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Abstract

A camera maps 3-dimensional (3D) world space to a 2-dimensional (2D) image space.

In the process it loses the depth information, i.e., the distance from the camera focal

point to the imaged objects. It is impossible to recover this information from a single

image. However, by using two or more images from different viewing angles this

information can be recovered, which in turn can be used to obtain the pose (position

and orientation) of the camera. Using this pose, a 3D reconstruction of imaged

objects in the world can be computed. Numerous algorithms have been proposed

and implemented to solve the above problem; these algorithms are commonly called

Structure from Motion (SfM). State-of-the-art SfM techniques have been shown to

give promising results. However, unlike a Global Positioning System (GPS) or an

Inertial Measurement Unit (IMU) which directly give the position and orientation

respectively, the camera system estimates it after implementing SfM as mentioned

above. This makes the pose obtained from a camera highly sensitive to the images

captured and other effects, such as low lighting conditions, poor focus or improper

viewing angles. In some applications, for example, an Unmanned Aerial Vehicle

(UAV) inspecting a bridge or a robot mapping an environment using Simultaneous

Localization and Mapping (SLAM), it is often difficult to capture images with ideal

conditions. This report examines the use of SfM methods in such applications and

the role of combining multiple sensors, viz., sensor fusion, to achieve more accurate
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and usable position and reconstruction information.

This project investigates the role of sensor fusion in accurately estimating the pose of

a camera for the application of 3D reconstruction of a scene. The first set of experi-

ments is conducted in a motion capture room. These results are assumed as ground

truth in order to evaluate the strengths and weaknesses of each sensor and to map

their coordinate systems. Then a number of scenarios are targeted where SfM fails.

The pose estimates obtained from SfM are replaced by those obtained from other

sensors and the 3D reconstruction is completed. Quantitative and qualitative com-

parisons are made between the 3D reconstruction obtained by using only a camera

versus that obtained by using the camera along with a LIDAR and/or an IMU. Ad-

ditionally, the project also works towards the performance issue faced while handling

large data sets of high-resolution images by implementing the system on the Superior

high performance computing cluster at Michigan Technological University.
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Chapter 1

Introduction

1.1 Motivation

The Intelligent Robotics Laboratory (IRL) at Michigan Technological University is

working towards accurately estimating the pose (position and orientation) of an Un-

manned Aerial Vehicle (UAV) which would help create a 3D reconstruction of the

surroundings. Applications range from inspection of infrastructure to mapping of

unknown terrain using Simultaneous Localization and Mapping (SLAM).

The sensors used by the UAV are camera, LIDAR, Inertial Measurement Unit (IMU)

and GPS. While the GPS and IMU give position and orientation directly, the camera

and LIDAR do not. This project focuses on obtaining the pose of a single camera
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(a) Classical Structure from Motion

(b) Sensor Fusion

Figure 1.1: Figure 1.1(a) shows the first part of the project wherein we
implement an algorithm for Structure from Motion. Figure 1.1(b) depicts
the second part wherein we show an overview of a sensor fusion system.

and hence the UAV using Structure from Motion (SfM).

1.2 Report Overview

Chapter 2 explains the theory behind structure from motion using the concepts of

multiple view geometry. It talks about the classical SfM pipeline and describes some

robust techniques to reduce outliers. A basic model of a structure from motion is
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implemented. We go step-by-step into explaining the model and its implementation

as shown in Figure 1.1(a). In the remaining Chapters, we propose a sensor fusion

model as shown in Figure 1.1(b).

Chapter 3 gives an overview of the state-of-the-art packages for structure from motion

and dense 3D reconstruction. The rest of the chapter is focused on one such pack-

age called openMVG [1] by Pierre Moulon. A detailed discussion of the algorithms

published in [2, 3] forms the basis of the chapter.

Chapter 4 talks in detail about the implementation and computing issues faced while

running openMVG for large image datasets. It compares different computing plat-

forms and explains the implementation of the High Performance Cluster - Superior

at Michigan Technological University.

Chapter 5 describes the different sensors used, their strengths and weaknesses in

obtaining data and their coordinate systems. The Immersive Visualization Studio

(IVS), a motion capture room at Michigan Technological University, is described. It

was used to obtain an extremely accurate pose and was assumed ground truth in the

experiments. The process of data collection is documented here.

Chapter 6 compares the strengths and weaknesses of different sensors on three dif-

ferent datasets. It describes the algorithm used to combine data obtained from the

different sensors. Fusion of data from an Inertial Measurement Unit with the output

3



from openMVG has resulted in an improvement in 3D reconstruction.
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Chapter 2

Structure from Motion (SfM)

2.1 Chapter Goals

This chapter introduces the concept of SfM theoretically and mathematically. SfM

is a process of reconstructing the structure of an object from a sequence of images

taken from views separated by an optimum baseline distance. SfM simultaneously

estimates motion of the camera and the structure of the object. It involves two major

steps viz., pose estimation and triangulation.
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2.2 Pose Estimation

2.2.1 Camera Calibration

Camera calibration is a process of finding intrinsic parameters of the camera. These

include the lens distortion coefficients, focal length, principal point and skew. Out

of these, the lens distortion coefficient is used to eliminate distortion of the image

using Equation 2.1. The effect of undistorting the images using the lens equations

can be seen in Figure 2.1(a) and 2.1(b). Other parameters form the intrinsic camera

calibration matrix as given in Equation (2.3).

xdist = x(1 + k1r
2 + k2r

4)

ydist = y(1 + k1r
2 + k2r

4)

x = undistorted pixel

y = undistorted pixel

k1, k2 = radial distortion coefficients

r2 = x2 + y2

(2.1)
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(a) Radial Barrel distortion removal of door and wall in a building

(b) Radial Barrel distortion removal of ladder in Motion Capture room

Figure 2.1: The left halves of Figure 2.1(a) and 2.1(b) show the radial
Barrel distortion introduced by Point Grey camera. Using the distortion
coefficients obtained from camera calibration, the distortion is removed as
seen in the right halves.

x = P ·X

P3×4 = camera matrix

X4×1 = homogeneous 4-vector [x y z 1]′ world point

x3×1 = homogeneous 3-vector [x y 1]′ image point

(2.2)
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K =

⎡
⎢⎢⎢⎢⎢⎢⎣

αx s x0

αy y0

1

⎤
⎥⎥⎥⎥⎥⎥⎦

αx = f ·mx → focal length in pixels

αy = f ·my → focal length in pixels

f = focal length in mm

mx = number of pixels per mm along x direction

my = number of pixels per mm along y direction

xo = px ·mx → principal point in pixels

yo = py ·my → principal point in pixels

px = pixel dimension along x diection

py = pixel dimension along y diection

s = skew

(2.3)
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P = K[R|t]

K3×3 = camera intrinsic matrix (Equation (2.3))

R3×3 = orientation of camera coordinate frame

t3×1 = position of camera coordinate frame

(2.4)

C̃ = −Rᵀt (2.5)

A camera as given in Equation (2.2) is defined as a matrix P3×4 which maps a 3-

space point X to image point x. We begin by assuming that the camera model we

are using is a basic pinhole camera. Then we generalize it to a CCD camera model

in which pixel dimensions are different along the x and y directions. For this we

consider different focal lengths (αx, αy) and principal points (xo, yo) along x and y

directions. In most of the cases the CCD camera model generalization is sufficient.

However, after we calibrated the Point Grey it was found that it had a non-zero skew

parameter as well. Therefore we further generalize it to a category known as finite

projective camera. Mathematically it implies that there is a need to include the values

of these parameters in the camera calibration (intrinsic) matrix K, which is related

to the camera matrix P as given in Equation (2.4).
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Camera calibration is carried out by imaging world coordinates of known metric

dimensions. By this we calculate the value of this mapping. Therefore when we

use the same camera for observing unknown world points we are able to estimate

the Euclidean geometry in the image. For a more detailed procedure on camera

calibration the reader may refer to the standard checker calibration procedure which

can be implemented using [4].
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Table 2.1
Intrinsic camera parameters of Point Grey camera obtained after

calibration

Camera Parameters Values (in pixels)
Radial lens distortion coefficients [k1 k2] [-0.34608 0.13639]
Focal length [αx αy] [884.39 884.86]
Principal point [xo yo] [619.53 485.87]
Skew 0.7857

Table 2.1 lists the camera parameters of Point Grey after calibrating it using the

standard checkerboard procedure. Therefore, the K matrix is obtained as:

K =

⎡
⎢⎢⎢⎢⎢⎢⎣

884.39 0.7857 619.53

884.86 485.87

1

⎤
⎥⎥⎥⎥⎥⎥⎦

2.2.2 Feature Matching

Images taken of outdoor objects like statues or buildings had large variations in in-

tensity and rotation. After comparing the SIFT and SURF feature extractors and

descriptors, SIFT was found to be more robust to changing lighting and random rota-

tional shifts. SIFT also robustly matched repeating patterns, for example, bricks of a

building with fewer outliers. [5] implementation of the SIFT was used. Figure 2.2(a)
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(a) Feature match before running
RANSAC algorithm

(b) Inliers returned by RANSAC algo-
rithm

(c) Outliers returned by RANSAC algo-
rithm

(d) Family of epilines converging towards
position of first camera

Figure 2.2: Figure 2.2(a) shows the result of feature matching before the
application of RANSAC algorithm. Figure 2.2(b) shows the inliers after
application of RANSAC algorithms and Figure 2.2(c) shows only the outliers.
Figure 2.2(d) shows a family of epipolar lines. These lines are functions of the
first camera center. If the epipolar lines were extended they would converge
at the center of the first camera

shows the result after feature matching. Despite robust performance we see many

outliers that can have a negative impact on the geometry of images. The algorithm

to remove the outliers is explained in Section 2.2.3.
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Figure 2.3: The LMS fitted lines (blue) are shown at every iteration of
the RANSAC algorithm. We see that within a few iterations the algorithm
converges and the blue line fits along the true data while ignoring the outlier.

2.2.3 RANdom SAmple Consensus (RANSAC)

The RANSAC [6] algorithm randomly samples the data and based on a voting metric

comes to a consensus on the model parameters. The features which match after

implementing RANSAC are shown in Figure 2.2(b) and the outliers in 2.2(c). It can

be seen that over 50% outliers have been removed. To give an understanding of how

RANSAC works we will use the simplified algorithm as given in [7] and demonstrate

the model parameter selection where the model is a line. We see in Figure 2.3 a set of

noisy points with ideal data in the background. We also see an outlier. Then we fit

a line (shown in blue) such that the Least Mean Square error is minimum. There is

13



a shift in the resulting line - away from the ideal points and towards the outlier. The

RANSAC method is seen to converge after a few iterations to accommodate only the

inliers.

2.2.4 Epipolar Geometry

2.2.4.1 Fundamental Matrix (F)

If a point X in 3D space is observed from a camera from two different views such

that x and x
′
are the projections of X on their respective image planes, the geometry

of the two views is governed by epipolar geometry and is completely captured by a

3× 3 matrix, called a Fundamental Matrix (F matrix) given by Equation (2.6).

x′ᵀFx = 0

F3×3 = fundamental matrix

x = 3-space X imaged from first view

x′ = 3-space X imaged from second view

(2.6)

In Figure 2.4 we see that the point X is projected as x when from viewed from the

camera at pose 1. When camera moves to pose 2 the same point X is projected as

point x′ on the image plane. The position of this projection x′ is restricted along a
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single line known as the epiline. However since in our application, we already know

the position of x′ as given by feature matching, and using this, we can calculate the

new pose. In Figure 2.2(d) we can see a family of epilines corresponding to the feature

points in Figure 1. Also for more than one point we get a family of epipolar lines

and they all pass through the epipole. The epipole is nothing but the projection of

the first camera center on the second image. If the epilines in the images were to

be extended such that they converge to a point, that location would be the location

of the first camera center. Had the image been taken such that the camera center

during the first take is visible in the second, we could have seen the epipole in the

second image.

The F matrix has 9 elements and has rank 2. It has 8 independent ratios (with scale

uncertainty) and an additional constraint of detF = 0. This gives it 7 degrees of

freedom. Thus we can calculate F matrix by knowing only 7 corresponding points.

However by adding another pair of points we obtain 8 linear equations.

As given in [7] we have the 8 - point algorithm for computing F : For a pair of points

(x, y, 1) and (x′, y′, 1) we have

x′xf11 + x′yf12 + x′f13 + y′xf21 + y′yf22 + y′f23 + xf31 + yf32 + f33 = 0

which can we expressed as

(x′x, x′y, x′, y′x, y′y, y′, x, y, 1) · f = 0

(2.7)
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Figure 2.4: The epipolar geometry is shown in the above figure. The 3-
space point X is projected as point x by the first camera in the first view.
The projection of point x is constrained by the epiline in the view from the
second camera. i.e. the projection of X could lie anywhere along the epiline
when viewed from the second camera.

Thus for n points we have A · f = 0

Solving for the null space of A, we get the solution to the equation. In a practical

scenario due to noise, the rank is almost never 2. Also we have more than 8 points

making it an overdetermined solution. In such a case we find the least square solution.

This solution is the singular vector corresponding to the smallest singular value of

the SVD of A i.e. last column of V in SV D A = UDV ᵀ. We thus obtain F but we

need to ensure that its rank is 2 for it to be a Fundamental Matrix. This is done by

finding F’ such that the Frobenius norm ||F −F ′|| is minimized subject to detF = 0.

Now that we have the F matrix, we can decompose it to determine the pose i.e., R and

t. However the reconstruction obtained from this would have a projective ambiguity.

In order to obtain a metric transform (a true Euclidean reconstruction would require

additional information like GPS or some known dimensions in world units) we need

exploit the intrinsic parameters of the camera i.e., use a calibrated camera.
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2.2.4.2 Essential Matrix (E)

We assume that at all times the camera will be calibrated and hence we will have

the intrinsic calibration parameters. Therefore we can exploit the properties of the E

matrix which is given as Equation 2.8, in obtaining the pose.

E = K ′ᵀFK

K ′, K = camera intrinsic matrix (Equation (2.3))

F = fundamental matrix (Equation (2.6))

(2.8)

The essential matrix on decomposition gives rise to 2 solutions. However both E

and -E are results of the same epipolar geometry and hence we have a total of 4

solutions. Mathematically [7] gives the 4 solutions as shown in Equation (2.9). For

essential matrix E = Udiag(1, 1, 0)V ᵀ and first camera matrix P = [I|0], we have

second camera matrix as:

P ′ = [UWV ᵀ|+ u3] or

= [UWV ᵀ| − u3] or

= [UW ᵀV ᵀ|+ u3] or

= [UW ᵀV ᵀ| − u3]

(2.9)
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The correct solution is determined by the fact that the test point is in view of both

the cameras. As seen in Figure 2.5, the black camera is the first camera and the blue

camera is the true second camera, and both cameras view the magenta colored test

point. In the process of estimating pose of the second camera, we obtain 4 solutions

(or poses). The test point is in view of only the green camera. The three remaining

solutions (red cameras) are not correct. The incorrect solutions are incorrect either

because the camera has translated to the other side of the first camera or it has been

reversed by 180◦ about the line joining the centers of the first and second cameras.

Note: the blue and green cameras are offset by a translation because the E matrix

can be decomposed only upto a scale.

2.3 Triangulation

At this point we have the initially obtained camera poses and the feature points.

We back project these points as viewed from both the cameras and allow them to

intersect. Due to the noise and inaccuracy in the estimation of the poses the rays will

almost always never meet. We set an error threshold for which we consider them as

intersecting rays.

We see in Figure 2.6 the results of triangulation. Each of the points is the original

feature point detected. This is known as sparse reconstruction since not every pixel

is taken into consideration.
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Figure 2.5: The black camera is the first camera. The blue camera is the
second camera (true value). Both view the magenta colored test point. In the
process of estimating the pose of the second camera, we obtain 4 solutions.
The magenta test point is in front of the green camera only (in addition to
the black camera which could previously view it too). It cannot be viewed
from the red cameras either because they have translated to the other side of
the black camera or have been rotated by 180◦ about the baseline connecting
the black camera to itself. Note that the blue and green cameras are offset
by a translation because the E matrix can be decomposed only upto a scale.

2.3.1 Scaled Translation and need for Sensor Fusion

One important point to note here is that one of the ground truth values was physically

measured. For example in Figure 2.6(b) this is the distance from the camera to the

box kept on the chair. This is due to the fact that although we can obtain a Euclidean

metric reconstruction, it is true only upto scale. This relates to the F matrix and the

E matrix being transforms only upto scale. However once we know one single point
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Figure 2.6: The images show the result of triangulation. Feature points
are marked with the estimated depth (in meters) with respect to the camera.
We see that for most of the points the relative depth metric conforms with
the image. Note: One of the points had to be measured physically in order
to get an absolute value of the estimated translation vector.

the rest of the points can be scaled accordingly.
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2.4 Chapter Conclusion

In this chapter, we implemented a classical model of SfM. We can now see the im-

portance of camera calibration on the structure of the 3D reconstruction. In addition

to having robust feature extractors and detectors like SIFT it is necessary to have

robust algorithms which can remove outliers. We implement SfM at the block level

in order to obtain insight to the process and to get an understanding of the factors

which impact the reconstruction. For example, the fact that SIFT is invariant to

intensity means that we do not need to perform any image enhancement techniques

to get a better structure.
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Chapter 3

SfM and Dense 3D Reconstruction

Pipelines

3.1 Chapter Goals

In this chapter we give an overview of these state-of-the-art packages for SfM pipelines.

The classical SfM algorithm, when applied to a sequence of images, accumulates

the error for every image. Moreover the translation we obtain is a scaled value.

These problems have been solved in [2, 3, 8, 9, 10]. Some of this literature has been

implemented in the form of state-of-the-art packages. For a more analytic comparison

please refer to [11, 12, 13].
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3.2 State-of-the-art SfM Pipelines

3.2.1 VisualSfM

VisualSfM [10] is one of the most popular SfM pipelines. It implements the Incre-

mental SfM pipeline [9] with O(n) time complexity (as compared to the O(n4) and

O(n3) previously achieved) for most of its major processing steps. VisualSfM exploits

CPU and GPU parallelism by using Multicore Bundle Adjustment [14].

3.2.2 Samantha

Samantha uses a Hierarchical Cluster Tree approach in contrast to the Incremental

approach, which makes it inherently parallel and scalable [8, 15, 16, 17]. It also im-

plements auto-calibration of images, which removes dependency on the EXIF data

embedded in images. Hence, we need to know the internal camera parameters. More-

over, these parameters do not have to remain constant throughout all images.
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3.2.3 Autodesk 123d Catch

Autodesk has recently launched the 123d Catch [18] mobile application. It allows the

user to upload a sequence of images on cloud servers that handle the processing. A

detailed accuracy analysis of 123d Catch is provided in [13].

3.3 open Multiple View Geometry (openMVG)

openMVG implements a Global SfM pipeline [3]. We choose openMVG as against the

other packages because of a number of reasons. It is a free open source software with

active development taking place on Github [1]. It is Linux based and hence could be

implemented on the high performance clusters at Michigan Technological University.

The entire code could be cloned to a local machine and modified easily.

Thus, although openMVG did not always give the most accurate or the fastest results,

it is the most convenient option for the purpose of this research.
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3.4 Patch-based Multi-view Stereo Software

(PMVS)

The output of the SfM pipeline is given to PMVS. It converts the sparse 3D model to a

dense 3D model. We do not go into detail with the process of dense 3D reconstruction.

In our research, the result of sensor fusion is converted to a format accepted by PMVS

and then processed to create the 3D reconstructions.

3.5 Chapter Conclusion

After seeing a comparison of the various packages and evaluating the benefits of

openMVG and PMVS over others, we focus the next chapter on making openMVG

and PMVS run more efficiently on high performance clusters.
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Chapter 4

Computing Platforms and

Performance Comparison

4.1 Chapter Goals

The 3D reconstruction pipeline consists of computationally expensive operations.

These include the SIFT feature and descriptor calculation, SfM and dense recon-

struction. This chapter describes the hardware and software of the various computing

platforms the openMVG was run on, and highlights the challenges faced on each plat-

form. It tabulates the time taken by some of the processes as a performance metric

for each of the platform.
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4.2 Computing Platforms

Table 4.1
Hardware and software specifications of the computing platforms used for

running openMVG

Specifications MacBook Pro HPC Cluster HPC Superior (8 cores) HPC Superior (16 cores)
Compute Nodes 1 2 1 1
CPU (Intel) i5 E5405 E5 2670 E5 2670
CPU Speed / Core (in GHz) 2.4 2 2.6 2.6
CPU Cores 2 4 8 16
CPU Instructions / Cycle 2 4 8 8
Performance (in GFLOPS) 9.6 64 166.4 332.8
OpenMP (Parallel Computing) No Yes Yes Yes
RAM (GB) 8 8 64 64
Operating System Mac OS X CentOS 6.3 CentOS 6.3 CentOS 6.3
Root Access Yes Yes No No
Cmake Version 3.1.3 3.0.2 3.0.2 3.0.2
GCC Compiler Version 4.2.1 4.8.0 4.8.0 4.8.0

4.2.1 MacBook Pro

OpenMVG was first built and run on a MacBook Pro (Mac). The Mac having a BSD

UNIX flavor operating system, openMVG that was originally designed for Linux was

compatible with it. One of the biggest advantages of the Mac was that it had admin-

istrator rights. Hence, dependency libraries could be installed using Homebrew [19].

The Mac could process upto 50 images in a reasonable amount of time beyond which

it took time of the order of hours. One of the reasons was that the architecture did

not support OpenMP [20], which specifies high-level parallelism in C++ programs. For

outdoor applications like infrastructure inspection or performing SLAM in a building

it was common to work with 300 to 500 images. Processing these on the Mac would
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take time of the order of 10 to 20 hours.

4.2.2 High Performance Cluster (HPC)

It was necessary to migrate to a system with better computing performance. At

the same time it was essential that the system have root access so that dependency

libraries could be easily installed. A high performance cluster was designed and built

having one front end and two compute nodes of 4 cores and 8GB RAM each. It

was built using Rocks Cluster Distribution 6.1 (CentOS 6.3) [21]. The configuration

was a scaled down version of the Superior High Performance Cluster. This later

helped in migrating the software system to Superior. The HPC cluster proved to

be a test ground for prototyping. It had marginal improvement in serial computing

as compared to the Mac. However as the architecture supported OpenMP, it gave

about 400% performance boost for those processing runs of openMVG which exploited

parallelism.

Yet for 300 to 500 images it would take around 2 hours. This added to CMVS/PMVS

would give a total turnaround time of 4 hours which was considered slow for rapid

prototyping of different data sets.

29



4.2.3 High Performance Cluster - Superior (HPC - Supe-

rior)

HPC - Superior [22] had the best computing performance available. One of the

major challenges of Superior was that it did not have root access, which was required

whenever scripts were written to compile packages and libraries from source.

4.3 Performance Comparison

The peak theoretical performance was calculated in FLoating-point Operations Per

Second (FLOPS):

Performance = Compute Nodes ∗ CPU Cores ∗ Clock (GHz) ∗ CPU Instructions

Cycle

For example : To compute peak theoretical performance of the HPC Cluster, we have

2 compute nodes, 4 CPU cores, 4 CPU instructions per cycle and 2 GHz clock speed.

Therefore,

Performance = 2 ∗ 4 ∗ 2 ∗ 4 = 64 GFLOPS

As seen in Table 4.2 and Figure 4.1, the HPC Superior exploits the openMVG par-

allelism making it up to 20 times faster than the MacBook. For example, processing
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Table 4.2
Performance comparison of running openMVG on different computing

platforms. Data sets increasing in number of images were run and timings
were recorded. Superior - 8 and Superior - 16 stand for the 8 core and 16

core configuration of the Superior used.

Extract Features

Number of Images
MacBook
(hh:mm:ss)

HPC Cluster
(hh:mm:ss)

Superior - 8
(hh:mm:ss)

Superior - 16
(hh:mm:ss)

25 0:01:22 0:01:45 0:00:57 0:00:50
50 0:02:48 0:03:29 0:02:04 0:01:42
100 0:05:39 0:07:09 0:03:28 0:03:24
300 0:19:08 0:21:02 0:10:06 0:10:01
500 0:35:28 0:20:00 0:16:49

Performance of Superior - 16 w.r.t Performance of MacBook = 1.72
Performance of Superior - 16 w.r.t. performance of HPC Cluster = 2.09

Putative Matches

Number of Images
MacBook
(hh:mm:ss)

HPC Cluster
(hh:mm:ss)

Superior - 8
(hh:mm:ss)

Superior - 16
(hh:mm:ss)

25 0:01:54 0:00:33 0:00:16 0:00:13
50 0:07:20 0:01:50 0:00:51 0:00:40
100 0:30:23 0:07:06 0:02:17 0:02:19
300 4:17:44 0:55:10 0:21:01 0:17:23
500 2:05:32 0:54:02 0:45:16

Performance of Superior - 16 w.r.t. Performance of MacBook = 11.79
Performance of Superior - 16 w.r.t. Performance of HPC Cluster = 2.84

Geometric Filtering

Number of Images
MacBook
(hh:mm:ss)

HPC Cluster
(hh:mm:ss)

Superior - 8
(hh:mm:ss)

Superior - 16
(hh:mm:ss)

25 0:02:01 0:00:23 0:00:12 0:00:06
50 0:07:58 0:01:32 0:00:48 0:00:23
100 0:36:00 0:06:42 0:03:52 0:01:39
300 5:07:38 1:00:12 0:32:16 0:15:00
500 2:41:42 1:29:19 0:40:36

Performance of Superior - 16 w.r.t. Performance of MacBook = 20.77
Performance of Superior - 16 w.r.t. Performance of HPC Cluster = 3.98

300 images would take 42 minutes on the Superior using all 16 cores as compared to

10 hours on the MacBook Pro. For UAV or robot SLAM applications it is common

to have around 500 to 1000 images. In such a scenario, the use of the Superior is

completely justified.
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4.4 Chapter Conclusion

Successful implementation of openMVG on the HPC Superior was demonstrated

through execution times of serial and parallel operations of SfM. The scripts and

other implementation details can be found in Appendix B.
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(a) Extract Features

(b) Putative Matches

(c) Geometric Filtering

Figure 4.1: Performance comparison graphs of the computing platforms
for increasing number of image data sets. Figure 4.1(a) shows that since
Extract Features is a serial process there is no significant difference in the
performance. Figure 4.1(b) uses openMP parallelism and hence significant
performance boost is observed on HPC Cluster and HPC Superior. Fig-
ure 4.1(c) being a highly parallel process exploits the 16 cores of HPC Su-
perior making it about 20 times faster than the MacBook.
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Chapter 5

Experimental Setup

5.1 Chapter Goals

The goals of this chapter are i) to describe the sensors used to acquire data, ii) to

describe the Immersive Visualization Studio, iii) to compare data from the Immersive

Visualization Studio to that from the sensors for accuracy, iv) to establish relation-

ships between coordinate systems.
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(a) Motion Capture Room (b) Wand

(c) Sensors

Figure 5.1: Figure 5.1(a) shows the motion capture room. The wand is kept
in the center which is calibrated as the world origin. Figure 5.1(b) shows the
wand which is a T-shaped object with reflectors attached asymmetrically.
Figure 5.1(c) shows the sensors mounted on a cart system. The sensor
mounting and data acquisition system was prepared by the team members
at IRL.
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Table 5.1
Sampling rates of each sensor

Sensor Sampling Rate
IVS 100 Hz
Camera 1 to 2 frames/s
LIDAR 40 Hz
IMU 100 Hz

5.2 Sensors

Four sensors were used for data collection. Their sampling frequencies are shown in

Table 5.1. The camera, LIDAR and IMU had the same time system and data could

be easily compared. The IVS had its own time system and we had to use indirect

ways to synchronize the time with the rest of the sensors. Figure 5.1(a) shows the

IVS with the wand kept at the global origin. Figure 5.1(b) shows the wand which is

the pre-defined object tracked by the IVS. Figure 5.1(c) shows the sensor mounted

along with the wand.

5.2.1 Camera

We are using the camera by Point Grey has a specified focal length between 2.5mm

and 8mm. However we calibrate is using the standard checkerboard pattern every

time we collect data. The approximate focal length after calibration is 895. It has a
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wide angle lens which allows us to capture wider imagery from close distances. This

introduces radial distortion. The procedure to calibrate and determine the intrinsic

parameters was described in Chapter 2. The Point Grey allows us to collect video at

5fps however for SfM, we use every 5th frame. Thus we consider the camera to have

sample frequency of 1 frame per second.

5.2.2 LIDAR

The LIDAR by Hokuyo is a 2D LIDAR, which can scan its plane through an angle

of 270◦ (a sweep). It is able to measure with accuracy the points which lie anywhere

between 0.75m and 30m from the LIDAR. Each sweep is of 1081 points. It has a

sampling frequency of 40Hz.

5.2.3 Inertial Measurement Unit (IMU)

We use the VectorNav VN-200 IMU. The output we obtain is in quaternions which

we convert to Euler angles and rotation matrices.

38



5.3 Immersive Visualization Studio (IVS) - Mo-

tion Capture Room

The Immersive Visualization Studio (IVS), also known as the motion capture room

is a setup of 12 cameras which collectively tracks the motion i.e., the trajectory of

the pose of a predefined object - the wand (described in detail in 5.3.1).

The IVS provided position readings accurate to the order of a few millimeters and

orientation within a degree of accuracy, thus allowing us to assume it as ground truth.

5.3.1 Wand

The tracking software tracks a pre-defined object called the ‘wand‘ which is shown

in Figure 5.1(b). It is a T-shaped object with 5 reflectors attached asymmetrically

to it. The center of the object was the centroid of these 5 reflector nodes.
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5.3.2 Output from the IVS system

Output from the IVS is the pose of the wand. The position is given as global transla-

tion i.e. a vector [xyz] w.r.t. to the world origin. The orientation is given in the form

of Euler angles, rotation matrix or quaternions. Each one has its own advantages and

disadvantages. The Euler angles can be easily related to the orientation as they are

in the form of roll, pitch and yaw. The quaternions do not have singularity where

the Euler can be faced with a gimbal lock. The rotation matrix could be used for

comparison with the output from the SfM.

5.4 IVS and IMU Timestamp Synchronization

One the issues with using the IVS data was that it had a different time stamp com-

pared to the rest of the sensors. It order to make use of the data from the IVS, it

was essential to convert the readings such that they align with those of the IMU.

Figure 5.2(a) shows the yaw reading from the IMU. Figure 5.2(b) shows the yaw

reading from the IVS. However we observe that although it looks similar to that from

the IMU, we are not able to compare it one to one. As per the IVS convention, the

range for angle is from −180◦ to 180◦ and hence we can see the discontinuity. In

Figure 5.2(c) we show the adjusted plot. At this point we have the y-axis of the IVS
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Figure 5.2: Figure 5.2(a) shows the yaw angular readings of the IMU. Fig-
ure 5.2(b) shows the yaw angular readings of the IVS. Figure 5.2(c) shows
the angle adjustment required to bring it within range of the IMU. Fig-
ure 5.2(d) shows the IVS data aligned on the IMU data. Figure 5.2(e) shows
the cross correlation performed. Figure 5.2(f) shows the superimposed data
after cross correlation.

aligned with that of the IMU as seen in Figure 5.2(d). Also we note that the sam-

pling frequency of the IMU and the IVS is the same i.e. 100Hz. In order to align the

x-axis, we cross correlate the two signals. Cross correlation gives us the time stamp

difference between the IMU and IVS systems. Also we can now see in Figure 5.2(f)

the IVS reading superimposed on the IMU. We observe a very high level of accuracy.

This is important because now we can assume that the orientation obtained from the

IMU to be the ground truth for data collected outside the IVS.
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Figure 5.3: Figure 5.3(a) shows the position trajectory of the sensors using
the IVS system. This we assume to be the ground truth. Figure 5.3(b) shows
the position trajectory of the sensors using the camera system. Notice the
camera coordinate axes and their directions w.r.t. that of the IVS system.

5.5 Coordinate Systems of Sensors

The IVS helped understand the relation between the coordinate systems of the various

sensors. For example, as shown in Figure 5.3(b) we can see how the IVS and the

camera uses different coordinate system. Although the wand, camera, LIDAR and

IMU were placed close to each other on a single unit, it was important to make

note of the initial pose of each sensor. We position the wand such that the centroid

coincides with the camera center. The pose of the camera with respect to the origin

of the world coordinate system is noted. We repeat the same for the other sensors.

Then the wand is fixed at its own position and this pose is once again noted with

respect to the world origin. Thus we obtained the poses of the sensors w.r.t. each

other and w.r.t. to the IVS system. We use the notation and convention for pose as

given by [23]. For example, to obtain the pose of the camera w.r.t. to LIDAR we use

Equation (5.1).
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origin(ζ)LIDAR =

⎡
⎢⎢⎣
I3×3 03×1

01×3 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣
RLIDAR tLIDAR

01×3 1

⎤
⎥⎥⎦

origin(ζ)camera =

⎡
⎢⎢⎣
I3×3 03×1

01×3 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣
Rcamera tcamera

01×3 1

⎤
⎥⎥⎦

LIDAR(ζ)camera =
origin(ζ)−1

LIDAR · origin(ζ)camera

= LIDAR(ζ)origin · origin(ζ)camera

(5.1)

5.6 Chapter Conclusion

As a result of the experimentation in the IVS, we could verify the convention of the

global and local coordinate systems (of each sensor). We established the relation

to describe pose of a sensor relative to another sensor. We successfully compared

our sensor results (both orientation and position) with the IVS which acted as the

ground truth. Based on the comparison results of the IVS with the IMU, we can for

all practical purposes assume the IMU orientation to act as ground truth for any data
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set collected outside the IVS.
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Chapter 6

Sensor Fusion

6.1 Chapter Goals

The goals of this chapter are i) to explain what sensor fusion is, ii) to compare the

observed strengths and weaknesses of sensors after running them on datasets, iii)

to explain the need for sensor fusion and how it will provide a better solution to

the problem of 3D reconstruction of images, iv) to explain through experiments how

sensor fusion worked in some cases, how and why it failed in others.
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6.2 Sensor Fusion - An Introduction

Sensor fusion is the technique of combining the outputs of multiple sensors measuring

the same value (measurement could be direct, or indirect after processing the raw

measurement using some algorithm). For example, the IMU measures orientation

directly while the camera measures orientation indirectly after running the SfM al-

gorithm on the captured images. Also the final value we need to measure could be a

combination of more than one value. For example, the final value we need is the pose

which is the combination of the orientation and position.

The fusing in sensor fusion can be at multiple levels. For example, the orientation

obtained from the camera could be replaced entirely by that from the IMU while

retaining the position from the camera. Also, we could just use those orientations

from IMU which lie within an error threshold from the camera. Furthermore, we could

use the IMU orientation data in the very primitive stages as an initial condition or a

priori information.
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6.3 Sensor Comparison before Data Collection

It was observed that while each of the sensors (camera, IMU and LIDAR) are capable

of providing the pose, each sensor has its own strength and weaknesses. The data

from the IVS is assumed to be accurate and is used as ground truth to compare with

each of the sensors. We also established the fact that outside the IVS, the orientation

from the IMU could be considered as ground truth.

6.4 Datasets and Results

In this section we show our results on 3 different datasets. In order to best explain the

3D point clouds on paper, we show a set of four 2D images and their corresponding

snapshots of the 3D point cloud. Also in order to explain the specifics within any

image, we implement a simple procedure. Imagine a grid as shown in Figure 6.1 to

be placed over every image dividing the image into nine parts and labeled as shown.

We would then refer to any sub-part of an image using N-E-W-S terminology. For

example, the ladder can be seen in parts N,C and S of Figure 6.1.

We also describe our datasets by a list of keywords given in Table 6.1.
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Table 6.1
Following keywords are used to describe datasets and their motions

Keyword Explanation
target the object which we intend to reconstruct in 3D

indoor
inside a building or a room,
furthest distance not more than 10m

outdoor
outside environments where the target object
could be up to 50m, other object could go up to
infinity

gloss
shiny objects not depicting true color or
direct source of light like bulbs

matte
objects whose brightness does not change
with viewing angle

yaw rotation
the motion in which the sensors rotate while being
parallel to the ground at all times, sensors inscribe
a circular figure

outer yaw rotation
yaw rotation around the target, sensors face normally
inwards while inscribing the circle
(includes significant translation)

inner yaw rotation
yaw rotation, sensors face outwards towards target
while inscribing the circle
(includes significant translation)

point yaw rotation
inner yaw rotation but at the same point
(includes minimal translation)

translation motion a linear motion parallel to the target

Figure 6.1: A grid to explain within image specifics.
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6.4.1 Dataset 1 : IVS

The dataset shown in Figure 6.2 is from the IVS. We would like to describe the IVS

environment by the following keywords - indoor, matte target, glossy background.

We describe the dataset collection as an outer yaw motion.

Figure 6.2 shows the outer yaw motion with images and corresponding point clouds.

Overall the 3D reconstruction has been successful since it visually resembles the actual

target in structure and color. In Figure 6.2(a), we can see the overall structure of

the target. This structure is maintained in the reconstruction as can be seen in

Figure 6.2(e). Part N of Figure 6.2(b) is glossy. We see that there has been no

reconstruction in the N part of Figure 6.2(f). In E part of Figure 6.2(c) we can see a

box kept on the chair. The box has a picture of a speaker on it. Figure 6.2(g) show the

clarity with which this picture of the speaker can be seen. Thus the 3D reconstruction

takes place with true reproduction of the color. We can therefore say that for the

given dataset environment and motion description, the camera has performed well in

reproducing the structure and color of the target.

We now look at the map created by the LIDAR. As seen in Figure 6.3(a), the indoor

environment is clearly mapped with the target in the center. The pink dots clearly

show the trajectory of the sensor. The room boundaries and the target can be seen

in blue. As compared to the camera output, the LIDAR has produced an excellent

map of the target with respect to the entire surrounding area. Thus for the given
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dataset the LIDAR too has performed well.

In order to look at it more analytically we plot the position and orientation as a

function of time. As previously established in Chapter 5, we assume the IMU readings

to be ground truth. We can see in Figure 6.3(b) that both the LIDAR and camera

have readings close to that of the IMU. Figure 6.3(d) and Figure 6.3(c) show the

position trajectories of the LIDAR and camera respectively. As we can see they are

similar to each other, and this is a confirmation of their correctness. They depict the

outer yaw motion. The only difference is that LIDAR maps in a 2D plane and the

camera in 3D space.
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6.4.2 Dataset 2 : Materials and Minerals Building

This is the second dataset. We describe this dataset as outdoor and matte. The

sensor measuring motion is once again outer yaw.

We see in the NE part of Figure 6.4(a) that there are trees. Now trees are considered

as non-rigid objects in the sense that they move across different frames. As can be

seen in Figure 6.6(e) the trees are not reconstructed. In Figures 6.4(b) and 6.4(c) we

can see a board in the C part and W part of the images respectively. This board is

on the lawn in front of the main structure. We see from part S of Figure 6.4(f) and

part E of Figure 6.4(g) that is had been recreated such that it accurately shows how

it is in front of the main structure. Finally in Figure 6.4(d) we see a pole which is

again in front of the main target. This too is seen clearly in E part of Figure 6.4(h).

The LIDAR on the other hand, as seen from Figure 6.5(d) has not performed well on

this dataset, the important dataset descriptor being outdoors. We see the orientation

plots Figure 6.5(b) to see that the camera and IMU (assumed ground truth) have

very similar plots. The position plot for camera Figure 6.5(c) shows that outer yaw

trajectory. The LIDAR plots for orientation and position are incorrect.
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Figure 6.3: Figure 6.3(a) shows the trajectory of the LIDAR. It show that
the LIDAR has successfully mapped the surrounding area. Figure 6.3(b)
shows that the orientation by the IMU, LIDAR and camera are almost over-
lapping. Figure 6.3(d) and Figure 6.3(c) show that the trajectories plotted
by the LIDAR and camera respectively.
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6.4.3 Dataset 3 : Dow Building

This dataset was very instrumental in the understanding of where SfM fails. Again,

we describe the environment as indoor and matte which is perfect for the camera.

However this time the motion in the first few frames is point yaw rotation and then

it becomes translation. Specifically the point yaw rotation is when we come to the

pillar shown in Figure 6.6(c) and 6.6(d).

As shown in the point cloud, parts NW, W, SW of Figure 6.6(e) and part NW, W

6.6(f) the pillar is not reconstructed. Further in the Figures 6.6(g) and 6.6(h) where

the motion is translational, the reconstruction is perfect.

The LIDAR algorithm on the other hand works flawlessly in this environment. This

can be seen from the LIDAR map in Figure 6.7(a) and the plots in Figure 6.7(b)and

6.7(d).
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Figure 6.5: Figure 6.5(a) shows that the LIDAR has not performed as
expected for dataset 2. Figures 6.5(b), 6.5(d) and 6.5(c) show the plots of
the LIDAR and camera. The camera can be seen to have performed better.
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6.5 Methodology

6.5.1 Experiment 1

While the IMU provides excellent orientation it does a poor job of providing the

position. This is primarily due to the integration errors which go on accumulating

as the time progresses. The camera on the other hand provides fair orientation but

excellent position.

In the most simple model, we create a pose by taking the position obtained from the

camera and the orientation from the IMU. However this did not work and the results

can be seen in Figure 6.8. The reason for this is that the orientation and position

obtained from SfM are coupled together and one cannot be replaced directly without

changing the other. This can be seen in Equation (6.1).

C̃ = −Rᵀt (6.1)
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Figure 6.7: Figure 6.7(a) shows that the LIDAR has done the perfect
job of mapping the environment. This can also be seen from the plots in
Figure 6.7(b), 6.7(d).

6.5.2 Experiment 2

In this experiment taking the previous Equation (6.1) into consideration, we propose

that the rotation can be replaced without changing the translation only if it is below

some threshold.
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Figure 6.8: A failed example of sensor fusion as a result of replacing all
camera rotations by IMU rotations

We once again superimpose the readings of the IMU with those from the camera as

shown in Figure 6.9(a). This time however we plot a graph of the difference in the

readings for every time step. Figure 6.9(b) shows that the mean error is 0.84◦ with a

standard deviation of 0.6◦ which is excellent considering that the camera outputs the

orientation as a result of SfM and not directly.

Now as compared to the previous experiment instead of replacing all values, we replace

only those up to an error threshold. In order for this to work, the mean error should

be not more than 2◦. Figure 6.10(a) shows the original reconstruction using only the

camera. Figure 6.10(b) shows the camera and IMU fusion for a threshold less than

the positive standard deviation. Thus

threshold ≤ mean + std

i.e., in our example all values where the error is less than 0.84◦ + 0.6◦ = 1.44◦. In

Figure 6.10(b), we see an improvement in the jacket which is kept on the ladder in

60



seconds
0 20 40 60 80 100

de
g

0

20

40

60

80

100

IMU
Camera

(a) IMU and camera yaw data

seconds
0 20 40 60 80 100

er
ro

r 
(d

eg
)

0

0.5

1

1.5

2

2.5

3
error (deg)
   y mean (0.84)
   y std (0.6)

(b) Error

seconds
0 20 40 60 80 100

de
g

-100

-80

-60

-40

-20

0

20
IMU
Camera

(c) IMU and camera yaw data

seconds
0 10 20 30 40 50 60 70 80 90

er
ro

r 
(d

eg
)

0

2

4

6

8
error (deg)
   y mean (2.5)
   y std (2.2)

(d) Error

Figure 6.9: Figure 6.9(a) shows the output of the camera superimposed
on that of the IMU. Figure 6.9(b) shows how the readings from the camera
differ from that of the IMU as a function of time. Figure 6.9(c) shows the
plot for another dataset. From Figure 6.9(c) we can see that the mean error
value is very high and that it increases with time. Experiment 2 does not
perform well for second dataset.

part C. Also the box to the left of the ladder and the frame behind it in part NW

and W appear more prominent. The box kept on the chair to the right of the ladder

in part E shows better perspective. In Figure 6.10(c) the threshold is high and the

result is poorer than that taken by the camera alone. Finally in Figure 6.10(d) we

see the result without having any threshold. We perform Experiment 2 on dataset

2 (Figure 6.4). As seen in Figure 6.9(c) and 6.9(d) the error is significant and goes

on increasing. Thus Experiment 2 does not perform as well as seen in Figure 6.11.
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(a) Camera only (b) Camera and IMU (threshold less than pos-
itive standard deviation)

(c) Camera and IMU (high threshold) (d) Camera and IMU (no threshold)

Figure 6.10: Sensor fusion for the rotation yaw

6.5.3 Experiment 3

We propose Experiment 3 which could serve as an improvement to Experiment 2.

Although we have not been able to implement it, we formulate the problem and
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Figure 6.11: Figure shows that Experiment 2 did not perform well on
Dataset 2 as the mean error was very high.

derive the mathematical equation.

One observation as a result of our experimentation was that SfM did not perform well

in cases where the translation (baseline) was small. We use this fact to our advantage.

Thus instead of directly replacing the rotation obtained from the SfM by that from

the IMU, we now replace only those values where the rotation error is high and the

translation is small.

Thus we can now formulate the problem we are about to solve : Given a start XA

and an end XB point, we define a trajectory of 5 vectors and 5 rotations as shown in

Figure 6.12. We assume tA and tB and hence the translation vectors from SfM are

accurate. We assume that t1, t2, t3 are small and we have to estimate these translation

vectors. Also the vector tAB is accurately known. Our third assumption is that the

rotations are obtained from the IMU and are accurate at all instances.
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Figure 6.12: Trajectory of 5 translations and 5 rotations

Thus we obtain Equation (6.2).

tAB = RB(R3(R2(R1(RA(XA) + tA) + t1) + t2) + t3) + tB

= RBR3R2R1(XA) +RBR3R2R1tA +RBR3R2t1 +RBR3t2 +RBt3 + tB

= A+B + Ct1 +Dt2 + Et3 + tB

(6.2)

We wish to minimize the error of the estimated point X̂B for the values of t1, t2, t3.

Using this we will be able to include rotations obtained from IMU while adjusting

the translations.
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6.6 Chapter Conclusion

In this chapter we analyzed different datasets. We found that in some cases the

LIDAR performs better and in the others, the camera. We also showed how it is not

only the type of environment but also the manner in which the data is collected that

makes a difference. We then proposed the simplest form of sensor fusion and showed

that it failed, while explaining the tight coupling between rotation and translation.

We then also proposed another method which worked for minor errors in the rotation.
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Chapter 7

Results

The UAV at the Intelligent Robotics Lab at Michigan Technological University can

now successfully obtain its pose from a sequence of images taken from the camera

mounted on it. Camera calibration procedure has been explained. Camera parame-

ters for the Point Grey camera has been obtained and their significance and impact

on 3D reconstruction has been detailed through experimentation. The algorithm for

Structure from Motion has been explained and implemented successfully for an image

pair from the data set.

State-of-the-art Structure from Motion packages were introduced. The complete in-

stallation procedure and usage of one such package - openMVG has been consolidated

in the form of shell scripts attached in the appendix. The scripts include the installa-

tion of CMake and other dependencies required for openMVG. Special attention was
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given to the installation procedure to ensure their installation without the need for

root or admin access. This enables the use of High Performance Computing Clusters

like the Superior at Michigan Technological University. The Superior has made it

possible to process a large data set (around 500) of images within an hour as com-

pared to 15 to 20 hours on other local systems.

The sensors, their coordinate systems and accuracy was verified at the Immersive

Visual Studio at Michigan Technological University. The orientation readings of the

Inertial Measurement Unit were established to be very close to that obtained from the

Immersive Visual Studio, hence giving a ground truth for outdoor data sets with no

access to the Immersive Visual Studio. The sensors were tested on various data sets

and their strengths and weaknesses were found out. Pose obtained from the camera

was compared with that obtained from the LIDAR. It was concluded that the pose

estimate from the sensors depended not only on the environment type but also on

the trajectory of the sensors during data collection.

Different methods were proposed to fuse the pose estimate obtained from the different

sensors. Through experimentation it was concluded that the rotation and translation

obtained from Structure from Motion is coupled and hence it is not possible to re-

place any one of them without modifying the other. Two workarounds for this were

proposed.
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[11] A. Strupczewski and B. Czupryński, “3d reconstruction software comparison

for short sequences,” in Symposium on Photonics Applications in Astronomy,

Communications, Industry and High-Energy Physics Experiments, pp. 929030–

929030, International Society for Optics and Photonics, 2014.

[12] C. Santagati, L. Inzerillo, and F. Di Paola, “Image-based modeling techniques

for architectural heritage 3d digitalization: Limits and potentialities,” Interna-

tional Archives of the Photogrammetry, Remote Sensing and Spatial Information

Sciences, vol. 5, no. w2, pp. 555–560, 2013.

70



[13] M. L. Brutto and P. Meli, “Computer vision tools for 3d modelling in archaeol-

ogy,” International Journal of Heritage in the Digital Era, vol. 1, pp. 1–6, 2012.

[14] C. Wu, S. Agarwal, B. Curless, and S. M. Seitz, “Multicore bundle adjustment,”

in Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference

on, pp. 3057–3064, IEEE, 2011.

[15] R. Toldo, Towards automatic acquisition of high-level 3D models from images.

PhD thesis, Universita‘ degli Studi di Verona, Strada le Grazie 15, 37134 Verona

Italy, 2013.

[16] R. Gherardi, M. Farenzena, and A. Fusiello, “Improving the efficiency of hi-

erarchical structure-and-motion,” in Computer Vision and Pattern Recognition

(CVPR), 2010 IEEE Conference on, pp. 1594–1600, IEEE, 2010.

[17] R. Gherardi and A. Fusiello, “Practical autocalibration,” in Computer Vision–

ECCV 2010, pp. 790–801, Springer, 2010.

[18] Autodesk, “123d catch (http://www.123dapp.com/gallery/catch).”

[19] “Homebrew (http://brew.sh/).”

[20] OpenMP Architecture Review Board, “OpenMP application program interface

version 3.0,” May 2008.

[21] “Rocks cluster distribution (http://www.rocksclusters.org/wordpress/).”

[22] “Superior - a shared hpc cluster at michigan technological university.”

71



[23] P. I. Corke, Robotics, vision and control : fundamental algorithms in MATLAB.

Berlin: Springer, corrected 2nd printing. ed., 2013.

72



Appendix A

Code

A.1 RANSAC.m

%% RANSAC

% Author: Anuj Potnis

% Date: 11 December 2014

% HZ Algorithm 4.4 (p.118)

% This is a standalone RANSAC code for a straight line

clear;clc;close all

% Sample size S

S = 10;

x = 1:S;

mtrue = 5; ctrue = 10;

xx = mtrue*x + ctrue;
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rng;

xx_noise = xx + 5*rand (1 ,10) - mean (5* rand (1 ,10));

xx_noise (3) = xx_noise (3) +25;

scatter(x,xx_noise ,55,'r','filled ');

axis tight;

hold on

lsline

scatter(x,xx ,55,'g');

%% Randomly select a sample of s data points from S

% and instantiate the model from this subset.

%% Select s as the minimum sample size (necessary) from ←↩

S

s = 2;

iter = 10;

i = 1;

while i < iter

% Generate any two random integers and sort them to ←↩

simplify line formula

ind = sort(randperm(S,s));

x2 = x(ind (2));

xx2 = xx_noise(ind (2));

x1 = x(ind (1));

xx1 = xx_noise(ind (1));

m_est = (xx2 -xx1)/(x2 -x1);

c_est = xx2 -m_est*x2;

t = 0.5;

th = atand(m_est);

h = t/sind(90- rad2deg(atan(m_est)));
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refline(m_est ,c_est)

refline(m_est ,c_est+h)

refline(m_est ,c_est -h)

% Check if point is within threshold t

% Distance of point p(m,n) from line Am + Bn + C = 0

% is d = |Am + Bn + C|/sqrt(A^2+B^2)

A = m_est;

B = -1;

C = c_est;

d = abs(A*x + B*xx_noise + C)/sqrt(A^2+B^2);

inlier_idx = find(d<t)

Ssub(i) = numel(x(inlier_idx))

% If the size of Si (the number of inliers

% is greater than some threshold T

T = 7;

if Ssub(i) > T

break

end

i = i+1;

end

title('RANSAC Implementation ')

legend('Noisy Data','LMS fit','Ideal Data','RANSAC ←↩

tolerance band', ...

'Location ','southeast ')

xlabel('x'); ylabel('xx')

print('-depsc ','RANSAC ')

%% Determine the set of data points Si which are within

% a distance threshold t of the model
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A.2 RQ decomposition.m

%% Given rotation and RQ decomposition

clear; clc;close

format long

P = [ 3.53553*10^2 3.39645*10^2 2.77744*10^2 ←↩

-1.44946*10^6;

-1.03528*10^2 2.33212*10^1 4.59607*10^2 ←↩

-6.32525*10^5;

7.07107*10^ -1 -3.53553*10^ -1 6.12372*10^ -1 ←↩

-9.18559*10^2]

%%

A = P(: ,1:3)

%A = [1 4 7;2 5 8;3 6 9]; %-- DANGEROUS

%A = eye (3)

%A = [1 0 0; 1 1 0; 1 1 1];

%A = magic (3)

%%

cx = -A(3,3)/sqrt( A(3,2)^2 + A(3,3)^2);

sx = A(3,2)/sqrt( A(3,2)^2 + A(3,3)^2);

Qx = [1 0 0;

0 cx -sx;

0 sx cx];

Ax = A*Qx

%%

cy = Ax(3,3)/sqrt( Ax(3,1)^2 + Ax(3,3)^2);

sy = Ax(3,1)/sqrt( Ax(3,1)^2 + Ax(3,3)^2);

Qy = [cy 0 sy;
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0 1 0;

-sy 0 cy];

Ay = Ax*Qy

%%

cz = -Ay(2,2)/sqrt( Ay(2,2)^2 + Ay(2,1)^2);

sz = Ay(2,1)/sqrt( Ay(2,2)^2 + Ay(2,1)^2);

Qz = [cz -sz 0;

sz cz 0;

0 0 1];

Az = Ay*Qz

%%

Q = Qz '*Qy '*Qx ';

R = A*Qx*Qy*Qz

Acomposed = R*Q;

Recomposition_Error = abs(A - Acomposed)

format

A.3 homography DLT.m

%% Homography

% 10th December 2014

% Hartley and Ziesserman : Multiple View Geometry

% 4.1 The Direct Linear Transformation (DLT) algorithm (←↩

p.88)

clear; clc; close

%%

x1 = [1 1 1]';
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xx1 = [10 10 1]';

A1 = [0 0 0 -xx1 (3)*x1 ' xx1 (2)*x1 ';

xx1 (3)*x1 ' 0 0 0 -xx1 (1)*x1 '];

x2 = [5 1 1]';

xx2 = [15 10 1]';

A2 = [0 0 0 -xx2 (3)*x2 ' xx2 (2)*x2 ';

xx2 (3)*x2 ' 0 0 0 -xx2 (1)*x2 '];

x3 = [5 5 1]';

xx3 = [15 15 1]';

A3 = [0 0 0 -xx3 (3)*x3 ' xx3 (2)*x3 ';

xx2 (3)*x3 ' 0 0 0 -xx3 (1)*x3 '];

x4 = [1 5 1]';

xx4 = [10 15 1]';

A4 = [0 0 0 -xx4 (3)*x4 ' xx4 (2)*x4 ';

xx4 (3)*x4 ' 0 0 0 -xx4 (1)*x4 '];

% For over -determined

% This is an additional point we add to create an over -←↩

determined system.

% Since the points are accurate (noise -free), the rank ←↩

of A remains 8,

% and a null space of 1-dimension exists.

x5 = [3 3 1]';

xx5 = [12.5 12.5 1]';

A5 = [0 0 0 -xx5 (3)*x5 ' xx5 (2)*x5 ';

xx5 (3)*x5 ' 0 0 0 -xx5 (1)*x5 '];

A = [A1;A2;A3;A4]
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% For over -determined

%A = [A1;A2;A3;A4;A5]

H = null(A)

H = reshape(H,[3 ,3])'

x = [x1 x2 x3 x4]

xx = [xx1 xx2 xx3 xx4]

xx_est_sc = H*x;

xx_est = xx_est_sc ./ xx_est_sc (3,1)

scatter ([x1(1) x2(1) x3(1) x4(1) xx1 (1) xx2 (1) xx3 (1) ←↩

xx4 (1) ], ...

[x1(2) x2(2) x3(2) x4(2) xx1 (2) xx2 (2) xx3 (2) xx4 (2)←↩

]); hold on

scatter(xx_est (1,:), xx_est (2,:), 'filled ')

x_test = [4.5 1.5 1]';

xx_test_sc = H*x_test

xx_test = xx_test_sc ./ xx_test_sc (3)

scatter ([ x_test (1) xx_test (1)], [x_test (2) xx_test (2)], ←↩

'filled ')

title('Homography mapping and projection ')

legend('True value ', 'Calculated ', 'Test points ','←↩

Location ','southeast ')

axis equal

print('-depsc ','homography ')

A.4 cameramodel ideal.m

close
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%K = [fx 0 px; 0 fy py; 0 0 1]

th = 0;

R = [1 0 -sind(th);0 cosd(th) 0;0 sind(th) cosd(th)];

fx = 1; fy = 1; px = 0; py = 0;

K = [fx 0 px; 0 fy py; 0 0 1]

%R = [1 0 0;0 1 0;0 0 1];

C = [0 0 0]';

t = -R*C;

P = K*[R t]

x = P*X; % 2D points

I = find(x(3,:) == 0, length(X));

x = [x(1,:)./x(3,:); x(2,:)./x(3,:) ];

figure (2)

scatter(x(1,:),x(2,:) ,50,'filled ')

%plot(x(1,:),x(2,:))

axis equal

A.5 camerapose.m

clear;clc;close all;

%url = 'http ://141.219.218.16:8080/ shot.jpg ';

img_old = imread('temple0045.png');

fh = image(img_old);

cam = CentralCamera('image ', img_old , 'focal ', 0.015204 ,←↩

...

'resolution ', [640 480], 'centre ', [302.32 246.87]);

Rold = [1 0 0 ;0 1 0 ; 0 0 1];
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i=1;

for inum = 44: -1:40;

img_name = sprintf('temple00%d.png',inum);

%while (1)

%img_new = imread('HouseBlack__Curve_020_Rot_140.←↩

png ');

img_new = imread(img_name);

set(fh ,'CData ',img_new);

drawnow;

img_new=single(rgb2gray(img_new));

sz=size(img_new);

[f1 ,d1] = vl_sift(img_new);

if(~ ismatrix(img_old))

img_old=single(rgb2gray(img_old));

end

img_new=imresize(img_new ,[sz(1),NaN]);

[f2 ,d2] = vl_sift(img_old);

img_old = img_new;

thresh =5;

[matches , scores] = vl_ubcmatch(d1 ,d2 ,thresh);

fprintf('Number of Matches: %d\n',size(matches ,2))

indices1=matches (1,:);

f1match=f1(:,indices1);

d1match=d1(:,indices1);

indices2=matches (2,:);

f2match=f2(:,indices2);

d2match=d2(:,indices2);
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u1 = f1match (1:2, :);

u2 = f2match (1:2, :);

F = estimateFundamentalMatrix(u1 ',u2 ', ...

'Method ','RANSAC ', 'NumTrials ', 2000 ,...

'DistanceThreshold ', 1e-4);

E = cam.E(F);

sol = cam.invE(E, [0,0,10]');

[Rnew ,t] = tr2rt(sol);

Rpresent = Rold*Rnew;

RPY(:,i) = tr2rpy(Rpresent , 'deg');

Roll(i) = RPY (1);

Yaw(i) = RPY (2);

Pitch(i) = RPY (3);

i=i+1;

Rold = Rnew;

%end

end

i = 1:5;

plot(i,RPY(2,:))

title('Camera Pose')

xlabel('Frame number ')

ylabel('Angle (deg)')

legend('Pitch ','location ','northeast ')

print('-depsc ','camerapose_RPY ')
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Appendix B

BASH Shell Scripts

B.1 CMake build.sh

#!/bin/bash

# BASH script to install CMAKE version 3.0.2 on HPC ←↩

Superior (without root access)

#

# Usage: sh CMake_build.sh

#

# Tested on :

# MacBook - Mac OS X 10.9.5 (execution time 20 mins)

# HPC Superior - CentOS 6.3 (execution time from 5 mins ←↩

to 15 mins)

#

# NOTE:

# No root access is required

# Use absolute path of cmake while using it. For eg: ←↩

$HOME/research/apps/cmake -3.0.2/ bin/cmake
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#

# This is a modified version of a script provided by Dr.←↩

Gowtham (Michigan Tech University)

# Necessary variables

export TODAY=`date +"%Y%m%d_%H%M%S"`

echo $TODAY

export CMAKE_VERSION="3.0.2"

echo $CMAKE_VERSION

# Create necessary directories if they do not already ←↩

exist

mkdir -p $HOME/research/src/

mkdir -p $HOME/research/apps/

# Download the source file here

cd $HOME/research/src/

wget http :// www.cmake.org/files/v3.0/cmake -3.0.2. tar.gz

# Untar the tar here

tar -zxvf cmake -${CMAKE_VERSION }.tar.gz -C $HOME/←↩

research/apps

# Cmake compile

cd ../ apps/cmake -${CMAKE_VERSION }/

./ bootstrap --prefix=$HOME/research/apps/cmake -${←↩

CMAKE_VERSION} 2>&1 | tee $HOME/research/apps/cmake -${←↩

CMAKE_VERSION }/ bootstrap_${TODAY }.txt

make 2>&1 | tee $HOME/research/apps/cmake -${←↩

CMAKE_VERSION }/ make_${TODAY }.txt

make install 2>&1 | tee $HOME/research/apps/cmake -${←↩

CMAKE_VERSION }/make -install_${TODAY }.txt
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B.2 openMVG build.sh

#!/bin/bash

# BASH script to compile and build openMVG

#

# Usage : sh openMVG_build.sh

#

# Tested on :

# MacBook - Mac OS X 10.9.5 (execution time 35 mins)

# HPC Superior - CentOS 6.3

# (execution time from 5 mins to 35 mins depending on ←↩

number of cores selected)

#

# NOTE:

# Multicore compilation is supported and the number of ←↩

cores have to be specified as

# make -j NBcore (replace NBcore by the number of ←↩

threads)

# CMake : Specific version is used by giving absolute ←↩

path of cmake -3.0.2

#

# For more details visit the openMVG website :

# https :// raw.githubusercontent.com/openMVG/openMVG/←↩

master/BUILD

cd $HOME/research/

git clone --recursive https :// github.com/openMVG/openMVG←↩

.git

mkdir openMVG_Build

cd openMVG_Build
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# Uncomment the below only if using a different version ←↩

of gcc from default

#export CC=$HOME/research/apps/gcc -4.8.0/ bin/gcc

#export CXX=$HOME/research/apps/gcc -4.8.0/ bin/g++

#export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$HOME/research/←↩

apps/gcc -4.8.0/ lib/

# Use absoule path of CMake if not using default

# Refer to the script cmake_compile for more details

$HOME/research/apps/cmake -3.0.2/ bin/cmake -←↩

DCMAKE_BUILD_TYPE=RELEASE . ../ openMVG/src/

echo

echo "CMake executed"

echo

# Enter number of cores

make -j 2

# Minor modifications in openMVG file structure

cd $HOME/research/openMVG_Build/software/globalSfM

cp openMVG_main_GlobalSfM ../ SfM

echo

echo "Copied openMVG_main_GlobalSfM to main directory"

echo

# Create directory for a Dataset

mkdir -p $HOME/research /3 D_Reconstruction/Dataset

# Copy all binaries to a single folder

cd $HOME/research/openMVG_Build/software/SfM/

cp openMVG_main_computeMatches openMVG_main_CreateList ←↩

openMVG_main_GlobalSfM openMVG_main_openMVG2PMVS $HOME←↩

/research /3 D_Reconstruction/
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echo

echo "openMVG successfully installed"

echo

B.3 openMVG run.sh

#!/bin/bash

# BASH script to run openMVG/PMVS/CMVS on a dataset of ←↩

images to create a 3D reconstruction

#

# Usage : openMVG_run.sh

#

# Tested on :

# MacBook - Mac OS X 10.9.5

# HPC Superior - CentOS 6.3

# Execution time : Largely

# NOTE:

# Assumes all images are in a folder called images

# For more details visit the openMVG website :

# http :// openmvg.readthedocs.org/en/latest/software/SfM/←↩

intrinsicGroups/

#

# openMVG_main_CreateList -f 895 (focal length in pixels←↩

) -i Dataset/images/ -o Dataset/matches/

./ openMVG_main_CreateList -f 895 -i Dataset/images/ -o ←↩

Dataset/matches/
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# openMVG_main_computeMatches [optional args] -i Dataset←↩

/images/ -o Dataset/matches/

./ openMVG_main_computeMatches -g e -p 0.01 -r 0.8 -s 1 -←↩

i Dataset/images/ -o Dataset/matches/

# Run Structure from Motion on input images and previous←↩

output (select method 1 or 2 when prompted)

./ openMVG_main_GlobalSfM -i Dataset/images/ -m Dataset/←↩

matches/ -o Dataset/outGlobalSfM

# Convert openMVG output to PMVS

./ openMVG_main_openMVG2PMVS -i Dataset/outGlobalSfM/←↩

SfM_output/ -o Dataset/outGlobalSfM/SfM_output/

# Run CMVS to cluster images before input to PMVS

./cmvs Dataset/outGlobalSfM/SfM_output/PMVS/ 15

./ genOption Dataset/outGlobalSfM/SfM_output/PMVS/

# Run PMVS to create dense 3D reconstruction

./ pmvs2 Dataset/outGlobalSfM/SfM_output/PMVS/ ←↩

pmvs_options.txt

echo

echo "3D reconstruction completed"

echo

B.4 send.sh

#!/bin/bash
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# Script to send data to a folder from a cluster from a ←↩

folder called project_X

# on local system ($HOME/project_X)

#

# Usage : send.sh

#

# This is a modified version of a script provided by Dr.←↩

Gowtham (Michigan Tech University)

#

# Uncomment the DESTINATION as per reuiqrement

export DESTINATION="superior -login1.research.mtu.edu"

#export DESTINATION ="un5395 -aspotnis.research.mtu.edu"

#export DESTINATION ="portage -login.research.mtu.edu"

# Send files from local folder project_X to cluster

rsync -ave ssh -hPz $HOME/project_X/ ←↩

aspotnis@$DESTINATION:research /3 D_Reconstruction/←↩

Dataset/

echo

echo "Sent"

echo

B.5 receive.sh

#!/bin/bash

# Script to receive data from a folder from a cluster to←↩

a folder called project_X

# on local system ($HOME/project_X)
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#

# Usage : receive.sh

#

# This is a modified version of a script provided by Dr.←↩

Gowtham (Michigan Tech University)

#

# Uncomment the DESTINATION as per reuiqrement

export DESTINATION="superior -login1.research.mtu.edu"

#export DESTINATION ="un5395 -aspotnis.research.mtu.edu"

#export DESTINATION ="portage -login.research.mtu.edu"

# Receive output of openMVG from cluster to local folder←↩

project_X

rsync -ave ssh -hPz aspotnis@$DESTINATION:research /3←↩

D_Reconstruction/Dataset/outGlobalSfM $HOME/project_X/

echo

echo "Received"

echo
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