus and its connections to the EC, perirhinal cortex, and 

parahippocampal cortices are hierarchically organized (Lavenex & Amaral, 2000).   

Second, existing computational models (e.g., Pizlo et al., 2006) that use 

hierarchical structure to decompose the problem space into simpler representations 

typically resort to brute force solutions to the reduced problems. This approach may not 

reflect the heuristic nature of human problem solving. For computational reasons, it is 

unlikely that humans use brute force optimization at any stage of route planning in most 

situations. The wayfinding literature specifically avoid brute force computation, but many 

computational models of wayfinding focus on validating individual heuristics (e.g., 
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Hochmair & Frank, 2000) despite a generally accepted view within the community that 

multiple heuristics are often used in service of satisfying optimization criteria (Golledge 

et al., 2000). The computational model presented in this dissertation involves multiple 

optimization criteria fitted using a single heuristic, weighted with free parameters. That 

is, the modeling approach presented below can be described as integrative with respect to 

the extent to which it permits the use of multiple heuristics simultaneously.   

Third, biologically inspired models used for navigation and problem solving 

assume that agent behavior is driven by hard-wired automatic processes, whereas the 

modeling approach described herein makes no such assumption. Research by Perelman 

and Mueller (2014) suggests that humans are able to optimize for different requirements, 

such as estimated time to find versus shortest overall path length. Certain target (or city, 

in the case of E-TSP) layouts can confuse algorithms that rely solely on hard-wired, 

structure-based tactics, forcing them to produce solutions that fail to approach optimality 

in predictable ways. Furthermore, even models that attempt to use heuristic solutions to 

these problems focus on one heuristic at a time, which limits their applicability (e.g., the 

least-angle heuristic and its application within network-spaces but not Euclidean spaces; 

Hochmair & Frank, 2000). Analysis of data collected by Mueller, Perelman, Tan, and 

Thanasuan (manuscript under review) suggests that multiple heuristics are employed to 

satisfy optimization criteria, even if those criteria are irrelevant. Solving these problems 

optimally requires some degree of top-down control, permitting the agent to use multiple 

heuristics either in sequence or in various proportions as optimization criteria, which is 

lacking in existing models. I propose that (perhaps multiple) strategic optimization 
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considerations in a higher level planning stage stage allow humans to optimize for 

different types of spatial problem solving tasks – TSP and search tasks.  

Fourth, models must be capable of prioritizing individual target locations. 

Functionally, in existing E-TSP models (e.g., Pizlo et al., 2006), all target locations are 

valued equally. In reality, an agent may have to prioritize these locations on abstract 

bases, such as appetitive considerations in the case of rodents, or mission requirements in 

the case of humans conducting large-scale searches. Furthermore, such a plan may allow 

for distance-reward tradeoffs (for example, a comparatively small reward may be visited 

first due to its proximity) or the mission requirements may be rigid (i.e., a far location 

must be visited before a closer location). Spreading activation models (e.g., Mueller et 

al., 2013) are capable of this, but E-TSP models (e.g., Pizlo et al., 2006) are not. The 

model presented in this dissertation optimizes plans based upon a cost function that could 

easily be adapted to account for locations of different values. Data from naturalistic 

studies further indicates strategic control that is not appropriately represented by 

providing the agent with discrete goals. For example, Tenbrink & Seifert (2011) studied 

vacation planning trajectories and noted that participants’ strategic goals were often ill 

specified (i.e., deciding to visit the west coast generally, rather than a specific location in 

it).  

Fifth, many existing models using mechanisms such as spreading activation, 

clustering, and nearest-neighbor are deterministic, whereas evidence from human-

generated TSP solutions suggests that these processes should be modeled stochastically, 

or at least in a manner that produces a range of solutions. Among subjects, humans 
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produce a range of solutions to TSP problems. Furthermore, one human will rarely 

generate the same solution to a given TSP problem if it is presented multiple times in a 

mirrored and rotated form (see Mueller, Perelman, Tan, & Thanasuan, manuscript under 

review; Experiment 3). While solution replication did occur in that study, it was far more 

frequent in problems to which the individual created optimal solutions. While many of 

the navigation models are stochastic, many problem solving and neural network models 

are not. Uniquely, convex hull models are deterministic but capable of producing a range 

of solutions (MacGregor et al., 2000), and can achieve stochasticity by means of 

perceptual noise (Best, 2005). These approaches have influenced our modeling efforts 

(see below).  

Sixth, there is a great degree of incongruity between agent capabilities and task 

requirements that prevents existing models from being used in applied settings. At one 

extreme, models with the greatest degree of complexity in terms of agent intelligence 

(e.g., Gorchetchnikov & Hasselmo, 2002) are still only intended to model rodent 

behavior. These models are used to explore agent decisions, and the neural activity that 

gives rise to those decisions, in great detail. However, they have little utility in describing 

human behavior, because they seek to answer questions such as, “what are the dynamics 

of theta rhythmicity that provide the rat with a direction in navigation?” Conversely, 

many models used in applied settings, such as emergency egress (e.g., Hajibabai et al., 

2007; Klüpfel, 2003), use comparatively unintelligent agents, focusing instead on the 

flow of bodies through spaces. That is, they are physics models, not cognitive models. 

These models tend to ask questions such as, “how many people can fit through a doorway 
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at once?” Therefore, the current state of modeling is divided between two extremes, one 

which is too specific (and in the wrong way, i.e., to rodent navigation), and another which 

ignores important aspects of agent cognition. The present effort bridges that gap, creating 

a computational model that is capable of human-like spatial navigation based upon 

strategic considerations.  

Finally, interviews with SMEs working in operational domains (see Study 1) hold 

implications that influence the present modeling effort. Specifically, in operational 

domains, different agents are responsible for creating the problem space, generating plans 

for solving that space, and executing local decisions. While this effort does not seek to 

address human performance in probability map construction, the model should produce 

plans independently of local decision-making, and have a means to evaluate those plans 

without executing point-by-point solutions.  

Furthermore, the model should be capable of producing plans that can be solved 

according to multiple local decision making strategies, reflecting different mental models 

(Perelman & Mueller, 2015, and Chapter 1 Section 6) or strategic changes in local 

decision making necessitated by domain-specific considerations, such as changes in plans 

due to weather condition or recon-pull factors (such as the search team noticing 

something in the field that warrants further investigation). The following sections contain 

descriptions of prior modeling efforts, followed by descriptions of the lessons learned 

from each modeling effort, and the ways in which those models fell short of 

accomplishing the stated goal of this dissertation: a computational model capable of 

approximating human performance in the task used by Perelman and Mueller (2014). 
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4.1.1 Modeling Planning - Spreading Activation Model 

Our first modeling effort was derived from a pathfinding model described by 

Samsonovich and Ascoli (2005). This model will be referred to as the spreading 

activation model. Mueller et al. (2013) adapted this model to approximate human search 

trajectories in a ground-based search task, and Perelman and Mueller (2013b) applied the 

same model to human performance in a synthetic task environment (STE). In that 

experiment, participants flew a simulated UAV, using a north-up topographical map, and 

searched for targets using a track-up image representing the view through the UAV’s 

sensor package. The STE was built to approximate the task requirements of WiSAR in 

two separate tasks, (1) a multiple target search task, which bears a strong resemblance to 

the E-TSP and (2) a decision task in which participants preferentially searched one of two 

terrain features varied in terms of their distances to the starting location. Lessons learned 

in these tasks are assumed to generalize to other tasks in which the subject must plan 

routes through multiple target locations using a traditional map. Human behavior in these 

tasks was compared to performance of the aforementioned spreading activation model, 

and an optimal model which generated cost ratios associated with each parameter of the 

decision task. This comparison yielded a number of observations,  

1. The spreading activation model did not generate solutions as close to 

optimal as human performance in the multiple target search task because, 

without walls to constrain the model’s decisions, it behaves as a nearest 

neighbor model. Subsequent analysis using a nearest neighbor model 

confirmed this suspicion (results not published).  
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2. Human preference for one terrain feature over the other in the decision 

task, across all parametric settings, as measured by the proportion of 

participants choosing one terrain feature over the other, matched the cost 

ratio generated using an analytical model. That is, performance in 

aggregate matched the cost ratio.  

3. The spreading activation model overweighed the importance of distance to 

first contact in the decision task. One reason for this is that the spreading 

activation model makes only local decisions, whereas humans have access 

to the entire problem space.  

Experience with this modeling approach indicated that this model, capable of making 

decisions only at a local level, was insufficient to account for human performance. The 

spreading activation algorithm, which performed very similarly to nearest-neighbor, takes 

into account only local information while the results of the decision task described above 

indicate that humans base their spatial decisions on global information. Therefore, our 

next modeling effort focused on a hierarchical model, using the same spreading 

activation mechanism, which was capable of accounting for global information at a 

higher level, represented by clusters. In this way, the model could solve the problem at 

multiple levels using a single, relatively inexpensive, mechanism.   

 

4.1.2 Modeling Planning - Hierarchical Spreading Activation Model 

In our second modeling effort (Perelman & Mueller, 2014), we applied cluster 

dynamics to the aforementioned spreading activation model, resulting in a hierarchical 
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spreading activation model. These dynamics permitted the model to view the problem 

globally and break the problem space into more manageable clusters, then solve for all of 

the targets within each cluster sequentially (see Figure 17). This clustering is 

accomplished as follows: First, the agent places five evenly spaced clusters, referred to as 

Gaussians, across the problem space (i.e., one in each corner, and one in the center). The 

model then creates five values for each goal location, one associated with each Gaussian. 

This value is the Gaussian-to-goal location distance across a multivariate normal (i.e., 

Gaussian) distribution. Therefore, goal locations close to the center of the Gaussian 

receive a high value relative to goal locations farther away. Goal locations are clustered 

to each Gaussian by means of a winner-takes-all mechanism among all of the Gaussians 

(i.e., each goal location “belongs” to the Gaussian with the highest associated value).  

 

Figure 17. Hierarchical spreading activation model. The red triangle (left) indicates the 
agent’s starting position. The left panel shows the agent’s logic in clustering the problem 
space, and the right panel shows the agent’s actual trajectory used in solving the problem.  
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 To optimize the clustering distribution (i.e., Gaussian locations), the Gaussians 

are iteratively perturbed to reduce each Gaussian’s distance to the centroids of its 

associated goal locations. The way an agent selects the sequence in which to solve the 

higher level problem is determined by applying a nearest-neighbor algorithm, treating the 

Gaussians as goal locations, rather than applying brute force mechanics used in other 

cluster models (e.g., Pizlo et al., 2006). Spreading activation then allows the agent to 

solve for the goal locations in each cluster sequentially. One problem with this approach 

is that the model does not solve each cluster in a way that puts the agent in an optimal 

position for visiting the next cluster. Attempts at weighting the spreading activation 

mechanism to permit this behavior have proved unsuccessful largely because the agent is 

still driven primarily by distance to first contact (Figure 18). In order to account for these 

shortcomings, we have devised a linear plan-based model that is similar in many ways to 

the Visual Working Memory TSP model (Kong & Schunn, 2007) and convex hull models 

(MacGregor et al., 2000).  
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Figure 18. The hierarchical spreading activation model solving a 50-city TSP. Crossovers 
indicate suboptimal model performance.  
 

 The results of this modeling effort, juxtaposed with the results of Study 2 of this 

dissertation (Chapter 3), indicate that representing the higher level problem space in 

clusters may be inappropriate as it encourages crossovers. While this could be addressed 

using a simple rule, there are some cases where crossovers might be advantageous, 

specifically when creating time-discounted reward solutions (see Figure 2 – note 

crossovers in the human solutions to the Z-shaped problems). Attempts at using a 

hierarchical spreading activation model, coupled with the empirical results presented in 

Chapter 3, prompted us to explore a hierarchical model that represents the problem space 

at a higher level linearly, using line segments rather than clusters. 
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4.1.3 Modeling Planning - Linear Plan Model – Random Evolution 

 Since cluster models fail to produce adequate solutions to search problems when 

paired with spreading activation, we considered an alternative linear approach to planning 

that is biologically plausible, computationally feasible, follows the linear structure of 

sequence memories, does not promote crossovers (c.f. the hierarchical spreading 

activation model, which does not account for the next cluster’s information while solving 

the current cluster, and therefore is prone to generate solutions with path crossovers), and 

relates to mechanisms used to solve similar visual problems (Kwon, Li, Scheessele, 

Michaux, & Pizlo, 2014). This approach is also justified by Study 2, Experiments 1 and 2 

detailed in Chapter 3 of this dissertation.  

Convex hull approaches to modeling solutions to TSP provide a superior account 

for the human data compared with cluster models (e.g., Pizlo et al., 2006) because they 

produce a range of solutions (e.g., MacGregor et al., 2000), and therefore can account for 

aggregate human data or test-retest data in an individual (Mueller, Perelman, Tan, & 

Thanasuan, manuscript under review). Convex hull models, and other linear planning 

models (e.g., VWM-TSP; Kong & Schunn, 2007) use a quasi-hierarchical approach in 

which a line comprises the global plan, freeing the agent to make local decisions. The 

difference between the two approaches lies in global to local decision-making - in convex 

hull models, the higher level plan is laid across points on the perimeter of the problem 

space, and interior points are added to the tour using various insertion methods, whereas 

the VWM-TSP model (Kong & Schunn, 2007) uses K-means clustering to derive clusters 

of targets in the environment, then plots a spline-curve through the centroids of those 
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clusters. Additionally, convex hull models are target-based in that, even at the seemingly 

higher level representation, individual targets are still accounted. Our linear plan model is 

a true hierarchical approach, holding many similarities to VWM-TSP, whereby a rough 

loop (i.e., the higher level plan) is laid across the problem space itself (Figure 19, panel 

B), irrespective of points, and iteratively deformed (Figure 19, Panel C) to provide the 

ideal path through the environment (Figure 19, panel D). 

 

 

Figure 19. The linear plan model solving a 30 city TSP. X indicates the agent’s starting 
location. The red line punctuated with red triangles indicates the higher level plan. Panels 
A and B show the problem space without and with the plan overlay and city assignments, 
respectively. Panel C shows the results of 200 plans, and panel D shows the selected 
optimal plan after 200 iterations.  
 
 As indicated in Figure 19, the linear plan model is capable of providing heuristic, 

computationally feasible local solutions to TSPs. The linear plan model works by first 
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laying a higher level plan across the entire search space. Every target in the problem 

space is assigned to one of the segments of the plan by calculating the perpendicular of 

the target to each segment then choosing the minimum (i.e., closest segment). Within 

each segment, targets are visited in ascending order of a discounted distance value, 

defined as the distance from the segment origin to the perpendicular intersect of the target 

(subsegment A) to the segment plus the target-segment perpendicular distance 

(subsegment B), multiplied by the length of the hypotenuse created by those points (i.e., 

the segment origin to point distance). The basic result is that the agent travels generally 

along the higher level plan and visits the targets according to their distance from the 

origin. Another mechanism, such as spreading activation, would likely provide a similar, 

perhaps better account for human data.  

 Despite the merits of this approach discussed above, this model is still inadequate 

for achieving the stated goal of this dissertation – to account for human performance in 

naturalistic navigation and search tasks, specifically the results of Perelman and Mueller 

(2014). Solving those problems requires a model with cognitive control that permits 

strategically adapting solutions to task requirements, whereas the linear planning model 

described in this section merely attempts to minimize path length. The SME interviews 

presented in Chapter 3 (Study 2) of this dissertation indicate that strategic considerations 

influence spatial solutions during the planning stage, rather than during lower level 

execution. Furthermore, analysis of data collected by Mueller, Perelman, Tan, and 

Thanasuan (manuscript under review) indicated that multiple optimization criteria may 

influence TSP solutions, suggesting that the model should incorporate multiple criteria 
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simultaneously rather than switching between strategies (i.e., optimization criteria). There 

results, taken together, indicate that a model using a mixture of optimization criteria to 

constrain plan formation at the higher spatial representation level may be sufficient to 

account for human performance in the problems designed by Perelman and Mueller 

(2014).  

 

4.2 Modeling Planning using Mixed Optimization Criteria 

The modeling portion of this dissertation focuses on modeling human 

performance in path planning, and memory tasks related to search and planning, the end 

result being a model that uses multiple optimization criteria substantiated by research on 

human problem solving. This modeling effort addresses the following questions,  

1. Are traditional memory encoding and retrieval modeling approaches sufficient 

to account for the human subjects data? Where are the deficiencies? 

2. Do linear models provide a better account for the human data than cluster 

models? To what extent is the use of linearity in planning related to the linear 

nature of human memory for sequences?  

3. Given a problem, can we predict where the agent can trust his “gut instincts” 

for path generation, and his memory for the trajectory?  

4. Are there situations where an agent might want to switch between cluster 

dynamics and trajectory-based dynamics? Do these two different dynamics 

correspond to memory effects associated with each type of memory trace (i.e., 
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transposition effects for trajectory plans versus grain size effects for cluster 

plans)? 

 

 The task used by Perelman & Mueller (2014) provides an empirical measure 

against which we can assess model functionality. The model will be judged as 

satisfactory in the extent to which it can successfully approximate human performance in 

that path planning and search task given two distinct strategies, one which attempts to 

produce the shortest overall path length (TSP), and another which minimizes the 

estimated time to find a target (search).  

 

4.2.1 Creating a Plan and Plan Evaluation 

The model presented in this dissertation, referred to as the mixed criteria model 

(MCM), is a two-layer hierarchical linear model (c.f., algorithms for generating UAV 

routes automatically, such as that presented by Sousa, Simsek, & Varaiya, 2004), 

mechanically similar to Kong and Schunn’s (2007) VSM-TSP model, that follows a route 

generated by minimizing a cost function based upon multiple strategic criteria. This 

approach is somewhat similar to multi-criteria optimization in decision-making 

(Emmerich & Deutz, 2006), though the model presented below is a novel application of 

the approach to modeling spatial decision-making and problem solving.  

At a high level, the goal of this modeling effort is to create a model, informed by both 

naturalistic and laboratory research, that bears characteristics of planning and execution 

in the real world. In operational environments, planning and execution are often 
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conducted in isolation by separate agents. To solve spatial problems, the agent analyzes 

the problem space and creates a general plan (represented linearly) that he, or another 

agent, can follow while solving the problem locally. This plan is created according to 

strategic goals, referred to in this dissertation as optimization criteria.  

Perelman and Mueller (2014) showed that humans are capable of adapting 

optimization criteria based on written instructions. Analysis of interview data from 

operators working in search domains indicates that multiple optimization criteria 

influence human decision-making (see Chapter 3, Study 1), and prior research (i.e., the 

data collected by Mueller, Perelman, Tan, & Thanasuan, manuscript under review) shows 

this to be the case even in tasks where some of those optimization criteria are irrelevant. 

Therefore, we propose a model that is capable of weighting these optimization criteria to 

various degrees to empower heuristic decision making. These optimization criteria 

provide weighted inputs to a cost function that drives selection from random deformation 

of a higher level plan. At present, the MCM evaluates these higher level plans based on 

five parameters, mapping onto known heuristics used for spatial problems:  

1. Log number of segments. The higher this weight, the more the algorithm 

penalizes the number of segments in a given plan. Increasing this value will result 

in less plan complexity.  

2. Goodness of fit. GOF = mean of the distances of all points to their closest 

segments squared. The higher this weight, the more the algorithm penalizes the 

plan’s ability to comprehensively account for points in the problem space. 

Increasing this value will result in more plan complexity.  
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3. Path length. Overall plan length + the sum of the distances of all points to their 

closest segments, measured in pixels. Increasing this value will encourage shorter 

plans.   

4. Time-discounted path length. Mean of the cumulative sums of each plan 

segment’s length * the proportion of the problem space accounted for by that 

segment. Increasing this value will reward plans that account for more of the 

problem space earlier in the search trajectory.  

5. Average Angle. The scaled angle cost, computed as the mean of the absolute 

value of pi – all plan angles, scaled by pi, will fall between 0 and 1. Increasing 

this value will reward smoother plans with shallower angles.   

 

4.2.1.1 Parameters - Log Number of Segments 

 Fewer segments corresponds to fewer waypoints or turns at compass headings. 

Minimizing segments is important given constraints on information capacity, and may 

represent a default heuristic across many domains. For example, in providing spoken 

directions, given a number of routes, it may be reasonable to provide a slightly longer but 

simpler route as the driver will experience less load in rehearsing the directions and is 

less likely to forget a turn.  

 

4.2.1.2 Parameters - Goodness of Fit 

 The extent to which a plan strives to fit individual data points will likely be 

domain specific, and depend upon the agent’s strategic goals. If a very high degree of 
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plan fidelity is necessary, then the agent will prefer plans with greater goodness of fit. 

However, this value should be constrained by known limitations of human memory (i.e., 

weighting the log number of segments parameter heavily to penalize complex plans). A 

simple heuristic in regards to this parameter is that a plan should fit the individual 

locations well enough to satisfy the mission requirements, and no better.  

 

4.2.1.3 Parameters - Path Length 

 The rough measure of path length used by the model represents the agent’s feel 

for the overall tour length given a plan without having to resort to point by point 

calculations. Agents may want to minimize path length in operational environments 

involving limited range before refueling, or over homogeneous ground if walking on foot 

in order to minimize energy expenditure.  

 

4.2.1.4 Parameters - Time-Discounted Path Length 

 In military intelligence, targets are mobile and attempting to evade capture, so the 

probability that they will be found in a designated location decreases with time. In 

WiSAR, the target is often lost in rough terrain under hazardous weather conditions, and 

the probability of finding the target alive decreases with time. Time-discounted path 

length is analogous to estimated time to find; in these domains and others, the ideal plan 

is the one that locates the target in the minimum amount of time. In probability space, this 

translates to favoring routes that accumulate as much probability in the problem space as 

early as possible.  
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 It is also worth noting that, in certain problem spaces, the agent may want the 

inverse of a time-discounted solution. For example, if the agent has to pick up items at 

every location and carry them to the end point, then the agent benefits from solutions that 

minimize the overall burden (i.e., the duration of time or the portion of the path for which 

the agent has to carry the most material). In order to produce these solutions, a negative 

valued supplied for this weight will subtract it from the plan path and favor solutions that 

save the majority of the probability space for later in the path.  

 

4.2.1.5 Parameters – Average Angle  

 Angles are important in domains where a plan consists of moving generally in a 

single direction, such as applying a “plow the field” strategy in WiSAR. Doubling back is 

generally considered deleterious in this type of problem. Heuristics such as the least-

angle strategy (Hochmair & Frank, 2000) place a high cost on angles, and produce 

solutions that favor few angles. However, this heuristic was only applied by those authors 

in network spaces (i.e., city street networks); the present approach permits this heuristic 

to be applied in Euclidean space.  

 

4.2.2 Fitting a Plan 

 The MCM begins the plan fitting sequence by creating a rough plan; K-Means 

clustering detects the centers of clusters of points in the problem space (c.f., VWM-TSP; 

Kong & Schunn, 2007) and the model plots segments through those centroids using a 

nearest-neighbor algorithm. This represents a heuristic approach to forming a plan “at a 
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glance” of the problem space, and is consistent with other models of problem solving. 

From this prototype, plans are iteratively modified and the evaluated, and the plan with 

the highest current fitness (i.e., lowest cost) is selected as the new prototype. Plan 

modification is probabilistic, and is accomplished by selecting among available 

strategies, which consist of,  

1. Adding a point 

2. Deleting a point 

3. Moving a point 

4. Swapping points 

5. Discard & generate new plan 

Furthermore, at every iteration, the algorithm checks for intersections at the plan level 

and breaks them, if necessary. Eliminating path intersections is a key component of 

combinatorial optimization algorithms (e.g., 2-Opt TSP algorithm; Croes, 1958).  

 It is important to note that this optimization algorithm is not intended to exactly 

replicate the process by which humans create plans for search. Likewise, a goal of this 

optimization process is not to produce aggregate data consistent with human behavior, 

but rather to provide a range of solutions across which parallels between those solutions, 

and human solutions, can provide clues as to how humans produce those particular 

solutions, for example, whether certain solution patterns are due to differences in global 

or local decision making. While this optimization algorithm will occasionally settle on 

the known optimal solution of the problem space, given specific optimization criterion, it 

should not be expected to do so in proportions identical to the aggregate human data.  

131 
 



 

4.2.3 Following a Plan - Local Decision-Making 

 The MCM constructs the higher level plan without direct bottom-up feedback. 

That is, plan-to-point calculations are conducted in service of approximating path length 

and time-discounted path length associated with a given plan. However, point-to-point 

distance calculations are not incorporated into the optimization criteria as we expect the 

model to work under conditions of limited information access. The MCM, like humans, 

should not resort to brute force (i.e., exhaustive) optimization at any step of the planning 

process.  

 Presently, the MCM uses two distinct local decision-making strategies that map 

onto those seen in human data – nearest-neighbor and a plan-following algorithm referred 

to here as leash (see Figure 2, and Section 2.1). For example, the routes shown in 

Clusters 1 and 3 are similar to those produced by the present model using a nearest-

neighbor algorithm, whereas the model produces the shoelace paths seen in Clusters 2 

and 4 when using the leash algorithm for local decision making (see Figure 20). 

Simulations using these two different strategies indicate that differences in participants’ 

mental models for TSP-like problems (Perelman & Mueller, 2015) can be explained by 

differences in local decision making strategies.  
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Figure 20. Sample MCM trajectory for Problem 2 (Perelman & Mueller, 2014) produced 
by the mixed optimization model given parameter values intended to optimize for 
estimated time to find (i.e., time-discounted reward; log number of segments = 25,000, 
GOF = 1, path length = 1, time-discounted path length = 250, average angle = 1000). 
Lines in red indicate the higher level plan, whereas the dotted black lines indicate the 
point-by-point solutions. The left panel shows the plan prior to fitting, generated via k-
means clustering and nearest-neighbor ordering. The center and right panels show the 
fitted plan, given nearest-neighbor and leash local solutions, respectively. Refer to the 
text for the appropriate human subjects data mappings.  
 
 

The MCM follows the plan using a nearest neighbor algorithm for each sequence. 

That is, from the starting location, the agent solves for all points belonging to each plan 

segment in sequence using a nearest-neighbor strategy. This provides a computationally 

inexpensive way to handle local decisions. Nearest-neighbor solutions do sometimes 

produce path crossovers, and so a heuristic for minimizing these might be incorporated 

into future versions of this model.  

 

4.2.4 MCM Results 

 The purpose of this modeling effort is to construct a computational model of 

problem solving that can account for aspects of human performance in the naturalistic 
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TSP task used by Perelman and Mueller (2014). To this end, the following hypotheses 

will be used to gauge model fitness.  

1. Observed differences in planning and optimization: The model should, 

through different parameter fits, be able to reasonably approximate human 

trajectories given instructions to weight different optimization criteria, such as 

path length or estimated time to find.  

2. Observed differences in local decision-making: The model should account 

for fine-grain differences in human solutions by differences either in the 

higher level plans, or in local decision-making strategies. For the purpose of 

this dissertation, two local decision making algorithms, nearest-neighbor and a 

leash algorithm, are expected to account for the bulk of the local differences 

in human trajectories.  

 

4.2.4.1 Observed Differences in Planning and Optimization 

 Perelman and Mueller (2014) showed that participants were able to adapt to 

different optimization criteria in problems designed to encourage separate solutions when 

optimizing for path length or estimated time to find. To test MCM performance in those 

problems, 250 model runs were executed for each problem and using parameter weights 

(see 5.4.1, above) designed to optimize for path length and estimated time to find, for a 

total of 500 model runs per trial. Local solutions, given these higher level plans, were 

generated using a nearest-neighbor algorithm, and the leash algorithm described in 

Section 4.2.3.  
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 Regarding the high level plans, the MCM generally settled into a small number of 

solutions, differently slightly in terms of directionality. Of the 250 plans generated for 

each of the optimization criteria, 10 are shown overlaid on each problem in Figure 21 to 

provide a sample for the types of plans generated by the model for each problem, 

provided each optimization criteria.  

 When provided with targets as seen in the Problem 2 (Figure 21), the model 

chiefly provides one solution for path length (a triangle around the problem space 

beginning and ending at the starting location) and two separate solutions optimizing 

estimated time to find (question mark-shaped plans that direct the agent either right or left 

initially). Note that even in a relatively simple problem, the optimization algorithm failed 

to optimize successfully for path length in one of these samples trials. For Problem 4, the 

model settled upon two main plans when optimizing for estimated time to find, both 

driven largely by distance to first contact with the line at the top of the Z, then exploring 

across that line before solving the rest of the problem. Comparatively, solutions produced 

for path length optimization in Problem 4 were generally poor, with the modeling settling 

in rarely to the optimal solution. Path length optimization in Problem 5 proved similarly 

difficult. Estimated time to find solutions for Problem 5 interestingly followed one of two 

main plans – either traveling first to the cluster of points at the top right vertex of the Z, 

then solving the rest of the clusters and hitting the linear points along the way (the 

optimal solution), or heavily weighting distance to first contact and solving the problem 

as a normal Z. Finally, model optimization for both estimated time to find and path length 

given Problem 5 generally encouraged the appropriate optimal solution, with the model 
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first solving the clusters at the tips of the V when optimizing for estimated time to find, 

and solving it in the shape of the V when optimizing for path length. Note, however, the 

one example in path length optimization for this problem where the optimization 

algorithm failed strongly, placing the second point far into the lower left hand corner of 

the problem space.  
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Figure 21. 10 sample plans generated for each problem, given parameter values (see 
Table 6, below) mapping to the two sets of optimization criteria provided to participants 
by Perelman and Mueller (2014) – estimated time to find / time-discounted reward, and 
path length.
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These results, taken together, indicate that the MCM is capable of producing plans 

sensitive to different optimization constraints inherent to different types of navigation and 

search problems, and that those solutions produce better cost function values than the 

poor solutions. The limitation currently lies in the optimization algorithm used to 

generate these high level plans for these problem spaces, which presents an opportunity 

for future research.   

 
 In order to compare MCM and human local solutions for the problems used by 

Perelman and Mueller (2014), representative model solutions were generated by applying 

the two candidate local decision making algorithms (i.e., nearest-neighbor and leash) to 

representative high level plan solutions generated using the parameter settings used for 

the large-scale simulations and examples shown in    21 above (see Table 6, below). The 

resultant solutions are available in Figure 22 below.  

Table 6. Parameter weights used in the simulations presented in this chapter, given 
optimization criteria (path length or estimated time to find / discounted reward).  

Problem 
Optimization 

Criteria 

Log 
Number of 
Segments 

Goodness 
of Fit 

Path 
Length 

Discounted 
Reward 

Angle 
Cost 

2 (Loop) Path Length 50000 500 1 .000001 1000 
Disc. Reward 25000 500 1 250 1000 

4 (Z) Path Length 5000 500 5 .000001 1000 
Disc. Reward 5000 5000 .1 500 1000 

5 (Z with 
clusters) 

Path Length 5000 500 5 .000001 1000 
Disc. Reward 5000 5000 .1 500 1000 

7 (V with 
clusters) 

Path Length 50000 500 1 .000001 1000 
Disc. Reward 25000 500 .001 250 1000 

  

Figure 22 shows representative point-by-point solutions generated by the model using the 

parameter weights in Table 6. The following sections contain comparisons of those 

solutions with the human solutions presented in Figure 2.  
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4.2.4.1.1 Problem 2 – Lightbulb 

 Referring to Figure 2, human solutions generally clustered as follows. When 

provided with instructions to optimize for path length, human solutions were identical to 

model solutions given that optimization criteria and either location decision making 

strategy (Figure 22, row 1, right two panels). The remainder of these, and roughly half of 

the solutions generated when optimizing for estimated time to find (Figure 2, Cluster 4), 

contain shoelace-style solutions and are very similar to the model’s solution optimizing 

for estimated time to find and using the leash local decision algorithm. Finally, Clusters 1 

and 3 (Figure 2) appear to be similar forms of the solution produced by the model when 

using the nearest neighbor algorithm and optimizing for estimated time to find.   

 

4.2.4.1.2 Problem 4 – Z 

 Human solutions to the Z-shaped problem fell into three clusters, with nearly all 

of the path length optimization solutions, and roughly half of the estimated time to find 

solutions (Figure 2, Row 2, Cluster 3), were identical to the model’s solution (Figure 22, 

row 2) when optimizing for path length and using the leash algorithm. While a few 

humans produced the optimal solution (Cluster 3), the majority of solutions prioritizing 

estimated time to find fell into Cluster 1, which contained solutions that appeared to 

heavily emphasize distance to first contact, but varied greatly in local decisions. This 

problem, and especially the similar Problem 5 (Z with clusters) which was very similar, 

produced a great deal of variance in the model as well (see Figure 21, noting the stark 

139 
 



 

differences between example plans generated by the model). Model solutions, when 

optimizing for estimated time to find, similarly weighted distance to first contact, and did 

not vary between the local decision making strategies due to the model’s ability to 

account for the problem space almost entirely at a higher level (i.e., the linear nature of 

the problem allowed the model to obtain very high goodness of fit with little effort).  

 

4.2.4.1.3 Problem 5 – Z with Clusters  

 Problem 5 is visually similar to Problem 4, only with clusters appended at the 

vertices and ends of line segments. Human solutions (see Figure 2, Row 3) to this 

problem varied wildly. When optimizing for path length, most participants solved the 

problem as a Z (Cluster 1) with variance in the local solutions. Optimizing for estimated 

time to find, participant solutions fell into Clusters 2 and 4, which were largely similar 

but varied in terms of where, on the middle segment of the Z, participants decided to 

move to the cluster of points at the tail of the Z. Cluster 3 contained roughly equal 

numbers of solutions from both instruction sets. Model solutions (Figure 22, Row 3), 

given parameter weights emphasizing estimated time to find, were similar to the human 

solutions with the exception that the model prioritized points in the top segment of the Z 

more so than people. That is, the model did not typically generate plans that involved 

hitting those points at the end of the solution. MCM solutions optimizing for path length 

followed similar solutions to those generated by humans with the exception that they 

overemphasized distance to first contact, hitting points on the top-right cluster en route to 

the left side of the top segment of the Z.  
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4.2.4.1.4 Problem 7 – V with Clusters  

 Participant solutions to Problem 7 (Figure 2, Row 4), provided with instructions 

to minimize path length, generally involved following the V around left or right with 

some local differences (Clusters 1 and 2, respectively), while Cluster 3 contained the 

majority of the estimated time to find optimization solutions, and Cluster 4 roughly 

equally represented both instruction styles. Model solutions to this problem (Figure 22, 

Row 4) were similar to the human solutions, either following the V when provided with 

parameter values to minimize path length, or prioritizing clusters when provided 

parameters optimizing for estimated time to find. Most notably, as in Problem 4 (the Z), 

the plans fit the problems well due to their linear nature, with the majority of the variance 

between runs accounted for by local decision making. Interestingly, the shoelace 

solutions in the human data have analogues produced by the model that can be accounted 

for by local decision making strategies (i.e., using the leash algorithm) applied to the 

same higher level plan (see Figure 22, Row 4, left panels).     
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Figure 22. Representative MCM solutions for Problems 2, 4, 5, and 7 (see Figure 2 for 
human solutions) given parameter weights (see Table 6) designed to encourage solutions 
optimizing either estimated time to find (left two panels) or path length (right two 
panels). Within each panel, local decisions are made using either a nearest-neighbor (left) 
or leash (right) algorithm. Specific solutions, and their analogues in the human data, are 
presented in the text.  
 

4.2.4.2 Simulations & Model Fitness 

To permit quantitative comparisons of MCM and human performance, 250 model 

simulations were run on each of the four sample problems above, given each of the two 

optimization criteria described in Table 6 (above), yielding 500 plans to solving each 
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problem. To each of these 500 plans, local solutions were computed using both nearest-

neighbor and leash algorithms, for a total of 1000 local solutions to each problem. 

Efficiency, calculated as solution path length / optimal solution path length, and time-

discounted efficiency, provide performance metrics against which to compare the human 

solutions to these problems. Path length efficiencies associated with each instruction set 

are available in Table 7, while estimated time to find efficiency is shown in Table 8. 

Successful selection of optimization criteria can be defined by the agent producing results 

consistent with the optimization criteria or instructions with which it is provided. 

Therefore, when provided with optimization criteria optimizing for path length, the path 

lengths of the agents’ trajectories should be shorter than when the agent is optimizing for 

estimated time to find, and vice versa.  

Table 7. Means and standard deviations of efficiency (Path Length) for humans and the 
model, given the two experimental optimization criteria (model) or instructions (human) 
associated with each problem described in Table 6, and the two local decision making 
strategies described in the text.  

 Path Length Optimization Estimated Time to Find Optimization 
 Model Humans Model Humans 

Problem Nearest 
Neighbor 

Leash Nearest 
Neighbor 

Leash 

2 1.10 
(0.13) 

1.21 
(0.38) 

1.05 
(0.11) 

1.21 
(0.08) 

1.56 
(0.20) 

1.18  
(0.19) 

4 1.37 
(0.27) 

1.23 
(0.18) 

1.01 
(0.04) 

1.19 
(0.13) 

1.23 
(0.16) 

1.12  
(0.13) 

5 1.45 
(0.23) 

1.29 
(0.14) 

1.03 
(0.05) 

1.26 
(0.09) 

1.28 
(0.07) 

1.12  
(0.13) 

7 1.24 
(0.12) 

1.36 
(0.04) 

1.11 
(0.13) 

1.34 
(0.05) 

1.96 
(0.63) 

1.21  
(0.13) 

 

Comparing agent performance in path length, given instructions to optimize either path 

length (left cells) or estimated time to find (right cells), humans were successful in 

optimizing for path length judging by the greater efficiency when provided with those 
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instructions. In Problems 2 and 7, the model was also successful in doing so. MCM 

solutions, when optimizing for estimated time to find, were superior in terms of path 

length when compared to those optimizing for path length in Problems 4 and 5, however 

it is important to note that the model had a great deal of difficulty with these problems 

compared with humans, who exhibited near perfect efficiency when provided with 

instructions to do so. Referring to the qualitative data (see Figures 20 and 21), the model 

was capable of settling into the optimal solutions given each instruction set, and those 

optimal solutions do produce superior cost functions, however the model’s inability to 

achieve those solutions consistently over many simulations indicates that the current 

optimization process (see Section 4.2.2) is not ideal.  

 

Table 8. Means and standard deviations of efficiency (Estimated Time to Find) for 
humans and the model, given the two experimental optimization criteria (model) or 
instructions (human) associated with each problem described in Table 6, and the two 
local decision making strategies described in the text 

 Path Length Optimization Estimated Time to Find Optimization 
 Model Humans Model Humans 

Problem Nearest 
Neighbor 

Leash Nearest 
Neighbor 

Leash 

2 1.14 
(0.12) 

1.29 
(0.32) 

1.27  
(0.19) 

1.14 (0.10) 1.74 
(0.24) 

1.31  
(0.36) 

4 2.31 
(0.65) 

2.01 
(0.35) 

1.00  
(0.01) 

2.91 (0.73) 13.15 
(0.89) 

1.15  
(0.13) 

5 1.42 
(0.24) 

1.36 
(0.22) 

1.02  
(0.04) 

1.26 (0.11) 1.30 
(0.08) 

1.07  
(0.09) 

7 1.55 
(0.12) 

1.70 
(0.11) 

1.29 
 (0.26) 

1.45 (0.11) 2.39 
(1.05) 

1.25  
(0.23) 

 
. 
The results shown in Table 8 indicate that, only on Problem 7, were humans, in 

aggregate, able to optimize for estimated time to find. The model was able to produce 

better optimization for the appropriate criteria in Problems 5 and 7, with no meaningful 
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difference seen in Problem 2, and the reverse effect seen in Problem 4 (which proved 

exceptionally difficult for the model). Qualitative analysis of the human solutions (see 

Figure 2) shows that their failures are often the product of misapplied strategies at the 

local decision making level. For example, in Problem 1, while some participants were 

able to obtain the optimal solution, many participants’ solutions exhibited a highly 

suboptimal shoelace strategy, which is also produced by the present model using the 

leash local decision making algorithm. This same is true for the model, where the 

suboptimal strategy (i.e., the leash local decision making algorithm used by the model) is 

responsible for producing the poor solutions in Problem 7, for example (see Table 8, 

comparing poor performance on the leash algorithm with a sample solution available in 

Figure 22, Row 4, Column 2).  

 

4.2.5 MCM Discussion  

The results described above should be viewed with the following caveats. First, 

the optimization algorithm used in the present study is not intended to directly model any 

process theoretically used by humans during problem solving. That is, I do not believe 

that humans are generating a candidate plan based on statistical clustering, then 

deforming it iteratively. Second, the local decision making strategies employed by the 

model are computationally inexpensive and, while they do sometimes produce the types 

of trajectories seen in the human data, they are not intended to capture the full range of 

variance in human problem solving. Finally, the problems presented here were selected 

because they were relatively easy for humans to optimize, and comparatively 
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exceptionally difficult for models to optimize. Two of the presented problems (Problems 

4 and 5) proved difficult for the model, while two others (Problems 2 and 7) proved 

comparatively simple.  

 Regarding the optimization algorithm, juxtaposing the results of the qualitative 

and quantitative simulations, it is clear that the optimization algorithm is sufficient for 

solving Problems 2 and 7, but was insufficient for solving Problem 4 and 5 (Z). That is 

not to say that the algorithm never found the correct solution in the more difficult 

problems, only that these problems proved particularly difficult for the model given its 

current optimization algorithm described in Section 4.2.2, and the optimization algorithm 

was unable to settle into the optimal solution in the majority of trials. This is unsurprising 

as the current optimization algorithm uses random rather than strategic evolution. Despite 

this, the cost functions associated with the superior solutions produce the appropriate 

values, indicating that given an improved optimization algorithm the model would more 

reliably achieve those solutions. Nevertheless, the purpose of this present modeling effort 

is not to design the best optimization algorithm, but rather to demonstrate that such a 

model is capable of producing solutions that err similarly to humans. To that end, the 

model achieved that goal as it, like humans, produces a wider range of solutions to the 

more difficult problems.  

 Based upon clustering of actual human solutions (see Figure 2), it appears that 

people approach these problems with different types of mental models that reflect, in 

some cases, differences in local decision making strategies. Nearest-neighbor and the 

leash algorithm are nowhere near exhaustive and are not intended to holistically model 
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human decision making. Rather, they represent two candidate strategies that humans 

might use. For this purpose, the model was capable of producing similar solutions to 

humans given each of these strategies (see Figure 22), even when the approach was 

globally optimal. For example, for Problem 7, when optimizing for estimated time to 

find, the model produced two solutions commonly seen in the human data (see Figure 2) 

despite the fact that the shoelace-style approach is suboptimal. It is, however, important 

to note that the model’s leash algorithm should not be considered universally suboptimal 

and sometimes it produced better efficiency in select circumstances (e.g., Table 7, 

Problems 4 and 5, Path Length Optimization instructions).  

 The results of these simulations indicate a number of important conclusions about 

the mixed criteria approach. First, a two-layer model that incorporates strategic planning 

based upon optimization criteria, at a higher level, and comparatively simple algorithms 

for local decision making, is sufficient to produce both human-like successes, and failures 

(see Figure 22). Second, while the MCM is capable of optimizing for specific goals, 

perhaps more importantly, it is capable of optimizing for multiple goals simultaneously, 

and in varying proportions. Therefore, we might expect that, given traditional TSP 

problems, the model would be capable of producing the types of effects seen in Chapter 2 

(i.e., bias toward irrelevant optimization criteria), whereas other TSP models would not. 

Third, while the local decision making algorithms used in the present model do not fully 

describe the range of human strategies, they can according for some of the variance in 

approaches to local problem solving, given the same global plan, observed in the human 

data. A model intending to capture the full range of human local decision making 
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strategies should draw upon heuristics such as avoiding overlaps, which are especially 

present in the solutions created using the nearest neighbor algorithm for local decision 

making, and are the basis of algorithms such as 2-Opt (Croes, 1958).   

One potential criticism of the modeling effort as presented is that there is no 

comparison between this model and other TSP models. I chose not to compare the 

present model against TSP models for two reasons. First, existing TSP models would be 

incapable of generating solutions that optimized for more than one criteria at a time, and 

generally do not optimize for any criterion other than path length. For these reasons, I 

chose to compare model and human performance against global optimal performance in 

each of the problems. Second, I wanted to avoid using the traditional (random) TSP 

problems to which most TSP models are calibrated, and instead use problems that are 

known to be exceptionally difficult for models to solve (Perelman & Mueller, 2014). The 

problems used in the present modeling effort generally encouraged one of two types of 

global solutions, and so while the costs associated with each of those two solutions were 

very similar in some problems, the differences resided in global aspects of the problems, 

not local aspects, such as a long tail to the last point in the problem space as seen in the 

analysis in Chapter 2. 

 Broadly, the MCM is consistent with existing theories of global versus fine 

grained encoding and retrieval. However, specifically as it pertains to human search and 

navigation, the model represents a mathematical implementation of a mixed criteria 

theory of performance maximization. A single cognitive system, capable of incorporating 

multiple optimization criteria in service of similar goals (i.e., search, navigation, routing, 
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planning, and other related spatial behaviors), is computationally convenient and perhaps 

adaptively and evolutionarily plausible. Future research could focus on constraining the 

space to which this theory applies. This research would provide evidence for or against 

this theory by testing for the presence of the invariants described in Chapter 2 in human 

solutions to problems with validity in naturalistic tasks. For example, will irrelevant 

optimization criteria intrude on solutions when subjects are presented with non-visual 

versions of TSP (i.e., a laboratory task with validity in nonvisual routing tasks pertinent 

to operations research)? The search for these invariants would further define boundaries 

for applying the model and theory. 

 

Chapter 5: Using the Model – Recommendations for Implementation 

 WiSAR provides a naturalistic task against which to test a naturalistic 

computational model’s performance. One main reason for selecting this specific task, 

however, is that the search and navigation behaviors are common to human behavior in 

other fields and the optimization criterion (i.e., estimated time to find) is well specified. 

This chapter contains design recommendations for adapting the aforementioned 

naturalistic computational model to other domains, including emergency egress, military 

operations such as cordon and search, and urban design.  

While these design recommendations are by no means intended to be exhaustive 

instructions, they provide guidance for future research and modeling efforts. In order to 

approximate human behavior in these domains, I believe that the first step is integrating 

the planning mechanism described in Section 4.2 with a hippocampus-based network 
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model such as that used by Mueller et al. (2013). This discussion is followed by a 

proposal for an empirical study in which the present planning model is used to test human 

factors effects in pilots and command personnel.   

 

5.1 Integrating Planning and Navigation 

 As outlined in previous chapters, current models of navigation are insufficient to 

account for human behavior for a number of reasons. First, many attempt to describe 

rodent behavior in great detail, but behaviorally speaking are capable of making only 

local decisions. Second, most modeling approaches attempting to predict human 

behavior, such as those seen in emergency egress, are predominantly flow (i.e., physics) 

models that are acceptable for predicting the behavior of multiple agents who are all 

familiar with the environment, but fail to account for agent familiarity, or lack thereof, 

with the environment. In these models, agents are assumed to obediently follow signage. 

One consequence of this approach is that it assumes that all exits will be equally viable, 

which in emergency egress is not necessarily the case. For example, exits may be blocked 

by debris or fire. Third, in 3rd person routing tasks with a deep structure very similar to 

combinatorial optimization problems (i.e., TSP), such as plotting search routes through 

probability spaces in military intelligence gathering operations (SME 3, November 18, 

2014) and WiSAR (SME 1, May 15, 2014; SME 4, December 14, 2014), existing 

modeling approaches optimize for only one criteria at a time, where the research 

discussed in Chapter 2 suggests that humans use multiple optimization criteria 

simultaneously.  
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 To address these shortcomings, it is necessary to merge existing network models 

of navigation, such as those used by Mueller et al. (2013), with the MCM described in 

Section 4.2 of this dissertation. In their current form, the models used by Mueller et al. 

(2013) made navigation decisions based upon hard-coded target locations alone, 

analogous to cities in a TSP, and local decisions were handled using spreading activation. 

In the proposed integrated model, the MCM’s linear planning mechanism would provide 

a higher-level plan for navigating through the problem space based upon the task-relevant 

optimization criteria (e.g., estimated time to find, path length, and other optimization 

criteria) while the network model provides both local decision making, through spreading 

activation, and experiential learning mechanisms to constrain the problem space based 

upon what the agent knows about the environment. This is especially important for 

modeling first person navigation, such as that seen in emergency egress, as individual 

agents may not be sufficiently familiar with the environment to follow the optimal route 

through the problem space.  

Implementing this change would be rather simple, and consist of (1) running the 

linear planning algorithm over the problem space as “understood” by the network model, 

(2) mapping target locations to the resulting plan segments, and (3) allowing the network 

model to use spreading activation to solve for each segment in sequence. Note that 

spreading activation is functionally very similar to the nearest neighbor mechanic 

(Perelman & Mueller, 2013b) implemented in Section 4.2 of this dissertation.   
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5.2 Integrating Planning and Memory 

The utility of neural network models lies not only in target location encoding and 

retrieval, but in context encoding and retrieval. While targets are used specifically to 

investigate participants’ ability to bind items with contexts in the environment, targets are 

merely environmental features. The probability of an agent encoding or retrieving a target 

is functionally equivalent to the probability of an agent encoding or retrieving any salient 

feature in an environment that could define a context. Therefore, a cognitive agent 

capable of both spatial navigation using plans, and target memory encoding and retrieval 

which can be perturbed based upon characteristics of the environment, will reasonably 

predict human behavior in any search task in which the operator must explore an 

environment and retain a memory for where he has been, and what he found in those 

locations. The most straightforward approach to modeling memory in search is to 

integrate probabilistic encoding and retrieval within a neural network model. 

In such a model, the agent would probabilistically encode target locations (i.e., 

associate a specific target with a specific location) with a probability that scales with the 

saliency of the location, serial position of the target (derived from Studies 2 and 3 of this 

dissertation), set size (i.e., the number of items to be remembered), and other factors. This 

same saliency weight could be used to compute the agent’s encoding of location 

transitions. That is to say that one saliency weight would impact both target-location 

binding (i.e., CA1-CA3 connections) and location-location binding (CA3-CA3 

connections), making the model useful for both environment modeling (e.g., egress 
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modeling) and target memory modeling (e.g., WiSAR). Finally, a decay parameter can be 

used to modify the saliency weight to produce recency effects during retrieval.   

When asked to navigate among points in an environment, the agent would 

generate a plan using the mechanisms described in Section 4.2 of this dissertation applied 

to known locations in the environment. That is, the neural network model (used for local 

decision-making and target-location and location-location binding) provides the 

constrained problem space based upon what the agent knows, and the MCM generates a 

plan for navigating through that space given optimization criteria. Higher level plans can 

easily be constrained to known CA3-CA3 connections between which travel is possible, 

allowing for learning-based navigation and, from a programming perspective, easy 

integration of barriers.  

When asked to recall a specific target’s location (i.e., CA1 location), the agent 

will try to retrieve the memory representation for that target. The results of Studies 2 and 

3 (Chapter 3) indicate appropriate probability functions for encoding and retrieval, which 

indicate that the agent’s memory should (1) exhibit primacy and recency effects, at least 

in applications modeling first person navigation, (2) exhibit decreased probability of 

recall with serial position from the actual target location, (3) exhibit decreased probably 

of recall given increasing spatial distance from the actual target location, and (4) exhibit a 

linear quality whereby errors along the route of travel are more likely than errors 

perpendicular to the route of travel.  

To achieve these effects, I make the following recommendations. First, weight the 

probability of encoding by the saliency rating of a target’s location (i.e., target-context 
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binding), making targets found in highly salient locations more easily remembered. 

Second, addressing point 1 above, account for primacy and recency effects by applying, 

in some combination, working memory load and decay functions, respectively. Third, 

targets should be confused with other targets along the route with a frequency that 

decreases with increasing serial distance from the actual target location (point 2 above). 

This can be accomplished by representing the targets ordinally according to serial 

position, and introducing this error as possible transpositions during recall according to 

the probability distributions in Studies 2 and 3. Fourth, memory for the precise locations 

of targets should be perturbed during recall by applying skewed Gaussian noise to the 

target’s location according to those same probability functions (points 3 and 4, above). 

That is, the probability of recall should be skewed elliptically along the agent’s route of 

travel.   

 

5.3 Potential Domains of Application 

Though this dissertation has focused to some extent on WiSAR, there are other 

domains in which an integrated model, capable of learning and planning, would be 

necessary. One target domain is emergency egress. As previously mentioned, most 

emergency egress models are based upon the flow of bodies through a space, which may 

depend to some extent on environmental landmarks and signage. However, such models 

do not adequately describe effects of familiarity with a space. For example, structures 

like hospitals contain both staff, who may be intimately familiar with the building layout, 

and patients and their family members, who rarely frequent the space. Traditional egress 
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models would assume that both populations would egress from the building with equal 

ease or difficulty. A computational model capable of experientially learning an 

environment would provide a more realistic account of egress. Another domain is 

modeling human behavior in military and law enforcement environments, to permit 

predictive analysis. Finally, a model capable of planning based upon known features of 

an environment would have utility in urban design.   

 

5.3.1 Emergency Egress 

 As previously mentioned, many emergency egress models account for group 

dynamics by focusing on the flow of typically unintelligent agents through an 

environment (e.g., Klüpfel, 2003). While these models are useful for identifying choke 

points in the movement of large crowds, they fail to account for the individual of 

behaviors based on their strategic goals and past experiences. Two examples highlight 

this problem. First, egress models typically assume that all agents move directly to the 

exits with the sole goal of escape, whereas actual accounts of human behavior in fire 

situations sometimes involve parents running back into burning buildings to find children 

(e.g., Kapp, Venugopal, & Kern-Jedrychowska, 2013), or searching within the building 

before evacuating. Second, the fire at The Station night club in Rhode Island, which took 

the lives of 100 people, highlights the importance of recency traces in modeling egress 

behavior. When the first started, most people attempted egress through the front door 

through which they had entered the venue, despite an available exit on the West side of 

the building (Edward, 2007).  
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 The proposed integrated (i.e., neural network and MCM) model is capable of 

addressing both of these considerations. First, agent behavior is controlled by strategic 

considerations that are incorporable into a plan. Agents with alternative goals (e.g., 

searching for children) can execute those search plans before attempting to egress. These 

types of goals can be accounted for by incorporating hard points into the plan 

optimization process. Modeling this behavior might identify new choke points, as such 

goals may be shared by a large proportion of the agents present in the simulation (e.g., an 

auditorium fire with a large number of parent-child dyads or triads in attendance). 

Incorporating this functionality into egress models involves translating the search plan 

generation and execution algorithms described above into the agent AI. Egress simulation 

software already containing AI functionality (e.g., Virtual Egress and Analysis System 

[VEgAS] and Legion) should provide a suitable base for implementation. The end result 

is agent AI that permits strategic plan generation and execution rather than simple 

“follow the exit signs” dynamics to dictate movement trajectories and determine choke 

points.  

 Second, a computational model capable of modeling environment encoding and 

retrieval, and by extension recency traces in movement trajectories, can account for the 

return-via-entrance behavior described above. The spreading activation model used by 

Mueller et al. (2013) and Perelman & Mueller (2013b) suppressed activation in 

previously visited locations. Therefore, return-via-entrance behavior can be replicated 

simply by using the inverse of the default hill-climbing mechanism. By exhibiting a 

preference for the areas of least activation (i.e., the recently suppressed locations), the 
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agent will prefer to return via its recency trace. Additional model parameters using the 

two-layer (i.e., a higher level plan driving lower level execution) nature of the proscribed 

computational model can also be used to induce this behavior, such as a preference for 

least-resistance linear movement (i.e., rather than following along its recency trace, the 

model draws an azimuth cue from its recency trace at the coarser grain size then 

backtracks in that direction). This behavior, and the behavior described above, should 

provide a more accurate account of human behavior during emergency egress.  

 

5.3.2 Military and Law Enforcement Operations 

 Cordon and search often involves systematic search techniques shared among all 

branches of the military (FM 3-06-20) and perhaps extending to law enforcement 

communities. Therefore, the high level planning involved in these operations is the 

product of established tactics, techniques, and procedures (TTPs), and has already been 

modeled by Mueller et al. (2013) using experimenter-coded high level plans. However, 

the present model retains utility in modeling memory for areas searched and the items 

found in those locations during cordon and search operations. This information could be 

used to refine established TTPs.  

 Not all military operations are constrained by such well-defined TTPs, especially 

Platoon and Company-level actions. For example, after patrols, army units often provide 

debriefings and discuss their findings with their COIST (see Study 1). The recent 

emphasis on COISTs is part of a new “recon pull” approach to intelligence, which takes a 

grass roots approach to intelligence as compared with the typical “command push” 
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approach (Poole, 2003). In Platoon and Company-level operations, plans are often kept 

sufficiently coarse-grained so as to be flexible and easily followed, in order to allow all 

elements to remember their role in the plan, but also to permit individuals to exercise 

initiative where appropriate (SME 6, March 10, 2015). One potential application for the 

MCM, given its two-layered structure, is modeling individual differences in local 

decision making (i.e., plan execution) given a single higher level plan to allow 

commanders to account for a broader range of potential element behaviors in operational 

environments. That is, given a single higher level plan, what are the ways in which 

subordinates may execute the plan, and are all of these possible solutions acceptable? Or 

would some of these local solutions be unacceptable, for example, because they increase 

the probability of fratricide or increase exposure unacceptably?  

In addition to promoting initiative, new doctrine declares that “every soldier is a 

sensor” (FM 3-21.75) tasked with sensing, remembering, and subsequently reporting 

information to the COIST during patrol debriefings. Therefore, it is paramount that 

soldiers remember what they saw, and where they saw it, during the patrol. By 

characterizing agent memory representations during spatial navigation, the present effort 

provides both an empirical account and model for understanding error during recall in 

post-patrol debriefings. Some information is offloaded from memory during the patrol via 

radio (see Study 1), but smaller pieces of intelligence noticed by individual members of 

the patrol may not be sufficiently significant to report to a commanding officer; these 

would be discussed in the post-patrol debriefing (SME 5, March 7, 2015). While accounts 

gathered during the debriefing process are usually taken at face value, understanding and 
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modeling the memory representations would provide a probabilistic characterization of 

event locations along the patrol route, to help a COIST better understand the accuracy of 

post-patrol intelligence, or in simulations to design better TTPs for gathering this 

information.  

 

5.3.3 Urban Design 

 Certain characteristics of the integrated model offer advantages over existing 

approaches to modeling wayfinding through urban environments during the design 

process. Specifically, the proposed integrated model makes predictions about pedestrian 

flow through environments on the basis of cue saliency and prior exploration, and also uses 

cue saliency to determine the probability of the agent encoding particular sections of the 

environment.  

Because the proposed integrated model is capable of weighting associations among 

locations in the cognitive map by the saliency of the locations (i.e., contextual cues in 

environmental locations aid encoding and retrieval of those locations), the model could be 

used to evaluate designs for their “learnability.” Designs containing more salient 

environmental cues should be easier for agents to navigate, as they provide more context 

cues for encoding and retrieval, and the proposed model should approximate these 

performance differences.  

Egress models such as Legion are sometimes used to determine flow through urban 

spaces, as facilitating pedestrian flow is often an important design consideration. Since the 

proposed model makes specific predictions about agents’ preferences for highly salient 
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locations, it may provide a useful perspective for determining flow between pedestrians’ 

vehicles in parking lots, and their destinations in large urban centers, such as shopping 

malls.  

 

5.4 Trust in Automated Plan Generation – a Proposed Framework for Application 

 The WiSAR and geospatial intelligence SMEs interviewed in Study 1 of this 

dissertation revealed that they typically use probability maps generated using software, 

and that the software also provides a route that is mathematically optimized according to 

a number of criteria. Despite this, incident (in WiSAR) and UAV commanders (in 

military and intelligence operations) often manually generate solutions to the probability 

map even though they are provided with presumably mathematically superior solutions 

by the software (according to the software’s criteria; SME 3, November 18, 2014). The 

literature on heuristic judgment and decision-making is rich with examples of expert 

human decision-makers succeeding in complex naturalistic environments (Keller, 

Cokely, Katsikopoulos, & Wegwarth, 2010). Therefore, we should not assume that 

ignoring the automatically-generated routes (or routes generated by other agents) is the 

incorrect course of action. Instead, this research problem warrants empirical 

investigation.  

Are the commanders who plan routes in search operations creating superior routes 

to those generated by the software? Or are these commanders simply biased against using 

computer-generated solutions because, despite their mathematical superiority, those 

solutions bear no resemblance to the solutions that the commander would generate? The 
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evaluation algorithm presented in this dissertation provides a means of evaluating 

solutions based on criteria by which humans generate plans. And, the present MCM may 

therefore provide a superior means of generating plans, as these plans may be more likely 

to fit commanders’ mental models for search than those generated via a software 

optimization algorithm. In this section, I propose two experiments designed to answer 

these empirical questions.  

 

5.4.1 Automatic Route Generation 

 Automatic route generation has received a great deal of attention recently due to a 

push toward increasing UAV autonomy, and reducing operator burden in UAV control. 

Domain specific software focuses on optimizing flight paths for considerations like 

weather (Frew & Brown, 2008), radar and surface to air missile exposure (e.g., Kabamba, 

Meerkov, & Zeitz, 20006; Sousa et al., 2004), distance from home (to aid in 

reestablishing communications with the UAV in cases of link loss; Stansbury, Vyas, & 

Wilson, 2008), probability of detection given a specific sensor package (De Filippis, 

Guglieri, & Quagliotti, 2012), and path congruence with another agent (for UAVs tasked 

with providing aerial cover; Ding, Rahmani, & Egerstedt, 2010). 

Approaches to generating these flight paths are typically not cognitive, and focus 

on global optimization. This is important because the pilot’s input is considered 

important even in the one-to-many operator-to-UAV setup that serves as a goal for 

technology development (Frew & Brown, 2008). Human control is especially important 

for UAVs carrying weapons payloads, as policy makers are understandably reluctant to 
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entrust shoot-no shoot decisions to automation (Mills, 2007). Therefore, understanding 

the extent to which pilots trust automation in flight planning and execution is beneficial 

to the mission of the United States Air Force and other end users of UAV technology, 

such as WiSAR operators and the intelligence community.  

The mechanisms by which flight plans are generated are specific to software used 

in particular domains. However, the algorithms used bear some similarity to the work 

presented in this dissertation. For example, in cases where time is critical, such as 

autonomous UAV target tracking and engagement, researchers in this domain employ 

heuristic methods such as genetic algorithms to provide acceptable solutions to the 

combinatorial optimization problems (e.g., Shima & Schumacher, 2009). Therefore, these 

proposed experiments are furthermore necessitated by the need for computationally 

feasible solutions to combinatorial optimization problems.  

  

5.4.2 Experiment 1: Measuring Alternative Optimization Criteria in Search Plans 

 The plan evaluation algorithm presented in this dissertation was used, in 

conjunction with a stochastic optimization algorithm, to generate higher level plans based 

upon five optimization criteria that are relevant in human planning, (1) plan simplicity, as 

measured by log number of segments, (2) goodness of fit, (3) path length, (4) distance-

discounted reward, and (5) average angle. If human solutions are generated to minimize 

the cost of these five criteria, then it is possible that discrepancies between computer- and 

pilot-generated flight plans are due to differences in optimization criteria. The first 

experiment in the proposed study will consist of analyzing computer- and pilot-generated 
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flight plans based upon these five criteria to explore the possibility that pilots’ solutions 

are superior in terms of these criteria. The alternative hypothesis in this experiment is that 

human solutions, when compared to the software-produced solutions, more heavily 

weight optimization criteria that the software does not take into account, such as plan 

complexity. The null hypothesis is that human plans are suboptimal in terms of all of the 

aforementioned optimization criteria because they are generated by agents with more 

limited perceptual and cognitive resources. The implication of this outcome is that the 

computer-generated paths are in fact superior, and the problem therefore lies in 

convincing pilots to trust the automation.  

 

5.4.3 Experiment 2: Trust in Automation – Path Congruency 

 One possible reason that pilots do not trust routes provided by software is that the 

software-produced routes are very dissimilar from what they, other pilots, or even other 

non-experts, would likely produce. This dissimilarity between a pilot and another agent is 

referred to herein as congruency. To test the effect of path congruency on pilots’ trust in 

the route, the second proposed experiment involves eliciting pilots’ and commanders’ 

qualitative and quantitative feedback on plans generated by a number of different agents, 

and then asking them to plot their own routes given that problem space. These flight 

plans would come from three sources: pilot SMEs, traditional domain-specific software 

that these operators currently use, and the MCM described in this dissertation. Path 

congruency would be evaluated using a pathmapping approach (Mueller et al., 2015). 

Pilots’ trust ratings would be analyzed by calculating statistics by path source (to which 
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the pilots would be blind), as well as via regression analysis using the trust ratings against 

divergence values calculated using pathmapping to compare each participant’s path with 

the other agent-generated paths.  

The alternative hypotheses in this proposed study are that pilots’ trust and 

preferences for plans will be highest for plans generated by other pilots, then by the 

MCM, then by the domain-specific optimization software, and that pilots’ trust and 

preferences will increase with correspondence between their own flight plans, and flight 

plans generated by other agents. Evidence for the null hypothesis (i.e., no effect of 

congruence) would indicate that path congruency does not influence pilots’ willingness to 

accept plans provided to them, and perhaps that human pilots’ mistrust in automation is 

not due to some difference in models with which the agents approach the problem space, 

but rather due to biases against the automated agent itself. These possible outcomes have 

implications for human factors research in operational domains.  

 

5.4.4 Expected Implications and Discussion 

 The goals of these proposed experiments are to (1) evaluate human pilots’ 

considerations (i.e., optimization criteria) in planning flight routes as compared with 

factors considered by domain-specific software, and (2) determine the extent to which 

correspondence between human- and domain-specific software-generated flight plans 

impacts pilots’ trust in automation for that agent. The implications of the alternative 

hypotheses described above are that (1) humans may be integrating information into 

flight plans that domain-specific software is not, and that information may be useful in 
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driving the development of automation software in the future, and (2) if trust in 

automation is based upon path congruency, then domain-specific software should 

incorporate algorithms that produce flight paths similar to what pilots would produce in 

order to increase pilots’ trust in the software and willingness to use the routes, and the 

model presented in Section 4.2 of this dissertation may be capable of producing that 

functionality.  
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