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Abstract

In this thesis, we consider Bayesian inference on the detection of variance change-point

models with scale mixtures of normal (for short SMN) distributions. This class of distri-

butions is symmetric and thick-tailed and includes as special cases: Gaussian, Student-t,

contaminated normal, and slash distributions. The proposed models provide greater flexi-

bility to analyze a lot of practical data, which often show heavy-tail and may not satisfy the

normal assumption.

As to the Bayesian analysis, we specify some prior distributions for the unknown parame-

ters in the variance change-point models with the SMN distributions. Due to the complex-

ity of the joint posterior distribution, we propose an efficient Gibbs-type with Metropolis-

Hastings sampling algorithm for posterior Bayesian inference. Thereafter, following the

idea of [1], we consider the problems of the single and multiple change-point detections.

The performance of the proposed procedures is illustrated and analyzed by simulation stud-

ies. A real application to the closing price data of U.S. stock market has been analyzed for

illustrative purposes.
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Chapter 1

Introduction

It has been long known that the subject of quick detection of change-points has gained

considerable attention in the literature due to its importance in many applications. The

change-points analysis can be originally traced to [2], who develops a test for a change

in a parameter occurring at an unknown point. Thereafter, the problem of detection of

changes has been greatly investigated in a wide range of disciplines, including finance, bio-

informatics, climatology, econometrics, network traffic analysis, and so on. For example,

to create the safest investment environment, financial investors often pay much attention on

the volatility of stock market and develop efficient economic models to monitor the location

of a change-point if it exists. Biologists consider the DNA copy number variations, which

can be located under some proper change-points detection models for cancer research.
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A change point can generally be considered as a location or time point such that the ob-

servations follow different distributions before and after that point. To be more specific,

we begin with the simplest change-point problem briefly summarized as follows. For a

given sample of n independent observations {Y1, Y2, · · · , Yn}, a change point occurs if

there exists a k ∈ [1, n− 1] such that the distributions of {Y1, · · · , Yk} and {Yk+1, · · · , Yn}

are different with respect to some criteria. Three commonly used criteria are of particular

interest:

1. Change in mean: the mean of Yi is given by

μi =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
μ1, if 1 ≤ i ≤ k,

μ2, if k + 1 ≤ i ≤ n,

where μ1 �= μ2 and the discrete unknown parameter k indicates the location of the

change-point in the sample.

2. Change in regression coefficients: assume that Xi and εi are mutually independent

and identically distributed (iid) sequences with E[εi] = 0 and E[ε2i ] = 1. Then it

follows

Yi =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
β0 + β1Xi + σεi, if 1 ≤ i ≤ k,

γ0 + γ1Xi + σεi, if k + 1 ≤ i ≤ n,

where β0 �= γ0 and β1 �= γ1.
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3. Change in variance: the variance of Yi is given by

σ2
i =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
σ2
1, if 1 ≤ i ≤ k,

σ2
2, if k + 1 ≤ i ≤ n,

where σ2
1 �= σ2

2 .

Over the years, considerable attention has been devoted to testing and estimation about the

change-points problem related to the first two cases. [3] considers the problem of a change

in location under several different criteria. [4] studies this problem in the regression co-

efficients of a linear regression model. [5] and [6] study the change-point problem in the

mean of a normal distribution. Later on, [7] extends the change-point problem in general-

ized linear regression models. In the meantime, the change in variance while the mean or

regression coefficient remains common has also been discussed in applied economics and

finance. For instance, [8] explores testing and locating multiple variance change points in a

sequence of independent Gaussian random variables, assuming known and common mean.

It should be noted that many researchers are often interested in studying the three types of

change-point problems in regression model under the assumption that the errors follow the

normal distribution for mathematical convenience.

As is the case of many real data studies, the normal assumption may be questionable or not

be always realistic, because such assumption is very vulnerable to the presence of atypical
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observations. Substantial violation of normality assumption could potentially impact the

variance change-point detection in these models. To deal with the problem of atypical

observations, [9] studies robust statistical regression models with the t distributed errors.

More recently, [10] considers the variance change-point problem in the Student-t linear

regression model, which provides heavy-tails, compared with the normal regression model.

It is also well-known that due to some unexpected reasons, real data might have more

flexible tails than the Student-t distribution. This observation motivates us to consider the

regression models with a more flexible distributed error, which can be either heavier tails

compared to the normal distributed errors and includes the normal and Student-t distribu-

tions as particular cases. Fortunately, there are various heavy-tailed distributions, such as

double-exponential distribution, scale mixtures of uniform distributions studied by [11]. In

this thesis, we mainly focus on scale mixtures of normal (for short, SMN) distributions,

which are symmetric and thick-tailed and include as special cases: Gaussian, Student-t,

contaminated normal, and slash distributions. To the best of our knowledge, there are no

published references for the variance change-points problem for the SMN linear regression

models, even though detection of change-points is of the utmost importance in statistical

literature, especially when data show heavy tails. Moreover, from the Bayesian point of

view, the SMN distribution admits a hierarchical representation that allows us to develop

an efficient sampling scheme using standard software, such as WinBUGS, JAGS, and/or R

programs. The proposed approach can be implemented to obtain Bayesian estimations and

standard errors of the change-point and other unknown model parameters. By following
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the stepwise and dichotomy method proposed by [1], the proposed approach can also be

applied to detect multiple change-points via sampling schemes.

The remainder of this thesis is organized as follows. In Chapter 2, we introduce the SMN

class of distribution and then define the SMN linear regression model with a variance

change-point. In Chapter 3, we consider the prior specification for the unknown model

parameters and propose an efficient sampling algorithm for posterior simulation and esti-

mation. The performance of the proposed approach is illustrated in Chapter 4, by consid-

ering the analysis of simulation studies and a real application to the closing price data of

U.S. stock market. We summarize our findings and sketch possible extensions in Chapter

5.
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Chapter 2

The SMN Linear Regression Model with

a Variance Change-point

In this chapter, we firstly introduce the class of scale mixtures of normal (for short, SMN)

distributions. Then we define the SMN linear regression models with a variance change-

point in Section 2.2.

2.1 The Scale Mixtures of Normal Distributions

In this section, we recall that a random variable Y is said to be the SMN class of distribu-

tions with location parameter μ ∈ (−∞,+∞), and scale parameter σ2 > 0 if it satisfies
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the following stochastic representation

Y = μ+ κ(u)1/2Z,

where κ(u) is a function of u, u is a positive variable, and Z has a normal distribution

with mean 0 and variance σ2. It is noteworthy that this representation is derived based

on Laplace transformation technique studied by [12]. In particular, we call the random

variable Y as the standard SMN distribution if μ = 0 and σ2 = 1.

The random function κ(u) can be either discrete or continuous and determines the distri-

bution of Y . In this thesis, we follow the results and comments of [13], [11], and [14]

and mainly focus on the case in which κ(u) is set to be 1/u. Consequently, the possibility

density function (pdf) of Y = μ+ u−1/2Z is given by

fY (y|μ, u, σ) =
∫ ∞

0

1√
2πu−1/2σ

e−
(y−μ)2

2u−1σ2 π(u)du,

where π(·) represents the pdf of the random variable u. The random variable Y has different

distributions with different choices of π(u) summarized as follows.

1. Case I: if u = 1, then Y = μ + Z. In this case, Y has a normal distribution with

mean μ and variance σ2.
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2. Case II: if uv ∼ χ2(v), v is a positive constant, then we have that

(Y | μ, u, v, σ) ∼ N(μ, u−1σ2) and uv ∼ χ2(v).

In this case, Y has a Student-t distribution with mean μ, variance σ2, and the degrees

of freedom v. It deserves mentioning that Student-t distribution is a heavy-tailed

distribution and may thus provide a better fit for a lot of practical data with atypical

observations than the one based on the normal assumption.

3. Case III: if u ∼ Beta(v, 1), then we have that

(Y | μ, u, v, σ) ∼ N
(
μ, u−1σ2

)
and u ∼ Beta(v, 1),

where Beta(v, 1) represents the beta distribution with the pdf given by π(λ | v) =
uv−1

B(v,1)
= vuv−1I0<u<1 with B(·, ·) be a beta function. In this case, the pdf of Y is

fY (y|μ, u, v, σ) =
∫ 1

0

1√
2πu−1/2σ

e−
(y−μ)2

2u−1σ2 vuv−1du.

We call Y has a slash distribution, which has a heavier tail than the normal distribu-

tion and becomes the normal distribution as v approaches ∞.

4. Case IV: if u = 1 with the probability of 1 − v and u = γ with the possibility of

v, then we observe that Y is a normal mixture, such that Y = (1 − v)Y1 + vY2,

where Y1 ∼ N(μ, σ2) and Y2 ∼ N(μ, γ−1σ2). In this case, Y has a contaminated
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distribution with v ∈ (0, 1) and γ ∈ (0, 1). Note that the contaminated distribution

degenerates to a normal distribution when γ = 1.

Due to the flexible tail of SMN distributions, we consider the variance change-point detec-

tion in the context of regression models with SMN distributions, which should be provided

to fit the data better. Moreover, from the Bayesian perspective, the above mixture represen-

tations of SMN distributions allow us to develop efficient sampling algorithms for posterior

analysis.

In order to further compare heavy-tails of the four distributions mentioned above, Figure

2.3 displays their pdfs with various choices of the parameters discussed as follows. We

set μ = 0 and σ2 = 1 for all the distributions under consideration. Then, for Student-

t distribution, we choose degrees of freedom v = {1, 3, 20}; for the slash distribution,

we set v = {1, 3, 20}. For the contaminated distribution, we consider there cases which

are represented by con1, con2 and con3 in the Figure 2.3. In the case con1, v and γ

have distributions of Beta(1, 0.5) and Beta(1, 1), respectively. Similarly, in the case con2,

v ∼ Beta(2, 3), γ ∼ Beta(1, 1) and in the case con3, v ∼ Beta(6, 4), γ ∼ Beta(4, 6). It can

be seen from the Figure 2.3 that Student-t, slash, and contaminated distributions all have

heavier tails than the normal distribution. What’s more, we observe that the tails become

thinner with the larger degrees of freedom for Student-t and slash distributions.

In this thesis, we mainly focus on the variance change-point problem for linear regression

10



Figure 2.1: Pdfs of normal and t distributions

models with the SMN distributions mentioned above. However, it deserves mentioning that

besides the above distributions, the SMN distributions include special cases, such as Pear-

son Type VII distribution [15], variance gamma distribution [16], stable and exponential

power distributions [17], among others. The generalization of the proposed algorithm to

those distributions is quite straightforward and thus omitted here for simplicity.
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Figure 2.2: Pdfs of normal and slash distributions

2.2 The SMN Linear Regression Model Setup

As an illustration, suppose that there exists a change-point for a given sequence of data

{Y1, Y2, · · · , Yn}. The variance change-point detection problem can be formulated as a

12



Figure 2.3: Pdfs of normal and contaminated distributions

model selection problem

H0 : Yi = X ′
iβ + εi, i = 1, ..., n, (2.1)

H1 : Yi = X ′
iβ + ε

(1)
i , i = 1, ..., k, (2.2)

Yi = X ′
iβ + ε

(2)
i , i = (k + 1), ..., n,

13



where k is the unknown position that a variance change exists, β = (β1, ..., βp)
′ is a p × 1

vector of the regression coefficients, Xi = (xi1, ..., xip)
′ denotes the p covariates, and

εi ∼ N(0, u−1
i σ2), ε

(1)
i ∼ N(0, u−1

i σ2
1), ε

(2)
i ∼ N(0, u−1

i σ2
2). (2.3)

For notational simplicity, we denote Y = (Y1, · · · , Yn)′, X = (X1, · · · , Xn)
′, and u =

(u1, · · · , un)′ with all ui’s being positive. Then under H1, the likelihood function is given

by

L(Y | X, β, σ1, σ2, k, u) (2.4)

=
n∏

i=1

f(Yi | X, β, σ1, σ2, k, u)

=
k∏

i=1

1√
2πu

−1/2
i σ1

exp

{
−(Yi −X ′

iβ)
2

2u−1
i σ2

1

} n∏
i=(k+1)

1√
2πu

−1/2
i σ2

exp

{
−(Yi −X ′

iβ)
2

2u−1
i σ2

2

}

∝
k∏

i=1

u
1/2
i

σk
1

exp

{
−

k∑
i=1

(Yi −X ′
iβ)

2ui
2σ2

1

}
n∏

i=k+1

u
−1/2
i

σn−k
2

exp

{
−

n∑
i=(k+1)

(Yi −X ′
iβ)

2ui
2σ2

2

}
.

We observe that the above likelihood function depends on the distribution of the random

variable u. As the formation of the SMN distributions discussed in Section 2.1, we obtain

the four types of linear regression models in terms of the choices of u: Gaussian model

with ui = 1, Student-t model with uiv ∼ χ2(v), slash model with ui ∼ Beta(v, 1), and

contaminated model with ui ∼ vIγ(ui)+(1−v)I1(ui). Thus, the flexibility of the proposed

models indicates that they should be provided to fit the real data better than the one with

14



either normal or Student-t distributed errors only.
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Chapter 3

Bayesian Analysis of Variance

Change-point Problems

In this Chapter, we consider Bayesian analysis for the variance change-point problem in

the SMN linear regression models. We discuss the Bayesian formulation of the variance-

change problem in Section 3.1. We propose a Gibbs-type with Metropolis-Hastings algo-

rithm for posterior simulation and parameter estimation in Section 3.2.

17



3.1 Bayesian Formulation

Bayesian analysis begins with prior specification for the unknown model parameters. Non-

informative prior is often preferred in the lack of the prior knowledge. In this thesis, we

specify the priors for the unknown parameters {β, σ1, σ2, k} as follows:

π1(β) ∝ constant, π2(σ1) ∝ 1

σ1
, π3(σ2) ∝ 1

σ2
, π4(k) ∝ 1

n− 2p+ 1
,

With a combination of the likelihood function in (2.4), the joint posterior distribution under

the above priors is given by

Π
(
β, σ1, σ2, k, u | Y,X) ∝ L(Y | X, β, σ1, σ2, k, u)π1(β)π2(σ1)π3(σ2)π4(k)π5(u),

where π5(u) is the distribution for the random variable u, which depends on the specific

model in the family of the SMN distributions. More specifically, based on the four different

treatments of u, we obtain the four different linear regression models discussed as follows.

Case I: In Gaussian linear regression model with ui = 1, for i = 1, ..., n, the posterior

18



density is

Π1(β, σ1, σ2, k|Y,X) ∝ L(Y |X, β, σ1, σ2, k)π1(β)π2(σ1)π3(σ2)π4(k)

∝ σ
−(k+1)
1 exp

{
−

k∑
i=1

(Yi −X ′
iβ)

2

2σ2
1

}
σ
−(n−k+1)
2 exp

{
−

n∑
i=(k+1)

(Yi −X ′
iβ)

2

2σ2
2

}
.

Case II: In Student-t linear regression model with uiv ∼ χ2(v), for i = 1, ..., n, we have an

additional random variable v, the degrees of freedom. Due to lack of the prior knowledge,

we consider the Jeffrey’s prior for v [18]:

π5(v) ∝
( v

v + 3

) 1
2

[
ψ

′
(v
2

)
− ψ

′
(v + 1

2

)
− 2(v + 3)

v(v + 1)2

] 1
2

,

where ψ′(·) = d[ψ(x)]/dx and ψ(·) = d[logΓ(x)]/dx are trigamma and digamma func-

tions, respectively. Thus, the corresponding posterior density is given by

Π2(β, σ1, σ2, u, v, k|Y,X)

∝ L(Y | X, β, u, σ1, σ2, k)π1(β)π(u)π2(σ1)π3(σ2)π5(v)π4(k)

∝ σ
−(k+1)
1

k∏
i=1

u
v+3
2

i exp

{
−

k∑
i=1

(Yi −X ′
iβ)

2σ−2
1 + v

2u−1
i

}

σ
−(n−k+1)
2

n∏
i=k+1

u
v+3
2

i exp

{
−

n∑
i=k+1

(Yi −X ′
iβ)

2σ−2
2 + v

2u−1
i

}(v
2

)nv
2

[
Γ
(v
2

)]−n( v

v + 3

)1/2
[
ψ′
(v
2

)
− ψ′

(v + 1

2

)
− 2(v + 3)

v(v + 1)2

]1/2
.

Case III: In the slash linear regression model with ui ∼ Beta(v, 1), for i = 1, ..., n, we also
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have an additional parameter v to represent the degrees of freedom. We consider the same

prior for v as it is in Student-t linear regression model. Then, the posterior density is

Π3(β, σ1, σ2, u, v, k|Y,X)

∝ L(Y |X, β, u, σ1, σ2, k)π1(β)π(u)π2(σ1)π3(σ2)π5(v)π4(k)

∝ σ
−(k+1)
1

k∏
i=1

u
v− 1

2
i exp

{
−

k∑
i=1

(Yi −X ′
iβ)

2ui
2σ2

1

}
σ
−(n−k+1)
2

n∏
i=k+1

u
v− 1

2
i exp

{
−

n∑
i=k+1

(Yi −X ′
iβ)

2ui
2σ2

2

}

vn
( v

v + 3

)1/2
[
ψ′
(v
2

)
− ψ′

(v + 1

2

)
− 2(v + 3)

v(v + 1)2

]1/2
.

Case IV: In the contaminated linear regression model with ui ∼ vIγ(ui) + (1 − v)I1(ui),

we have another two unknown parameters {v, γ}. We assign the priors for v and γ

v ∼ Beta(v0, v1) and γ ∼ Beta(γ0, γ1),

respectively, where v0, v1, γ0, and γ1 are the hyperparameters that need to be prespecified.
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Then, the posterior density is given by

Π4(β, σ1, σ2, u, v, γ, k, v0, v1, γ0, γ1|Y,X)

∝ L(Y |X, β, u, σ1, σ2, k)π1(β)π(u)π2(σ1)π3(σ2)π6(v)π7(γ)π4(k)

∝ σ
−(k+1)
1

k∏
i=1

u
1
2
i exp

{
−

k∑
i=1

(Yi −X ′
iβ)

2ui
2σ2

1

}
σ
−(n−k+1)
2

n∏
i=k+1

u
1
2
i exp

{
−

n∑
i=k+1

(Yi −X ′
iβ)

2ui
2σ2

2

}
n∏

i=1

[
vIγ(ui) + (1− v)I1(ui)

]
vv0−1(1− v)v1−1γγ0−1(1− γ)γ1−1.

It can be seen from the four cases that the conditional posterior density of each parameter is

based on other parameters, which allows us to develop an efficient MCMC-type sampling

algorithm for posterior Bayesian inference.

3.2 Inference Procedure Using MCMC

Due to the complex form of the joint posterior distribution of the unknown parameters, it

is prohibitive to directly use numerical techniques to make Bayesian inference. In this Sec-

tion, we develop an efficient MCMC-type sampling algorithm by generating samples from

the posterior distributions. To be more specific, we obtain the full conditional posterior dis-

tribution of each parameter under consideration in the model, and then we draw posterior

samples from these distributions.
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3.2.1 Gibbs sampling

In this subsection, we consider the full conditional posterior distributions in Gibbs sampling

based on the above four different posterior distributions.

Case I: The Gaussian linear regression model. The full conditional posterior distributions

for β, σ1, σ2 and k are the same as the ones in [10] and are thus omitted for simplicity.

Case II: Student-t linear regression model. Note that the full conditional posterior distri-

butions of β, σ1, σ2, u and k are also the same as the ones in [10]. However, two main

differences between our approach and the one in [10] are the prior specification of v and

the posterior sampling for v. [10] consider an exponential distribution with a rate λ for v,

where the choice of λ has a large impact on the estimation of the unknown parameters. In

addition, their posterior simulation method for v seems to be computational cumbersome,

especially when the value of v is small. To overcome these two potential difficulties, we

consider an objective prior for v and develop an efficient Metropolis-Hastings algorithm

(Section 3.2.2) to draw samples from the full conditional posterior distribution.

Case III: The slash linear regression model. According to the posterior density Π3(·), the

full conditional posterior distribution can be given as follows.

1. Posterior distribution of β conditional on σ1, σ2, u, v, γ, and k. Given σ1, σ2, u, v, γ,
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and k, the posterior distribution of β is proportional to

exp

{
−

k∑
i=1

(Yi −X ′
iβ)

2ui
2σ2

1

−
n∑

i=k+1

(Yi −X ′
iβ)

2ui
2σ2

2

}

= exp

{
(Y −X ′β)′Σ−1(Y −X ′β)

2

}

∝ exp

{
−(β − β̃)′X ′Σ−1X(β − β̃)

2

}
,

where Σ = diag(σ2
1u

−1
1 , σ2

1u
−1
2 , · · · , σ2

1u
−1
k , σ2

2u
−1
k+1, · · · , σ2

2u
−1
n ) and β̃ =

(X ′Σ−1X)−1X ′Σ−1Y . Thus, it follows

(β | u, v, σ1, σ2, k) ∼ N
(
β̃, (X ′Σ−1X)−1

)
.

2. Posterior distribution of σ1 conditional on β, σ2, u, v, γ, and k and posterior distri-

bution of σ2 conditional on β, σ1, u, v, γ, and k. The posterior distribution of σ1 is

proportional to

σ
−(k+1)
1 exp

{
−

k∑
i=1

(Yi −X ′
iβ)

2ui
2σ2

1

}

∝ σ−2(
k+1
2 )

1 exp

{
−σ−2

1

k∑
i=1

(Yi −X ′
iβ)

2ui
2

}
.

Thus, it follows

(σ−2
1 |β, σ2, u, v, γ, k) ∼ Gamma

(
k

2
,

k∑
i=1

(Yi −X ′
iβ)

2ui
2

)
.
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Similarly, the posterior density of σ2 conditional on β, σ1, u, v, and k is

(σ−2
2 |β, σ1, u, v, γ, k) ∼ Gamma

(
n− k

2
,

n∑
i=k+1

(Yi −X ′
iβ)

2ui
2

)
.

3. Posterior distribution of u conditional on σ1, β, σ2, v, γ, and k. The posterior distri-

bution of ui, for i = 1, ..., k is proportional to

u
1
2
i exp

{
−(Yi −X ′

iβ)
2ui

2σ2
1

}
{vIγ(ui) + (1− v)I1(ui)}

∝ exp
{
−(Yi −X ′

iβ)
2

2σ2
1

}
(1− v) = A(i) when ui = 1

∝ γ
1
2 exp

{
−(Yi −X ′

iβ)
2γ

2σ2
1

}
v = B(i) when ui = γ.

Let ψ1 ∼ Binomial
(
1, A(i)

B(i)

)
, then, for i = 1, ..., k, it follows

ui =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
1, if ψ1 = 1,

γ, if ψ1 = 0.
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Similarly, the posterior distribution of ui, for i = k + 1, ..., n is proportional to

u
1
2
i exp

{
−(Yi −X ′

iβ)ui
2σ2

}{
vIγ(ui) + (1− v)I1(ui)

}

∝ exp
{
−(Yi −X ′

iβ)

2σ2

}
(1− v) = A(i) when ui = 1

∝ γ
3
2 exp

{
−(Yi −X ′

iβ)γ

2σ2

}
v = B(i) when ui = γ.

Let ψ2 ∼ Binomial
(
1, A(i)

B(i)

)
, then for i = (k + 1), ..., n, we have

ui =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
1, if ψ2 = 1,

γ, if ψ2 = 0.

4. Posterior distribution of v conditional on σ1, β, σ2, u, γ and k. The posterior distri-

bution of v is proportional to

vv0−1(1− v)v1−1

n∏
i=1

[vIγ(ui) + (1− v)I1(ui)]

∝ vv0−1+n−m(1− v)v1−1+m,

where m is the number of ui = 1.

Thus, we have that

(v|β, σ1, σ2, u, γ, k) ∼ Beta(v0 + n−m, v1 +m).
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5. Posterior distribution of γ conditional on σ1, β, σ2, u, v and k. The posterior distri-

bution of γ is proportional to

γγ0−1(1− γ)γ1−1

n∏
i=1

[vIγ(ui) + (1− v)I1(ui)]

∝ γγ0+n−m−1(1− γ)γ1−1.

Thus, we have that

(γ|β, σ1, σ2, u, v, k) ∼ Beta(γ0 + n−m, γ1).

6. Posterior distribution of k conditional on σ1, β, σ2, u, v and γ. The posterior distri-

bution of k is proportional to

(k|β, σ1, σ2, u, v) ∼ L(Y,X|β, σ1, σ2, u, v, k)∑n−p
k=p L(Y,X|β, σ1, σ2, u, v, k)

, k = p, ..., n− p.

Case IV: The contaminated regression model.

The posterior distributions in the contaminated regression model for β, σ1, σ2, and k are

the same as the ones in the slash distribution. We use the Metropolis-Hastings method to

calculate posterior distribution of v in Section 3.2.2.

The posterior distribution of ui, for i = 1, ..., k conditional on β, σ1, σ2, v, and k is propor-

tional to

u
v− 1

2
i exp

[
−(Yi −X ′

iβ)
2ui

2σ2
1

]
.
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Then, for ui ∈ (0, 1), i = 1, ..., k, we have that

(ui|β, σ1, σ2, v, k) ∼ Gamma
(
v +

1

2
,
(Yi −X ′

iβ)
2

2σ2
1

)
.

Similarly, for ui ∈ (0, 1), i = k + 1, ..., n, we have that

(ui|β, σ1, σ2, v, k) ∼ Gamma
(
v +

1

2
,
(Yi −X ′

iβ)
2

2σ2
2

)
.

3.2.2 Metropolis-Hastings Algorithm

In Student t and slash linear regression models, we use the M-H algorithm to simulate v.

Given β, σ1, σ2, u, and k, the posterior density of v is proportional to

π(v|β, σ1, σ2, u, k)

∝
(v
2

)nv
2

[
Γ(
v

2
)

]−n n∏
i=1

u
v+3
2

i exp

(
−

n∑
i=1

v

2ui

)
π5(v)

∝
(v
2

)nv
2

[
Γ(
v

2
)

]−n

exp(−ηv),

where π5(v) is Jeffreys prior of v, and η = 1
2

∑n
i=1[log(ui) + log( 1

ui
)] + log[p(v)].

According to the procedure studied by [18], we use the normal distribution

N(2<v<40)(μv, τ
2
v ) to sample v, where μv = x − q

′
(x)

q
′′
(x)

, τ 2v = − 1
q
′′
(x)

and q(·) =

log[π(v|β, σ1, σ2, u, k)].
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We assume the four steps for sampling v as follows:

1. Generate vnew from N(2<v<40)(μv, τ
2
v ), where μv = vj − q

′
(vj)

q
′′
(vj)

, τ 2v = − 1
q
′′
(vj)

.

2. Generate w from the Uniform (0, 1).

3. Define α.

α = min

(
1, exp

{
q(vnew|vj)/log(p(vnew|vj))
q(vj|vnew)/log(p(vj|vnew))

})
,

where p(·) is the pdf of N(2<v<40)(μv, τ
2
v ).

4. vj+1 = vnewI1(α > w) + vjI1(α <= w).

3.2.3 Acceptance-Rejection Algorithm

In the contaminated regression model, the random variable ui, for i = 1, ..., n has a trun-

cated gamma distribution. It may take too much time by using the truncated gamma func-

tion to sample ui, for i = 1, ..., n. Instead, we use the acceptance-rejection (A-R) algorithm

for posterior sampling of ui, for i = 1, ..., n.

The posterior density of ui, for i = 1, ..., k conditional on β, σ1, σ2, v, and k is

π(ui|β, σ1, σ2, v, k) ∝ u
v− 1

2
i exp

{
− (Yi−X′

iβ)
2ui

2σ2

}
,

where σ = σ1 when i = 1, ..., k; σ = σ2 when i = k + 1, ..., n, and 0 < ui < 1, for

i = 1, ..., n.
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Since 0 < ui < 1, for i = 1, ..., n and v − 1
2
> 0, we have π(ui|β, σ1, σ2, v, k) < c. We set

c = 1 in the A-R algorithm which can be explained in the following:

1. Generate τ from Uniform (0, 1).

2. Calculate α = π(τ |β, σ1, σ2, v, k).

3. uij+1 = τI1(α < c) + uijI1(α >= c).
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Chapter 4

Simulations and Real-data Application

In this chapter, we conduct the simulation studies for the a variance change-point detection.

Then we investigate the effects of the regression coefficients to the detection of variance

change-point. Finally, the proposed procedure is applied to the closing price data of U.S.

stock market for illustration purposes.

4.1 Simulation Study

In this section, we conduct Monte Carlo simulations to detect the change-point in the pro-

posed four models: Gaussian, Student-t, contaminated, and slash linear regression models.
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4.1.1 Simulation I

Based on the models in Section 2.2, we simulate a sequence of sample Y = (Y1, ..., Yn)
′

by setting n = 300, β = (1, 4, 7, 10)′, X = (X1, ..., X300)
′, Xi = (xi1, ..., xi4)

′, xij ∼

Uniform(0, 1), σ1 = 1, σ2 = 2, u = (u1, ..., u300), and ui = 1 for i = 1, ..., 300. The

location of a change-point is set to be k = 200. The main goal of this simulation is

to evaluate the performance at the proposed procedure discussed in Section 3.2. In the

simulation study, we do 100 simulations. In each simulation, we do 5000 iterations. The

posterior median of each parameter and its corresponding standard error under the four

regression models are listed in Table 4.2.

We set ui = 1, for i = 1, ..., 300, then the data {Y1, ..., Y300} are simulated from the normal

distribution based on 2.1. For Table 4.1, the second row is the real value of parameters k,

β = (β1, β2, β3, β4)
′, σ1, σ2. There are two rows corresponding to each model. The upper

row are the estimated values of parameters and the lower row are the standard errors of the

corresponding parameters. For example, in Student-t regression model, the estimated k is

200.1 with standard error of 4.383. From Table 4.1, we observe that all the four models

locate the variance change-point and estimate the other parameters efficiently. The results

from Gaussian and contaminated linear regression models are slightly better than those of

Student-t and slash linear regression models. This phenomenon may caused by the data

which are simulated from the normal distribution.
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Table 4.1
Bayesian posterior estimation of the unknown parameters with standard deviation

parameters in Simulation I

Distributions k β1 β2 β3 β4 σ1 σ2
Data 200 1 4 7 10 1 2

Gaussian
200.2 0.991 4.031 6.987 9.994 0.999 2.027

(5.034) (0.234) (0.178) (0.209) (0.201) (0.055) (0.136)

Student-t
200.1 0.995 4.039 6.974 9.991 0.854 1.726

(4.383) (0.248) (0.187) (0.225) (0.212) (0.057) (0.135)

Contaminated
200.2 0.993 4.027 6.990 9.995 1.013 2.051

(5.514) (0.256) (0.173) (0.224) (0.229) (0.056) (0.140)

Slash
200.3 0.993 4.035 6.979 9.994 0.764 1.546

(4.445) (0.243) (0.182) (0.219) (0.205) (0.046) (0.114)

4.1.2 Simulation II

In order to have a over look at whether Gaussian and contaminated regression models are

always better than Student-t and slash models or not, we conduct another simulation study.

In this case, we get the sample based on the formation of Student-t in Section 2.1. We set

v = 3 and the other parameters are the same values as they are in the Simulation I study.

The detection results are listed in Tables 4.2.

From Table 4.2, we observe that the results based on Student-t and slash distributions out-

perform the ones from Gaussian and contaminated regression models. This result is quite

reasonable, because data is simulated from Student-t distribution. The result also shows

that it is beneficial to use different models for different data to detect the most efficient

variance change-point.
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Table 4.2
Bayesian posterior estimation of the unknown parameters with standard deviation

parameters in Simulation II

Distributions k β1 β2 β3 β4 σ1 σ2
Data 200 1 4 7 10 1 2

Gaussian
197.9 0.962 4.006 6.983 10.055 1.559 3.259

(26.728) (0.333) (0.301) (0.302) (0.345) (0.137) (0.627)

Student-t
199.9 0.969 4.020 6.995 10.017 0.961 1.870

(5.498) (0.261) (0.251) (0.232) (0.275) (0.071) (0.175)

Contaminated
200.6 0.978 4.002 6.994 10.021 1.749 3.663

(11.544) (0.286) (0.295) (0.273) (0.328) (0.151) (0.761)

Slash
200.0 0.970 4.006 6.994 10.033 1.033 2.007

(6.270) (0.265) (0.258) (0.247) (0.302) (0.068) (0.162)

4.2 Coefficient Effect On The Detection Of Variance

Change-point

In the previous settings, we assume that coefficients of the data are the same, whereas it

may not be reasonable for the real life data. In this section, we introduce the coefficient

change-point of data Y = {Y1, ..., Yn}. Suppose that the coefficient change-point is h and

the variance change-point is k. Then the model can be written as:

Yi = X ′
iβ

(1) + ε
(1)
i , i = 1, ..., h;

Yi = X ′
iβ

(2) + ε
(1)
i , i = (h+ 1), ..., k;

Yi = X ′
iβ

(2) + ε
(2)
i , i = (k + 1), ..., n.
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We conduct Monte Carlo simulations to investigate the performance of the proposed pro-

cedure in the case of existing both coefficient change-point and variance change-point. We

set h = 100, β(1) = (1, 4, 7, 10)′, and β(2) = (1, 1, 1, 1)′. Values of Y,X, n, and k are

the same as the ones in the Section 4.1.1. We choose σ1 = 1, and in order to have a look

at the coefficient effects on the variance change-point, a sequence of σ2 are selected, i.e.,

σ2 = {4, 5, ..., 9}.

We do 100 simulations. Each simulation has 5000 iterations. Figures 4.1,4.2,4.3,4.4 are

the detected change-points under different values of σ2.

Based on Figures 4.1, 4.2, 4.3, 4.4, several conclusions can be made as follows. Firstly,

we detect the changes in terms of both coefficient and variance of the data. Secondly, the

detected change-point is 100, which is a coefficient change-point, when the value of σ2

is small and it changes to 200, which is a variance change-point, when the value of σ2 is

large. This phenomenon shows that the detected change-point may be a coefficient change-

point. It happens when the variance change is not obvious. Thirdly, in the Student-t linear

regression model, the variance change-point 200 is not detected until σ2 is 8 which means

that Student-t regression model may be easily affected by the coefficient change point in

the process of variance change-points detection.

In order to check if 100 is a variance change-point, we detect the variance change-point of

data Y1, ..., Y200. At this time, 100 is not detected which means that 100 is not a variance

change-point. The finding is consistent with the model of coefficient change-point of 100.

35



Figure 4.1: Gaussian distribution: Detected change points when σ2 = 5, 6, 7.

Consequently, it is beneficial to check if the detected change-point is caused by variance

change, when we are locating the variance change-point.

Suppose that we detect change-points at locations k1, k2, k3 and that there are no other
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Figure 4.2: Student t distribution: Detected change points when σ2 = 7, 8, 9.

change-points between k1 and k3 except k2, in order to decide if k2 is a variance change-

point, we need to detect the variance change-point between Yk1 and Yk3 . If we cannot

locate k2, k2 is not a variance change-point. If we can still locate k2, then k2 is a variance

change-point.
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Figure 4.3: Contaminated distribution: Detected change points when σ2 = 5, 6, 7.
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Figure 4.4: Slash distribution: Detected change points when σ2 = 6, 7, 8.

4.3 Dow Jones Index With Multiple Variance Change-

points
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In practical applications, there are usually more than one variance change-points for the

real data, especially for a long time data. In this section, we discuss how to locate all

the variance change-points of the data. The method we consider is based on the binary

segmentation procedure developed by .

Steps of detecting multiple variance change-points can be summarized as follows:

1. Finding a change point k1 which results in two separate data (1 : k1) and (k1 : n).

2. Find the second change point k2 from data (1 : k1) and the third change point k3 from

data (k1 : n). If the change-points k2 and k3 exist, go to Step 3.

3. Do the same procedures as Step 2 until no more change-points are detected.

To illustrate how to apply our models into the real data and check if they are effective.

We use the Dow Jones Index closing price data Y1, ..., Y252 from Oct 22, 2008 to Oct

22, 2009 at https://finance.yahoo.com/q/hp?s=%5EDJI&a=09&b=22&c=

2008&d=09&e=22&f=2009&g=d. Before we detect the variance change-points, we

transform the closing price into yearly yield rate by using Rt = 252Yt+1−Yt

Yt
to reduce the

non-stationarity of the original data. Table 4.3 summaries the statistics of data R1, ..., R252

and Figure 4.5 is a time series plot of data R1, ..., R252.

To detect the multiple variance change-points of yearly yield rate data, we firstly construct
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the model:

Rt = β + ε
(1)
t , t = 1, ..., k1;

Rt = β + ε
(2)
t , t = (k1 + 1), ..., k2;

......

Rt = β + ε
(ks)
t , t = (ks−1 + 1), ..., ks,

where ks is the number of variance change points and ε
(j)
t , for t = 1, ..., n and j = 1, ..., ks,

have distributions corresponding to Gaussian, Student-t, contaminated, and slash linear re-

gression models. Combing the binary segmentation procedure and the sampling algorithm

in Section 3.2, numerical results are listed in Table 4.4. We draw conclusions as follows.

We observe that the results in the four models are consistent and show that the locations of

the variance change-points are about 31, 122, 185. By using the SIC method introduced by

Chen and Gupta in 1997, the detected variance change-points are 28, 122 and 188 which

are quite similar with the ones from our four regression models. This means that our four

linear regression models are effective. What’s more, the running time of our method is

much less than Lin and Chen’s proposed sampling. This highlights that our procedure is

more efficient than the one in [10].
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Table 4.3
Descriptive statistics of Rt

Sample size Mean Standard error Median

252 0.225 5.374 0.144

Minimum Maximum Skewness Kurtosis

-19.407 27.412 0.395 6.499

Table 4.4
Variance change-points of real data

Distributions Gaussian Student-t Contaminated Slash

k1
122 123 122 123

(7.339) (15.125) (7.318) (13.953)

k2
31 33 31 32

(4.466) (10.582) (4.780) (4.016)

k3
186 185 186 184

(13.156) (23.572) (13.040) (16.576)
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Figure 4.5: Time series of Rt
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Chapter 5

Concluding Remarks and Future Work

In this thesis, we not only discuss Baysian inferences of variance change-points detection

in the family of the SMN distributions, which includes special cases such as Gaussian,

Student-t, contaminated and slash distributions, but also do we use simulation studies to

prove the effectiveness of these four linear regression models on the detection of variance

change-points. In the Student-t regression model, we consider an objective prior for the

degrees of freedom, which makes our approach be more persuasive. Moreover, by studying

the effects of coefficient change-points on the detection of variance change-points, we note

that the detected change-point belongs to the variance change-points when the variance

change is more obvious than the mean change in the four models under consideration.

Finally, we apply the four models to detect the change-points of Dow Jones Index closing

price data and obtain the similar results as the one based on the SIC method.
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It deserves mentioning that different models should be used based on the properties of the

data, such as the skewness and the kurtosis, etc.
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