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Abstract 

This report presents a study on the problem of spacecraft attitude control using 

magnetic actuators. Several existing approaches are reviewed and one control strategy is 

implemented and simulated. A time-varying feedback control law achieving inertial 

pointing for magnetically actuated spacecraft is implemented. The report explains the 

modeling of the spacecraft rigid body dynamics, kinematics and attitude control in detail.  

Besides the fact that control laws have been established for stabilization around 

local equilibrium, this report presents the results of a control law that yields a generic, 

global solution for attitude stabilization of a magnetically actuated spacecraft. The report 

also involves the use MATLAB as a tool for both modeling and simulation of the 

spacecraft and controller. In conclusion, the simulation outlines the performance of the 

controller in independently stabilizing the spacecraft in three mutually perpendicular 

directions. 
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1. Introduction 

The primary objective of this paper is to design a control algorithm based on a time-

varying feedback control law achieving inertial pointing for magnetically actuated 

spacecraft. In recent years, much work has been dedicated towards the problem of 

attitude control of rigid bodies using only magnetic actuators. In particular, the 

feasibility of periodic, time-varying actuators has, only recently, become a topic of 

increasing research interest. It is better to know the literature already present. 

The problem of three-axis Attitude Control using only magnetic actuators was 

addressed by Wisniewski and Blanke (1998) [12] for a small satellite. The problem is 

approached by illustrating the loss of controllability with the assumption of linear time 

invariant model of the satellite. Subsequently, the problem is approached as a 

nonlinear time-varying problem where two controllers guarantee local stability; one 

for angular velocity assuming the equilibria around the unit vectors of the orbital 

frame and the other for attitude. An attempt is made to extend the effectiveness of the 

controller to guarantee global attitude stability based on the periodicity of both the 

system and the control law for Torque-Free Rigid Body Motion. A proportional gain is 

used to accomplish attitude stabilization. Finally, a time-varying gain is introduced 

along with the proportional gain in an attempt to demonstrate global asymptotic 

stability in the case of boom upside-down i.e. pointing towards the center of the Earth. 

In Satellite Attitude Control using only Magnetorquers (1998) [13], Wang, 

Shtessel and Yang approach the attitude control problem in two stages. First designing 

an outer loop within the nonlinear periodic framework using Backstepping for virtual 

control. Second, designing an inner loop for detumbling control and attitude 

acquisition, that is, to track virtual signal using Sliding Mode Controller. The attitude 

parameters are linearized around the origin to prove the closed loop linearity of the 

system and thereby guaranteeing the local asymptotic stability according to Floquet’s 

Theorems. The saturation is also taken into account in the control torque and fairly 

good results have been established in terms of performance of the controller for an 

isoinertial spacecraft in the Lower Earth Orbit (LEO). 



3 
 

Another significant work in the field of Attitude Control using only magnetic 

torque rods as actuators has been done by Lovera and Astolfi in Global Attitude 

Regulation using Magnetic Control (2001) [14]. The problem is approached by using a 

low-gain proportional-derivative-like control law to prove the global asymptotic 

stability of the system. The control law has also been extended for the magnetic 

control of Earth pointing satellite. The control law yields (almost) global solution to 

demonstrate asymptotic stability. 

Magnetic Attitude Control problem has been approached in Attitude Stabilization 

of a Satellite by Magnetic Coils (2002) [15] by Bushenkov, Ovchinnikov and Smirnov 

where in the stabilization problem of a small satellite is addressed using only magnetic 

coils based on the fundamental assumption that geomagnetic field is periodic, the 

motion is periodic and the magnetic field at any instant is known from the three-axis 

magnetometer measurements. The problem is divide into two stages; One the magnetic 

stabilization and the other gravitational stabilization. The magnetic stabilization is 

approached by proving that the attitude approaches the equilibrium which is a constant 

vector to maintain the asymptotic stability of the system whereas the gravitation 

stabilization problem is addressed by proving that coincidence of magnetic field vector 

and the constant vector relating magnetic field vector and the quaternion vector in their 

respective cross products which gives rise to the fact that the magnetic field 

transformation matrix is an Identity Matrix. These approaches however, are designed 

for stabilization from the initial conditions and don’t take into account, the disturbance 

torque as time progresses. In this way, it guarantees an (almost) global solution to the 

magnetic field stabilization problem. 

Lovera and Astolfi in Spacecraft Attitude Control using Magnetic Actuators 

(2004) [1] built on the work done in Global Attitude Regulation using Magnetic 

Control (2001) approached the problem of inertial pointing of spacecraft with only 

magnetic coils as actuators using static attitude with rate feedback and dynamic 

attitude feedback. A global solution is guaranteed for the former in the case of static 

attitude and rate feedback with the assumption that the quaternion vector equilibria lies 

around zero target attitudes. This is accomplished by extending the PD-like Control 
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Law considered in Lovera and Astolfi (2001) with the introduction of position and 

velocity error constants and using the Lyapunov Stability criterion with appropriate 

scaling. Whereas, the latter yields an (almost) global solution ONLY in the case of 

isoinertial spacecraft. This is demonstrated with the assumption that the inertial 

magnetic field transformation matrix having values less than unity. 

A more recent work by Silani and Lovera in Magnetic Spacecraft Attitude 

Control: A survey and some new results (2005) [16] explore various linear and 

nonlinear attitude control methods and corresponding results. The former encapsulates 

classical control, optimal periodic control and robust control methods while the latter 

is explored from the Lyapunov Stability perspective. 

a) The first gives insight towards control via periodicity assumption of 

geomagnetic field and the assumption of time-invariant approximations of  

slow closed-loop system dynamics and the results of which are similar to 

Spacecraft Attitude Control using Magnetic Actuators (2004). 

b) Optimal Control is studied from the Linear Quadratic perspective with state or 

output feedback.  Again, assuming the periodicity of geomagnetic field, the 

marginal stability issue is addressed by incorporating ‘J’ secular effects and 

cyclic external disturbances into the plant model which acts as a time-periodic 

filter and provides a time-periodic state feedback. 

c) Robust Control is proposed based on the H∞ approach with periodic state 

feedback assumption and by placing appropriate constraints on the control 

torque. 

Additionally, it offers a new approach towards pursuing the attitude control problem 

using only magnetic actuators based on prediction of parameters in discrete time 

intervals. This is accomplished by assuming the spacecraft to be a time-invariant and 

modeling it using state-space representation with its actuators interacting with the 

time-varying geomagnetic magnetic field to regulate the attitude. A time delay 

property is used to predict the values at subsequent instants every time the sample 

period has elapsed while only the first time instant in every series is used to predict the 
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values at subsequent instants. Actuator saturation is placed on the coils by placing 

constraints on the magnetic dipole moment. Stability Analysis is done using either LQ 

or H∞ by identifying the appropriate weighting matrices. This approach has been used 

in Psiaki (2001). An (almost) global solution is obtained at the expense of performance 

of the controlled variables due to actuator constraints. 
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2. Spacecraft Model 

The kinematic model of the rigid spacecraft simulates the behavior of the spacecraft in 
the orbit. 

2.1 Coordinate Frames 

For proper attitude estimation and control, the rigid body under consideration, the 
spacecraft, can be described in various reference frames. The figure below describes 
the reference frames used in this report. 

 

Figure: Coordinate Reference Frames [9],[11] 

 

The three reference frames adopted in this report are as follows: 

a) Inertial Frame 

 The Earth-centered inertial reference (ECI) frame: The origin of the axes in this 
coordinate reference frame is fixed at the center of the earth.  

 The X-axis is parallel to the line of nodes and is positive in the Vernal Equinox 
direction. 

 The Z-axis is parallel to the earth’s geographic north-south axis and pointing 
north. 

 The y-axis satisfies the right-handed orthogonal triad. 

 

b) Non-inertial Frame 

 The Earth-centered earth-fixed (ECEF) frame: The origin of the axes in this 
coordinate reference frame is also fixed at the center of the earth but the coordinate 
system rotates with the rotation of the earth. 
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c) Body Frame 

 The origin of the axes in the body reference frame is fixed at the satellite center of 
mass and these are axes are assumed to coincide with the body’s principal inertia 
axes; the Z-axis always pointing inertially. 

d) Controller Frame 

 For simplicity, the axes of the controller frame are also assumed to be coinciding 
with the satellite body axes and therefore the principal inertia axes. The origin of the 
axes in the controller reference frame always coincides with the satellite body axes 
but the direction in which each axis is aligned can be modified, depending on the 
requirements, in which case the attitude propagation has to be transformed to the 
controller frame with respect to body frame. This is accomplished by a small piece of 
code in the control algorithm.  

  

2.2 Attitude Parameters 

2.2.1 Euler Angles 

A commonly use set of attitude parameters are Euler angles. The spacecraft 
attitude (orientation) is commonly described through the yaw, pitch and roll Euler 
angles and are usually measured in the satellite body frame relative to the earth-
centered inertial frame. There are 12 possible sets of Euler angles; the sequence of 
which can be used to describe the rotation of the spacecraft around respective axes in 
the sequence.  

However, in any corresponding set, a 180 degrees change in the Euler angle 
results in a singularity as determined by the rotation matrix for that particular set 
sequence. For example, rotation matrix for 3-2-1 Euler angle sequence is as shown 
below. 

 

The matrix above shows the rotation matrix for 3-2-1 Euler angle sequence. Here, ᴪ, θ 
and Φ are yaw, pitch and roll Euler angles respectively. 

It can be noticed that, the inverse transformation of the third element in the first row 
yields the pitch angle ‘θ’, which clearly varies between -1 and +1 for values in 
multiples of -90 degrees and +90 degrees respectively. Therefore, there exists a 
geometric singularity when pitching up or down 90 degrees. This geometric 
singularity manifests itself in the kinematic differential equation which will be 
presented later. Therefore, we use another set of attitude parameters called Euler 
Parameters (also called Quaternions). 
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2.2.2 Quaternions[5] 

The Quaternions are another popular set of attitude coordinates which are used to 
describe arbitrary, large rotations. The Euler angles are on the other hand, easy to 
compute/develop and easy to visualize, but computationally intense. There is also a 
singularity problem when describing the attitude in terms of Euler angles for reasons 
discussed above. Therefore, Euler parameters (also called Quaternions), offers an 
effective method for describing the attitude coordinates. These Quaternions are based 
on Euler’s Rotational theorem which says the relative orientation of two coordinate 
systems can be described by only one rotation about a fixed-axis. 

The Euler parameter vector ‘q’ is defined in terms of principal rotation elements as 
follows: 

 

 

 

 

It is evident that, since the sum of squares of principal rotation elements is equal to ‘1’ 
because of it being a unit vector, the ‘qi’ satisfies the holonomic constraint 

  

This constraint geometrically describes a four-dimensional unit-sphere. The Direction 
Cosine Matrix (DCM) can be written in terms of Quaternions as follows: 

 

 

  

It can be observed that ‘q’ and ‘-q’ yields the same Direction Cosine Matrix. Given a 
direction Cosine Matrix, the inverse transformation can be performed to determine the 
Quaternions as follows: 

 



9 
 

 

 

 

It can be noticed that the above 3 equations have a mathematical singularity whenever 
 This corresponds to the ‘q’ vector describing a 180° principal rotation.  

It can be noticed that, the Quaternion vector consists of a scalar part (which is the first 
element) and a vector part. The transformation of quaternion from one reference frame 
to another can be incorporated as follows: 

 

The above equation demonstrates the rotation of vector by Quaternion from satellite 
body frame to controller frame. 

 

2.3 Kinematic Equations 

The parameterization of the four Euler parameters that describe the attitude 
kinematics can be represented by the kinematic differential equations as described 
below. 

 

Where,  is a vector of unit norm  Euler 
parameters in which  is a scalar and the remaining 3 quaternions for a vector. 

Also, 

 

 This matrix can be obtained by differentiating ‘qi’ from the following equation: 

 

By transmutation the above matrix can be equivalently written as, 
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This matrix helps in expressing the attitude kinematic differential equation in terms of 
quaternions and angular velocity. 

 

2.4 Control Torque 

The attitude control of spacecraft using magnetic actuators uses three magnetic 
torque rods aligned with spacecraft principal inertia axes. The torque produced by 
these magnetic torque rods in each direction is governed by the following equation. 

 

It can be noticed that the torque produced is a cross product of magnetic dipole 
moment and the time-varying magnetic field. The SI unit of magnetic dipole moment 
is in Amperes-meters2. 

The strength of earth’s magnetic field is time-varying as the spacecraft moves along 
the orbit and is expressed in the spacecraft Body Frame. The SI unit of earth’s 
magnetic field is Tesla. 

The computation of magnetic field from the World Magnetic Model (WMM) is 
discussed in the next section. 

The control torque can also be computed using the following equation 

 

Where, S( ) is a skew-symmetric matrix depending on the earth’s magnetic field. 

 

 

 

It can computed from the above equation and can also be seen from the above matrix 
that, the rank of the skew-symmetric matrix  (since  along all 

orbits of practical interest), and the kernel of  is given by the vector  

itself, it is not possible control torques along the direction of . 
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2.5 Magnetic Field Computation 

The strength of earth’s magnetic field is computed using the World Magnetic 
Model (WMM). 

2.5.1 World Magnetic Model (WMM) [6] 

2.5.1.1 Overview 

The World magnetic Model (WMM) is provided by the National Oceanographic 
and Atmospheric Administration’s National Geophysical Data Center (NOAA/NGDC) 
and is updated and released every 5 years. 

The World Magnetic Model (WMM) is a 12th order and degree spherical Harmonic 
function. The magnetic field modeled in the World Magnetic Model (WMM) is 
represented by the term “main field” which refers to the portion of the earth’s 
magnetic field at Epoch 2010.0. The Secular Variation (SV) is also taken into account 
since the earth’s liquid-iron outer core which contributes to the majority of the earth’s 
magnetic field intensity used in our computation called “core field”, since the core 
field changes perceptibly from year to year. This Secular Variation (SV) is accounted 
for by a linear SV model in the World Magnetic Model (WMM). But, due to non-
linear variations, the WMM has to be updated every 5 years. The Epoch year 
considered for the purpose of this report is Epoch 2010; although the magnetic field 
was approximated during the most recent execution which was accomplished using a 
MATLAB function which will be discussed in the following sections. 

The World Magnetic Model (WMM) representing the earth’s magnetic field at Epoch 
2010.0 is shown below. 

 

Figure: World Magnetic Model at Epoch 2010.0 [6] 
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The magnetic field is expressed as a negative spatial gradient of the scalar potential 
‘V’ as follow: 

 

The magnetic field in terms of special harmonics of the scalar potential as: 

 

Where,  

N = 12 is the degree of expansion of the WMM 

a = 6371200 m is the geomagnetic reference radius 

(  are the longitude, latitude and the radius in spherical geocentric reference 
frame and  

  are the time-dependent Gaussian coefficients of degree ‘n’ and 
order ‘m’ describing the earth’s magnetic field 

 are the Schmidt semi-normalized associated Legendre’s function 

 

2.5.1.2 Usage of World Magnetic Model 

The magnetic field necessary for the attitude control of spacecraft using magnetic 
actuators is provided by the following MATLAB function [17]. 

 

This function takes Altitude, Latitude and Longitude in the Geodetic Frame as its 
inputs and also the day and month of the year to account for the secular variations and 
return the magnetic field in the Inertial Frame. 

The factor 1E-9 converts the magnetic field from nanoTesla which is the default unit 
of the magnetic field output form the World Magnetic Model (WMM) to Tesla. 

For example, the day on which the last execution was run is 8th December 2014. 
Therefore, the syntax is the year in which the execution is run ‘2014’ and the month 
‘12’ and day ‘8’. This date vector is converted into a decimal year suitable for the 
WMM by the function “decyear”. 

It is very important to note that, when the spacecraft is motion in the orbit, the altitude, 
latitude and longitude changes according to the motion of the spacecraft. Therefore, 
there has to be a mechanism in place to update the altitude, latitude and longitude 
dynamically. In simulation, this is accomplished by the SGP4 Orbit Propagator [3]. 
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2.5.1.3 Simplified Perturbation Model (SGP4) 

The SGP4 is a Simplified Perturbation Model that is used with the Two-Line element 
sets (TLEs) produced by NORAD and NASA. The SGP4 model outputs the orbital 
state vectors relative to Earth-Centered Inertial Frame (ECI Frame). 

Note: It is very important to note that the SGP4 Orbit Propagator requires the 
Greenwich Mean Time (GMT) to be used to calculate the time since the Epoch 
Date. But, for the purpose of simulation, we shall stick with time elapsed since the 
start of simulation on the Decimal Year (decyear). 

An example of the Two-Line Element (TLEs) is as follows: 

 
ISS (ZARYA) 
1 25544U 98067A  08264.51782528 -.00002182  00000-0 -11606-4 0 2927 
2 25544  51.6416 247.4627  0006703 130.5360 325.0288 
15.72125391563537 
 
The syntax[3] of the SGP4 setup is as follows: 

 
SGP4_Setup(longstr1, longstr2) % Orbit Propagator Setup 
 

Orbital State Vectors are then expressed in the Geodetic Frame relative to ECI Frame 
by using appropriate rotations from ECEF w.r.t to ECI Frame to Geodetic Frame w.r.t 
ECI Frame. Finally, the corresponding elements from the Orbital State Vector are fed 
into the World Magnetic Model (WMM) to obtain the intensity of earth’s magnetic 
field relative to the ECI Frame. 

 
ECEF_Init = sgp4(T(i))*1000; %Position Vect in ECEF w.r.t ECI Frame 
LLA_Init = ecef2lla(ECEF_Init'); %Position Vect in Geodetic w.r.t ECI 
Latitude = LLA_Init(1); % Real-Time Latitude 
Longitude = LLA_Init(2); % Real-Time Longitude 
Altitude = LLA_Init(3)/1000; % Real-Time Altitude 
 

TLE Lines 1 and 2 meaning attached in the Appendix 

 

2.5.2 Magnetic Field Usage 

Since, in orbital dynamics we mostly deal with Spacecraft Body Frame coordinates, 
we can express the magnetic field vector in Body Frame in terms of Attitude Matrix 
‘A(q)’ and magnetic field vector expressed in ECI coordinates ‘ ’ as follows: 

 

The orthogonality of ‘A(q)’ implies that  
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The Attitude Matrix ‘A(q)’ is obtained using the following syntax in MATLAB: 

 
A_q = quat2dcm(q_init_s'); 
 
Where, the function ‘quat2dcm’ generates a direction cosine matrix using the 
quaternions and ‘q_init_s’ is the equilibrium to be stabilized and is dealt in further 
detail in the section pertaining to the Control Law. 
 
This magnetic field ‘b(t)’, which is in the Spacecraft Body Frame  is used in the 
computation of magnetic dipole moment and also the control torque (as discussed 
earlier). 
 
2.6 Dipole Moment Calculation 

The magnetic moment determines the torque, the spacecraft will experience in an 
external magnetic field, in our case earth’s magnetic field. The spacecraft dipole 
moment occurs due a current loop across the torque rods interacting with the earth’s 
magnetic field. The residual dipole moment, on the other hand, is of paramount 
importance in determining the disturbances that might/will eventually arise due to the 
interaction with earth’s magnetic field.  

It is very important to note that the value of the control and residual dipole moment 
depends on the size of the spacecraft (which will be taken into account in the Inertia 
matrix in the control law discussed in further detail in the following section) and 
whether the on-board compensation is provided or not. The SI unit of dipole moment 
is Ampere-meter2 and is in the range of 0.1 Amp-m2 to 20 Amp-m2, although it is not 
uncommon to exceed this range. This is frequently monitored in a feedback form, 

 

 

Where, mcoils = Control Magnetic Dipole Moment in Amp-m2 

b0(t) = Magnetic Field expressed in Spacecraft Body Frame in Tesla 

u = Control Input dealt in the following section 

ST (b(t)) = The transpose of the skew-symmetric matrix which is a function of 
magnetic field discussed in the Magnetic Field section. 
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3. Stabilization using State Feedback Control 
The type of control [1] used is a full state feedback with both attitude and angular rate 
fed back into the spacecraft kinematics and control is calculated for the next time 
instant for the dynamics (dynamic behavior) of the system. 

The control law [1] that serves the above purpose is a PD like control law as follows: 

 

 

Where, u = Control Input feedback for stabilization 

kp = Proportional Constant 

q = 4x1 vector with both scalar and a vector component of the quaternion 

kv = Velocity Constant 

I = Inertia Matrix (Inertia of Spacecraft with Principal Inertia Axes) 

ω = Angular Velocity vector of the Spacecraft 

 

It is very important to note that, without loss of generality, we are assuming [1] that 
the stabilizable equilibrium is given by  where  
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4. Spacecraft Attitude Dynamics[5] 
It is a very well know fact that the time derivative of the Angular Momentum is 
Torque which is the famous Euler’s equation. In Satellite Body Frame, this can be 
written using Transport Theorem as, [4] 

 

The Angular Momentum of a body about its center of mass is given by [4] 

 

The first equation becomes, 

 

We know that in Satellite Body Frame, using Transport Theorem, 

 

Therefore, the derivative of Angular Momentum becomes, 

 

Substituting the above in the first equation, the Torque can be expressed as, 

 

This leads to the famous Euler Rotational Equations of Motion, 

 

The  term is introduced when the cross product is removed. The tilde operator 
serves the purpose of being able to express  in the form of a more easy to work 
with, skew symmetric matrix as follows: 

 

 

The above mentioned Euler Rotation Equations of Motion can be used to express the 
spacecraft attitude dynamics as, 
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5. Simulation Results 
The performance of the state feedback control law has been assessed for variety of 
parameters. Specifically, the iterations carried out have been focused on the effect of 
control law on the spacecraft model [2] for varying moments of inertia and initial 
quaternion or the initial orientation of the spacecraft.  

The simulation results presented have been obtained using MATLAB as a tool for both 
designing the state feedback control and the spacecraft model [5]. The simulation 
results have also been carried out for different periods of time the satellite is in the 
orbit to demonstrate the consistency of the results obtained. 

The two Inertia Matrices considered for spacecraft attitude control using magnetic 
actuators are I = diag [27, 17, 25] and I = diag [10, 10, 10]. The orbit is defined in the 
Two-Line element (TLE) Set presented below  

longstr1 = '1 25544U 14067A   14342.51579142  .00005418  00000-0  
10235-3 0  3046'; 
longstr2 = '2 25544  51.6494 243.7352 0003674 255.5105 239.9716 
15.50141065841738'; 
The proportional and velocity constants in the PD- like control law are the controller 
parameters and are chosen to be  
 
 

5.1 Simulation Results for Standard Inertia Matrix = [27, 17, 25] kg- m2 

5.1.1 Angular Velocity simulation results 

Simulation Time = 100,000 seconds 

 
Figure1: Angular Velocity in radians per second 
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Simulation Time = 150,000 seconds  

 

Figure2: Angular Velocity in radians per second 

It can be observed from the above figures that, the initial angular velocity was ω = 
[0.01, 0.01, 0.01] radians/second and eventually the angular velocity is negligible or 
driven towards ω = [0, 0, 0]. This is very much in conformance with the control law 
due to the kinematics and dynamics of the system that all the trajectories of the system 
are such that q→0 and ω→0. The consistency of the results has also been 
demonstrated in the figure (2) above where the angular velocity maintains the trend at 
150,000 sec. For the sake of comparison, the results from literature [1], the control law 
of which has been used to obtain simulation results indicate the same trend. 

Simulation Time = 100,000 seconds 

 

Figure3: Angular Velocity in radians per second 



19 
 

It can be observed from the above figure that the initial quaternion is NOT q = 
[1;0;0;0]. Therefore, it can be concluded that as long as the desired quaternions define 
a stabilizable equilibrium, the angular velocity is stabilized about that stabilizable 
equilibrium at least in the case where the spacecraft has small perturbations. 

5.1.2 Quaternion simulation results 

Simulation Time = 100,000 seconds 

 

Figure4: Quaternions 

Simulation Time = 150,000 seconds 

 

Figure5: Quaternions 
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It can be observed from the above figures that, the initial quaternion test cases were q 
= [1, 0, 0, 0]. Eventually the quaternions are driven towards q = [1, 0, 0, 0] which is 
the stabilizable equilibrium. This consistency has also been demonstrated in the figure 
(6) above where the quaternions maintain the trend at 150,000 sec. 

 

Simulation Time = 100,000 seconds 

 

Figure6: Quaternions 

Similar to angular velocity, it can be observed from the above figure that the initial 
quaternion is NOT q = [1;0;0;0]. It can be concluded from the above results that as 
long as the desired quaternions define a stabilizable equilibrium, the closed loop linear 
time- varying control law ensure that the spacecraft is oriented with respect to the 
desired quaternion at least in the case where the spacecraft experiences small 
perturbations. It is also very important to note that the above results can be globally 
achieved only when the proportional and velocity gains are greater than zero [1]. 

For the case where the spacecraft experiences large perturbations, an appropriate 
analysis of non-linear control closed loop system and kinematic equations is necessary 
to establish the domain of perturbations for which closed-loop stabilization is achieved 
and can guarantee only an almost global (definitely local) solution for stabilization [8]. 
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5.1.3 Control Torque simulation results 

Simulation Time = 100,000 seconds 

 

Figure7: Control Torque in N-m 

 

Simulation Time = 150,000 seconds 

 

Figure8: Control Torque in N-m 

The simulation results of the control torque in N-m shows the good performance of a 
state feedback controller in stabilizing the high angular rate without taking actuator 
saturation into account. 
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Simulation Time = 100,000 seconds 

 

Figure9: Control Torque in N-m 

 

5.1.4 Control Dipole Moment Simulation Results 

Simulation Time = 100,000 seconds 

 

Figure10: Control Dipole Moment in A-m2 

 



23 
 

Simulation Time = 150,000 seconds 

 

Figure11: Control Dipole Moment in A-m2 

The simulation results obtained can be compared to that presented in literature [1] and 
the difference with the initial dipole moment is due to the residual dipole moment of 
m0 = [0.5; 0.5; 0.5] A-m2 taken into consideration in the literature [1]. The fact that the 
control dipole moments approach m_coils = [0; 0; 0] demonstrates the consistency 
between the quaternions around the stabilizable equilibrium and the corresponding 
angular rate around the stabilizable equilibrium.  

Simulation Time = 100,000 seconds 

 

Figure12: Control Dipole Moment in A-m2 
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5.2 Simulation Results for Inertia Matrix = [10, 10, 10] kg-m2 

5.2.1 Angular Velocity simulation results 

Simulation Time = 100,000 seconds 

 

Figure13: Angular Velocity in radians/second 

 

Simulation Time = 150,000 seconds 

 

Figure14: Angular Velocity in radians/second 
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It can be observed from the above figures that, the initial angular velocity was ω = 
[0.01, 0.01, 0.01] radians/second and eventually the angular velocity is negligible or 
driven towards ω = [0, 0, 0]. The consistency of the results has also been demonstrated 
in the figure (2) above where the angular velocity maintains the trend at 150,000 sec. 

5.2.2 Quaternions Simulation Results 

Simulation Time = 100,000 seconds 

 

Figure15: Quaternions 

Simulation Time = 150,000 seconds 

 

Figure16: Quaternions 
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It can be observed from the above figures that, the initial quaternion test cases were q 
= [1, 0, 0, 0]. Eventually the quaternions are driven towards q = [1, 0, 0, 0] which is 
the stabilizable equilibrium. This consistency has also been demonstrated in the figure 
(6) above where the quaternions maintain the trend at 150,000 sec. 

5.2.3 Control Torque Simulation Results 

Simulation Time = 100,000 seconds 

 

Figure17: Control Torque in N-m 

Simulation Time = 150,000 seconds 

 

Figure18: Control Torque in N-m 
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5.2.4 Dipole Moment Simulation Results 

Simulation Time = 100,000 seconds 

 

Figure19: Residual Dipole Moment in A-m2 

 

 

Simulation Time = 150,000 seconds 

 

Figure20: Residual Dipole Moment in A-m2 
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The simulation results for the dipole moment attests the statement [1] that due to the 
kinematics and dynamics of the system that all the trajectories of the system are such 
that q→0 and ω→0. This can be seen from the control dipole moment vector being 
m_coils = [0; 0; 0]. This state has been reached even faster than the non iso-inertial 
spacecraft because of the availability of quaternion (Attitude) and angular velocity 
(Rate) feedback, at all times (together called the full state feedback). 

Since, the stabilization problem we are dealing with, is based on state feedback 
stabilization, the performance of the state feedback controller is very good for both 
iso-inertial and non iso-inertial spacecraft.  

For the case of partial state feedback, however, an almost global solution can be 
guaranteed only in the case of iso-inertial spacecraft because of the non-availability of 
rate feedback [10]. Also the necessity of complete quaternion information requires that 
the attitude information is available at all times from the sensors placed in the 
spacecraft. 
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6. Conclusion 
The simulations results have demonstrated the feasibility of the control law with full 
state feedback in addressing the problem of attitude regulation of the spacecraft using 
only magnetic actuators. It has also been demonstrated by various iterations that the 
global solution can be established using the control law with full state feedback 
mentioned in section 3, in case of both non iso-inertial and iso-inertial spacecraft and 
the results appear to be fairly robust. 

This report discussed the problem of inertial pointing of spacecraft using only 
magnetic actuators with a review of several existing approaches, the spacecraft model, 
the design of control algorithm for the purpose of inertial pointing of spacecraft using 
only magnetic actuators and finally presented results to document the results of the 
control law with full state feedback to justify the claim[3] that a global solution is 
available for the spacecraft to be controlled independently in three mutually 
perpendicular directions using only magnetic actuators and that attitude regulation can 
be achieved even in the absence of other active and/or passive control devices, at least 
for the spacecraft with small angular velocities.  

The fact that an almost global solution is established for the case of full state feedback, 
a generic global solution for controllability of a spacecraft with large angular 
velocities for the case of full state feedback, partial feedback and output feedback 
provides a scope for significant theoretical research. 
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Appendix 
A. Control Algorithm for Spacecraft Attitude Control using Magnetic Actuators 

% Karthik Mysore Srinivasa 
% December 8th 2014 
%function Torque_s = Controller(w_s,q_i_s) 
clear all 
clc 
  
I = [27 17 25];% In Satellite Frame[kg-m^2]; Default values are [27 17 
25] 
I_Mat = diag(I);% Principal Inertia Matrix 
eps = 0.001; % Epsilon 
kp = 50;% Propotional Constant 
kv = 50;% Velocity Constant 
Tf = 100000;% Enter Simulation Time seconds 
Ts = 0.1;% Step Time in seconds 
K = zeros(3,Tf);% Dummy matrix to store Angular Velocity in rad/sec at 
every instant 
G = zeros(4,Tf);% Dummy Matrix to store Quaternions at every instant 
U = zeros(3, Tf);% Dummy Matrix to store Control values  
m_coils = zeros(3,Tf);% Dummy Matrix to store Residual Dipole Moments 
in A-m^2 at every instant 
Torque_s = zeros(3,Tf);% Dummy Matrix to store Torque in N-m at every 
instant 
Y = zeros(3,Tf);% dummy Matrix to store Euler Angles in Degrees at 
every instant 
q_s_c = [1;0;0;0];% Quaternion Rotation from Satellite to Controller 
Frame 
q_init_s = [1;0;0;0];...[-0.4873; 0.0345; 0.0542; 0.8709];% Initial 
Quaternions 
w_init_s = [0.01; 0.01; 0.01];% Initial Angular Velocity in rad/sec 
  
T = zeros(1, Tf); % Dummy Vector to store Time in seconds as it 
increments 
  
%  %% Compute Magnetic Field vector using World Magnetic Model     
  
for i = 1:Tf 
    T(i) = i-1; 
                
if T(i) == 0 
  
% References: SGP4_Setup by Brandon Jackson 
% Orbit (TLE) 
longstr1 = '1 25544U 14067A   14342.51579142  .00005418  00000-0  
10235-3 0  3046'; 
longstr2 = '2 25544  51.6494 243.7352 0003674 255.5105 239.9716 
15.50141065841738'; 
     
% Initialize and Start the SGP4 propagator 
  
SGP4_Setup(longstr1, longstr2) % Orbit Propagator Setup 
ECEF_Init = sgp4(T(i))*1000; % Position Vector for each Time Instant in 
ECEF Frame w.r.t ECI Frame 
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LLA_Init = ecef2lla(ECEF_Init'); % Transform to Geodetic Frame w.r.t 
ECI Frame 
Latitude = LLA_Init(1); % Compute Real-Time Latitude 
Longitude = LLA_Init(2); % Compute Real-Time Longitude 
Altitude = LLA_Init(3)/1000; % Compute Real-Time Altitude 
  
%% Compute Magnetic Field vector using World Magnetic Model 
    [b_0_t] = wrldmagm(Altitude, Latitude, Longitude, 
decyear(2014,12,8))*1E-9;   % Convert nT to T; 
    NED_Init = dcmecef2ned(Latitude, Longitude)*ECEF_Init; % Direction 
Cosine Matrix for transformation from ECEF to NED Frame 
     
    
    %% First time when Attitude and Rate are NOT available 
     
    u = -((eps^2*kp*q_init_s(2:4))+(eps*kv*w_init_s)); % Control Law 
     
    U(:,i) = u; 
     
    A_q = quat2dcm(q_init_s'); % Attitude Matrix 
     b_t = (A_q)*b_0_t; % Magnetic Field in Satellite Body Frame 
          S_b_t = [0, b_t(3), -b_t(2);... 
            -b_t(3), 0, b_t(1);... 
            b_t(2), -b_t(1), 0]; % Skew-Symmetric Matrix 
        Transpose = S_b_t'; 
     
    Abs = (norm(b_0_t)^2)^(-1); 
    m = Abs*Transpose*u; 
    m_coils(:, i) = m; % Residual Dipole Moment in A-m^2 
    T_coils = cross(m_coils(:, i), b_t); % Control Torque in N-m 
    %T_coils = S_b_t*m_coils(:, i); 
     
  
    Torque_s(:, i) = T_coils; % Control Torque in N-m 
    [w_s, q_i_s]= Satellite_Kinematics(I, w_init_s... 
                                   , Torque_s(:, i), q_init_s... 
                                   , q_s_c... 
                                   , Ts); % Angular Velocity and 
Quaternions at the next time instant 
                                
   G(:, 1) = q_init_s; % Quaternions at the first instant 
   G(:, i+1) = q_i_s(:); 
   K(:, i+1) = w_s; % Angular Velocity at the first instant 
   K(:, 1) = w_init_s; 
    
   [Y(1,i), Y(2,i), Y(3,i)] = quat2angle(G(:,i)', 'ZXZ'); % Euler 
Angles in Radians 
    Y(1,i) = Y(1,i)*(180/pi);Y(2,i) = Y(2,i)*(180/pi);Y(3,i) = 
Y(3,i)*(180/pi); % Euler Angles in Degrees 
              
else  
     
% References: SGP4_Setup by Brandon Jackson     
% Orbit (TLE) 
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longstr1 = '1 25544U 14067A   14342.51579142  .00005418  00000-0  
10235-3 0  3046'; 
longstr2 = '2 25544  51.6494 243.7352 0003674 255.5105 239.9716 
15.50141065841738'; 
     
% Initialize and Start the SGP4 propagator 
% References: SGP4_Setup by Brandon Jackson 
SGP4_Setup(longstr1, longstr2) % Orbit Propagator Setup 
ECEF_Init = sgp4(T(i))*1000; % Position Vector for each Time Instant in 
ECEF Frame w.r.t ECI Frame 
LLA_Init = ecef2lla(ECEF_Init'); % Transform to Geodetic Frame w.r.t 
ECI Frame 
Latitude = LLA_Init(1); % Compute Real-Time Latitude 
Longitude = LLA_Init(2); % Compute Real-Time Longitude 
Altitude = LLA_Init(3)/1000; % Compute Real-Time Altitude 
  
%% Compute Magnetic Field vector using World Magnetic Model 
    [b_0_t] = wrldmagm(Altitude, Latitude, Longitude, 
decyear(2014,12,8))*1E-9;   % Convert nT to T; 
    NED_Init = dcmecef2ned(Latitude, Longitude)*ECEF_Init; 
          
    %% If Attitude and Rate Feedback available, compute Control 
Input'u' 
     
    u = -((eps^2*kp*((G((2:4), (i)))))+(eps*kv*((K(:, (i)))))); % 
Control Law 
  
     
     A_q = quat2dcm(G(:,i)'); % Attitude Matrix 
     b_t = (A_q)*b_0_t; % Magnetic Field in Satellite Body Frame 
          S_b_t = [0, b_t(3), -b_t(2);... 
            -b_t(3), 0, b_t(1);... 
            b_t(2), -b_t(1), 0]; % Skew-Symmetric Matrix 
        Transpose = S_b_t'; 
     
 U(:,i) = u; 
  
  
 Abs = (norm(b_0_t)^2)^(-1); 
 m = Abs*Transpose*u; 
 m_coils(:, i) = m; % Residual Dipole Moment in A-m^2 
 T_coils = cross(m_coils(:, i), b_t); % Control Torque in N-m 
 %T_coils = S_b_t*m_coils(:, i); 
  
  
 Torque_s(:, i) = T_coils; % Control Torque in N-m 
  
 [w_s, q_i_s]= Satellite_Kinematics(I, w_init_s... 
                                   , Torque_s(:, i), q_init_s... 
                                   , q_s_c... 
                                   , Ts); % Angular Velocity and 
Quaternions at the next instant 
                                
 G(:, i+1) = q_i_s(:); 
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 K(:, i+1) = w_s; 
  
 [Y(1,i), Y(2,i), Y(3,i)] = quat2angle(G(:,i)', 'ZXZ'); % Euler Angles 
in Radians 
 Y(1,i) = Y(1,i)*(180/pi);Y(2,i) = Y(2,i)*(180/pi);Y(3,i) = 
Y(3,i)*(180/pi); % Euler Angles in Degrees 
   
end 
  
end 
  
p = 0:(Tf); 
figure(1); 
hold on 
plot(p, K(1,:),'r'); 
plot(p, K(2,:),'b'); 
plot(p, K(3,:),'g'); 
xlabel('Time in seconds'); 
ylabel('Angular Velocity in radians per second'); 
title('Angular Velocity in radians per second'); 
legend('w_1','w_2','w_3'); 
set(gca,'XLim',[0 Tf]); 
hold off 
  
figure(2); 
hold on 
plot(p, G(1,:),'r'); 
plot(p, G(2,:),'b'); 
plot(p, G(3,:),'g'); 
plot(p, G(4,:),'m'); 
xlabel('Time in seconds'); 
ylabel('Quaternions'); 
title('Quaternions'); 
legend('q1','q2','q3','q4'); 
set(gca,'XLim',[0 Tf]); 
hold off 
  
figure(3); 
hold on 
plot(T, Torque_s(1,:),'r'); 
plot(T, Torque_s(2,:),'b'); 
plot(T, Torque_s(3,:),'g'); 
xlabel('Time in seconds'); 
ylabel('Torque in Newton-meter'); 
title('Torque in Newton-meter'); 
legend('Torque1','Torque2','Torque3'); 
hold off 
  
figure(4); 
hold on 
plot(T, m_coils(1,:),'r'); 
plot(T, m_coils(2,:),'b'); 
plot(T, m_coils(3,:),'g'); 
xlabel('Time in seconds'); 
ylabel('Dipole Moment in Ampere - meters^2'); 
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title('Dipole Moment in Ampere - meters^2'); 
legend('m1','m2','m3'); 
hold off 
  
figure(5); 
hold on 
plot(T, Y(1,:),'r'); 
plot(T, Y(2,:),'b'); 
plot(T, Y(3,:),'g'); 
xlabel('Time in seconds'); 
ylabel('Euler Angles in Degrees'); 
title('Euler Angles in Degrees'); 
legend('theta1','theta2','theta3'); 
hold off 
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B. Satellite Attitude Kinematics and Dynamics – SatelliteKinematics.m [2] 

function [w_s, q_i_s]= Satellite_Kinematics(I_c, w_init_s, Torque_s, 
q0_i_s, q_s_c, Ts) 
%#codegen 
  
persistent w_c_km1 q_i_c_km1 
  
% Convert torque from satellite to controller frame 
Torque_c_temp = quatmultiply(quatmultiply(quatinv(q_s_c), [0; 
Torque_s]), q_s_c); 
Torque_c = Torque_c_temp(2:4,1); 
  
if  isempty(w_c_km1) || isempty(q_i_c_km1) 
    % First time this function is run, pass through initial conditions 
    w_s = w_init_s; 
    q_i_s = q0_i_s; 
     
    % Store for next time 
    w_c_temp = quatmultiply(quatmultiply(quatinv(q_s_c), [0; w_s]), 
q_s_c); 
    w_c_km1 = w_c_temp(2:4); 
    q_i_c_km1 = quatmultiply(q_i_s, q_s_c); 
else 
    % Second time this function is run, time to integrate 
     
    x_km1 = [q_i_c_km1; w_c_km1]; 
     
    % Integrate 
    k1 = Kinematics(x_km1, I_c, Torque_c); 
    k2 = Kinematics(x_km1 + 0.5*k1*Ts, I_c, Torque_c); 
    k3 = Kinematics(x_km1 + 0.5*k2*Ts, I_c, Torque_c); 
    k4 = Kinematics(x_km1 + k3*Ts, I_c, Torque_c); 
     
    x_k = x_km1 + (k1 + 2*k2 + 2*k3 + k4)*Ts/6; 
     
    % Store for next time 
    q_i_c_km1 = x_k(1:4); 
    w_c_km1 = x_k(5:7); 
     
    % Rotate and return 
    q_i_s = quatmultiply(q_i_c_km1, quatinv(q_s_c)); 
    w_s_temp = quatmultiply(quatmultiply(q_s_c, [0; w_c_km1]), 
quatinv(q_s_c)); 
    w_s = w_s_temp(2:4); 
end 
  
end 
  
function output = skew_matrix(x) 
% Returns the skew symmetric matrix of the input vector 
  
output = [0 -x(3) x(2);... 
    x(3) 0 -x(1);... 
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    -x(2) x(1) 0]; 
end 
  
function results = Kinematics(x, I, Torque_c) 
q = x(1:4); 
w = x(5:7); 
I_Mat = diag(I); 
  
q_dot = 0.5.*[0 -w'; w -skew_matrix(w)]*q; 
w_dot = I_Mat^(-1)*(-skew_matrix(w)*(I_Mat*w) + Torque_c); 
% w_dot = [0; 0; 0]; 
% w_dot(1,1) = ( Torque_c(1) - w(2)*w(3)*(I(3,3) - I(2,2)) )/I(1,1); 
% w_dot(2,1) = ( Torque_c(2) - w(1)*w(3)*(I(1,1) - I(3,3)) )/I(2,2); 
% w_dot(3,1) = ( Torque_c(3) - w(1)*w(2)*(I(2,2) - I(1,1)) )/I(3,3); 
  
results = [q_dot; w_dot]; 
end 
  
function qres = quatmultiply(q, r) 
q = q'; 
r = r'; 
% Calculate vector portion of quaternion product 
% vec = s1*v2 + s2*v1 + cross(v1,v2) 
vec = [q(:,1).*r(:,2) q(:,1).*r(:,3) q(:,1).*r(:,4)] + ... 
         [r(:,1).*q(:,2) r(:,1).*q(:,3) r(:,1).*q(:,4)]+... 
         [ q(:,3).*r(:,4)-q(:,4).*r(:,3) ... 
           q(:,4).*r(:,2)-q(:,2).*r(:,4) ... 
           q(:,2).*r(:,3)-q(:,3).*r(:,2)]; 
  
% Calculate scalar portion of quaternion product 
% scalar = s1*s2 - dot(v1,v2) 
scalar = q(:,1).*r(:,1) - q(:,2).*r(:,2) - ... 
             q(:,3).*r(:,3) - q(:,4).*r(:,4); 
     
qres = [scalar  vec]'; 
end 
  
function qinv = quatinv(qin) 
  
q_conj = [qin(1); -qin(2:4)]; 
qinv = q_conj./sqrt(sum(qin.^2)); 
  
end 
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C. SGP4 Setup[3] 

function SGP4_Setup(longstr1, longstr2) 
% SGP4_Setup 
% Brandon Jackson 
% bajackso@mtu.edu 
% 9th July 2013 
% 
% 
% Inputs: 
% longstr1: TLE character String Line 1 
% longstr2: TLE character Sring Line 2 
% 
% Outputs: 
% satrec: structure containing all of the SGP4 satellite information  
% 
% Coupling: 
% getgravconst 
% days2mdhms 
% jday 
% sgp4init 
% 
% References: 
% Norad Spacetrack Report #3 
% Vallado, Crawford, Hujsak, Kelso 2006 
  
%% Define Global Variables 
global satrec gravc 
% gravc = struct('mu', 0.0,... 
%     'radiusearthkm', 0.0,... 
%     'xke', 0.0,... 
%     'tumin', 0.0,... 
%     'j2', 0.0,... 
%     'j3', 0.0,... 
%     'j4', 0.0,... 
%     'j3oj2', 0.0); 
  
%% Include extrinsic functions 
% coder.extrinsic('custom_str2double'); 
  
%% WGS-72 Earth Constants 
% sgp4fix identify constants and allow alternate values 
% Options 721 72 84 
getgravc( 721 ); 
  
%% Define Constants 
deg2rad  =   pi / 180.0;         %  0.01745329251994330;  % [deg/rad] 
    xpdotp   =  1440.0 / (2.0*pi);   % 229.1831180523293;  % 
[rev/day]/[rad/min]   
  
    revnum = 0;  
    elnum  = 0; 
    year   = 0;  
    satrec.error = 0; 
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%% Parse TLE 
% Set the implied decimal points since doing a formated read fixes for 
bad 
% input data values (missing, ...) 
    for (j = 11:16) 
        if (longstr1(j) == ' ') 
            longstr1(j) = '_'; 
        end 
    end 
  
    if (longstr1(45) ~= ' ') 
        longstr1(44) = longstr1(45); 
    end 
    longstr1(45) = '.'; 
      
    if (longstr1(8) == ' ') 
        longstr1(8) = 'U'; 
    end 
  
    if (longstr1(10) == ' ') 
        longstr1(10) = '.'; 
    end 
  
    for (j = 46:50) 
        if (longstr1(j) == ' ') 
            longstr1(j) = '0'; 
        end 
    end 
    if (longstr1(52) == ' ') 
        longstr1(52) = '0'; 
    end 
    if (longstr1(54) ~= ' ') 
        longstr1(53) = longstr1(54); 
    end 
    longstr1(54) = '.'; 
  
    longstr2(26) = '.'; 
      
    for (j = 27:33) 
        if (longstr2(j) == ' ') 
            longstr2(j) = '0'; 
        end 
    end 
      
    if (longstr1(63) == ' ') 
        longstr1(63) = '0'; 
    end 
  
    if ((length(longstr1) < 68) || (longstr1(68) == ' ')) 
        longstr1(68) = '0'; 
    end 
  
    % parse first line 
    carnumb = custom_str2double(longstr1(1)); 
    satrec.satnum = custom_str2double(longstr1(3:7)); 
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    classification = longstr1(8); 
    intldesg = longstr1(10:17); 
    satrec.epochyr = custom_str2double(longstr1(19:20)); 
    satrec.epochdays = custom_str2double(longstr1(21:32)); 
    satrec.ndot = custom_str2double(longstr1(34:43)); 
    satrec.nddot = custom_str2double(longstr1(44:50)); 
    nexp = custom_str2double(longstr1(51:52)); 
    satrec.bstar = custom_str2double(longstr1(53:59)); 
    ibexp = custom_str2double(longstr1(60:61)); 
    numb = custom_str2double(longstr1(63)); 
    elnum = custom_str2double(longstr1(65:68)); 
  
    % parse second line 
    cardnumb = custom_str2double(longstr2(1)); 
    satrec.satnum = custom_str2double(longstr2(3:7)); 
    satrec.inclo = custom_str2double(longstr2(8:16)); 
    satrec.nodeo = custom_str2double(longstr2(17:25)); 
    satrec.ecco = custom_str2double(longstr2(26:33)); 
    satrec.argpo = custom_str2double(longstr2(34:42)); 
    satrec.mo = custom_str2double(longstr2(43:51)); 
    satrec.no = custom_str2double(longstr2(52:63)); 
    revnum = custom_str2double(longstr2(64:68)); 
  
% find no, ndot, nddot 
    satrec.no   = satrec.no / xpdotp; %//* rad/min 
    satrec.nddot= satrec.nddot * 10.0^nexp; 
    satrec.bstar= satrec.bstar * 10.0^ibexp; 
  
% convert to sgp4 units 
    satrec.a    = (satrec.no*gravc.tumin)^(-2/3);                % [er] 
    satrec.ndot = satrec.ndot  / (xpdotp*1440.0);          % 
[rad/min^2] 
    satrec.nddot= satrec.nddot / (xpdotp*1440.0*1440);     % 
[rad/min^3] 
  
% find standard orbital elements 
    satrec.inclo = satrec.inclo  * deg2rad; 
    satrec.nodeo = satrec.nodeo * deg2rad; 
    satrec.argpo = satrec.argpo  * deg2rad; 
    satrec.mo    = satrec.mo     *deg2rad; 
  
    satrec.alta = satrec.a*(1.0 + satrec.ecco) - 1.0; 
    satrec.altp = satrec.a*(1.0 - satrec.ecco) - 1.0; 
  
%% Find SGP4 Epoch Time of element set 
%  Remember that sgp4 uses units of days from 0 jan 1950 (sgp4epoch) 
and 
%  minutes from the epoch (time) 
  
% Temp fix for years 1957-2056 
% Correct fix will occur when year is 7-digits in 21e 
     if (satrec.epochyr < 57) 
         year= satrec.epochyr + 2000; 
       else 
         year= satrec.epochyr + 1900; 
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     end; 
  
     [mon,day,hr,minute,sec] = days2mdh ( year,satrec.epochdays ); 
     satrec.jdsatepoch = jday( year,mon,day,hr,minute,sec ); 
      
 %% Initialize the orbit at SGP4 Epoch     
 sgp4epoch = satrec.jdsatepoch - 2433281.5; % days since 0 Jan 1950 
 sgp4init(sgp4epoch); 
end 
  
    function output_double = custom_str2double(input_str) 
        i = 0.0; 
        output_double = 0; 
        npast = 0; 
        num_sign = 1; 
        input_str = input_str(input_str ~= ' '); 
        for i = 1:length(input_str) 
            if input_str(i) == '-' 
                num_sign = -1;  
            elseif input_str(i) == '.' && npast == 0 
                npast = 1; 
            elseif npast >= 1; 
                output_double = output_double + (input_str(i) - 
'0')*10^-npast; 
                npast = npast+1; 
            else 
                % Value is greater than 1 
                output_double = output_double*10 + (input_str(i) - 
'0'); 
            end 
        end 
        output_double = num_sign*output_double; 
    end 
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