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Abstract 

   Wind energy has been one of the most growing sectors of the nation’s renewable 

energy portfolio for the past decade, and the same tendency is being projected for the 

upcoming years given the aggressive governmental policies for the reduction of fossil 

fuel dependency. Great technological expectation and outstanding commercial 

penetration has shown the so called Horizontal Axis Wind Turbines (HAWT) 

technologies. Given its great acceptance, size evolution of wind turbines over time has 

increased exponentially. However, safety and economical concerns have emerged as a 

result of the newly design tendencies for massive scale wind turbine structures presenting 

high slenderness ratios and complex shapes, typically located in remote areas (e.g. 

offshore wind farms). In this regard, safety operation requires not only having first-hand 

information regarding actual structural dynamic conditions under aerodynamic action, but 

also a deep understanding of the environmental factors in which these multibody rotating 

structures operate. Given the cyclo-stochastic patterns of the wind loading exerting 

pressure on a HAWT, a probabilistic framework is appropriate to characterize the risk of 

failure in terms of resistance and serviceability conditions, at any given time. 

Furthermore, sources of uncertainty such as material imperfections, buffeting and flutter, 

aeroelastic damping, gyroscopic effects, turbulence, among others, have pleaded for the 

use of a more sophisticated mathematical framework that could properly handle all these 

sources of indetermination. The attainable modeling complexity that arises as a result of 

these characterizations demands a data-driven experimental validation methodology to 

calibrate and corroborate the model. For this aim, System Identification (SI) techniques 

offer a spectrum of well-established numerical methods appropriated for stationary, 

deterministic, and data-driven numerical schemes, capable of predicting actual dynamic 

states (eigenrealizations) of traditional time-invariant dynamic systems. As a 

consequence, it is proposed a modified data-driven SI metric based on the so called 

Subspace Realization Theory, now adapted for stochastic non-stationary and time-

varying systems, as is the case of HAWT’s complex aerodynamics. Simultaneously, this 

investigation explores the characterization of the turbine loading and response envelopes 
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for critical failure modes of the structural components the wind turbine is made of. In the 

long run, both aerodynamic framework (theoretical model) and system identification 

(experimental model) will be merged in a numerical engine formulated as a search 

algorithm for model updating, also known as Adaptive Simulated Annealing (ASA) 

process. This iterative engine is based on a set of function minimizations computed by a 

metric called Modal Assurance Criterion (MAC). In summary, the Thesis is composed of 

four major parts: (1) development of an analytical aerodynamic framework that predicts 

interacted wind-structure stochastic loads on wind turbine components; (2) development 

of a novel tapered-swept-corved Spinning Finite Element (SFE) that includes damped-

gyroscopic effects and axial-flexural-torsional coupling; (3) a novel data-driven structural 

health monitoring (SHM) algorithm via stochastic subspace identification methods; and 

(4) a numerical search (optimization) engine based on ASA and MAC capable of 

updating the SFE aerodynamic model. 
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Chapter 1. Introduction 
 

1.1 Presentation 

   As of today, wind energy is one of the most growing sectors of the nation’s renewable 

energy portfolio; the same tendency has been observed for the past decade and is 

expected to grow in the same rate for the upcoming years. To this effect, safety and 

economical concerns have emerged as a result of the newly design tendencies for massive 

scale wind turbine structures exhibiting high slenderness ratios and complex shapes, 

typically located in remote areas (i.e. offshore wind farms). Safety operation requires not 

only information regarding structural dynamic conditions under the aerodynamic action, 

but also a deep understanding of the environmental factors and mechanics in which these 

multi-body rotating structures operate. To this end, Horizontal Axis Wind Turbines 

(HAWT) have emerged as the alternative technology of choice in the wind energy 

industry because of their high energy production rate, manufacturing convenience, 

mechanistic design, and strong adaptability under different climates and geographies. 

Given the stochastic cyclo-stationary patterns of the wind loading acting on such devices, 

a probabilistic framework is appropriate to characterize the risk of failure, under both 

resistance and serviceability conditions, at any given time. Furthermore, sources of 

uncertainty such as material imperfections, variations in the rotating speed, aeroelastic 

damping, tower shadow effects, damped-gyroscopic phenomenon, turbulence, wake 

effects (vortex-shedding), flutter, buffeting, among others, have pleaded for the use of a 

more sophisticated mathematical framework that could properly handle all these sources 

of indetermination. Given the attainable modeling complexity that arises as a result of 

these characterizations, a need for a data-driven experimental validation methodology 

turns out to be imperative in order to validate the model. This solution is expected 

suitable for representing both cyclo- and non-cyclo- stationary structural aerodynamics. 

The ultimate goal: a holistic methodology capable of updating wind demand loads and 

geometrical/inertial properties of HAWTs using: (1) Structural Health Monitoring (SHM) 

techniques, (2) advanced Spinning Finite Elements (SFE), and (3) advanced search 

algorithms for model updating and characterization.  
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   From this perspective, the so-called System Identification (SI) techniques offer a 

spectrum of well established numerical methods appropriated for stationary and 

deterministic numerical methods, capable of carrying out successful eigenrealizations of 

traditional time-invariant dynamic systems. In this line of thinking, it is proposed a 

modified data-driven SI technique based on the so-called Subspace Realization Theory, 

now adapted for stochastic non-stationary and time-varying aerodynamic systems. In 

order to achieve higher accuracy and predictability of real physical loads, stresses and 

strains, as well as gaining portability, computational stability and ease of use, the present 

investigation explores the detailed characterization of turbine loading and response 

envelopes for critical failure modes of both tower and rotor blade subsystems. To carry 

out this ordeal, it is proposed a novel spinning finite element (SFE) method general 

enough to encompass tapered-swept cross-section variations of blade elements by means 

of Lagrangian, Saint-Venant and Euler theories, all combined in a matrix-driven 

mathematical framework devoted for damped-gyroscopic effects. To this matter, a special 

consideration is taxed to the so-called yaw (Coriolis) effects, typically considered as the 

critical phenomena that dictate the time-varying structural aerodynamics of the integrated 

tower-nacelle-blades body system. Interaction of tower and rotor blades is also addressed 

as a multi-body problem and is studied in the along-wind spectral analysis. In this 

respect, the point of intersection between the aerodynamic framework (theoretical model) 

and the experimental identification (numerical model) may be a numerical search 

algorithm for model updating known as Adaptive Simulated Annealing (ASA) method. 

This iterative engine is based on a set of function minimizations that are dictated by 

correspondent rules also known as Modal Assurance Criterion (MAC), such a way it can 

be computed the internal energy of the system in order to convey the state of the physical 

structural system with the proposed model. Figure 1.1(a) illustrates the global scope of 

the Thesis project including tower and rotor blades substructures interaction, whereas 

Figure 1.1(b) schematizes the identified scope covering the analysis and thorough 

characterization of wind turbine blades subsystems in particular. Thus, next section will 

lead to the definition of the methodological and meta-methodological frameworks 

required for the development of the Thesis project. 
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Figure 1.1(a) Global scope of the Thesis Project including tower and rotor blades interaction. 
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Figure 1.1(b). Scope of the Thesis Project for rotor blades. 
 

1.2 Methodological Framework 

   Table 1.2 summarizes the completion of the methodological framework of the Thesis 

by compartmentalizing key answers to resolve the what, which, and how of each of the 

objectives to convey. Some of the systemic methodologies employed for this project can 

be understood as a set of ordered techniques and ploys that offer new procedures and 

protocols to provide significant advantages in the characterization, modeling and 

prediction of the structural dynamics of HAWT blade systems. The Thesis manuscript is 

dissected into four major cores: 
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Introductory Framework. Here is justified the relevance of the theme chosen by the 

exposure of the objectives on the one hand, and the explanation of the structure of the 

thesis manuscript on the other. 
 

Capitulation. Splitting into five major blocks that will cover all the steps to carry out the 

analysis, assumptions, derivations, mathematical theory, examples, reach, stretch and 

accomplishments of the Thesis. 
 

Conclusions. Finds the relevant factors identified throughout the investigation. Books key 

points and draw comments about the possible implications that will have the new 

methodologies proposed at the present time and in the future. Examines conceptual 

limitations, strengths, weaknesses, and opportunities of research that could be taken up, 

recaptured and leveraged in a later time. 
 

References. Lists references series, educational material, magazines, articles, websites, 

and others employed in this investigation. 

 

   Figure 1.3 schematizes the conceptual pyramid that comprises the branches of study 

and main fields involved in the present investigation. It is a five-level hierarchy that 

visualizes the extensional domains of every key concept in the research field of study. 

Here, axiomatic categories become definable by the induced common intensions of their 

immediate subcategories. This pyramid is known as extensional-dihaeretic where 

undefined categories at the base are set to be independent fields of study. The various 

modes of induction explain the eventuality of concurrency theories about the same 

instances, merging from bottom to top. The following section provides a brief overview 

of the discussion topics that will be made along the five core chapters that make up the 

body of the thesis document. 
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Table 1.2. Methodological framework of the Thesis project. 
 

Objetive 
(What?) 

Methodology 
(Which?) 

Technique 
(How?) 

Tools 
(With What?) 

Goals 
(For What?) 

 A general 
aerodynamic 
framework 
for rotor-
blades 

 Statistical analysis 
 Structural reliability 
 Assumed Modes method 
 Structural aerodynamics 
 Fragility curves 
 Along-wind response 
 Total fluctuating 
response: background 
and resonant 
contributions 

 Monte-Carlo simulation 
 Random processes 
 Spectral density and 
autocovariance, cross-
covariance, co-spectrum, 
quadrature spectrum and 
coherence 
 Peak-values probability 
distribution of normal ran- 
dom signal 
 Distributed-stationary ran- 
dom-loads spectral analysis 

 MatLab scripts** 
 Object-oriented 
programming** 
 Matrix methods 
recipes 
 Numerical 
methods recipies 

 A generalized 
spectral stochasto-
|aerodynamic 
method, in the 
frequency domain, 
that computes 
demand envelopes 
for tapered-swept-
curved blades** 

 A general 
aerodynamic 
framework 
for wind 
towers  

 Statistical analysis 
 Structural reliability 
 Assumed Modes method 
 Fragility curves 
 Across-wind response 
 Along-wind response 

 Monte-Carlo simulation 
 Random processes 
 Spectral density and 
autocovariance, cross-
covariance, co-spectrum, 
quadrature spectrum and 
coherence 
 Peak-values probability 
distribution of normal ran- 
dom signal 
 Rumman’s procedure 
 Vickery and coworkers 
procedures 

 MatLab scripts** 
 Object-oriented 
programming** 
 Matrix methods 
recipes 
 Numerical 
methods recipies 

 A generalized 
spectral stochasto-
aerodynamic 
method, in the 
frequency domain, 
that computes 
demand envelopes 
for tapered wind 
towers** 

 A 
sophistica-
ted FEM 
that 
character-
rizes 
spinning 
structures 
with 
complex 
geometry 

 Meirovitch method for 
gyroscopic linear 
systems 
 Arnold method 
 Schur decomposition 
 Hamiltonian systems 
 Newtonian algorithm 
 Lagrangian equations 
 Super-convergent shape 
functions  

 Assumed modes method 
 B-orthogonal and Schur 
decomposition numerical 
techniques 
 Complex-number eigen-
frequencies analysis** 
 Matrix-driven equations of 
motion for skew-symmetric 
systems with n-degree tape-
red-swept profiles** 
 Hermitian shape functions 

 MatLab scripts** 
 ANSYS FE 
model 
 Numerical 
method recipes 
 Mathematica 
solver 

 A spinning FEM 
for n-degree 
tapered-swept 
profiles with 
damped-
gyroscopic, 
centrifugal effects 
and axial-flexural-
torsional 
coupling** 

 A suitable 
SI algorithm 
for 
embedded 
program-
ming 
dedicated to 
HAWT’s 
Structural 
Health 
Monitoring 

 Stationary and non-
stationary methods 
 Non-parametric 
frequency-domain 
methodologies 
 Parametric time-domain 
methodologies 
 Eigensystem Realization 
Algorithm (ERA) 
 Observer/Kalman filter 
identification 
 Frequency-domain 
state-space SI 

 Correlation methods, spec-
tral estimation and ergodici- 
ty, predictor models, 
identifiability, convergence 
and consistency, 
informativity vs. Persistence 
of excitation** 
 Recursive methods** 
 Kalman filter, 
observer/controller 
identification 
 Cyclo-stationary indirect 
identification techniques** 

 MatLab** 
 Object-oriented 
programming** 
 Matrix methods 
recipes 
 Numerical 
methods recipes 
 Pseudocode** 
 C, C++ compilers 

 A stochastic 
subspace non-
stationary time-
varying SI 
algorithm for 
embedded 
programming** 

 A Simulated 
Annealing 
(SA) engine 
for HAWTs 
model 
updating 
using SHM 

 SA method 
 Annealing schedule 
techniques 
 MAC method 
 Acceptance probabilities 
 Cooling schedule 
 Barrier avoidance 

 Iterative algorithms 
implementation** 
 Optimization algorithms 
implementation** 
 Search algorithms 
 Linear and object-oriented 
programming** 

 MatLab scripts 
 C, C++ compilers 
 Visual Studio 
scripts** 
 Numerical 
methods recipes 
 Pseudocode** 

 A MAC based 
Simulated 
Annealing (SA) 
engine via 
stochastic subspace 
ID-LPTV 
method** 

** Original contributions to the research field.  
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Figure 1.2. Conceptual pyramid of the Thesis project. 
 
1.3 Organization 

   The document is composed of seven chapters that comprehensively review each of the 

steps to consolidate a numerical engine for model updating and system identificaiton of 
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identification with linear-parameter time-varying methods (CS-SSI-LPTV), aeroelasto-

stochastic analysis, damped-gyroscpic tapered-swept spinning finite elements (SFE) with 
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introduction of the Thesis project, justification, general and particular objectives and 

general overview of the Thesis document. Chapter 2 discusses generalities of the related 

theory and set the pillar elements that comprises it, as well as the wingspan, extent and 

limitations of the implicated mathematical framework. Chapter 3 deals with issues 

regarding tower and rotor blades sub-structuring, characterization principles and along-

wind aeroelastic phenomena. This chapter tailors awareness of the practical – holistic – 

range of action and incidence of the eventual model updating engine, as seen as the final 

product of the Thesis endeavor. Chapter 4 discusses in detail the incursion of the concept 

of Spinning Finite Element, validated via stochastic spectral aeroelasticity. Chapter 5 

deepens into a more sophisticated SFE theory, now embodying tapered-swept variations 

with damped-gyroscopic phenomenon and axial-flexural-torsional coupling, all 

combined. Chapter 6 proposes a novel cyclo-stationary stochastic subspace identification 

method using linear parameter time-varying methods, and establishes a practical 

algorithm with general rules for System Identification of rotating machinery. Chapter 7 

encompasses the inclusion of a model updating method based on the principles of 

Boltzmann machines and optimization engines. It is based solely on experimental 

information and independent of the primary analytical model adopted for the rotor-blade 

system. Finally, Chapter 8 draws general conclusions and future work (see Figure 1.4). 

 

 
Figure 1.3. Incumbency of the Thesis project. 

 

                 Global Scope 
                    (Ch. 1,2) 
 
 
 
 

  Local Scope 
(Ch. 3, 4, 5  
     and 6) 

Global Scope (Ch. 7) 

 Thesis 
Project 



  9 
 

1.4 Justification 

   Wind energy technologies are an area of research which is maturing very fast in recent 

years due to the concern of long term global energy consumption. With advances in wind 

turbine technology accompanied by government decisions that are in favor of ‘green’ or 

renewable power, wind turbines are an increasingly viable economic choice to 

conventional fossil-fuelled power generation [Yang 2008]. Significant advances are being 

made in the areas of aerodynamic blade design, electrical generator design and variable 

speed transmissions. As a result, nonlinear effects are on demand at each subcomponent 

and, consequently, model dynamics and system model increase in order. Even with the 

existence of advance techniques for system identification and control, it is prohibitive to 

use complex and higher order models when simpler are available. Current research lines 

are focused on the modeling and identification of dynamic systems for controller design, 

state estimation, diagnosis and fault detection [Bonger 1991][Novak 1994]. Numerical 

models of existing wind turbine structures can be used for various reasons: (a) evaluating 

innovative designs, (b) evaluating the effect of loads in a current structure, (c) evaluating 

the effect of modifications on a current structure, (d) others. However, differences 

between the behavior of numerical models and real structures are common, particularly 

when dealing with spinning machinery. For example, Zhang [Zhang et al. 2001] reported 

17.4% of difference in natural frequencies between the FEM and measurements of the 

Kap Shui Mun Bridge. Brownjohn and others [Brownjohn et al. 2003] had differences in 

up to 23% in the dynamic characteristics of the Pioneer Bridge in Western Singapur. 

Model Updating is typically performed to adjust a numeric model, so that it mimics 

reality. At the same time, System Identification (SI) techniques are used as a black box 

models that focus on input/output relationships, no physical significance on the model 

parameters are observed and is mainly oriented to applications for structural control and 

structural health monitoring. Originally developed by Juang and Pappa [Juang and Pappa 

1985] the method was primitively created to obtain a realization of the system, generally 

effective for lightly damped structures where natural frequencies and mode shapes can be 

extracted from the realization. This method was particularly developed for impulse 

response functions [Juang 1994]. In counterpart, model updating is employed to use finite 
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element models (or models with physical meaning), focusing on the physical 

characteristics of the model, and used for retrofit studies/damage identification and 

others. To this aim, the goal of model updating deterministic methods, that include least 

squares and genetic algorithms, is to minimize an objective function that measures 

differences between the numerical model and the experimental structure system [Chi-

Tsong 1998]. On the other hand, probabilistic methods are built based on the Bayes 

inference [Mares et al. 2006] which intends to determine the probability of the structural 

parameters given a set of measurements and a particular model, where prior knowledge is 

available. Baye’s inference is used to estimate a PDF of a specific event based on 

observations where the posterior probability distribution contains all the information 

available after the data have been acquired. Baye’s inference involves a pre-known 

burden of information that forces codependency between the trace of the initial model 

and the experimental data, whereas deterministic models clearly delimitate independence 

between the measured data and the projected model. Model updating ponders the degree 

of uncertainty from assumptions in the data, identification process and model type, and it 

causes the calibrated model to become uncertain as well. In this respect, there are two 

sources of uncertainty: (1) aleatory, that corresponds to sole variability of the signals and, 

(b) epistemic, that is caused by uncertainty of an unknown process or mechanism present 

in the dynamic system. Epistemic uncertainty can be reduced by providing clues to 

improve prior PDFs by means of identifying areas of high probability, and then re-

calculate posterior PDFs as a result. In its core, the goal of model updating is to identify 

several possible solutions but physically different according to a pool of choices. 

Modeling to Generate Alternatives (MGA) methodologies [Chang et al. 1982] use the 

power of computers to reduce the number of possible solutions to a manageable size, 

leaving the final decision of selecting the most appropriate model to the analyst. In 

contrast, search algorithms such as Adaptive Simulated Annealing and Genetic 

Algorithms are both probabilistic based methods capable of finding a global minimum 

amongst many local minima for a given objective function [Levin and Lieven 1997]. For 

this aim, dynamic Finite Elements (FE) models are widely used to predict the 

geometrical/inertial properties of structures. However, results attained to FE modeling 
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often differ from the experimental data obtained from a vibration test. As mentioned 

before, this divergence may be caused by a number of reasons going from errors in the 

experimental data to model inaccuracies. In general, experimental measurements are 

assumed to be a better source of representation of how the structure actually behaves 

rather than the initial prediction of the FE model. Different updating methods have been 

tested based on whether they work in frequency or modal domains [Imregun and Visser 

1991]. Some methods adjust the mass and stiffness matrices directly (direct methods) and 

some others make parametric modifications to the model (indirect methods). Indirect 

methods are proven to be the most physically meaningful, and typically make use of an 

objective function that quantifies the difference between the experimental and analytical 

data [Friswell and Mottershead 1995]. Attempts are then to find a set of parameters that 

minimizes the objective function by converting the model updating in a constrained 

optimization problem. Previous model updating work using simulated annealing has 

concentrated in small problems with very few parametric values with successful results 

[Nelder and Mead 1965]. However, although the simulated annealing is, in general, the 

most suitable method it tends to fail for large number of parametric values. It also 

produces disappointing results when is applied to cumbersome problems, generating wild 

oscillations about the correct parameter marks. This is due mainly to the accuracy and 

sophistication of the finite element model and represents a fundamental problem that 

many model updating algorithms encounter. Consequently, the development of a refined 

spinning finite element model and an adequate data-driven cyclo-stationary system 

identification method that could both appraise, to a good approximation, the structural 

dynamics of complex rotating machinery is mandatory to ensure accurate predictions of 

the model updating process of Horizontal Axis Wind Turbines (HAWTs). That said, it is 

now a convenient time to define the objectives of the Thesis project below. 

 

1.5 Objectives 

1.5.1 General Objective 

   Analyze, design, construct and implement a numerical model updating engine and a 

system identification scheme for Horizontal Axis Wind Turbines (HAWTs), based on the 
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development of advanced Spinning Finite Elements (SFE) and a cyclo-stationary 

stochastic subspace identification method with linear time-varying parameters (CS-SSI-

LPTV), validated via aeroelasto-stochastic spectral analysis and random vibrations. 

 
1.5.2 Particular Objectives 
 

 Entrust a generalized spectral stochasto-aerodynamic method, in the frequency 

domain, that computes demand envelopes for tapered wind towers, as part of a 

preliminary work of study. 

 Develop a general, yet specialized 3D Spinning Finite Element for n-degree 

tapered-swept-curved profiles with damped-gyroscopic and axial-flexural-

torsional coupling, including centrifugal effects. 

 Propose a stable and reliable numerical solution for the open mathematical 

problem of damped-gyroscopic and non-classical damping complex-conjugate 

eigenrealization. 

 Entrust a generalized rotationally-sampled spectral stochasto-aerodynamic 

method, in the frequency domain, that computes demand envelopes for tapered-

swept-curved blades, as part of the validation scheme of the theory developed. 

 Develop a novel stochastic subspace, linear-parameter, time-varying system 

identification algorithm, applied for both stationary and non-stationary signals, in 

order to obtain representative eigen-properties of the rotor-blade system, based 

solely on experimental data. 

 Develop a portable, yet efficient iterative numerical machine for model updating 

based on Adaptive Simulated Annealing (AS) and complex-conjugate Modal 

Assurance Criterion (MAC). 

 

   Once the objectives and scope of the Thesis project has been established, it is proper 

time now to enter formally into the discussion of the state of the art of the current status 

and research advances in model updating, finite element and system identification 

techniques for HAWTs. Chapter 2 will serve as a preamble to relieve compelling and 

relevant issues to further advance in the core Chapters of the Thesis. 
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Chapter 2. Literature Review 
2.1 Preliminary Study 

   The analysis of wind turbines is well-established with several texts on the subject 

[Gasch and Twele 2002][Burton et al. 2001][Manwell et al. 2002]. Full-aero-elastic 

dynamic modeling is used nowadays to design and analyze wind turbines [Molenaar 

2003]. Modeling of wind turbine dynamics implies a complicated interaction of 

rotor/wake aerodynamics, atmospheric boundary-layer fluid dynamics, and structural 

dynamics [Hansen 2008][Buhl 2005][Det Norske Veritas 2001]. Outer contour of blade 

profiles are designed to be strong and stiff enough, made with materials like glass-fiber-

reinforced polymers (GRPs), carbon fiber reinforced plastics (CFRPs), steel, aluminum, 

and wood [Griffin and Ashwill 2003]. Other studies [Hodges et al. 1996][Hodges 2003] 

model non-isotropic properties, including non-linear behavior critical for stability 

analysis. Two analytical frameworks are the backbone of actual wind turbine codes 

[Manwell et al. 2002]: (1) Momentum theory and (2) Blade element theory. 

Computational fluid dynamics on wind turbines has been performed by many authors, of 

which work done by Sorenson and Michelsen [Sorenson and Michelsen 2002], and 

Duque [Duque et al. 1999] are notable. Internal box like beam structure can be modeled 

with simple beam theory to compute stresses and deflection of the blade [Timoshenko 

and Gere 1972][Craig 1981]. Wilson, Lissaman and others [Wilson and Lissaman 1974][ 

Wilson et al. 1976][Wilson et al. 1999] developed in the past computerized codes for this 

theory. National Renewable Energy Laboratory (NREL) has developed tools for wind 

turbine analysis [Hansen 2005][Anon 2005][Jonkman 2005][Laino 2005a][Wilson et al. 

1996]. Simulated wind environments can be built with TurbSim (full-field three 

dimensional turbulence) [Kelley and Jonkman 2006] and IECWind (gust type 

simulations) [Laino 2005b] applications. Interfacing tools to assist MSC/AdamsTM 

platform have been developed for multi-body dynamic simulation [Wright and Elliott 

1992]. Aero-elastic studies characterizing lumped-parameter representation of rotor 

blades with tower coupling have been performed to compute aerodynamic forces solving 

dynamic equations of motion [Murtagh et al. 2005][Jen et al. 1995][Murtagh et al. 

2004][Chen et al. 2009]. Other efforts include Lobitz [Lobitz et al. 1996] that 
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incorporates flap/twist coupling into the rotor with off-axis fiber orientation, reducing 

aerodynamic loading by twisting the tip toward the feather [Liebst 1986][Zuteck 

2002][Larwood and Zuteck 2006]. Baumgart [Baumgart 2002] developed a mathematical 

model for blades consisting of small rotations to account for blade lateral deflections, 

rotation of the chord, warping, extension and tilt. Lateral vibration is preferred as the 

dominant dynamic mode, including centrifugally tension effects with tapered beam 

profiles [Banerjee 2000][Naguleswaran 1994][Chung and Yoo 2002]. Bend-twist 

coupling effects have been barely studied in the past. Fedorov [Fedorov et al. 2010] 

employed finite element models that performed well for flap-wise bending, but poorly in 

torsion. More studies are required in this matter. Efforts have been made to characterize 

sweep-blade profiles instead of straight shapes with constant cross-section [ibid. Liebst 

1986][ibid. Larwood and Zuteck 2006], with the aim to delay the onset of drag 

divergence. Jonkman and others [Jonkman 2003][Buhl 2005] have been working in 

models that generate mode shapes for straight, rotating, pitched and tapered blades. 

Derivation of equations of motion can be performed using Kane’s method [Kane and 

Levinson 1985]. Blade response can be computed through a linear summation of lower 

bending modes (superposition) [Rao 2005][ibid. Jonkman 2003]. Limitations on the 

FAST three bending modes: first flap, first edge, and second flap coupled through built-in 

twist, can be achieved using sophisticated spinning finite elements developed in the past 

[Leung and Fung 1988][ibid. Chung and Yoo 2002], or by Modes program [ibid. Buhl 

2005]. Analysis in the elastic and post-elastic regimes have been carried out by Das [Das 

et al. 2009] solving the governing equations by variational principles [Swaminathan and 

Rao 1977]. The present project will intend to expand Leung general mathematical model 

for tapered-sweep beams, then couple wind tower by substructure synthesis approach 

[Scheble and Strizzolo 1998]. The blade system will be treated as a multi-body dynamic 

entity allowing the free vibration characteristics using discrete parameter approach 

[Murtagh et al. 2004]. Free vibration properties of blade will include flap, edge and 

torsion modes [Yokoyama 1988][Khulief and Bazoune 1992][Lee and Kuo 1993]. Blades 

will be excited by a rotationally sampled wind turbulence spectra using mode 

acceleration method [Madsen 1984]. This latter will account for six major DOF’s 
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originated from the translational (surge, sway, and heave) and rotational (roll, pitch, and 

yaw) motions of the support platform of the blades (inboard end) with respect to the 

inertia frame [Yoo and Shin 1998]. The remaining six DOF’s at the outboard (radial out) 

end will produce the commented flap and edge modes in two orthogonal directions, as 

well as torsion action [Bazoune et al. 1999]. Analysis will include post-elastic dynamic 

behavior of rotating tapered blades [Pohit et al. 1999]. This mathematical framework will 

use standard linear finite elements of tapered properties with six degrees of freedom 

(DOF) at each node [Kosmatka 1986], with special attention in bend-twist effects and 

characterization [Dimitrov 2008]. As a result, the resultant base shear will be imparted 

into the top of the tower. To do that, a rotationally sampled stationary wind loading will 

be applied [ibid. Murtagh et al. 2005] on the structure, including composite materials 

[Bechly and Clausen 1995][ibid. Pohit et al. 1999], in order to characterize in full the 

combined fluid-structure interaction and aerodynamics [Ahlstrom 2005][Hansen et al. 

2006][Oye 1996]. At the same time, tower fluid-structure interaction will incorporate 

along-wind effects (distributed stationary random loads) [Simiu and Scanlan 1996] and 

across-wind effects (Rumman’s method and Vickery’s method) [Rumman 1970][Vickery 

and Clark 1972]. The tower/nacelle will be then coupled with rotating blades by 

combining their equations of motion and solving compatibility conditions in the 

frequency domain at the top. Finally, probabilistic fragility analysis is derived on the 

tower/nacelle/blade system to determine the reliability of the system as a whole 

[Velazquez and Swartz 2011]. All forms of wind turbines are designed to extract power 

from a moving air stream. The blades have an airfoil cross-section and extract wind by a 

lift force caused by a pressure difference between blade sides. For maximum efficiency, 

the blades often incorporate twist and taper. LM Glasfiber in Denmark is the largest 

independent blade manufacturer with a product range that consists of standard blades in 

lengths from 13.4 to 61.5 meters for turbines from 250 kW to 5 MW. 

 

   Wood has a natural composite structure of low density, good strength and fatigue 

resistance. The drawbacks are the sensitivity to moisture and the processing costs. There 

are, however, techniques that overcome these problems. Most larger wind turbine blades 
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are made out of Glass Fiber Reinforced Plastics (GRP), e.g. glass fibre reinforced 

polyester or epoxy. According to [ibid. Kosmatka 1986], is a weight advantage of up to 

30 % achieved when using epoxy compared to the cheaper polyester resin. Carbon Fiber 

Reinforced Plastic (CFRP) blades are used in some applications. It has been assumed that 

this material system was strictly for aerospace applications and too expensive for wind 

turbines. However, by using effective production techniques, some manufacturers 

produce cost effective wind turbine blades. The advantage with carbon fiber is the high 

specific strength. Since the beginning of the modern wind power era, the preferred 

designs for wind turbines have been with either two or three blades. Many early 

prototypes have two blades, e.g. Nasudden (Sweden), but the three-bladed concept has 

been the most frequently used during recent years. Basic aerodynamic principles 

determine that there is an optimal installed blade area for a given rotational speed. A 

turbine for wind farm applications generally has a tip speed of 60–70 m/s. With these tip 

speeds a three-bladed rotor is 2–3% more efficient than a two-bladed rotor. It is even 

possible to use a single bladed rotor if a counterbalance is mounted. The efficiency loss is 

about 6% compared with the two-bladed rotor construction. Although fewer blades give 

lower blade costs, there are penalties. The single-bladed rotor requires a counterbalance 

and is therefore not lighter than a two-bladed design. The two-bladed rotor must accept 

very high cyclic loading if a rigid hub system is employed. However, the loading can be 

reduced by using a teetered hub [ibid. Chen et al. 2009]. The teeter system allows the 

rotor blades to rock as a pair to make it possible for the rotor to tilt backwards and 

forwards a few degrees away from the main plane during rotation. The three-bladed rotor 

is dynamically simpler and a little more aerodynamically efficient. Three-bladed designs 

have also been preferred since they are considered to look more aesthetic in the 

landscape. In counterpart, the two-bladed rotors offer potential reductions in both 

fabrication and maintenance costs [ibid. Anon. 2005]. 

 

   Generally speaking, most wind turbine blades where adaptations of airfoils developed 

for aircraft have not been optimized for wind turbine uses. In recent years, developments 

of improved airfoil sections for wind turbines have been an ongoing effort. The 
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prevailing tendency among blade manufacturers is to use NACA 63 sections as a main 

layout with several modifications in order to improve performance for special 

applications and wind field conditions. To gain efficiency, the blade is both tapered and 

twisted. The taper, twist and airfoil characteristic should all be combined in order to give 

the best possible energy capture for the rotor speed and site conditions. A number of 

technologies known from aircraft industry are being adapted for use in wind turbine 

applications. A problem when dealing with wind turbine blades is that even at relatively 

low wind speed, the innermost part of some blades begin to stall. Normally stall-

controlled wind turbine blades are supposed to control power at 14–15 m/s when the 

outer part of the blade begins to stall. If the innermost part of the blade is stalling, say at 

around 8–9 m/s, the efficiency will decline. In practice, however, it is not possible to 

design a thick profile that does not suffer from premature stall, but vortex generators may 

improve the dynamic behavior. The company LM Glasfiber claims that improvements of 

up to 4–6% of the annual production can be obtained using vortex generators. 

 

   From a modeling viewpoint, properties as weight, mass and stiffness distributions are 

of great importance for the dynamic behavior of the wind turbine. The spar is the most 

important structural part for structural analysis and acts like a main beam. The blade can 

therefore be treated as a beam structure and classical beam element theory can be used. A 

correct description of the coupling between the blades and the hub, especially in pitch 

regulated turbines, where the stiffness of the pitching system will influence the overall 

dynamics and control system, is also of major importance. The most common types of 

towers are the lattice and tubular types constructed from steel or concrete. For small wind 

turbines, the tower may be supported by guy wires. Tower substructures can be designed 

in two ways, soft or stiff. A stiff tower has a natural frequency which lies above the blade 

passing frequency. Soft towers are lighter and cheaper but have to withstand more 

movement and will suffer higher stress levels. Most modern wind turbines have conical 

towers made of steel. The tubular shape allows access from inside the tower to climb up 

to the nacelle, which is preferred in bad weather conditions. The towers are manufactured 

in sections of 20–30 meters with flanges at both ends. Sections are then transported to the 
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foundation for the final assembly. The tower is coupled to both the foundation and the 

bedplate. Depending on the type of foundation, the coupling can be treated as elastic or 

not. In a soft connection the foundation will affect the dynamics of the super-structure 

and must be treated as a part of the wind turbine. A yaw mechanism is used in the 

connection between tower and bedplate. The connection will affect the dynamics of the 

complete wind turbine. From a modeling standpoint of view, the tower’s mass and 

stiffness distribution must be known in advance. A correct matching of the tower’s 

eigenfrequencies to the other components is crucial for a successful wind turbine design. 

The hub connects the turbine blades to the main shaft. Blades are bolted to the hub 

flanges by threaded bushes that are glued into the blade root. The flange bolt holes can be 

elongated, in order to enable the blade tip angle to be adjusted. The hub type can be either 

rigid or teetered, and complicated hub shapes make it convenient to use cast iron. The 

hub must also be highly resistant to metal fatigue, which is difficult to achieve in a 

welded construction. The nacelle contains the key components of the wind turbine, 

including the gearbox and the electrical generator. The bedplate is generally made of steel 

and, in modern wind turbines, service personnel may enter the nacelle from the tower 

substructure. There are four different drive train configurations: (a) long shaft with 

separate bearings; gearbox supported by the shaft with torque restraints; (b) rear bearing 

integrated in the gearbox, gearbox mounted on the bedplate; (c) rotor bearings completely 

integrated in the gearbox; (d) rotor bearings on a stationary hollow axle; power 

transmission by a torque shaft. In principle, it is necessary to align the rotor axis with the 

wind in order to extract as much energy from the wind as possible. Most horizontal axis 

wind turbines use forced yawing. An electrical or hydraulic system is used to align the 

machine with the wind. The yaw drive reacts on signals from, e.g. a wind vane on top of 

the nacelle. Almost all manufacturers of upwind machines brake the yaw mechanism 

whenever it is not used. In slender wind turbines however, like the Swedish Nordic 1000, 

the yaw mechanism is of importance for the dynamic behavior of the system. The yaw 

mechanism must fulfill the requirements of a soft and damped connection between the 

nacelle and the tower. A hydraulic system is used to give the right characteristics whether 

the mechanism is yawing or not. This specific system is not furnished with any 
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mechanical brakes. In some wind situations, the turbine will rotate in the same direction 

for a long time. The cables that transport current from the generator down the tower will 

then be twisted. By using a device that counts the number of twists the cable can be 

twisted back.  

 

   Most aeroelastic codes used in practical design work assume small blade deflections 

and application of wind loads on the undeflected structure. However, with the design of 

lighter and more flexible wind turbines, these assumptions may not longer be valid. The 

present investigation has had the objective to improve current modeling possibilities by 

including effects of geometrical nonlinearities primarily introduced by large blade 

deflections. Comparable FE commercial software employed for wind turbines modeling 

includes popular platforms such as ABAQUS, ANSYS and SOLVIA.  

 

   FE modeling of wind turbines requires special considerations due to both large 

displacements and rotations. The use of constraint equations that defines one or several 

DOFs as function of one or several other DOFs is one of the key features for wind turbine 

modeling within the FEM theory. As for example, in ANSYS user-defined constraint 

equations are given through user subroutines. This constraint can be linear or nonlinear, 

i.e., it can be dependent on time or previous deformations. Constraint equations are 

typically used to specify the connection between rotor shaft and bedplate. Another 

example is modeling of a possible pitch system. Constraints could then be set to, e.g. tie 

all DOFs except the rotational DOF in the pitching point (pitch bearing). All constraint 

equations must be specified on the deformed geometry to allow for large displacement 

analysis. The constrained nodes must therefore be specified in local coordinate systems. 

The general method in ANSYS is to implement user-defined local coordinate systems 

through subroutines. This allows transformation of degrees of freedom at an individual 

node from global directions to a local direction through an orthogonal transformation. 

The transformations could then be updated by the user in each increment. User-defined 

systems are also used to specify springs and dashpots in local systems. Simulating wind 

turbine response in time, using FEM, is computationally intensive. Time simulations are 
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therefore generally made using beam elements to reduce DOFs. There are several blade 

element types available. The most common types are based on the Euler-Bernoulli or the 

Timoshenko beam theories, [ibid. Chen et al. 2009]. The Timoshenko element, class C0, 

takes into account shear deformation and rotary inertia but uses low order shape 

functions, which basically mean discontinuous first derivatives. The Euler-Bernoulli 

element belongs to the class C1 which means continuous first derivatives between blade 

elements. The Euler-Bernoulli theory does not include rotary inertia in the formulation of 

the kinetic energy, as it is implicitly contained in the translation terms. The only rotary 

inertia neglected is the rotational inertia of the cross-section which always remains low 

for a slender beam. Modeling wind turbine blades with shell elements is computationally 

prohibitive and ofte is used the so-called Domain Decomposition (DDM) method. This 

disassembly technique makes it possible to split up the problem into domains and solve 

the system in parallel. The Euler-Bernoulli beam was chosen because of the slender 

nature of the structure, which reproduces shear effects as small. Following Chapter 3 is 

disputed some basics of aeroelastic analysis performed for both combined HAWT tower 

and rotor blade subsystems, where discussion on resistance and optimization issues takes 

place and serves to pave the foundations of the development of a comprehensive 

Spinning Finite Element. 
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Chapter 3. Aeroelastic Analysis 
 

   The study of efficiency and safety for wind turbine structures under variable operating 

conditions is increasingly important for wind turbine design. Optimum aerodynamic 

performance of a wind turbine demands that serviceability effects and ultimate strength 

loads remain under safety design limits. From the perspective of wind turbine efficiency, 

variations in wind speed causes bluffing effects and vortex shedding that lead to vibration 

intensities in the longitudinal and transversal direction that can negatively impact 

aerodynamic performance of the turbine. From the perspective of wind turbine safety, 

variations in loading may lead to transient internal loads that threaten the safety of the 

structure. Inertial effects and asynchronous delays on rotational-force transmission may 

generate similar hazards. Monitoring and controlling displacement limits and load 

demands at critical tower locations can improve the efficiency of wind power generation, 

not to mention the structural performance of the turbine from both a strength and 

serviceability point of view. In this study, a probabilistic monitoring approach is 

developed to measure the response of the combined tower/nacelle/blade system to 

stochastic loading, estimate peak demand, and compare that demand to building code-

derived estimates of structural resistance. Risk assessment is performed for the effects of 

along and across-wind forces in a framework of quantitative risk analysis with the goal of 

developing a near real-time estimate of structural risk that may be used to monitor safety 

and serviceability of the structure as well as regulate the aggressiveness of the controller 

that commands the blade angle of attack. To accomplish this goal, a numerical simulation 

of the aerodynamic performance of a wind turbine (including blades, the nacelle and the 

tower) is analyzed to study the interaction between the structural system and incoming 

flow. A model based on distributed-stationary random wind load profile for the combined 

along-wind and across-wind responses is implemented in Matlab to simulate full aero-

elastic dynamic analysis to simulate tower with nacelle, hub, rotor and tower 

substructures. Self-weight, rotational, and axial effects of the blades, as well as lateral 

resistance of substructure elements are incorporated in the finite element model, 

including vortex-shedding effects on the wake zone. Reliability on the numerical solution 
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is inspected on the tower structure by comparing the numerical solution with established 

experimental-analytical procedures. 

 

3.1 Introduction 
 

   To address global sustainable energy concerns, considerable interest has been paid to 

renewable energy sources including wind. Wind turbines structures have become a 

popular platform for generation of energy due to concerns regarding potential shortages 

of traditional fossil-fuel sources along with social and economic pressures caused by their 

use. These concerns have forced the energy production industry to start looking to 

alternative solutions and approaches for energy generation [Lanzafame and Messina 

2007]. To sustain the movement toward adoption of sustainable wind energy, increased 

safety and efficiency of wind turbine structures are critical issues to be addressed. Wind-

induced response analyses and aerodynamic performance play important roles in both 

safety and efficiency of wind turbines [Larsen 2006][Stathopoulos and Baniotopoulos 

2007]. Aero-elastic loading of such structures commonly provoke highly complex effects, 

such as the coupled across-wind/along-wind response, aero-elastic torsion, lock-in, and 

buffeting phenomenon that can be difficult to characterize and reproduce in analytical 

fashion [Dyrbye and Hansen 1997][Shinozuka 1998][IEC 61400-12 1998]. 

 

   Wind loads are often highly unpredictable and may differ radically from those 

measured and assumed during the design phase. At the same time, structurally pressures 

to control costs force designers to adopt efficient tower designs and eliminate overly-

conservative designs [Simiu et al. 1981]. As a consequence, slender structures that are 

more wind-sensitive from the point of view of serviceability, strength, and safety are 

becoming more common and may present more risk than older structural systems. An 

accurate loading evaluation algorithm that can estimate in-situ loading from dynamic 

response data can aid in design and performance assessment of these designs. However, 

such an algorithm requires a precise mathematical model of the turbine components and 

substructures. Slenderness ratios of wind turbines promote significant flexibility of the 

characterized dynamic multi-body system [Clough and Penzien 1975]. Operating 
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characteristics of wind turbines are determined by the dynamic performance of the tower 

and blades combined. In modeling such systems, Lavassas [Lavassas and Nikplaidis 

2003] has used 5028 four-node shell elements to analyze the dynamic response of a 

tower; output results has proved analytical that is closely related to mesh density, while 

Naguleswaran [Naguleswaran 1994] has developed simplified rotating blades to 

cantilever beam to characterize dynamic phenomenon. Murtagh et al. [Murtagh et al. 

2005] have modeled the wind turbine blades as a multi-degree-of-freedom entities, 

formulating the model as a centrifugal stiffening due to rotation and blade gravity 

loadings. Chen et al. [Chen et al. 2009] employed a dynamic FEM to calculate the wind-

induced response of the blades and tower combined. These effects need to be accounted 

for if the loading is to be estimated from the dynamic response of the tower. 

 

   In addition, the aero-elastic loadings and coupling effects alter the structural resistance 

and serviceability of the system through non-linear effects including vortex shedding, 

buffeting and flutter [Tamara et al. 1996]. Monitoring of these wind-induced vibration 

effects using Monte Carlo stochastic simulations can help to characterize in a better way 

loading demands and resistance behavior, particularly the evaluation of the randomly 

treated equivalent static forces known as gust factors, employed for determining the 

maximum response [Chen and Jang 2008]. Semi-experimental methods may be used for 

across-wind to calculate estimates of the peak response (deflection, base shear and 

overturning moment) in that direction, particularly focused on the contribution of high 

frequency content [Vickery and Basu 1983]. Several procedures for estimating this 

across-wind response phenomenon exist in the literature today. The most widely used are 

the procedures developed by Rumman [Rumman 1970] and Vickery [Vickery and Clark 

1972] employed to characterize the design of steel stacks and tall slender structures. 

Special considerations for taper-cross sections are derived properly in a mathematical 

framework for stationary-distributed random wind loads in the along-wind orientation, as 

well as analytical generation of gradient variations in the tower external diameter, with 

the aim of a realistic representation of the tower profile. Both procedures will be used to 

construct a model for across-wind peak-load estimation, and will be coupled with the 



24 
 

along-wind dynamic analysis to account for torsion effects in the coherence functions. 

Both fluid-structure interaction effects are estimated by using a self-developed Matlab® 

computer program that evaluates the structural response to time-dependent forces 

(distributed stationary random-wind loads). The program is conditioned to reproduce 

random realizations of the lift and drag coefficients, wind velocity, tower surface 

roughness, surface roughness length, Strouhal number, structural damping, aeroelastic 

damping, among others. A simplified reliability performance assessment is computed to 

generate probability distribution curves.  

 

   In summary, the present paper is focused on the classical problem of dynamic along-

wind response from one side [Simiu and Lozier 1979], Rumman’s and Vickery’s 

procedure for across-wind response, to the other [ibid. Rumman 1970] [ibid. Vickery and 

Clark 1972]. A comparison of the stochastic loading estimated from across-wind and 

along-wind coupled effects from one side, and nacelle/rotor/blade/tower substructure 

coupled systems from the other, to the stochastic resistance of the structure. This outline 

may establish the basis of the development of a real-time estimate of the probability of 

exceedance of the defined design serviceability failure state of the structure. Such 

information can provide valuable insights for future maintenance and operation of 

turbines. 

 

3.2 Vibration Equations 
 

   The dynamic equations of motion that represent MDOF’s system for aero-elastic wind 

induced vibration are [Chopra 2007]: 

 

                                     )()()()( tttt nnnnnnn QuKuCuM                   (3.1) 

 

where Cn is the normalized damping matrix, )(tnu , )(tnu and )(tnu  are the time-

dependent displacement, velocity and acceleration vectors respectively, in modal 

coordinates, and )(tnQ  is the normalized time varying wind load vector applied to the 
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tower height (dismissing, at present, the wind load effects on the blades). When a bluff 

body is immersed within wind flow, the body will experience pressures distributed over 

its surface. These pressures result in a net force on the body, the along-wind component 

due to drag force and the across-wind component due to lift force [Simiu and Scanlan 

1996]. Bearing these loadings in mind, Equation (3.1) may be re-expressed as a linear 

system where the generalized coordinates )(t satisfy the uncoupled equations of the 

form: 
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where i , i , and Mi are the damping ratio, modal frequency (rad/sec), and generalized 

mass in the ith mode, for n total number of modes. Here [Meirovitch 1986]: 
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where )(zxi is the ith normal mode of the wind turbine, and m(z) the distributed unit mass 

along the pole, h is the total height of the wind tower, fi is the ith natural frequency (Hz) 

and z is the actual vertical position of the studied tower cross-section. The generalized 

force may be expressed as: 
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The function ),( tzp is the pressure distribution applied on in the along-wind direction as a 

function of both height and time. By definition: 
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where )(δ 1zz is the unit impulse function acting at time t = 0, defined by: 
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and F(t) is a concentrated force acting at a point of coordinate z1, therefore: 
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The response to a harmonic load of the form )2cos()( 0 ftFtF acting on the 

structure at coordinate z1, where f is the frequency in Hz, will be: 

 

                                        )2cos()(),( 101 ftzxFtzQ ii         (3.9) 

 

It can be verified that [Hurty and Rubinstein 1996]: 
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Here, the admittance function is defined as: 
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and the phase is given by: 
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Hence, the response of the wind tower at location z, accounting for all modal 

contributions, becomes: 
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3.3 Along-Wind Response 
 

   Expanding Equation (3.9) for the case of a distributed stationary random load where an 

infinite number of forces Fi(t) of wind in nature act on the exposed surface A of the 

structure. The spectral density function of the along-wind fluctuating deflection for mode 

i is given by [Newland 1996]: 
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where is the air density, CD is the drag coefficient, U(z) is the wind velocity profile 

acting on the longitudinal direction. Recommended values of CD for towers with tapered 

cross-sections are presented in [Basu 1983] Su(z) is the design spectral density of the 

longitudinal velocity fluctuations: 
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where *u is the shear velocity 



28 
 

 

                                                   )ln(5.2
)(

0
* zz

zUu        (3.16) 

 

and fmn is the Monin or similarity coordinate given by: 
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   The term z0 represents the surface roughness length for a given surface type. The 

across-wind cross-correlation coefficient is defined as: 
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   The pairs (y1,z1) and (y2,z2) are coordinates of points M1 and M2 where the line M1, M2 

is assumed to be perpendicular to the direction of the mean wind. Cy = 16 and Cz = 10 are 

the exponential decay coefficients for horizontal and vertical separation, respectively. 

The mean square value of the fluctuating along-wind deflection for mode i is declared as: 
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Finally, the largest modal peak expected value occurring in the time interval T is: 
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where, 
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is the largest-peak-displacement factor that accounts for the probability that in the time 

interval T there will be no peaks equal or larger to xpk(z). At the same time: 
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is the number-of-peaks per unit of time factor. Shear and moment functions Sixpk(z) and 

Mixpk(z), for the along-wind direction, may finally be obtained as follows: 
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3.4 Across-Wind Response (Vickery’s Method) 
 

   The assessment of the across-wind response requires the computation of the height zei 

for each mode at which the longitudinal wind velocity U(z=zei) generates vortex shedding 

with frequencies equal to the natural frequencies of the structure; scenario that is in 

compliance with U(zei)= Ui(zei)= Uicr(zei) for modal shape i. It has to be met the following 

conditions: 
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where Str is the Strouhal number [Basu and Vickery 1983], D(zei) is the taper-diameter 

function evaluated at height zei, and ie  is the Reynolds number necessary to generate 

critical conditions in mode i. The root-mean-square (RMS) of the modal generalized 

coordinate for tapered-like wind towers is given by [ibid. Vickery and Clark 1972]; 
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Here, the nominal RMS of the generalized coordinate is integrated as follows: 
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where, 
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and 
2/1___

2
LiC  stands for the modal RMS of the lift coefficient. Recommended values of this 

quantity are given in [Simiu et al. 1981]. Modal span-wise correlation parameter Li = 2.5 

if 52X10ie  and Li = 1.0 if 52x10ie . Modal aero-elastic damping )( eiai z  is given 

by: 
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   Here, D0 is the outside diameter at the base, and Ka0(z,zei) is an aero-elastic damping 

parameter that depends on the wind velocity profile [Braam and van Dam 1998]. By 

definition:  
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In practice, is required to calculate first hand a critical function Fcr(zei) to obtain zei 

properly, as follows: 
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The fluctuating mean square value of deflection in the across-wind direction y, for mode 

i, is computed as:  
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The expected modal deflection becomes: 
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The term gyi is the gust factor and is treated similar as Equation (3.21) but evaluated for 

one hour duration: 
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   Finally, shear and moment function Siypk(z) and Miypk(z), for the across-wind direction, 

are computed similar to Equation (3.23) and Equation (3.24): 
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3.5 Across-Wind Response (Rumman’s Method) 
 

   A detailed presentation for Rumman’s method previously applied by the authors may 

be found in [Berman and Fi 1971]. This is an intuitive method that appears to 

characterize properly the wind induced vibrations phenomenon in practice. Peak 

deflection on the across-wind direction is defined as: 
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   Restrictions in the variation of the aero-elastic ratio iLC  must be defined in advance 

[ibid. Rumman 1970]. Peak shear and moments are obtained directly from Equation 

(3.35) and Equation (3.36). 
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3.6 Finite Element Prototype 
 

   The steel tower under scrutiny schematized in Figure 3.1 is a model prototype of a 

Nordtank 65KW re-engineered from the so called 55KW model group [Prowell and 

Veletzos 2010]. A finite model of the actual specimen Nordtank 65kW was implemented 
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in ANSYS 11.0 and calibrated for base excitation implementing synthesized ground-

motion accelerations. The original modeled turbine was manufactured in Denmark; 

properties for the model come from a previous experimental study [ibid. Prowell and 

Veletzos 2010]. The Nordtank 65 consists of nacelle, bedplate, rotor and 3 blades fixed 

pitch made of fiberglass reinforced polyester (Eb = 79.497x109 N/m2); swept area up to 

214 m2. The blades are assumed to be prismatic cantilever beams 7.9 m rotor diameter. A 

rectangular hollow cross-section that is connected to the hub is modeled with flexural 

motion in the transverse direction only, as studied in [ibid. Murtagh et al. 2005]. Two 

axial phenomena are embedded in the model: (1) centrifugal stiffening and (2) blade 

gravity or self-weight effects. Experimental calibration of natural frequencies and mode 

shapes were made using Assumed Modes Method (AMM) and Modal Assurance 

Criterion (MAC). Experimental data was processed to infer natural frequencies, mode 

shapes, and equivalent viscous damping. Eigensystem Realization Analysis (ERA) was 

adopted to endure the dynamic characteristics of the wind tower. A clear illustration of 

those mentioned methodologies as adopted for turbine load monitoring is presented with 

more detail in [Velazquez and Swartz 2011]. Wind tower is made of hot dip-galvanized 

tubular steel with 0.2in thickness (Et = 199.947x109 N/m2). The damping ratio of the 

structure for the dominant mode is estimated to be 1%. Rotational hinges at two key point 

locations were constructed in the model. Geometric properties of the wind turbine are 

enlisted in Table 3.1. 
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Figure 3.1. Wind turbine specimen for modal-base response. 

 

 

 

 
Table 3.1. Geometry Properties of the 65kW Wind Turbine [8] 

 

Geometry Value 

Rotor diameter 628 in 

Tower height 864 in 

Tower wall thickness 0.20 in 

Rotor hub height 888 in 

Tower mass 14 kips 

Nacelle mass 5 kips 

Rotor mass (with hub) 4 kips 
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3.7 Results 
 

   Shedding forces are of central importance for slender tapered structures. Figure 3.2 

plots normalized modal shapes experimentally calibrated and verified using MAC, ERA 

and AMM methods as determined in [ibid. Velazquez and Swartz 2011][Zimmerman et 

al. 2008]. Table 3.2 depicts the means and variances assigned to random quantities to 

formulate random realizations. Similarly, Figure 3.3 depicts the distributions of the 

random variables used in the Monte Carlo simulation to illustrate the major sources of 

uncertainty. Figure 3.4 depicts the relation between Str and e , illustrating the 

relationship between the structural frequency fi and the vortex shedding frequency f 

acting in the wake. Figure 3.5 depicts the critical function F(zei) for an example set of 

three modes with critical probability of across-wind harmonic motion. The absolute 

maximum is taken as the reference point to establish zei, and subsequently, the 

establishment of the aero-dynamic damping )( eiai z . Figure 3.6(a) frames the variation 

of the along-wind cross-correlation coefficient in the frequency domain. This parameter 

is pointing out that, in this direction, the correlation increases for low across-wind 

loading and tend to decrease when across-wind response gain more relevance.  

 

   
                                (a)           (b)          (c)                              (d) 

Figure 3.2. First three normalized modes of vibration experimentally calibrated using AMM 

technique corresponding to (a) 1.7Hz, (b) 13.5Hz, (c) 33.5Hz, (d) all three modes. 

X
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   Similarly, Figure 3.6(b) depicts three wind-velocity profiles required to match critical 

harmonic conditions in the wake for the three dominant modes. It is seen that U2(zei) = 

100 m/s is necessary for the second mode to vibrate in critical scenario, whereas only 

U1(zei) = 10 m/s needed to generate significant vibrations in the fundamental mode. 

Figure 3.7 shows four control factors for the number-of-peaks occurrences that may be 

regarded as rare events and are treated as Poisson type. It may also be viewed as the 

probability that, given the interval T (Equation (3.21)), the ratio Kx(z) of the largest peak 

to the RMS of the deflection is less than a pre-established threshold. Similar quantities 

are thrown out for the calculation of peak accelerations. These parameters are in close 

relation with the horizontal and vertical correlation acquainted in the 

),,,,Coh( 2121 fzzyy term. Coupling and torsion effects are accounted for using this 

process.  

 

   Calculations of the auto-correlation and cross-correlation terms are presented next. 

Figure 3.8 depicts the normalized spectral density function for the lift coefficient and the 

spectral density function of the induced lateral force L1(z,t), assuming that the structure is 

at rest under the action of the vortex shedding in the wake. As it is shown, the primary 

(natural) frequency dominates the dynamic prediction overall. Figure 3.9 plots the overall 

power spectral density functions of fluctuating deflection for three heights along the 

tower showing spectral energy distribution changes with height. Coupled effect between 

across-wind and along-wind is contemplated throughout the mechanical admittance 

function. The wind-induced vibrations have a greater impact in the third upper section for 

lower frequencies, and lower impact at lower altitudes. High-frequency content demands 

more stress in this latter area. The second and third modes are more closely related in 

lower sections of the tower. Figure 3.10 sketches the variation performance of gust factor. 

The factor for the first mode is in good agreement with that in the literature [ibid. Chien 

and Jang 2008]. For detailed derivations of the actual mode shape, the gust factor error 

increase in 1% or 3%, making the effect of moderate deviations from a straight line mode 

shape (higher frequencies) insignificant. Figure 3.11 summarizes the benchmark of the 
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two methodologies in the across-wind direction compared with the resultant along-wind 

solicitations.  

 

Table 3.2. Some of the along-wind and across-wind statistic parameters for random realizations 

of wind induced vibrations. 

Property   

U(zei)=U1cr(zei) 10 m/s 3.7 m/s 
2/12

LC  0.295 0.04 

CD 0.8 0.11 

i  0.006 0.0011 

z0 (low grass, steppe) 2.5 cm 0.0039 cm 

k/D 5.05X10-4 1.3X10-4 

Str 0.32 0.037 
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Figure 3.3(a). First set of random variable distributed used in the Monte Carlo simulation (3000 

realizations). 

 

 

 

 
Figure 3.3(b). Second set of random variable distributed used in the Monte Carlo simulation 

(3000 realizations). 
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Figure 3.4. Reynolds number vs Strouhal number (3000 realizations) combining across-wind and 

along-wind analysis, for the first three modes of vibration. 

 

 
Figure 3.5(a). Critical height construction in the across-wind direction for the first three 

dominant modes. Formulation of F(z) for the induction of the critical height zei. 
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Figure 3.5(b). Critical height construction in the across-wind direction for the first three 

dominant modes. Formulation of the aero-elastic damping at critical elevation zei. 

 

 
                                                           (a)                                           (b) 

Figure 3.6. Along-wind cross-correlation coefficient (narrow-band cross-correlation) for three 

dominant frequencies; (b) Wind profile (boundary layer) evaluated at critical elevation zei. 

Describes wind velocities Uicr(z) and U10(zei). 
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                                                          (a)                                           (b) 

 
                                                          (c)                                           (d) 

Figure 3.7. Profiles for number-of-peaks controls: (a) largest-peak-displacement factor Kx, (b) 

largest-peak-acceleration xK , (c) expected number-of-peaks per-unit-time factor x , and (d) 

expected number-of-peaks per-unit-time-factor x . 

 

 
                                                       (a)                                                   (b) 

Figure 3.8. For the first three dominant modes: (a) Vortex-shedding-load in-the-wake spectral-

density-function due to across-wind aerodynamics. Aero-elastic effects are not assessed, only 

structural damping affects the motion. (b) Lift-coefficient spectral density function acting on the 

wake of the structure at rest. 
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Figure 3.9. Modal combined spectral density function of the along-wind fluctuating deflection, 

for three sample heights above grade. 

 

 
                                                    (a)                                                    (b) 

Figure 3.10. (a) Aero-elastic (gust) correction factor for the computation of fluctuating peak 

deflections, expressed in the frequency domain. (b) Structural (modal combined) acceleration 

response profile for three independent random realizations. 
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Figure 3.11(a). Dynamic structural response of the wind tower for one random realization 

employing across-wind Rumman’s method. 

 

 
Figure 3.11(b). Dynamic structural response of the wind tower for one random realization 

employing across-wind Vickery’s method. 
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Figure 3.11(c). Dynamic structural response of the wind tower for one random realization 

employing along-wind of distributed stationary wind load. 

 

3.8 Conclusions 
 

   Given appropriate selection of the aerodynamic parameters based on the turbulence 

field at an specific site, the predictive stochastic model presented here provide more 

accurate estimates of the across-wind response of wind towers. However, exclusion of the 

blade/nacelle/rotor/tower substructure interaction can considerably underestimate the 

response at the top of the tower and must be included in future formulations. Analytical 

results indicate that, due to vortex shedding, there are larger cross-wind than along-wind 

effects when critical shedding conditions are established for the second and third mode; 

along-wind response dominates otherwise. It is important to note that the flow around the 

wind tower corresponds a little below to the trans-critical Reynolds-number region. The 

response predicted by the two methods is in agreement with less than 15% of maximum 

difference as shown Figure 3.11. A relevant insight is that the maximum response due to 

excitement of the fundamental mode occurs when the shedding frequency at about 2/3 of 

the tower height is equal to the natural frequency. This observation was observed 

previously in [ibid. Velazquez and Swartz 2011] and is confirmed now with this 

improved methodology. For typical tapered steel structures drag loads in the longitudinal 

direction are dominant for high wind velocity profiles. Vortex excitation of the second 
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mode is more dominant for the third upper and middle sections compared to the 

fundamental mode, whereas the most severe acceleration intensities are primarily 

observed in the mid-span. When considering the vertical and horizontal correlation of the 

integration points (y1,z1) (y2,z2), and the outline of the wind turbine system, the 

fluctuating wind velocity can be properly simulated by power spectrum analysis. The 

total response at the top of the tower has shown that the maximum displacement increases 

considerably as compared to the case where the mass is only modeled for the hub and 

nacelle. This contribution should be considered in the wind turbine design.  

 

   Finally, the wind-induced aerodynamic effects studied here outline behavioral trends 

more than realistic response parameters capable of being used in design. Future work will 

focus on utilizing dynamic sensor data to establish the wind speed distributions that can 

then be used to estimate loading demand statistics that can be compared to structural 

resistance. Fused with an automated damage detection system, this system can form the 

basis of a real-time probability-based risk assessment tool to aid in management and 

operation of wind turbine structures and their power plants. Now, it is appropriate time to 

introduce Chapter 4 that will thoroughly discuss the basics of a matrix-based Spinning 

Finite Element (SFE) method, combined with aero-elasto-stochastic analysis performed 

in the along-wind direction, and with the incursion of random vibration theory principles, 

in order to assess and validate the extent of the SFE towards the dynamic response of 

HAWT rotor blades subsystems. 
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Chapter 4. Spinning Finite Element 
 

   Wind energy has experienced considerable growth compared to other sectors of the 

nation’s renewable energy portfolio during the past decade with similar trends expected 

for the near future; however safety and economical concerns have emerged due to new 

megawatt designs that utilize extremely large-scale wind turbine structures. Safe and 

economical operation requires not only information regarding structural dynamic 

conditions under dynamic action, but also the environmental loading factors in which 

these slender, multi-body structures operate. Given the stochastic nature of the loading on 

the turbine structures, a probabilistic framework is appropriate to characterize the risk 

that loads pose to the structure at a given time. Furthermore, sources of uncertainty such 

as aeroelastic damping, material imperfections, soil-structure interaction, among others, 

suggest for the use of a more sophisticated mathematical framework that can properly 

characterize uncertainty. This study explores the characterization of the turbine loading 

and response envelopes for critical failure modes for complex turbine blade geometries 

(tapered, twisted, and swept) through use of spinning finite elements (SPE) fused with 

traditional aeroelastic interaction theory. A framework is presented to develop an 

analytical estimation of the loading environment (including loading effects) based on 

rotationally sampled spectral densities via full 3-dimensional SPE implementation. To 

illustrate this approach, along-wind complex behaviors such as wind shear gradients, 

tower shadow effects, centrifugal stiffening, and gyroscopic effects are investigated as 

applied to the SPE model. The proposed solution includes methods that are based on 

modal decomposition of the blade elements and random vibration theory. Finally, to 

illustrate the framework’s potential for risk-assessment, estimated demand statistics 

(generated by Monte Carlo method) are compared to code-based resistance curves that 

determine a probabilistic estimate of the risk of blade failure given a stochastic loading 

environment. 
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4.1 Introduction 
 

   The wind energy industry has grown in technical and economical importance over the 

past few decades. Installed power generation capacity from wind turbines has increased 

exponentially since the early 90’s, particularly in China, the United States, and the 

European Union. Global cumulative installed wind capacity has grown from 6,100 MW 

in 1996 to 238,351 MW by 2011 [EWEA 2012]. This growth has not come without 

technical challenges. Rotor diameters and tower heights have increased over this time, 

from approximately 15m in 1985, to 160m by 2011. Furthermore, wind turbines are 

increasingly built in remote sites that are difficult to access and monitor. To insure proper 

and safe performance of a wind turbine it is necessary to establish a monitoring scheme 

to protect its operational components, comply with safety requirements, ensure quality 

and quantity of power supply, and guarantee productivity [Gardner et al. 2003][BWEA 

2005]. 

 

   In this respect, structural health monitoring (SHM) techniques can play an important 

role for the characterization of the risk posed to the turbine structures due to wind loading 

demands and dynamic performance of these multi-body systems (tall slender towers and 

large rotor blades). Such a practice will require stochastic models that are accurate, but 

sufficiently low-order to be useful in an autonomous SHM framework. Such models must 

be able to accurately represent complex turbine blade geometries, but also replicate the 

statistics of the coupled fluid/structure interaction including load effects unique to wind 

turbine structures (e.g., tower-blade rotational motion harmonics). 

 

   The development of aeroelastic models for wind turbine blades, with the inclusion of 

rotationally-sampled wind-induced response analysis, has attracted interest in the 

structural design practice of the HAWT wind turbines. Some authors [Baumgart 2002] 

[Naguleswaran 1994] have modeled the rotating blades as simplified cantilever beams to 

analyze their linear aerodynamic response. Some studies concerning the blade-tower 

coupling effect were carried out by Murtagh et al. [Murtagh 2005] where a combined 

time-frequency domain analysis was utilized using a rotationally-sampled spectrum. 
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Similarly, Chen et al. [Chen et al. 2009] treated the mean wind velocity of the rotating 

blades according to natural wind shear effects using harmony superposition method. 

Experimental studies were made by Lee et al. [Lee 2001] demonstrating the complexity 

of the dynamic analysis process. In general, these studies have made use of standard 

beam-type finite elements for the along-wind aerodynamic analysis, but results constantly 

have shown that there is a need to improve the prediction of the complexity of load 

distributions, strain fields, coupled deflections, centrifugal stiffening, and nonlinear 

dynamic effects (such as gyroscopic phenomena) for blade elements with complex 

gradient geometry. These limitations in the current analytical methodologies, especially 

for the case of wind turbines with large diameters and complex geometries, demonstrate 

the need for sophisticated modal dynamic techniques, in this case, those based on 

spinning finite elements (SPEs) [Wittrick and Williams 1982]. 

 

   Due to its great flexibility and large slenderness ratio, a wind turbine can be treated as a 

flexibly dynamic multi-body system in continuous rotating motion [Lanzafame and 

Messina 2007]. Dynamic analysis of spinning structures has been studied in multiple 

engineering disciplines including applications aerospace, automotive, and wind energy. 

The approaches used include SPEs, which have the ability to properly characterize blade 

elements with complex geometry such as tapered, swept, and twisted shape 

configurations; but also the potential to adequately model centrifugal, gyroscopic, and 

rotational-stiffening forces [Leung and Fung 1988]. The spinning finite element can also 

be employed to reproduce shadow (tower) effects and address model scale problems. 

Previous efforts have been made to study the vibration of SPEs around an axis of rotation 

in these various disciplines. Nelson [Nelson 1985] studied vibrations of a finite element 

on a shaft with a rotating disk. Bauer [Bauer 1980] established the dynamics of similar 

structures now revolving on the axis of rotation. Wittrick and Williams [ibid. Wittick and 

Williams 1982] employed the discrete and distributed mass methods to determine the 

spinning dynamics of straight bars. Christensen and Lee [Christensen and Lee, 1986] 

developed a nonlinear finite element formulation for spinning structures with no 

restraints, resulting in partial differential equations with variable coefficients, which in 
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turn, are difficult to solve and translate in numerical algorithms. Leung [ibid. Leung and 

Fung 1988] has presented an integrated and robust method for determining mode shapes 

of rotating, tapered, curved, and twisted beams. 

 

   Some advantages observed for the use of SPEs are: (1) reduced number of elements 

necessary to model turbine blades; (2) they can simulate, with good precision, the 

continuum of cross sections for complex geometry all along the blade element; (3) they 

account for the variation and distribution of centrifugal forces at different dynamic 

stages; (4) they handle coordinate mapping from global to local in continually spinning 

frame of reference; and (5) they adequately represent the so-called damped gyroscopic 

phenomena as a measure of aerodynamic instability. To realize these advantages, one of 

the main challenges of combining the aeroelasticity and SPE approaches is the derivation 

of the (skew-symmetric) gyroscopic damping matrix inside the velocity dependent term 

of the rotationally dynamic equation of motion. Gyroscopic (Coriolis) effects produced as 

a consequence of a rotating blade system produce the unintended effect of perturbing the 

natural expected vibration of a self-rotating structure, which in turn is expected to 

produce a deviated modal response from that of the classical theory for non-rotating 

structures [Wilkinson 1965]. The combination of damping and gyroscopic effects cause 

the dynamic system to fall in the complex numbers domain, rendering the modal solution 

to the eigenvalue problem to be non-trivial. To overcome this issue, the Arnoldi iterative 

method [Zheng et al. 1997] has been adopted to orthogonally decouple the damped 

gyroscopic structural system. This method is a numerical approach that makes use of the 

Schur decomposition to solve the complex-numbered eigenvalue problem. In addition, a 

Rayleigh-Ritz updated methodology for wind turbine blades was presented by Jonkman 

[Jonkman 2003] as part of an investigation into unsteady aerodynamics to assess blade 

response to wind-inflows (in terms of aerodynamic forces and out-of-plane bending 

moments), and is also incorporated into this study to find mode shapes. 

 

   The principle contribution of this paper is a framework for fusion of spinning finite 

elements with stochastic aeroelasticity methods via rotationally sampled spectrum 
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formulated for wind turbine blades of complex mass and geometry distribution (including 

tapered-swept-twisted blade profiles). The proposed analytical framework provides 

structural designers with greater freedom to model complex blade geometries and still 

include the rotationally-stochastic dynamic effects of the entire loading environment in 

the along-wind direction. This novel scheme is intended to serve as a low-order model 

basis for future performance monitoring and structural health monitoring (SHM) 

applications, but may also be of interest to turbine blade designers as well. A complete 

derivation for variable-gradient cross-section spinning finite element is presented in the 

following section. Section 4.3 depicts its inclusion in the equation of motion for an 

operational wind turbine blade. Section 4.4 incorporates traditional aeroelastic theory 

with the element with Section 4.5 providing a numerical example of the approach for a 

realistic turbine blade via the Monte Carlo method with some observations made about 

the behavior of various possible models made using this framework. Conclusions and 

comments regarding future work follow. The various terms of the matrices that make up 

the rotationally dynamic equation of motion are presented in the Appendix A. 

 

4.2 Spinning Finite Element 
 

   Spinning finite elements are adapted for modeling of turbine blades in order to properly 

account for the rotational effects that the blade undergoes. The principle benefit to this 

approach is the inherent mapping between global and time-varying local coordinate 

systems that these elements possess. The fact that these elements can be utilized in a 

spectral element, random vibrations framework is another major advantage in potential 

SHM applications where computationally inexpensive, low-order models are desirous.  

 

4.2.1 Coordinate System 

 

   Modeling wind turbine blade behavior under realistic conditions is difficult; one 

approach is to utilize skeletal beam elements in a continuously rotating framework. In 

such an approach, the equations of motion are established according to Lagrangian 

equations and expanded for the case of dynamic objects in continuous spinning motion. 
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This rotational movement tends to create deviation from classical structural dynamics 

theory derived for non-spinning structures. At the same time, second-order phenomena, 

such as the so-called gyroscopic or Coriolis effect, emerges from the free rotation and 

wind inflow alignment of the rotor components. These peculiar characteristics of the 

spinning elements are not considered in traditional finite elements, and must be properly 

addressed, especially when considering structures with large rotational inertial masses. 

 

   For this purpose, Leung and Fung [ibid. Leung and Fung 1988] derived a skeletal 

spinning finite element defined by beam members with constant cross-section embedded 

in a rotationally sampled field. An expanded derivation for cantilever beams with 

tapered-swept variation was induced by Rao [Rao 2005] and Larwood [Larwood 2009] 

and has been expanded for nt tapered-swept variation degree in this study (see Figure 4.1) 

for the case of nonlinear shape-variation distributions. In this approach, one must 

consider three coordinate systems: (1) xyz acting as the local principal axes, (2) xsyszs in 

association with the rotational motion of the blade such that ys coincides with the 

spinning axis, and (3) a global static XYZ that governs both tower and blades 

substructures is located on top of the mast (hub location), having the spinning ys axis 

coincident with the global Y axis. 
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Figure 4.1. Orthogonal coordinate systems that govern the spinning motion of a wind turbine 

blade element. 

 

   Any point along the blade is defined by 0rr )( 0rrl  , for 10  , where r , 0r

and lr are the position vectors controlled by the spinning coordinate system xsyszs. The 

spinning matrix is defined by: 

 

001
000
100

ΩΩ                                                     (4.1) 

 

whereΩ is the spinning constant speed with respect to the global-inertial coordinate 

system XYZ. It can be seen that 
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where r , v  and a  are the position, velocity and acceleration absolute vectors, 

respectively. Superscripts . and .. mean first and second differentiation with respect to 

time. If u  and su  are displacement vectors in local xyz and spinning xsyszs coordinate 

systems respectively, then the displacements T},,{ wvuu , T},,{ ssss wvuu  with 

transformation: uRu T
s , where u, v and w are local beam displacements; ss vu   , and sw  

are those thought as spinning beam displacements. The matrix R  is a base 

transformation matrix from local to spinning coordinate systems defined as (see Figure 

4.2): 

 

333231

232221

131211

R                                                   (4.3) 

 

   For a typical horizontal wind turbine (HAWT) system the blade elements can be 

considered to be approximately in alignment with the spinning reference point when just 

one element is employed to characterize dynamic behavior. It is important to note that, 

for tapered-swept configuration, gyroscopic and centrifugal effects are primarily 

controlled by the expanding parameters contained in R and r0 both exogenous in nature, 

so the HAWT simplification presented here is without any loss in generality. 

Consequently, uus , },,{ 0000 sss zyxr }0,0,0{ , and IR  where I is the identity 

matrix (see Figure 4.3). When the element is deformed the position and velocity vectors 

will be given by urru and uru . 
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Figure 4.2. Cosine directories that constitute the base transformation matrix R from spinning 

xsyxzs to local xys coordinate systems. 
 

 
Figure 4.3. Global XYZ and spinning xsyszs orthogonal coordinate systems that govern the 

spinning motion of a simplified HAWT wind turbine blade, where local xyz coincides with 

spinning xsyszs reference frames. 

4.2.2 Lagrangian Equations 

 

General expression for Lagrange equations is given by: 
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where T and U are the kinetic and strain energies respectively, and F is defined as the 

generalized force vector. Expanding the energy terms and incorporating gradient 

variations of the cross-section and material distributions of nt degrees at every point along 

the beam yields: 
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where )(sA , EA(s), A(s), EIy(s), EIz(s) and Fc(s) are the tapered-swept variations of mass 

density, elastic modulus, cross-section area, moments of inertia around y and z, and 

generalized axial (centrifugal) force, respectively (presuming an equivalent, uniform 

modulus of elasticity is used). The integration variable s sweeping along the blade is 

depicted in Figure 4.4 and is controlled by the local system xyz. For tapered cross 

sections [ibid. Larwood 2009], now expanding for decreasing non-linear gradient 

variations across the span of the blade: 
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                           (4.6) 

 

where the zero subscript represents the property at the inboard node, l subscript term 

stands for the property at the outboard node, and nt is the degree of the function order. In 

Equation (4.6) )(Γ s  recapitulates the inertia and stiffness terms. It is either one of the 

studied parameters of the cross-section/material properties at location s (0  s  l), l is 
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the length of the blade, and )Γ,(Γ0 l  are gradient variation pairs of those mentioned 

properties at the inboard and outboard end points, respectively. Similarly, polar moments 

of inertia of mass Ip0 and Ipl, and polar moments of inertia of area GJ0 and GJl, are 

defined at those locations. At the same time, Figure 4.5 illustrates the six degrees of 

freedom asserted for the inboard end (nearer the rotor hub location), and the 

complementary six degrees of freedom for the outboard end. 

 

 
Figure 4.4. Tapered-swept gradient variation properties at the inboard and outboard ends of a 

spinning finite element. 

 

 
Figure 4.5. Degrees of freedom defined for a spinning finite element. 

 

4.2.3 Steady State Equations 

 

Expanding Equation (4.3) for absolute velocity yields:  
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   Furthermore, expanding Equation (4.6) by use of Equation (4.3) in order to fully 

develop the kinetic energy T along the blade element, and adapting integration terms for 

tapered-swept variations (expressed in local coordinate system) [ibid. Leung and Fung 

1988] yields: 
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   Similarly, the corresponding expansion of the strain energy term U, in local 

coordinates, is given by, 
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where the prime notation denotes differentiation with respect to s. Alongside the energy 

terms, the centrifugal force acting all along the blade element is sensitive to the spinning 

velocity and to the presence of a tapered-swept blade configuration. It is assumed here 

that the change in geometry is gradual. For nonlinear variations within the cross-section 

(without losing generality in the derivation) the centrifugal force per unit length is 

defined as ΩΩrsT)()( sAsc , Alternatively, )()()( 2 bsaΩsAsc , where srr s0 , 

T
0000 },,{ sss zyxr  and T

131211 },,{s ; the latter being the unit vector projected in the 

local x axis, as depicted in Figure 4.1. Similarly, 013011 ss zxa , 2
13

2
11b , and the 

force per unit length )()( ssA Ã , according to Equation (4.6), taking ),( 0 lAA
 
pair 

instead. Therefore, the centrifugal nonlinear force function is given by: 
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For HAWT approximation a = 0, b = 1, s = {1,0,0}T and rg = {0,0,0}T. Finally, the shape 

functions of the tapered-swept spinning finite element can be adopted directly from 
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Leung [ibid. Leung and Fung 1988]: 
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for all ls / . 

 

4.3 Vibration Equations 
 

   Once the properties of the spinning finite element are determined, the equations 

governing the vibrational motion of the blade can be derived from the equation of 

motion. 

 

4.3.1 Equation of Motion 

 

   From the expanded energy terms defined in Equation (4.4) and Equation (4.5), the free-

vibration dynamic linear system that governs the motion of the blade spinning finite 

element at any instant is given by: 

 

  0qKKKqCGqM )(][)(]2[)( ttt ΩBcBeBBBB                    (4.14) 

 

where BM and eBK are the traditional mass and elastic stiffness matrices for beam 

elements, BG is the skew-symmetric gyroscopic matrix, BC  is a classical (Rayleigh) 

damping matrix. BC is assumed to be proportional to the mass and stiffness matrices and 

to be independent of the Lagrange derived equations; it is inserted in the linear system as 

such in order to decouple the complex mode that the gyroscopic system produces, but 

also to preserve completeness on the generality equations of the damped gyroscopic 

dynamic system. The damping matrix is thusly defined as a superposition of mass-

proportional damping and stiffness-proportional damping BBB aa KMC 10 , where a0 
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and a1 are unknown proportional coefficients with units of sec-1 and sec, respectively 

[Meirovitch 1986]. ΩBK  is the stabilizing stiffness spinning matrix and cBK  is the 

destabilizing centrifugal stiffness matrix, )(tq  is the global nodal displacement vector 

(inboard and outboard ends) when the oscillation occurs about the steady state, as a 

function of time. In Equation (4.14) the prime notation indicates differentiation with 

respect to time t. The general solution of the dynamic equation system for nonlinear 

second-degree-order tapered-swept blades is too long to show here and is presented in the 

Appendix A. The system modeled by Equation (4.14) is loaded by forces acting in the 

along-wind direction, that will produce wind-induced vibrations, bearing on the blade 

projected area [ibid. Leung and Fung 1988], namely: 

 

)()(][)(]2[)( tttt BΩBcBeBBBB FqKKKqCGqM                   (4.15) 

 

where the along-wind load vector )(tBF  is a function of time and is applied to the 

exposed area (or active surface) with which the wind mass is initially in contact. The 

blade system can be treated as a bluff body immersed within a rotationally sampled wind 

flow [Murtagh et al. 2004] experiencing periodic pressures distributed over its surface. 

 

4.3.2 Eigenvalue Problem 

 

Equation (4.15) is prohibitively difficult to solve directly with typical modal-based 

methods due to skew-symmetry of the gyroscopic matrix. It is noted that the gyroscopic 

terms are much smaller than the damped natural frequency of each mode (assumed the 

system is lightly damped), and the mode shapes are real valued for any instance (in 

general, they approximate normal modes), where the imaginary part of each mode shape 

vector becomes negligible. This mathematical fact can be interpreted as the blade 

deflections parallel to the axis of rotation (xs,zs) tending to be large compared to the 

perpendicular deflections (ys) [Meirovitch 1980]. For such a case, the Arnoldi iterative 

method [Horn and Johnson 1985] can be adopted to solve for the generalized eigenvalue 

problem that is computed using complex numbers, thus the coupling between the 
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gyroscopic and damping matrices becomes evident [ibid. Zheng et al. 1997]. The final 

goal is to obtain an eigen-realization solution acquired by employing only real numbers 

to get mode shapes. To accomplish this goal, the Schur decomposition has been adopted 

to solve for the uncoupled matrix problem [ibid. Horn and Johnson 1985]. Defining 

ΩBcBeBB KKKK  as the equivalent stiffness matrix and expressing the combined 

equation in state-space form yields: 
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   The state matrix A is non-symmetric, so it is reduced to Hassenberg form and a B-

orthogonal matrix ],...,,[ 11 kk φφφφ  is found such that: 
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where Ik is the identity matrix, k is the number of steps required for the Arnoldi reduction 

process, and 1k  and hik are the direct outcome of a Schmit orthogonalization process 

applied on Equation (4.18). Matrix Hk is the upper triangular Hessenberg form of A to be 

decoupled in sets of block pairs, discarding to eliminate any complex-numbers. As a 

result of this formulation, the Schur theorem stipulates that matrix H2n can be 
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transformed in an upper quasi-triangular matrix R and an orthogonal transformation Us 

by a real similarity matrix operation that takes the form sss2n RUUH , where n = 12, the 

total number of blade modes considered in the analysis (see Figure 4.5). Wilkinson [ibid. 

Wilkinson 1965] presents the derivation uncoupled non-symmetric system (Equation 

4.18) by means of Us and Rs to extract ci, the uncoupled damping coefficient of mode i, 

and ,i  the circular frequency (rad/sec) of that orthogonal mode. This technique is 

employed in this study to extract damping coefficients to be used in the aeroelastic 

analysis described in the following section. 

 

4.4 Aeroelastic Analysis 
 

   This paper presents the integration of spinning finite element theory with aeroelast ic 

analysis in the using a random vibration approach. Simplifications made in the prior 

section to mitigate the numerical effect of complex mode shapes resulting from the 

gyroscopic damping matrix limit the present study to along-wind direction effects only, at 

this time [Soong and Grigoriu 1992]. Across-wind and complex-frequency analyses will 

not be considered within the scope of the present study. 

 

4.4.1 Harmonic Wind Load 

 

   The system represented by Equation (4.15) may be re-expressed as an independent 

linear system where the generalized coordinates ),(t  defined in local coordinate system 

xyz, form a particular solution of the canonical differential equation: 
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(4.20) 

 

where mni is the generalized mass of the ith mode, for n total number of blade modes 

considered in the analysis [Hansen 2008], yielding: 
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where )(xφi is the B-orthogonal ith normal mode of the wind turbine, and m(x) is the 

distributed mass along the blade element, both governed by the local coordinate system, 

xyz; l is the total length, and fi is the ith natural frequency (Hz). Coefficients ki and mi 

come directly from the B-orthonormalization of matrix B containing the symmetric mass 

matrix Mb and the symmetric equivalent stiffness matrix Kb. The generalized force in the 

ith mode is expressed as xxφtxptF i
l
iBi d)(),()( 0 , where ),( txp  and is a periodic, 

homogeneously distributed wind pressure applied in the along-wind direction, depending 

mainly on the blade instantaneous rotation and the rotor spinning velocity Ω , as a 

function of both the blade length and time. By definition, )(δ)(),( FxxtFtxp , where 

)(δ Fxx is the unit impulse function acting at time t = 0 (see Figure 4.6), defined 

0)(δ t  for 0t  and 1d)(δlim 00 ttt
t . The force F(t) is a concentrated force acting 

at a point, xF, measured from the inboard end of the element in the local reference system, 

xyz. Therefore, xxφtxptF i
x
xBi

xF

Fx
d)(),(lim)( 0  or, expressed in an alternative 

fashion and given an punctual impulse force at xF, )()(),( tFxφtxF FiFBi . 

 

 
Figure 4.6. Distributed periodic pressure applied to the SPE in the along-wind direction. 

 

   The response to a punctual harmonic load, of the form )2cos()( 0 ftFtF , acting on the 

blade element at coordinate xF, given a frequency f, will be 
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)2cos()(),( 0 ftxφFtxF FiFBi . It can be verified that the modal coordinate in the ith 

mode for the steady-state solution is given by [Simiu and Scanlan 2007]: 

 

)}(2cos{)()(),,( 0 fφftfHxφFtfx iiFiFi

                       
(4.22) 

 

Here, the admittance function is defined as: 
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and the corresponding phase is given by: 
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   Hence, the response of the wind turbine blade at any position x, given a harmonic load 

acting at location xF, accounting for all modal contributions, will be: 
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(4.25) 

 

4.4.2 Distributed Stationary Random Wind Load 

 

   It is necessary to model the effect of a general random along-wind loading function, not 

just impulse or harmonic loads. Expanding Equation (4.20) for the case of a distributed 

stationary random load where an infinite number of wind forces, FBi(Xi,Zi,t), act on the 

contact surface A(Z) of the blade element, here using the global coordinate system, XYZ 
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(see Figure 4.7). Horizontal pressures in orthogonal directions must be accounted for to 

simulate the multi-directional effects of the wind [Shinozuka 1971] via a spatial 

correlation function relating the points on the active surface of the blade [Di Paola and 

Zingales 2008][Ambrosini et al. 2002]. The wind power spectral density matrix, 

expressed in global coordinates XYZ, is defined as: 
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(4.27) 

 

where SuR(j,j) is the auto-power spectrum at discrete contact point j, and SuR(j,k) the cross-

power spectrum of the fluctuating wind between discrete points j and k as defined in 

Figure 4.7.  
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Figure 4.7. Coherence (spatial correlation) function distribution for the auto-power and cross-

power spectrum computation along the global X (horizontal) and Z (vertical) axes. 

 

Simultaneously, SuR(Z,f) is the design rotationally-sampled spectral density of the 

longitudinal velocity fluctuations. The term ),,,,(Coh fZZXX kjkj  is the across-

wind cross-correlation coefficient defined by:  
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   Pairs (Xj,Zj) and (Xk,Zk) are coordinates of points nj and nk where the line defined by nj-

nk is assumed to be perpendicular to the direction of the mean wind. For practical 

purposes Cy = 16 and Cz = 10 are the exponential decay coefficients used for global 

horizontal and global vertical separation, respectively. The present study adopts the well 

known Kaimal spectrum [Kaimal et. al. 1972] for the along-wind field at vertical position 

Z: 
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where ))ln(5.2()( 0* ZZZUu
 
is the shear velocity and )(ZUfzc  is the Monin 

or similarity coordinate. The term Z0 represents the surface roughness length for a given 

surface or terrain surrounding the wind turbine structure. The term U(Z) is the total wind 

velocity envelope (mean wind plus fluctuating) acting at elevation Z in the longitudinal 

(along-wind) direction. The assessment of U(Z) is in agreement with the primary 

harmonic frequencies fTi of the tower and thusly requires some knowledge of DT as the 

tapered cross-section diameter of the wind tower projected in the along-wind direction, 

evaluated at its maximum height (rotor and hub elevation). At this location, the 

longitudinal wind velocity U(Z=0) generates vortex shedding with frequencies equal to 

the natural frequencies of the tower substructure, the critical velocity Ucr = U(Z=0) for a 

given tower mode shape iT [Basu 1983] and must meet the following conditions: 
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where Str is the Strouhal number, and e  is the Reynolds number necessary to generate 

such critical harmonic conditions on the fundamental tower mode iT. Once Ucr is properly 

evaluated, it is possible to determine the associated wind velocity envelope for the blade 

elements according to their instantaneous angle of rotation, . Simultaneously, Murtagh 

[ibid. Murtagh et al. 2005] proposed a rotationally-sampled spectrum SuR(Z,f) that is 

defined using 70% of the original Kaimal spectrum variance (by area under the curve), 

proportionally increased at each node. The aim of this characterization is to capture the 

rotating effects, such as the periodicity of blade spinning and how this spinning motion 

affects the disturbance of the stationary wind field in the along-wind direction within the 

turbulent flow. The goal is to better represent the intensity and redistribution of the 

turbulent energy content in the spinning dynamic system. A modified rotationally-
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sampled spectrum is proposed in this investigation where Su(Z,f) is obtained for each 

node in particular at its current height. The original 70% of the variance remains intact 

whereas the remaining 30% is distributed among three normal (Gaussian) peaks, 

corresponding to a three-rotor-blade arrangement revolving at a constant spinning 

velocity, . By identifying frequencies within the spectrum at 1 , 2  and 3 , with 

proportional reduction factors of 18% for the first, 9% for the second, and 3% for the 

third maximum peaks respectively (Figure 4.8), it is possible to construct the modified 

rotationally-sampled spectrum SuR(Z,f) to be used in Equation (4.27). This approach 

captures the tendency of the spectrum peaks to be more pronounced towards the tip of the 

blade. 

 

 
Figure 4.8. Spectral energy distribution for a node at a set height Z, and a set rotation angle . (a) 

Modified rotationally-sampled spectrum, (b) original Kaimal spectrum. 

 

4.4.3 Spectral Response 

 

   The analysis proposed in this study uses a random vibrations approach to model the 

response of the turbine blades to random areoelastic loadings. The spectral density 

function of the along-wind fluctuating deflection for mode i is given by [Simiu and 

Scanlan 2007]: 
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where is the air density, CD(Z) is the drag coefficient applied to the cross-section 

located at global height Z, and D(Z) is the projected depth function of the cross-section at 

that elevation (see Figure 4.7). Similarly, N(f) is the along-wind cross-correlation 

coefficient defined as:  

 

)}(min{     ;
)(5

77

)1(
2
11)(

min
3
2
min

2
2

ZDD
lU

fD

efN

Z
                              

(4.32) 

 

Magnitude lZ can be obtained by projecting the blade length l in the vertical (global) axis 

Z, given a rotation angle  for the beam with respect to the horizontal axis (see Figure 

4.7). In this line of thinking, the corresponding integrated (modal combined) spectral 

density function may be computed by superposition of modes ),(),( 1 fZSfZS ix
n
ix . 

The mean square value of the fluctuating along-wind deflection is obtained, for arbitrary 

mode i, as the integral of the spectral density ffZSZ ixix d),()( 0
2  and, in the case 

of the mean square value of the fluctuating acceleration, ffZSfZ ixxi d),(16)( 4
0

42

also for blade mode i. Finally, the largest peak modal expected value of critical indicators 

of fluctuation behavior (deflection and acceleration) occurring in a predefined time 

interval, T, can be computed as )()()( ZZKZx ixixipk  and )()()( ZZKZx xixiipk , 

respectively, where: 
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are the largest-peak displacement (Equation (4.33)) and largest-peak acceleration 

(Equation (4.34)) factors that account for the probability that, in the time interval T, there 

will be no peaks equal or larger to )(Zxipk  or )(Zxipk , respectively. Simultaneously: 
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are the corresponding number-of-peaks-per-unit-time factors. Shear and moment 

functions Sixpk(x) and Mixpk(x), expressed in local coordinates, xyz, can be obtained by 

projecting all modal peak displacement responses back from the global XYZ to the local 

xyz reference based on the current instantaneous rotation angle  :  
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   Finally, total displacements, shears, and moments can be computed directly by linear 

superposition of all n modes incorporated in the model. It is important to underline that 

the quantities used from Equation (4.26) to Equation (4.36) are formulated in global 

coordinates XYZ. At the same time, those parameters are fundamentally dependent on the 

instantaneous rotation , given a time t. Also, the integration variable Z runs along the 
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vertical (raised) direction, whereas the X term is sweeping the horizontal (laying) 

direction. Rotation angle  is positive in the counter-clockwise direction. Accordingly, 

the blade reaches its maximum height at  = 90° and its minimum at  = 270°. 

 

4.5 Numerical Example 
 

   A numerical example is provided in this section to demonstrate the capabilities of the 

proposed framework. Because the framework relies on aeroelasticity, its output is 

stochastic; therefore a large number of stochastic input parameters are used for the 

provided example using the Monte Carlo method to illustrate the full capabilities of the 

approach. To accomplish this goal, a full state-space analysis as a linear summation of the 

lower bending modes and centrifugal forces has been derived for an aeroelastic analysis 

via SPE by computing 3000 stochastic realizations for a generic HAWT model. Three 

fundamental modes were considered for a tower model consisting of a nacelle, bedplate, 

and shaft. The wind tower is modeled as a hot dip-galvanized tubular steel with 0.51cm 

thickness (Et = 200 GPa). The rotor system consists of three blades with fixed pitch, 

made of fiberglass reinforced polyester (Eb = 80 GPa); swept area up to 214 m2. The 

blades are assumed to be tapered-swept cantilever beams 7.92 m rotor diameter. The 

specimen has been reconstructed as a modified version of a Tjaereborg type blade [ibid. 

Hansen 2008]. To illustrate the effect of the blade geometry on the modeled response, 

three geometries are considered: nt = 0 (constant), nt = 1 (linear), and nt = 2 (parabolic) 

gradient variation. The material properties modeled at the inboard end are: 0  2600 

kg/m3, E0 = 72 N/m2, 0  0.33; and at the outboard end are: l  2600 kg/m3, El = 72 

N/m2, l  0.33; air density air  1.25 kg/m3. Geometric properties for the inboard 

end are: the projected depth normal to the along-wind direction is d0 = 1 m, the area of 

exposure is A0 = 0.038 m2, the orthogonal inertias are Iy0 = 0.0009 m4 and Iz0 = 0.00484 

m4, the polar moment of inertia is J0 = 9.125X10-4 m4, and the mass moment of inertia is 

Ip0 = 0.1 kg*m2. For the case of the outboard end geometric properties can be 

approximated as: dl = 0.01 m, Al = 0.01A0 m2, Iyl = 0.01 Iy0  m4, Izl = 0.01 Iz0 m4, Jl = 0.01 

J0  m4, and Ipl = 0.01 Ip0 kg*m2. The length of blade specimen is l = 15 m and yaw 
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eccentricity is Y0 = 0.609 m. The number of discrete points to be considered in the local 

longitudinal axis, x is nx = 40 per blade element. The total number of active tower modes 

used is nT = 3. General geometric properties of the wind turbine are given in Table 4.1.  

 

Table 4.1. Properties of the wind turbine prototype. 
 

Geometry Value 

Rotor diameter 15.95m 

Tower height 21.94 in 

Rotor hub height 22.55 in 

Nacelle mass 2.27 ton 

Rotor mass (with hub) 1.81 ton 

 

   Table 4.2 shows the Gaussian random variables used as inputs to the Monte Carlo 

method calculations as sources of uncertainty of the aerodynamic model from which the 

spectral analysis of wind-induced vibration loads were derived (wind velocity is given 

elsewhere and is non-Gaussian). The statistical parameters for the aeroelastic damping i  

are restrained by the stability operational limits of the rotor blade system, whereas the 

terrain roughness length Z0 is defined for plain terrain in low grass or steppe 

configurations. 

 

Table 4.2. Aeroelastic random variables with Gaussian distributions. 
 

Property   

CD 0.8 0.11 

i  0.006 0.0011 

a0 0.8 0.05 

a1 0.002 0.0005 

Z0 (low grass, steppe) 2.5 cm 
0.0039 

cm 
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   Figure 4.9(a) depicts the coupled structural modal response of the rotor blades whereas 

Figure 4.9(b) shows the variations in the blade natural frequencies for different spinning 

rates. The torsion mode is computed as independent (uncoupled) amongst the eleven 

remaining mode shapes. Unitary normalization is applied with special attention paid to 

the four dominant modes (yaw, pitch, flap and lag). Yaw and pitch frequency modes 

increase linearly from the static position, whereas for larger spinning velocities (e.g., 

11Ω rad/sec) axial, flap, lag and twist modes produce incremental changes at higher 

spinning rates. Thus, it is important to note that heave and sway modes become 

unpredictable at high velocities. 

 

 
Figure 4.9(a). Structural dynamic response in local coordinate system xyz. Mode shapes. 
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Figure 4.9(b). Structural dynamic response in local coordinate system xyz. Spinning rate velocity 

vs natural frequency, for the twelve blade spinning finite element modes. 

 

   Figure 4.10 presents the normalized-distributed random parameters due to the damping 

matrix coefficients, achieved for the 3000 realizations. The five sources of stochastic 

behavior described are constituted as Gaussian-normal with standard deviations 

commonly observed in the field. Strouhal number is based on Reynolds number 

intensities of the order 1X104 <= e  <= 1X107. Figure 4.11 shows correlations of 

Reynolds number vs Strouhal number derived from these inputs, and for three different 

wind field intensities: mild wind events selected to excite the first resonant frequency of a 

generic tower design, heavy storm events designed to excite the second tower resonant 

frequency, and somewhat improbable extreme wind events designed to excite the third 

tower resonant frequency (for illustrative purposes). The Strouhal number term is 

restricted as defined in the wind design code limits for low Reynolds numbers (mild 

wind). For all cases shown in Figure 4.11 the vortex shedding frequencies are examined 

that match the critical wind velocity Ucr that may occur at the top of the tower. 

Simultaneously, Figure 4.12 depicts critical wind velocity profiles for both tower and 

blade substructures for the same three wind scenarios. It is important to note that the 

critical wind speed is reached at the rotor hub (nacelle) height and is extended as much as 

the blade length permits. Also, the boundary layer profile applied to the blade elements 

varies depending on the instantaneous rotation angle of the element (e.g., Figure 4.12 is 
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depicting a blade with 90° punctual angle). 

 

   Figure 4.13 shows the random distribution of the critical wind velocity for extreme 

values Type I (Gumbel) computed on top of the wind tower (hub elevation), as being a 

major non-Gaussian contributor to the randomness of the model. It is observed that there 

is more variation for stronger wind fields and the along-wind velocity U should match Ucr 

for every Monte Carlo realization. Figure 4.14(a) depicts the Monin number or Similarity 

Coordinate, c, found using the model, which is correlated with the roughness length Z0 

and tends to be asymptotic for higher wind-inflow frequencies independent of blade 

geometry. This result demonstrates that the distribution of the along-wind spectral density 

function tends to be less pronounced at lower heights, and better distributed at higher 

ones, given a fixed frequency. The along-wind cross-correlation coefficient, N(f), 

depicted in Figure 4.14(b), is plotted across the frequency spectra for two distinctive 

taper-swept degrees: nt = 0 (constant variation) and nt = 2 (parabolic variation). For this 

particular case, it can be demonstrated from the model that a geometry reduction of 90% 

at the tip of the blade implies an amplification of the spectral fluctuating deflection of as 

much as two times the intensity originally computed for nt = 0. This result agrees with 

established theory that predicts that the ends of the blades are most critical for flexural 

displacements and that the narrowing of the exposed area in this region will lead to a 

reduction of the stresses recorded in those locations. Here it is evident that higher values 

of N(f) imply a reduction of load demands (50% or more) in the stress intensity for nt = 0 

compared to nt = 2 demonstrating the importance of the accurate modeling and the need 

to be able to consider higher-order cross-sectional variations. Furthermore, this load 

reduction effect becomes more evident at higher wind intensities, meaning that proper 

modeling of tapered-swept profiles is of particular importance to achieve accurate results. 

Figure 4.15 plots the along-wind, rotationally sampled spectrum for three wind intensities 

at different locations along the blade and for two tapered-swept degree variations, 

corresponding to one particular configuration at a 90° rotation angle. It can be seen that 

the nodal points of the blade experience slightly different wind load intensities with small 

or null variations between the  nt = 0 and nt = 2 models, as expected. The rotationally 
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sampled projections trace three “humps” with pronounced scatter at higher wind speeds 

associated with the spinning velocity and these shift right or left depending on the actual 

spinning velocity , assumed to be constant for each realization.  

 

   Figure 4.16 depicts the total spectral density (response) of blade deflections. It is noted 

that the fundamental frequency of the blade element is dominant, being the maximum 

peak within the spectrum, pulling the closest rotationally sampled “hump” up as the 

harmonic motion begins to be excited. This effect vanishes as the wind field intensity 

becomes large. Simultaneously, when the tapered-swept degree is nt = 2 the lower peaks 

happen to be at approximately ¾ of distance from the blade root. The strain registered in 

this area decreases substantially compared to the constant cross-section scenario (nt = 0), 

and is independent of the wind-field intensity as it is shown in Figure 4.16. For nt = 0 two 

frequencies permute the peak displacements at frequencies f = 10Hz or lower, whereas 

for nt = 2 only one peak is exhibited and it exceeds the previous case in magnitude. At the 

same time, Figure 4.17 outlines the modal-combined number-of-peaks-per-unit-time 

coefficient )(ZKx , and the largest-peak factor )(ZKx  for three different tapered-swept 

variations and wind field intensities. As was observed in Figure 4.16, lower peaks occur 

at approximately ¾ lz, and the number of peaks computed for nt = 2 decrease in 

magnitude with respect to nt = 0 and nt = 1, but is not the case for nt = 1 versus nt = 0. 

This result indicates that the probability of exceeding expected peak load decreases at 

higher tapered-swept variations when wind field intensities are high. Figure 4.18 shows 

the modal combined mean square value of the fluctuating deflections and accelerations 

for the same cases studied above. The same pattern is observed for the structural response 

along the blade element, presuming a “resting” zone at the ¾ lz point where deflections 

and accelerations are reduced 25% or more for parabolic geometric variations. It is 

interesting to note that displacements and accelerations hit their maximums at 1/3 lz and lz 

for nt = 2, corresponding to the second and first natural frequencies, respectively. For nt = 

0, peaks generated by the second mode are shifted towards the mid span. A similar 

illustration is obtained for the along-wind peak responses (e.g., peak displacement, peak 

acceleration, peak shear, and peak moment), delineated in Figure 4.19 for different 
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variations of both tapered-swept order and angular rotation  = 90°. As expected, shears 

and moments are reduced by at least 50% along the outer two-thirds of the blade element 

where aerodynamic loading is critical. The previously identified relief zone, postulated at 

approximately ¾ lz, helps to accommodate the complex aerodynamic loadings that occur 

at ½ lz [Johansen et al. 2009]. This effect is not evident for the constant cross section 

model, nt = 0, where loading is partially offset to this more critical region at x = ½ lz. 

Differences are less critical at x = 0 lz (the hub location) where complex load paths and 

complex surface stability can be modeled whether blade geometry is improved or not. 

Corresponding curves are plotted in Figure 4.20 for along-wind peak responses at 

different rotational angles, (i.e.,  = 0°,  = 90° and  = 270°). It can be seen that for 

different tapered-swept coefficients, nt, differences in stress distribution occur mostly 

around areas of peak magnitudes and. For example, at  = 270°, the blade element 

produces its maximum perturbation when the highest wind scenario occurs, and its 

minimum when a mild wind occurs meaning that the horizontal position (e.g.,  = 180° or 

 = 270°) becomes either the most risky or the more safe position for the blade depending 

on the intensity of the wind gust the structure is resisting at some given time. 

 

   Finally, Figure 4.21 provides a means to visualize potential failure regions by 

comparing the capacity probability density function (PDF) to the demand PDF for peak 

shear forces and peak bending moments (at the base of the rotor blades) generated by the 

Monte Carlo method using for 3000 random realizations. The loading capacity at the base 

(material strength) is modeled in this example as a normal distribution, taking EN-50308 

as a standard norm to produce the PDF [CEN EN-50308 2004]. Here, the theoretical high 

wind demand curve overlaps the capacity (resistance) curve over a small percentage at its 

highest level. This overlapping region may be used to represent the probability of failure 

for the turbine under a given set of operating conditions. 

 

   It has been shown from Figure 4.16 to Figure 4.21 that blades with tapered-swept 

profiles tend toward lower flap-bending loads compared to those with baseline straight 

cross-sections requiring tapered-swept models to represent their vibrational behavior 
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accurately. Similarly, it is observed that energy dissipation increases with higher nt 

degrees of tapered-swept variations. Under those conditions, the load demand tend to be, 

in general, lower for flap and chord bending modes. For the case of tapered cross-

sections, the slender shape of the blade limits the influence of the extreme wind loading 

and wind-induced vibrations. This effect is achieved by minimizing the exposed area, but 

also by allowing for increased rotational speed. Numerical results from this study applied 

for different rotational angles show that every time a rotor blade passes through the tower 

shade at its lowest position, the rotor tends to push less against the tower substructure. In 

principle, this result shows that the blade model can amplify or dampen the tower 

harmonic oscillations when the rotational speed of the rotor blades matches the natural 

frequency of the tower, matching expectation. 

 

 
Figure 4.10. Normally distributed random-source parameters corresponding to damping 

(Rayleigh) matrix coefficients, terrain surface roughness length, Strouhal number, and drag 

coefficient from 3000 random realizations. 
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                                                 (a)                            (b)                           (c) 

Figure 4.11. Wind-induced velocity calibration by linking Reynolds number and Strouhal 

number for the first three harmonic tower frequencies: (a) Mild wind (Ucr = 12MPH); Heavy 

storm (Ucr = 113MPH); Extreme conditions (Ucr = 194MPH). 

 

 
Figure 4.12. Critical wind velocity profiles (boundary layer) for (a) wind tower; and (b) wind 

blade at instantaneous rotation angle  = 90° evaluated for the first three fundamental tower 

frequencies. 
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Figure 4.13. Critical wind velocity computation by random realizations adopting Extreme Value 

Type I (Gumbel) distribution. 

 
Figure 4.14(a). Monin number for the first three tower frequencies.  
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Figure 4.14(b). Along-wind cross-correlation coeffients for the first three tower frequencies.  

 

 
Figure 4.15. Rotationally sampled spectra for the first three tower resonant , computed at two 

different locations: hub elevation (Z1) and tip of the blade (Z5). 
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                                              (a)                            (b)                             (c) 

Figure 4.16. Total spectral density of blade deflections in the along-wind direction for three wind 

field intensities: (a) mild wind; (b) heavy storm; and (c) extreme event. 
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                                                  (a)                                                (b) 

                        
                                                  (c)                                                  (d) 

Figure 4.17. Modal combined number-of-peaks-per-unit-time ((a),(b)) and largest-peak factors 

((c),(d))computed for the second tower dominant frequency. Evaluated for fluctuating blade 

deflection ((a),(c)) and fluctuating blade acceleration ((b),(d)), respectively. 
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                                              (a)                             (b) 

Figure 4.18. Modal combined mean square value of the fluctuating along-wind (a) deflection; 

and (b) acceleration of blade element computed for the first three tower dominant frequencies. 
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                                        (a)                            (b) 

                      
                                        (c)                               (d) 

Figure 4.19. Along-wind peak response of blade element computed for the first three tower 

dominant frequencies. Evaluated for (a) fluctuating deflection and (bs) fluctuating acceleration, 

(c) peak shear (modal combined), and (d) peak moment (modal combined). 
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                                           (a)                              (b 

                
                                       (c)                              (d) 

Figure 4.20. Along-wind peak response of blade element computed for the first three tower 

dominant frequencies, calculated for three rotation angles nt = 0, and evaluated for (a) modal 

combined fluctuating deflection; (b) modal combined fluctuating acceleration; (c) peak shear 

(modal combined); and (d) peak moment (modal combined). 
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       (a) 

 
     (b) 

Figure 4.21. Example demand PDFs for (a) peak shear force; and (b) bending moment from 3000 

random realizations with shear and moment nominal capacity (member strength) PDFs modeled 

using normal distributions in compliance with EN-50308. 

 

4.6 Conclusions 
 

   In this study analytical probabilistic-aerodynamic results from a simulated full-scale 

wind turbine have been derived using a novel framework that integrates aeroelastic 

theory with spinning finite element analysis. Calibrated fundamental frequencies and 

mode shapes associated with each of the twelve inscribed degrees of freedom allotted to 
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the SPEs  have been derived for complex blade geometries with torsion being treated as 

an uncoupled mode at this time. A theoretical framework of full n-degree tapered-swept 

variational characterization has been established with special attention paid to developing 

a numerically stable solution of the Lagrangian equations for parabolic tapered-swept 

cross sections to illustrate the usefulness of the method. Applicability to turbines with 

narrow and long blades has been demonstrated and show good agreement with previously 

established results. 

 

   While additional computational effort is required to derive the properties of high-order 

SPEs, once derived, they may be used in simulations with no additional computational 

cost. The benefits of using more accurate high-degree tapered-swept variations to model 

tapered-swept blades include more accurate modeling of energy dissipation effects, peak 

stresses, deflections, complex aerodynamic load paths, key fatigue loading parameters, 

and overall performance improvement. Better models of these behaviors may lead to 

more efficient (less conservative) designs in the future. 

 

   The framework presented here is intended to provide a means to model stochastic 

load/structure interactions (including flutter and buffeting) in complex turbine structures 

using relatively low-order models that may be suitable for use in automated monitoring 

applications including load estimation, performance evaluation, and structural health 

monitoring. However, the framework also provides an efficient platform to study the 

effects of important sources of uncertainty during the design phase, including lift 

coefficient, aeroelastic damping, material imperfections, soil-structure interaction, 

modeling assumptions, power transmission torque, nacelle weight, nacelle eccentricity, 

pitch controls, and others. Additional future work is recommended to study these effects 

using this new framework and also to integrate across-wind dynamics and tower coupling 

effects into the framework as well. In addition, torsion coupling and gyroscopic effects 

must be incorporated into the present aeroelastic framework by obtaining precise values 

of damping coefficients, frequencies and mode shapes with special attention paid to the 

undamped instability that is produced as a result of the gyroscopic motion. Integration of 
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torsional coupling and gyroscopic damping presents significant numerical challenges not 

encountered in the current framework and is the focus of ongoing work. It is time now to 

present Chapter 5 that introduces the guidelines and minuteness of an improved and more 

sophisticated tapered-swept spinning finite element that includes damped-gyroscopic 

effects combined with axial-flexural-torsional coupling. This effort eventually will pay 

off in a more reliable characterization of the tensor stresses involved in the mechanical 

behavior or rotating HAWT blades systems. 
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Chapter 5. Spinning Finite Element with Damped Gyroscopic 

Effects and Axial-Flexural-Torsional Coupling 
 

   Due to their aeroelastic behavior, tapered-swept blades offer the potential to optimize 

energy capture and decrease fatigue loads in horizontal-axis wind turbines (HAWT’s). 

Nevertheless, modeling special complex geometries requires great computational effort 

necessitating tradeoffs between faster computation times and numerical accuracy. In this 

study, a condensed Spinning Finite Element (SFE) method approach is presented to 

alleviate this issue by means of modeling wind-turbine rotor blades using tapered-swept 

cross-sectional variations of arbitrary order via Lagrangian equations. Axial-flexural-

torsional coupling is achieved for axial deformation, torsion, in-plane bending, and out-

of-plane bending using a super-convergent element approach. Special attention is paid to 

damped yaw effects, expressed within the skew-symmetric damped gyroscopic matrix. 

The proposed framework is expected to be particularly useful to characterize models with 

complex-shape cross-sections at low computation cost. Dynamics of the model is 

achieved through modal analysis performed with complex-conjugate eigenvectors. By 

means of mass, damped gyroscopic, and stiffness (axial-flexural-torsional coupling) 

matrices condensation, a numerical example is carried out with different tapered and 

swept variation intensities over a practical range of spinning velocities in order to verify 

the suitability and convenience of the mathematical model. The paper concludes with 

some recommendations, and insights for practical design and optimization. 
 

5.1 Introduction 
 

   Wind energy technologies have gathered substantial interest over the last decade. Wind 

technology applications are projected to represent at least 20% of the total energy 

production mix by 2025, and worldwide energy policies now promote the development of 

wind turbines and related technologies [DLR & EREC 2010]. In recent years, the 

commercial applications of horizontal-axis wind turbines (HAWTs) with high-rate power 

expectations have forced the design practice to maximize for size and slenderness in 
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order to optimize power generation [Lazaridis 2005]. Therefore, tower and rotor blades 

substructures have been subjected to both increasing wind-induced stresses and reduced 

factors of safety in design. The increase in the effective flow velocity from the root to the 

tip of the blade requires the shape to be tapered, twisted and pitched in order to achieve 

the optimum reduction in flow velocity over the entire length of the blade. Profiles with 

complex geometry, such as tapered-swept rotor beams with nonlinear mass and geometry 

variations have been promoted to alleviate combined dynamic strains, but also to delay 

the appearance of drag divergence within the rotor blades as well as substantially 

reducing hub loads [Lanzafame and Messina 2007]. As an example, Ashwill [Ashwill 

2010] successfully designed, fabricated, tested and evaluated a sweep-twist adaptive 

blade that achieved 5-8% greater energy capture without higher operating loads on the 

turbine. Other investigations Bottaso et al. [Bottasso et al. 2011] have focused on the 

design of wind turbines with bend-twist coupling by exploiting the orthotropic properties 

of composite materials, then optimizing for minimum weight while satisfying design 

constraints such as maximum fatigue loads, maximum tip deflection and placement of 

natural frequencies, all for the same performance in annual energy production.  

 

   These extreme design conditions typically led the structure to alternate in a risk zone of 

induced stresses where second-order effects take place. Such effects can reflect wind-

induced vibrations and wind-induced loading that threaten the integrity of the structure 

under both normal operational (serviceability) and harsh (extreme wind) conditions. The 

difficulties for modeling this phenomenon accurately arise when these second-order 

effects interfere with and distort the expected strain and loading field along the rotor 

blade [Malatkar 2003], typically designed for optimal energy capture. Examples of the 

consequences of these loadings are the torsion coupling and damped-gyroscopic 

responses. Those effects typically manifest themselves as nonlinear phenomena, and 

because of their impact in determining fatigue loads as well as limit states, they have 

warranted intensive attention over the past years. In this regard, the most serious effects 

include the yaw dynamics on free-yaw wind turbines as well as yaw loads on controlled-

yaw rotors. A free-yaw rotor typically produces stresses caused by the weight of the 
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blades and directly induces dynamic moment pairs (commonly referred to as inertial 

torque). Fatigue loads, due to the exhaustion of the fabrication material, typically govern 

the maximum allowable strain field imposed on the structure. This yaw-related 

phenomenon has been identified as a real threat for the safety of the wind turbine. Yaw-

motion effects are the second largest cause of structural failures in California’s windmill 

farms [Lynette 1988]. The out-of-plane dynamic pair produced by the yaw-torque is also 

known as Coriolis moment or gyroscopic effect [Lalanne and Ferraris 1998]. These 

coupled effects, combined with the in-plane rotation movement, function as a 

longitudinal lever that depends on the actual spinning velocity , but also on the mass 

distribution of the combined wind turbine gearbox, nacelle and rotor blades. It is 

expected that, after obtaining the dynamic properties of the wind turbine, the computed 

natural frequencies and modes of vibration will exhibit nonlinear variations as  

increases. The resulting harmonics are called precession modes [Manwell and McGowan 

2009], and occur when the mass or center of inertia of each cross section of the blade 

element describes out-of-plane orbits around the rotational trace that connect them; in 

other words, is the out-of-plane expansive inertia generated by the pitch projection in 

conjunction with the tapered-swept variation of the blade element (see Figure 5.1). 

 

 
Figure 5.1. Precession mode of a wind turbine blade with tapered-swept variation. 
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   This orbit is composed of two superimposed motions: (1) blade rotating around hub 

center (in-plane motion), (2) rotating shaft flexing around its non-deflected position (out-

of-plane motion). Therefore, the rotor will be tracing in forward whirl mode or in 

backward whirl mode, depending on the actual orbit direction defined by the direction of 

the yaw motion. Those cyclic moments depend on the yaw rate and can easily exceed the 

allowable aerodynamic moments. Gyroscopic effects can be correctly determined by 

understanding the yaw motion behavior in conjunction with teetering motion around the 

tower bedplate. Rotational vibrations coming from the governing modes can produce this 

tremor around the wind tower longitudinal axis. In fact, the structural response is 

commonly treated as a superposition of the dominating lower bending modes at the 

inboard end: first flap (heave), first edge (yaw), and second flap (pitch). Those are 

correlated to some extent with the corresponding delayed degrees of freedom at the 

outboard end: third flap (lag), second edge (flap bending), and fourth flap (chord 

bending) [Griffin 2002]. Whatever the dominant mode is, torsion mode is typically 

treated as an uncoupled mode, but the fact of the matter is that bending and torsion 

vibrations are tightly coupled [Ozgumus and Kaya 2007]. Due to this coupling, there are 

always some secondary rotations present in the system that can produce severe errors in 

the measurement of the gyroscopic output. The gyroscopic output increases 

independently of how small or large the secondary rotation is. This increased gyroscopic 

output is called cross-axis error, and can be mistakenly interpreted as a natural feature of 

the gyroscopic output itself [Bhadbhade et al. 2008]. To tackle this problem, Weaver et 

al. [Weave et al. 1990] constructed a theory of coupled flexural/torsional vibration 

explicitly suited for thin-walled beams. Similarly, Oguamanam [Oguamanam 2003] 

studied a free flexural/torsional vibration of an Euler-Bernoulli beam with a rigid mass at 

the tip. Ganguli and Chopra [Ganguli and Chopra 1997] focused their attention on 

Optimization Analysis based on frequency constraints specific for the Helicopter 

Engineering community. This work consolidated an optimization scheme for mass 

distribution, blade stiffness (flap, lag, torsion), and blade geometry (sweep, anhedral and 

planform taper). Another study [Salarieh and Ghorashi 2006] considered the effects of 

shear deformation and rotary inertia, under free-vibration conditions, of a Timoshenko 
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beam with a rigid mass on the tip. Some studies suggest that plane instabilities occur 

when periodic motions dominate the non-linear vibrations of a cantilever beam 

[Lewandowski 1994]. Some authors have demonstrated the ability of the p-version finite 

element method to characterize these non-linear dynamics [MacEwen 2001]. However, 

few studies have treated this phenomenon using tapered-swept cross-section variations 

along the blade and the increased complexity that arises from the inclusion of axial-

flexural-torsional coupling into the mathematical framework. This study intends to 

provide a theoretical framework, based on Spinning Finite Elements (SFE) adapted to 

tapered-swept blade profiles, to characterize basic rules of axial-torsion and flexion-

torsion coupling. This correlation is modulated by superconvergent and Hermite cubic 

shape function descriptors that model the loading transmission from one end of the blade 

to the other. 

 

   Given the scope, limitations and complexities of the present investigation, aerodynamic 

analysis, such as wind-structure interaction, turbulence modeling, flutter and buffeting 

analysis, gust effects, wind spectral analysis, aerodynamic damping, wake effects, vortex 

shedding patterns and others related to wind engineering and aerodynamics will not be 

subject of this work. In this regard, no load shares are affiliated with or representative of 

wind aerodynamics or wind solicitations. Predefined modal testing loads with convenient 

frequency range (i.e. chirp, sinusoidal, impulse (blast)) have been applied to successfully 

excite the blade fundamental modes of vibration. The numerical example is pointed only 

to gain some knowledge, usefulness, convenience and computational advantages of the 

mathematical model. In summary, the main contribution of the present study is the 

proposition of a new matrix-based mathematical model for characterizing the structural 

(mechanical) response of nt order tapered-swept wind turbine blades with the inclusion of 

both damped-gyroscopic effects and axial-flexural-torsional coupling. The combined 

triad of (1) tapered-swept characterization, (2) gyroscopic effects and (3) coupling modes 

is, in its core, the new contribution of this investigation. The numerical example given 

here serves only as an inducement to gain sensitivity of the model, acquire some insights 

of the limitations and capabilities of the methodology presented, and advance its 
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interpretation from a more physical (practical) perspective. 

 

5.2 Spinning Finite Element 
 

   For this study blade elements are modeled as skeletal beam structures in rotational 

motion by means of a p-version spinning finite element method. Mass, damped 

gyroscopic, and stiffness matrices are derived using the principles of d’Alembert and 

Lagrangian equations. Leung [Leung and Fung 1988] has advanced towards a more 

accurate mathematical framework by proposing a closed-form solution method that 

obtains eigenvalues and eigenvectors of rotating beams with constant cross-section. A 

spinning finite element is defined explicitly for the gyroscopic or Coriolis effect. 

Equations of motion are derived using Lagrangian equations controlled by the spinning 

motion that creates deviation from that of classical theory for non-spinning structures. 

Leung [ibid. Leung and Fung 1988] derived a skeletal spinning finite element conformed 

by straight beam members. An expanded derivation for tapered-swept beam cross 

sections has been induced by Larwood [Larwood 2009] and is expanded in the present 

study for swept variations along the blade. Given the complexity of the mathematical 

scheme proposed, the incorporation of anisotropic models to characterize composite 

materials will be discarded in the analysis. For the present study, beams with non-

uniform cross section, non-uniform thickness, elastic, homogeneous, and isotropic 

materials are considered only. 

 

   The proposed SFE takes on the concepts of small deformations. When the deformation 

of the wind turbine blade is small and the change in volume is almost negligible (i.e. less 

than 2% of the length of the blade), it is possible to approximate the deformation as 

linear. The scope and limitations of the proposed SFE oscillate in this range of operability 

only and is not valid for large blade deformations. At the same time, it is well known that 

the polar moment of inertia cannot be utilized to analyze any non-circular cross-section 

shaft for large deformations. According to Saint-Venant’s torsion theory, for any non 

circular cross-sections, plane cross-sections will not remain plane after any torsional 
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deformation and, therefore, warping phenomenon will occur. Computation of strain 

distributions based on the assumption of planarity will give misleading results for large 

deformations. Nevertheless, for small twisting deflections (i.e. less than 2% of the length 

of the blade) the planar cross-section assumption can be treated as a manageable linear 

approximation. It should be emphasized that this problem of torsion and warping must 

need to be resolved for torsion-free and warping free cantilever problems in order to 

predict to a high accuracy the stress and strain distributions. The approximation of planar 

sections remained plane after twist is in fact an overestimate. That’s why this assumption 

should be treated with extreme caution given the fact that the true value of torsion 

stiffness is typically only 1% or 2% of the value computed from the polar moment of 

inertia. 

 

5.2.1  Kinematic Description 

 

   Consider three orthogonal axes for a tapered-swept beam element in rotation motion 

(see Figure 5.2): (1) xyz acting as the local principal axes, (2) xsyszs directly associated 

with the rotational motion of the blade such that ys coincides with the spinning axis, and 

(3) a global static (reference) XYZ through which the blades inertia is measured. Spinning 

ys-axis coincides with Y-axis and rolls on top of the wind tower (at hub location). 
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Figure 5.2. Local xyz, spinning xsyszs, and inertial XYZ orthogonal coordinate systems governing 

the rotating motion of a wind turbine blade. 

 

   Any point along the blade, from the local coordinate system point of view, is defined by

)( 00 sslss rrrr , 10 , or lssss 0  , 0 srr , l being the length of the blade 

[ibid. Leung and Fung 1988]. Here, 0sr , slr and sr are the position vectors along the blade 

controlled by the spinning coordinate system xsyszs, and s ={1,0,0} is the unit vector 

along the blade at the middle line longitudinal axis governed by the local reference. The 

spinning matrix is defined when the axis ys is rotating: 
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000
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)(tΩΩ     (5.1) 

 

)(tΩ is the spinning velocity with respect to the global-inertial co-ordinate system XYZ. 

Here, the spinning coordinate system xsyszs does not necessarily rotate at constant speed 
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since the wind velocities acting on the blade exhibit constant variations in time, and even 

height. It is defined the relative (local) displacement components u, v and w of a tapered-

swept cross section located at points xs,ys,zs in the spinning coordinate system (see Figure 

5.3), which are also velocity and space dependent. 

 

 

 
Figure 5.3. Total displacements u, v and w traced on the middle line (center of gravity) of a blade 

element, before and after deflection. 

 

   The longitudinal displacement u, transverse v and transverse w are traced along the axes 

x, y and z, respectively. According to Timoshenko theory for bending [Wang et al. 2000], 

Saint-Venant theory for torsion [Wempner and Talaslidis 2003], and excluding warping 

effects all expressed in local coordinates xyz (see Figure 5.4): 

 

x 

x’ 

y 

z 

y’ 

z’ 

Y,ys 

Z 

xs 

zs 

X 

w 

u 

v 

p’ 

p 

rs = {xs,ys,zs}T 

rs0 = {xs0,ys0,zs0}T 

rsl = {xsl,ysl,zsl}T 
rs0u = rs0+RTu0 

rsu = rs+RTu 

rslu = rsl+RTul 

Undeformed Blade 

Deformed Blade 

Inboard 
End 

Outboard 
End 



 
 
 
 

100 
 

 
Figure 5.4. Relative displacements of a tapered-swept cross section that simultaneously presents 

rotations around three orthogonal axes to simulate geometric curving of the blade element. 
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where u0 is the local displacement vector with no rotations on the cross section, ur is the 

local rotation vector with no displacements of the cross section, ux is the longitudinal 

displacement, vx one transversal displacement, and wx the other transversal displacement 

drawn from the middle line (center of gravity) of the studied cross section, x is the 

rotation around x-axis, x  rotation around y-axis, and x  rotation around z-axis (see 

Figure 5.5). Similarly, coordinates x, y and z are the local reference of a point p that 

belongs to the cross section before deformation. The rotation of this plane affects the 

absolute deflections of the ending axial, bending, and torsion shapes. The same point p’ 

after deformation of the cross-section located at x units from the inboard end, and at any 

given time t, when displacements ux, vx,wx and rotations x , x , x  are applied, will 

exhibit coordinates ),,,,(),,,,( { tzyxvytzyxux T} ),,,( tzyxwz (expressed in local 
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coordinates xyz) [Stoykov and Ribeiro 2013]. Now, let u and us be the deflection vectors 

along the principal beam axes with reference to the local xyz and spinning xsyszs 

coordinate systems, respectively. 

 

 

 
Figure 5.5. Angular ( swept) displacements around three orthogonal axes on the middle line of 

the deflected cross-section. (a) Schematic, (b) swept around xs axis (angle of incidence, twist 

angle or relative pitch angle), (c) swept around zs axis (relative cone angle).  
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   It is said that T} ),,,(),,,,(),,,,( { tzyxztzyxvtzyxuu and the transformation basis 

uRu T
s and sRuu are valid across the blade length, where R is the transformation 

matrix between the spinning xsyszs and the local xyz coordinate systems (see Figure 5.6). 

By definition: 

 

                                             333213

232221

131211

R                     (5.3) 

 

 
Figure 5.6. Direction cosines that conform the base transformation matrix R from spinning xsyszs 

to local xyz coordinate system. 

 

   For a given point rs = {xs,yx,zs}T, before deformation and between inboard and outboard 

ends, there exists a correspondent deflected point rsu governed by the spinning coordinate 
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s . In other words: 
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   In order to compute the inertial forces (virtual work) of a general point p during 

rotation, it is necessary to determine the expression for the absolute velocity with respect 

to the inertial (fixed) coordinate system XYZ. Hence: 

 

              
susus Ωrrv         (5.5) 
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where uRurr T
sssu  given 0rs . Similarly: 
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where superscript . means differentiation with respect to time, whereas xxxxxx wvu ,,,,,  

and x  are evaluated at the same cross-section of rs at a distance x along the middle line 

from the inboard end, at a given time t. The first vector term of Equation (5.7) is known 

as the relative velocity, whereas the second is the gyroscopic (Coriolis) velocity. 

Computing now the product vs
Tvs controlled by the spinning coordinate system: 
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Noting that IRRT  and 2T ΩΩΩ  provided that: 
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For small displacements and small rotations the approximate identities xxsin , 

xxsin , xxsin , 1cos x , 1cos x and 1cos x  are adopted. Local velocity 

vector will take the form [Stoykov and Ribeiro 2010]: 
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5.2.2  Shape Functions 

 

For instance, local velocity vector can be expressed as dNu d , where: 
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Geometric dN  is the local-velocities shape matrix, and d  is the velocity vector along the 

neutral axis, as a function of time t and distance x, all governed by the local coordinate 

system. Similarly dNu d  and, 
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where dN  is the local-displacements shape matrix, and d  is the displacement vector 
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along the neutral axis. The displacements of the blade neutral axis can be expressed in 

terms nodal coordinates, stating that Nqd , qNd , NqNu d  and qNNu d , where 

q is the vector of generalized displacements and q  is the vector of generalized velocities. 

By definition T
0 },{ lqqq and T

0 },{ lqqq  where q0 are the generalized displacements at 

the inboard end T
0000000 },,,,,{ wvuq , and ql are the correspondent generalized 

displacements at the outboard end T},,,,,{ lllllll wvuq . Same logic for 0q  and lq  

where T
0000000 },,,,,{ wvuq and T},,,,,{ lllllll wvuq , all controlled by the local 

coordinate system xyz. Similarly, N is the matrix of shape functions with dimensions 

12x12 defined as [Fonseca and Ribeiro 2006]: 
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where uN , vN , wN , θN , φN and ψN are the shape function vectors for longitudinal along x, 

transverse across y, transverse across z, torsion around x, rotation around y, and rotation 

around z, respectively. Previous shape functions are controlled by the local coordinate 

system xyz, where ls /  is a non-dimensional local coordinate term in synchrony with 

the integration variable s (see Figure 5.2). Shape functions must follow the global 

geometric boundary conditions to correctly account for stress and strain distributions; 

because the developed model is declared for just one finite element, only twelve shape 

functions are needed per vector, one for each degree of freedom the blade element 

consists of (see Figure 5.7). For this study the first two longitudinal and torsional shape 

functions are assumed to be linear functions. On the contrary, the first four transverse 

shape functions are presumed to be Hermite cube functions [Ribeiro and Petyt 1999]. In 
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general: 

 

 
Figure 5.7. Degrees of freedom of the Spinning Finite Element in three orthogonal directions, 

expressed for both ends inboard and outboard. 
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Another viable solution rather more sophisticated is presented by Chhabra and Ganguli 

[Chhabra and Ganguli 2010], who develop super-convergent functions that account for 

centrifugal stiffening effects, and are obtained from governing static homogeneous 

differential equations. Here, the modes that will control the stress distribution are axial 

deformation, in-plane bending, out-of-plane bending, and torsion. 

 

5.3 Lagrangian Equation 
 

   The general expression for Lagrange equations is given by: 
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where T and U are the kinetic and strain energies, Wnc is the non-conservative work and F 

is the generalized force vector corresponding to the absolute deflection u. Kinetic energy 

T, strain energy U, and non-conservative work Wnc, can be defined as: 
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where )(sA , EA(s), A(s), EIy(s), EIz(s), GJ(s) and Fc(s) are the tapered-swept variations 

of mass density, elastic modulus, cross-section area, moments of inertia around y, 

moment of inertia around z, polar moment of inertia around x, and generalized axial 

(centrifugal) force, respectively. As mentioned before, the material presumes an 

equivalent uniform modulus of elasticity for the characterized homogeneous-isotropic 

material. Simultaneously, cu, cv, cw, c , c and c  are damping coefficients for ux, vx, wx, 

x , x , x , respectively. For convenience, both the strain energy U and the non-

conservative work Wnc are expressed in local coordinates, and because the kinetic energy 

quantity is independent from the system of reference it can be conveniently denoted in 

terms of spinning coordinates xsyszs. By definition tWWW ncncnc d/)/(d/δ uu  

where δ  is the variation or the difference between to paths of the non-conservative work 
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for a given time t, can be conceived as a virtual change of configuration occurring at 

constant time, and consistent with the kinematic constraints of the system (otherwise 

arbitrary). In general, the operator δ  follows the same rules as the derivatives but time is 

not included in the equation. The integration variable s sweeping along the blade is 

depicted in Figure 5.2. For tapered cross sections [ibid. Larwood 2009], now expanding 

for decreasing non-linear gradient variations across the span of the blade: 
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where the zero subscript represents the material/geometry property at the inboard node, 

the l subscript term stands for the property at the outboard node, and the integer value nt 

stands for the tapered-swept order or function degree. The wildcard variable )(Γ s  can 

take pairs according to the property to be computed, and can be either one of the studied 

parameters of the cross-section/material properties at location s (0  s  l). Similarly, 

polar moments of inertia of mass Ip0 and Ipl, are defined at the same locations based on 

the gross (effective) section properties of the blade (Figure 5.8). 

 

 
Figure 5.8. Tapered-swept gradient variations of mechanical properties at the inboard and 

outboard ends of a Spinning Finite Element. 
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5.3.1  Kinetic Energy 

 

Expanding the product vs
Tvs towards the integration of Equation (5.16): 
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   The first, second, third, fourth, fifth, and sixth terms of Equation (5.20) are associated 

with mass inertia, spinning stiffness, non-conservative kinetic energy, centrifugal force, 

gyroscopic effect, and spinning force, respectively. The contribution of the blade element 

to the total kinetic energy, calculated by traditional assembly method, is found to be: 
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5.3.2  Strain Energy 

 

   Expressions for the strain energy necessitate derivation of the local displacement vector 

d with respect of the integration variable s. Say qNqNd '/)(/ sss  and

qNqNd ''/)(/ 2222 sss , where 'N [ 'uN , 'vN , 'wN , 'N , 'N , 'N ]T and ''N [ ''uN ,

''vN , ''wN , ''θN , ''φN , ''ψN ]T. For stiffness purposes, there is no need for the displacement 

field u = {u(x,y,z,t), v(x,y,z,t), w(x,y,z,t)}, but instead the displacements on the middle line 

d in the local coordinate system xyz may be used.  In principle: 
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The contribution of the blade element to the total strain energy, calculated by commonly 

known assembly method, is found to be: 
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5.3.3  Non-Conservative Work 

 

   The variation of the non-conservative work term can be integrated by means of the 
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nodal coordinates and shape functions by applying the expanding Hamilton principle to 

each of the damping coefficients of which this energy term is composed. For example, for 

the case of the energy dissipation of the deflection ux it can be seen that 

qNqN uu
x ttu // , 0d/)/(d tux q  and uu

xu NqqNq // ; therefore: 
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Proceeding similarly for the rest of the damped energy dissipation terms are: 
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5.4 Equation of Motion 
 

   Retaking Lagrangian expansion from Equation (5.15) it is possible to apply the nodal 

displacement vector q in two parts q = qss + qns, where qss is the steady-state nodal 

displacement, and qns is the non-steady nodal coordinate oscillating in the close 

proximity of qss. For steady conditions only 0qqqq ssnsns , ssqq  and 0F . 

Now, from the expanded kinetic energy, strain energy, and non-conservative work, it can 

be said that: 
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Lagrange equation can be reformulated by pre-multiplying the absolute displacement 

vector u in a steady-state fashion ssdss NqNu ; in other words: 
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Expanding Equation (5.32) will result in the following: 
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If small oscillation about the steady state is now considered where nsqq , the end result 

of the energy terms will be: 
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   Combining Equation (5.34) with Equation (5.33) and knowing in advance that the non-

steady oscillation resets the Lagrange equation as follows: 
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   Finally, by expanding Equation (5.35) the governing equation of motion that controls 

the tapered-swept blade, including axial-flexural-torsional coupling, is given by: 
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   The term MB is the integrated mass matrix, BG is the gyroscopic (Coriolis) matrix, CB 

the damping matrix, [2GB+CB] is the combined damped gyroscopic matrix, BK is the 

stiffness matrices for non-rotating beam elements, cBK is the stabilizing centrifugal 

stiffness matrix, ΩBK is the destabilizing stiffness spinning matrix, and ][ ΩBcBeB KKK  

is the integrated stiffness matrix, all defined in the spinning coordinate system xsyszs. 

 

5.5 Eigenrealization 
 

   Modal analysis is arguably the most popular and efficient method for solving 

engineering dynamic problems. The concept of modal analysis, as introduced by 

Rayleigh (1877), was originated from the linear dynamics of undamped systems. The 

subject of study of this paper intends to embrace the original concept of orthogonality 

relationship not only over the mass and stiffness, but also over the gyroscopy, as part of 

the mathematical descriptors of the proposed spinning finite element. By definition, 

damping is an influence within or upon an oscillatory system that has the effect of 

reducing, restricting or preventing its oscillations. In physical systems, and for the case of 

free-yaw spinning structures, damping is produced by processes that dissipate the energy 

stored in the oscillation – structural vibration – on one hand, but also throughout the 

gyroscopic (Coriolis) motion, on the other. Real-life systems are however, not undamped, 

but possess some kind of energy dissipation mechanism not well understood as of today. 

In order to apply modal analysis of undamped spinning systems to their damped 

counterparts, it is common practice to assume proportional damping. The damping 

pattern in this study, however, is idealized coupled and non-classical, therefore non-

proportional. This involves investing an extra effort to solve the resulting non-linear 

equations of motion. To this aim, dynamic analysis of Equation (5.36) is rather difficult 

to solve since it contains complex-number eigenvectors due to the skew-symmetric 

nature of the gyroscopic matrix [Meirovitch 1974][Wilkinson 1965]. The so-called 

Arnoldi iterative method [Horn and Johnson 1985] is employed in this analysis to solve 

the generalized eigenvalue problem (see Figure 5.9). Coupling between damping and 
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gyroscopic matrices are described as the main contributors of identified eigenvalue 

divergences [Zheng et al. 1997]. Consequently, the Schur theorem is applied to transform 

the equivalent state-space system of Equation (5.36) into its Hessenberg form by means 

of the so-called B-orthogonal matrix incursion. This is how, by applying Schur 

decomposition, both an upper quasi-triangular and an orthogonal transformation matrices 

are formed to solve for the now uncoupled dynamic system of equations. According to 

Zheng [ibid. Zheng et al. 1997], space integration of coupled/uncoupled super-

convergent shape functions offer the possibility to acquire for damping energy 

quantifiers. For the case of axial-flexural-torsional coupling the damping is evidently not 

classical. Above this, the incursion of the gyroscopic (Coriolis effects) terms will impact 

in a much higher degree of complexity for damping quantification. Indeed, the skew-

symmetric nature of the damped-gyroscopic matrix term of Equation (5.36) forces to 

write a 2nd order differential equation of motion as two sets of first order differential 

equations in order to converge for a practical solution. Consequently, there is a need to 

define the velocity and acceleration, as stated in Equation (5.5) to Equation (5.7), in order 

to solve the resultant governing equations commonly called dynamics matrix. Now, for 

any damped system – classically or non-classically damped – it must be assumed that the 

free-vibration response decays with time and it is expressed as a superposition of 

exponentially decayed sinusoidal displacement series. These series can be expressed in 

complex values that will induce complex mode shape vectors and complex modal 

coordinates. At this point in time, the response equation is a trial function composed by 

periodically decreased real and imaginary parts that can be interpreted as a set of complex 

modal coordinates. The real part of this latter equals n  and the imaginary part equals 

2/12)1(nd  for 1 . By solving the first order differential equations the problem 

now ends up dealing with a two complex-conjugate standard eigenvalue problem. The 

solution to one of these standard eigenvalue problems implies the solution of the other, 

which implies obtaining effective damping ratios. Recall that eigenvectors may be 

arbitrarily scaled, as for the undamped case, the eigenvectors can be more intuitively 

scaled so that the response is purely real or purely imaginary. It is important to underline 
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that the real modes arising from systems with zero or classical damping have nodes, 

which are stationary points at which the structure has zero displacement. In contrast, for a 

complex modal vector there is not always a point on the structure at which the modal 

displacement is zero at all times within a periodic cycle.  
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Figure 5.9. Damped-Gyroscopic Eigenrealization. Adapted from Zheng [Zheng et al. 1997]. 
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   This is why the use of classical damping methods (e.g. Rayleigh damping or Caughey 

damping) is prohibited and also the reason why the calculation of damping ratios are per 

se not self-evident. In the long run, natural frequencies i, damping ratios i , as well as 

physical mode shapes iΦ  are finally obtained tailoring a time-domain analysis of an 

uncoupled system of equations representative of the original damped-gyroscopic system 

with axial-flexural-torsional coupling. 

 

5.6 Numerical Example 
 

   A numerical example is provided in this section to demonstrate the capabilities of the 

proposed theoretical framework. To accomplish this goal, an impulse-type wind blast 

load, an harmonic force of order F = F0 sin(2 nt), and a chirp load have been applied 

individually on each of the six DOFs at the outboard (free) end (see Figure 5.10(a)). All 

specimens are modeled via damped-gyroscopic SFE elements so that the variation 

response, axial-torsional-flexural coupling and structural mechanics can be identified. 

Standard numerical methods (e.g., modified Newton method) for the solution of the 

uncoupled equations of motion have been implemented.  

 

   The concept of coupling percentage is introduced in the discussion only to gain some 

sensibility and awareness on the impact and transcendence of the modal coupling. This 

concept is defined within the computation of the dynamic matrices as the ratio of 

occurrence of coupling terms – or cells – within the equations of motion. As for example, 

0% corresponds to the case of total uncoupling (zero value) of all spinning dynamic terms 

not associated with coupling inside (1) mass modes in MB, (2) damped-gyroscopic modes 

in GB and CB, (3) centrifugal stiffness modes in KcB, (4) spinning stiffness modes in K B, 

and (5) elastic stiffness modes in KeB. For example, super-convergent axial-deformation 

functions g1( ) and g7( ) will be the only terms different from zero in the first row of 

Equation (5.13). By contrast, a scenario with 100% coupling implies that all coherent 

(correlation) terms – or cells – of all dynamic matrices become different than zero and are 

exactly defined as the super-convergent shape functions depicted in Equation (5.14). In 
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other words, super-convergent functions g1( ) to g12( ) will be all different from zero in 

the first row of Equation (5.13). Conversely, a 50% coupling scenario means that only 

half of the coupling strength will be applied to all the correlated (coupled) terms except 

the uncoupled, that rule applies homogeneously to all dynamic model matrices. For this 

case, the super-convergent axial-deformation functions g1( ) and g7( ) will remain the 

same, whereas the remaining terms will be downsized to 0.5g2( ), 0.5g3( ), 0.5g4( ), 

0.5g5( ), 0.5g6( ), 0.5g8( ), 0.5g9( ),0.5g10( ),0.5g11( ) and 0.5g12( ). It is important to 

underline here that the background of this concept does not have any physical 

interpretation as such, nor replaces the original coupling reciprocity of the model, but 

rather is a numerical artifice that serves to earn some knowledge, feeling and 

introspection of the impact of the axial-flexural-torsional coupling in the mathematical 

model proposed. 

 

5.7 Prototype 
 

   A series of wind turbine blade geometries with different tapered-swept variations have 

been modeled to exemplify the characterization of the theoretical framework presented in 

this study (see Figure 5.10(b)). The blades are modeled after those of a realistic turbine 

device exhibiting a start-up wind speed of 3.1 m/s, cut-in wind speed 3.5-4.5 m/s and 

maximum design wind speed of 54 m/s. Rotor speed range is set from 0 to 350 rev/min. 

The hypothetical blade specimen is of length 1.25 m, and assumed 34 kg wind turbine 

mass. 
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Figure 5.10(a). Numerical example of a hypothetical wind turbine blade. (a) Load combinations 

applied at the free degrees of freedom of the outboard end. 
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Figure 5.10(b). Numerical example of a hypothetical wind turbine blade. (b) Tapered-swept 

combination matrix of the hypothetical specimen with four different taper and four different 

sweep degrees; (c) Cross section at inboard and outboard ends. 
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   Blades are characterized after the commercial SH3045 airfoil profile with tapered-

swept variation in geometry, in inertia or both. For elastic, homogeneous and isotropic 

material parameters , E, 0 and G are fixed as constants, whereas in their own domain, 

geometric functions A(s), Iy(s), Iz(s) and J(s) are presumed to be decreasing gradient 

variables of order nt. To illustrate the effect of such tapered gradients, three geometries 

are considered: nt = 0 (constant), nt = 1 (linear), and nt = 2 (parabolic) variations. Material 

properties assigned all along and all across the blade specimen are: 0  1826.873 

kg/m3, E0 = 19305.319 N/m2, and 0  0.33. Geometric properties for the inboard end 

are: d0 = 0.1 m, area A0 = 6.392X10-4 m2, orthogonal inertias Iy0 = 5.453X10-9 m4 and Iz0 

= 3.637X10-7 m4, polar moment of inertia J0 = 3.690X10-7 m4, and mass moment of 

inertia Ip0 = 1.865X10-5 kg*m2. For simplicity purposes and bearing in mind that the 

example is only an academic exercise, all the geometric quantities at the outboard end are 

approximated as a proportion of the inboard end: dl = 0.1 d0, Al = 0.1 A0, Iyl = 0.1 Iy0, Izl = 

0.1 Iz0, Jl = 0.1 J0, and Ipl = 0.1 Ip0. In other words, and rephrasing Equation (5.19), EAl = 

0.1EA0, EIyl = 0.1EIy0, EIzl = 0.1EIz0, GJl = 0.1GJ0, Al = 0.1 A0 and Ipl = 0.1 Ip0. 

Length of blade specimen is l = 1.5 m and yaw eccentricity is taken as Y0 = 0.1 m. The 

effects of varying taper and sweep angles, as described in Figure 5.10(b), are 

investigated. 

 

5.8 Results 
 

   Figure 5.11 depicts response time histories for a fully coupled rotor blade with nt = 0,  

= 150 rev/min, and  = 0.0001 for three different load combinations including blast, 

sinusoidal, and chirp wind loads. Overall, the numerical analysis required a cluster of 

simulations, in a trial and error basis, to be performed using different combinations of the 

damping coefficients cccccc wvu ,,,,,  in order to reach the desirable output damping 

ratios i . According to this set of numerical simulations carried out (i.e. Figure 5.11 and 

Figure 5.12), deflections due to axial, flexural and torsional modes were identified for 

different spinning velocities, damping ratios, geometrical/inertial tapered variations, load 



 
 
 
 

121 
 

combinations, mode coupling intensities and geometrical swept gradient projections. 

Persistent excitations for the axial-torsional mode were observed from numerical 

simulations; but most importantly, a pronounced flexural-torsional mode coupling was 

identified throughout the scope of the numerical analysis, as illustrated in Figure 5.11(a-

c). Similar coupling association has been observed in previous experimental studies 

[Linscott et al. 1981]. Generally speaking, stronger acceleration content occurs for 

coupled systems rather than the uncoupled ones, as stated in [Hansen 2008]. Both lag and 

flap modes are dominant for the half coupling and full coupling cases, as presented in 

Figure 5.11 and Figure 5.12. Figure 5.13 shows the spectral density functions of the 

dominant flap mode using different flexural-torsional coupling mode intensities, where 

0% is the uncoupled case scenario and 100% is a fully coupled rotor blade. It can be seen 

that the first three dominant frequencies exhibit an increasing shift to the right for higher 

tapered-swept order degrees. Similarly, high frequency content associated with heave, 

sway, and torsion coupling, is recognized for nt = 2 and higher.  

 

   Figure 5.14 summarizes the relationship between damping ratio and base shear in the 

chord-wise direction (strong axis) for the same coupling cases described in Figure 5.13. It 

can be observed from Figure 5.13 that free yaw motion reduces the blade bending 

moments and base shears under most operating conditions. The effect of a decreasing 

tapered-swept parabolic gradient variation imposed on the blade specimen greatly 

influences the overall behavior and structural response. In fact, such trends are the result 

of a complex combination between the dynamic load type, its duration, its frequency 

content, the prevailing spinning velocity, the coupling intensity and finally, the tapered-

swept order projected for both the mass and geometry distributions within the blade. 

Numerical results are thrown as they are casted by the algorithm and, in this line of 

thinking, a direct interpretation of the pattern presented in Figure 5.14(c) and Figure 

5.14(d) for 50% coupling percentage is obviously not self-evident. Data suggest that the 

base shear is very sensible to the ratio between the damped-gyroscopic matrix GB+CB 

and the integrated stiffness matrix KB = KcB+K B+KeB. When the overall stiffness tends 

to be large compared to the energy the blade is able to absorb or dissipate this kind of 
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peak jumps lay out. This pattern occurs when dealing with both high spinning velocities 

and high-frequency external loads (e.g. incremental chirp load) at the same time. 

 

   The stiffness distribution of the rotor blades plays an important role on the efficiency of 

the mass distribution, where flexible specimens (higher nt) tend to lessen inertia loads 

towards the tip of the blade. Similar inertia patters has been observed by [Johansen et al. 

2009]. Correlation of the torsion (twist) mode with flap bending and lag bending 

corresponding modes is fairly strong and coherent for low and mid spinning velocities, as 

seen in Figure 5.15 and Figure 5.16. However, flexible elements present complex 

dynamics of the rotor vibrations given a combined pitch and relative cone angles (swept 

degrees). This phenomenon is better illustrated in Figure 5.15 and Figure 5.16 where 

phase time-histories are analyzed for flap bending and torsion modes under a harmonic 

sinusoidal excitation for three different tapered-swept variations. Overall coupling effects 

tend to be stronger on the flap-bending mode rather than the twist (rotation) mode. 

Similarly, Figure 5.17 to Figure 5.19 present flap-mode phase distributions for different 

swept angles x and x  (see Figure 5.5) and for three different tapered-swept orders. It 

can be observed from Figure 5.17 to Figure 5.19 that the cone angle (angle of incidence) 

plays an important role on the influence of yawing. The cone angle improves stability 

around the axis of yaw in the wind rotor. It was also identified that coupled pitch angle 

has a positive influence on yawing. In general terms, and through the observation of 

Figure 5.17 to Figure 5.19, high stresses in rotor blades with imprinted pitch angle occur 

at high wind loads. Similarly, specific blade mass per base turning moment ratio 

increases with a decreasing tapered-swept order, where nt = 0 is the more 

disadvantageous case. It has been observed as well that a decrease in mass density by 

tapered variation (nt = 1, 2, 3) of the cross section, relative to maximum peak deflections, 

implies a substantial reduction of the overall mechanical response without a significant 

impact on the principal flap-wise stiffness. A similar discussion was observed by Kooij 

[Kooij 2003]. Figure 5.20 illustrates the spinning action of the rotor blade versus the 

dominant frequencies of the dynamic model for different coupling-mode intensities. 
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Divergences tend to be more pronounced for uncoupled systems which can result in 

overestimation of the mechanical loads and structural responses for higher modes. By 

observing the performance of the sixteen specimens defined in Figure 5.10(b) it was 

concluded that the model presented in this study demonstrates the suitability of flexible 

rotor blades for high-speed rotors.  

 

   The effects of the gravitational and centrifugal force are observed to be severe with 

respect to the edge-wise and flap-wise bending moments of the rotor blade and can be 

predicted by analyzing the complex-conjugate modal content of the mode (Figure 5.21). 

Centrifugal and gravitational actions are greatly increased when an applied sinusoidal 

wind load equates a spinning velocity, resulting in a high amplification of the dominant 

mode, as has been observed for the acceleration signal in Figure 5.11(c) and Figure 

5.12(c). Superimposed high-frequency signals coming from high-order modes such as 

heave, sway and roll occur in this scenario. Flap-wise bending is mostly dominant when 

impulse and chirp wind loads are applied in the rotating out-of-plane direction, but is 

relatively less serious than other harmonic effects, such as the centrifugal and yaw 

(gyroscopic) motions that are in agreement with observations made by Walker [Walker 

1996]. Also, when high gyroscopic moments occur, the result is high bending moments 

around the rotor pitch axis. Flap-wise and edge-wise bending moments, combined with 

yaw motor bending moments, may affect overall blade stability for low damping ratios 

(i.e. displacement signal in Figure 5.11(c)). In general terms, bending moments are 

relatively large in relation to the section modulus in the innermost blade region, whereas 

coupling loads are minimal in the outermost blade zone (Figure 5.8). Stiffness 

distribution is critical to promote a proper loading distribution for both coupled and 

uncoupled mode cases (Figure 5.13(a-d)). Increased flexibility can be an asset for loading 

reduction but operative deflections must be limited to serviceability restrictions as 

pointed out by Cox et al. [Cox et al. 2004]. 
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                         (a)                                     (b)                                    (c) 

Figure 5.11. Structural response time histories (u = displacement, v = velocity, a = acceleration) 

for a fully coupled rotor blade with nt = 0,  = 150 rev/min, and  = 0.0001 for: (a) blast wind 

load, (b) sinusoidal wind load, (c) chirp wind load. 

 

 
                      (a)                                       (b)                                         (c) 

Figure 5.12. Structural response time histories (u = displacement, v = velocity, a = acceleration) 

of four dominant modes of a rotor blade with nt = 1,  = 0.1,  = 150 rev/min and a chirp wind 

load applied. (a) 0% coupling, (b) 50% coupling, and (c) 100% coupling. 
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                                     (a)                                                         (b) 

      
                                    (c)                                                          (d) 

Figure 5.13. Single-sided amplitude spectrum of flap deflection for different coupling ratios due 

to a sinusoidal wind load,  = 150 rev/min,  = 0.0001. (a) nt = 0, (b) nt = 1, (c) nt = 2, (d) nt = 3. 

 

 
                              (a)                                                             (b) 

  
                                        (c)                                                                        (d) 

Figure 5.14. Damping ratio versus peak base shear on lag mode (strong axis) for different 

coupling ratios. Chirp wind load,  = 150 rev/min, (a) nt = 0, (b) nt = 1, (c) nt = 2, (d) nt = 3. 
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Figure 5.15. Phase and time histories of a fully coupled rotor blade in flap-bending rotation x, 

under an harmonic excitation F = F0 sin (2 nt), F0 = 0.5, n = 1. (a) nt = 2 (parabolic), (b) nt = 1 

(linear), and (c) nt = 0 (constant). 

 

 
Figure 5.16. Phase and time histories of a fully coupled rotor blade in torsional rotation (twist) x, 

under an harmonic excitation F = F0 sin (2 nt) , F0 = 0.5, n = 1. (a) nt = 2 (parabolic), (b) nt = 1 

(linear), and (c) nt = 0 (constant). 
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                                               (a)                                                              (b) 

 
                                                (c)                                                              (d) 

Figure 5.17. (a) Flap-mode phase distributions for different swept angles x and x subjected to 

a chirp wind load,  = 0.0001, nt = 0. (a)  = 0 rev/min, uncoupled; (b)  = 50 rev/min, 

uncoupled; (c)  = 0 rev/min, fully coupled; (d)  = 50 rev/min, fully coupled. 
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                                                  (a)                                                           (b) 

 
                                                  (c)                                                          (d) 

Figure 5.18. (a) Flap-mode phase distributions for different swept angles x and x subjected to 

a chirp wind load,  = 0.0001, nt = 1. (a)  = 0 rev/min, uncoupled; (b)  = 50 rev/min, 

uncoupled; (c)  = 0 rev/min, fully coupled; (d)  = 50 rev/min, fully coupled. 
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                                                  (a)                                                         (b) 

 
                                                  (c)                                                        (d) 

Figure 5.19. (a) Flap-mode phase distributions for different swept angles x and x subjected to 

a chirp wind load,  = 0.0001, nt = 2. (a)  = 0 rev/min, uncoupled; (b)  = 50 rev/min, 

uncoupled; (c)  = 0 rev/min, fully coupled; (d)  = 50 rev/min, fully coupled. 
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                                                   (a)                                                         (b) 

                      
                                                  (c)                                                          (d) 

Figure 5.20. Frequency envelopes for different spinning velocities and different coupling ratios. 

First three dominant frequencies for a wind blast load applied;  = 0.0001. (a) nt = 0, (b) nt = 1, 

(c) nt = 2, (d) nt = 3. 

 

 
Figure 5.21. Compass diagram progression of the a complex conjugate eigenvector associated 

with flap bending mode, drawn for eight different coupling intensities: (a) 25%, (b) 30%, (c) 

35%, (d) 40%, (e) 45%, (f) 50%, (g) 55%, (h) 60%. nt = 3,  = 0.0001,  = 150 rev/min. 
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5.9 Discussion 
 

   Generally speaking, the emphasis of this numerical example is to gain a top level 

parametric view about complex materials and shape variations of wind turbine blades. 

The aim is to illuminate somehow the important structural interactions when the need 

requires an optimal – therefore complex – design on the blade specimens. As observed in 

Figure 5.14, structural mechanics is governing the so-called inboard zone of the specimen 

(where less power is produced but the greatest bending loads are sustained). At the same 

time, deflections rule on the outer 50% of the span as observed by Johansen [ibid. 

Johansen et al. 2009] and confirmed by the outcomes of the numerical simulation (see 

Figure 5.12). As observed in Figure 5.14, and just beyond the blade root area, which is 

typically projected in the industry as a circular cross-section, transition occurs from 

critical mechanical response to critical serviceability response at around 25% span. In this 

region, the load paths are complex and very sensitive to the assorted tapered-swept 

variation. Cox et al. [ibid. Cox et al. 2004] have observed that the surface area per unit 

length in this region is the greatest and subsequently tends to introduce concerns about 

buckling and local deformation effects. Hoogedoorn et al. [Hoogedoorn et al. 2010] 

studied the static aerodynamic response of two-dimensional (2D) wind turbine airfoil 

under varying wind conditions, and concluded that the static aero-elastic effects can 

improve the lift over drag ratio at off-the-range wind speed conditions. This tendency is 

identified by observing the phase plots of Figure 5.17 to Figure 5.19 drawn for high 

spinning velocities and coupling modes where the energy dispersion is simultaneously 

larger for two orthogonal – mutually exclusive – directions (i.e. Figure 5.17(b) or Figure 

5.17(d)). From this perspective, Maheri et al. [Maheri et al. 2007] presented a method for 

coupled design of bend-twist adaptive blades in which the aerodynamic and structural 

designs are treated separately. The evaluation time is reduced by managing coupled-aero-

structure (CAS) simulations of finite element analysis (FEA) separately from the 

aerodynamics. The benefits of this approach are also observed in the proposed study and 

confirm the numerical convenience of the spinning finite element algorithm developed 

here. In this line of thinking, other authors [Lee et al. 2001] have been studied in depth 
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the vibrational characteristics of the Euler-Bernoulli beam theory, and this approach has 

proven successful. In its core, the presented study embraces this methodology aiming at 

accounting for complex dynamics, but now with the inclusion of a novel matrix-based 

tapered-swept variation scheme. 

 

   From a local coordinate system (x,y,z) perspective, free yaw is the only assumed active 

degree of freedom in the inboard element. Certainly, this degree of freedom depends on 

the instantaneous angle of rotation the specimen has at any specific time. When the blade 

is in the horizontal position, the yaw mode (6th DOF) is the corresponding to yaw 

alignment, whereas in a vertical position the roll mode (4th DOF) is the corresponding to 

yaw alignment. Derivation of the damped-gyroscopic matrix controlled by the spinning 

coordinate system (xs,ys,zs) clarifies this apparently physical discrepancy without 

explicitly declare which are the active degrees of freedom in the inboard end. In reality, 

and from a local coordinate stand point of view, all the modes in the inboard end are 

fixed. In contrast, the nacelle/gearbox base joint is where the actual yaw phenomenon 

occurs (see Figure 5.1). For this numerical example, only one finite element was 

employed to reach convergence. This is one of the powerful aspects of the theory 

presented in this paper and one of the main motivations for developing spinning finite 

elements. In this line of thinking, a single finite element is able to collect, summarize and 

perform what several simpler finite elements, concatenated with each other, are required 

to characterize the rotational mechanistic environment the blade is embedded in. To this 

end, the incorporation of inertial/geometrical tapered-swept variations can reduce the size 

of the model greatly, save substantial computational effort which translates into an easy, 

lighter and more efficient scheduling algorithm, suitable for embedded programming, all 

without loose of accuracy and convergence. Generally speaking, the convergence occurs 

very rapidly compared to other methods. In fact, numerical convergence is produced 

almost immediately once the mass, damped-gyroscopic, centrifugal stiffness, spinning 

stiffness and elastic stiffness matrices have been properly established and evaluated. The 

complex-numbers modal analysis can perform rapidly for one, two or even dozens of 

concatenated finite elements. The numerical bottle neck is not due to the number of finite 
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elements accounted for, but rather the construction and implementation of the respective 

equations of motion at each node. 

 

   In general terms, the aerodynamic and structural design practice of rotors for horizontal 

axis wind turbines (HAWT) involves many conflicting requirements that have to be met 

during the design process. For example, maximum performance (power generation), 

minimum loads (structural response) and minimum noise (serviceability conditions) must 

be properly orchestrated to reach a design optimum. Wind turbines operate in very 

different conditions from other rotor systems, ranging from normal variation in wind 

speed to extreme wind occurrences. Optimum efficiency is not obtainable in the entire 

wind speed range, since power regulation is needed to prevent generator burnout at high 

wind speeds. Optimum efficiency is typically limited to a single-design wind speed for 

stall regulated HAWTs with fixed rotating speed. Under this perspective, is possible to 

establish optimization rules for tapered-swept cross section variations with axial-flexural-

torsional coupling. Most of the optimization methods rule maximum energy production 

as the main objective, incorporating off-design performance with none or very few 

constraints on load combinations. These design methods tend to increase the swept area 

of the blade specimen for the same generator size, resulting in larger load patterns on 

tower and rotor-blade systems that exceed the increase in energy yield. For such cases, 

the refinement in the geometric/inertial design as well as the mathematical framework 

adopted for characterization, don’t pay off the effort invested. Therefore, optimum design 

should not be restricted to aerodynamic performance. In most cases, the key factor is the 

minimum cost of energy, defined as the ratio between the total costs from manufacture 

and erection of the wind turbine system and the annual energy production of the 

specimen. Proper cost estimates involve calculation of fatigue loads as well as extreme 

loads on all major components, regardless of the geometric/inertial complexity of the 

blade specimen. Under such arguments, it is possible to establish optimization rules 

where the main objective is to restrict the displacements and rotations (six DOFs) at the 

tip of the blade (outboard end) under certain maximum boundaries, while applying 

imposed constraints (i.e. extreme loads, material Young’s modulus and/or material 
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density). For this scenario only, shape and mass optimization of rotor-blade systems 

reduce the cost of energy ratio compared to otherwise not optimized rotor systems of the 

same size.  

 

   Under these considerations, some design recommendations can be drawn suggesting 

that the tapered ratio is an important parameter, whereas the sweep angle is of less 

importance. Blades generate lift and capture overturning moment from moving air that is 

then dispensed to the rotor as the blades spin in the so-called “rotor plane”. In principle, 

the front or “leading edge” connects the forward-most points of the blade that first hit the 

air stream. The rear or “trailing edge” is where airflow that has been separated by the 

leading edge rejoins after passing over the pressure and suction surfaces of the blade. The 

thickness varies across the platform and the most efficient way to address this variation is 

by tapering. This thickness is the end result of the maximum distance between the low 

pressure suction surface and the high pressure surface on the opposite side of the blade. 

For design purposes, the tapered thickness should account for this differential pressure 

distance. 

 

   Since the speed of the blades relative to air increases radiating out the rotor radius, the 

shape of the blades is typically twisted in order to maintain a generally consistent angle 

of attack at most points. In this sense, the normalized distance outward from the center of 

rotation of the blade, that is occurring along the hub, and blade rotor radius – or percent 

of rotor radius – may be both approximated as the normalized distance radiating out from 

the root of the blade rather than from the center of rotation of the blade. This geometrical 

particularity is properly addressed in the theory presented (see Figure 5.1). For example, 

negative values indicate that the blade is twisted toward stall, whereas positive values of 

twist angle indicate that the blade is twisted towards feather. As a rule of thumb, and for 

design purposes, the twist angle may start with a high positive value inboard and then 

rotate towards stall conditions outboard. This twist variation might be also tapered-swept 

in nature and can be handled correctly by the vibration equations proposed in this paper. 

Vibration noise on the tapered-swept wind turbine depends, in part, upon vortex 
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development at the tip of the blade. Vortex development can be mitigated by minimizing 

the aerodynamic load at the tip of the blade – or tip unloading – typically this is the 

region where the advantage of reducing the exposed area makes its contribution. 

Drawbacks and advantages of such tip unloading can also be achieved by decreasing the 

chord near the tip by means of controlling excessive vibrations, minimizing load bearing 

and maximizing overturning moment. In this line of thinking, adequate projections of 

tapered-swept design variations are always beneficial. 

 

5.10 Conclusions 
 

   This study introduces a spinning finite element model for tridimensional tapered-swept 

blades in rotational motion with modal axial-flexural-torsional coupling. Stress and strain 

fields were based on the Saint-Venant’s and Timoshenko’s theories resigning warping 

effects, shear deformations and large displacements. Numerical algorithms are applied 

according to Newtonian principles to solve for the resultant non-steady dynamics 

equation of motion. It was observed that nonlinear manifestations such as base shear, 

base overturning moment, strain displacements, torsional coupling, and swept effects are 

adequately captured by this methodology, and suitable for flexible rotor blades. It was 

concluded also that divergences are more accentuated for uncoupled systems that tend to 

overestimate the mechanical loads and structural response at higher modes. Centrifugal 

forces have destabilizing effects on the rotor blades, whereas the projected tapered-swept 

gradient variation tends to alleviate the amplitude of the frequencies and inertial forces. 

The amplitude of vibration may vary significantly with respect to the spinning velocity. 

Resonance and harmonic motion can occur with repeated frequently when spinning 

velocities change over time. The gyroscopic effect was revealed by analyzing the 

connection between flap-wise and edge-wise modes under the action of loads applied in 

one direction. Axial coupling is found to be of much less importance when centrifugal 

forces are diminished. The theory proposed here has proven to reduce the size of the FE 

model, with no loss of accuracy and generality, by minimizing the computational effort 

which ultimately translates into an easier, lighter and more practical computer algorithm 



 
 
 
 

136 
 

for model updating and design purposes. Next, Chapter 6 will establish the basis and 

foundations of a probabilistic-based identification model, supported solely by 

experimental random signals collected in situ that will serve to identify the dynamic 

properties of rotor blades. Results obtained from the identification may be concatenated 

along with the formerly established damped-gyroscopic Spinning Finite Element (SFE) 

and, thus, lay the foundations of a model updating numerical machine. 
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Chapter 6. Output-Only Cyclo-Stationary Linear-Parameter 

Time-Varying Stochastic Subspace Identification Method 
 

   Economical maintenance and operation are critical issues for rotating machinery and 

spinning structures containing blade elements, especially large slender dynamic beams 

(e.g., wind turbines). Structural health monitoring systems represent promising 

instruments to assure reliability and good performance from the dynamics of the 

mechanical systems. However, such devices have not been completely perfected for 

spinning structures. These sensing technologies are typically informed by both 

mechanistic models coupled with data-driven identification techniques in the time and/or 

frequency domain. Frequency response functions are popular but are difficult to realize 

autonomously for structures of higher order, especially when overlapping frequency 

content is present. Instead, time-domain techniques have shown to possess powerful 

advantages from a practical point of view (i.e. low-order computational effort suitable for 

real-time or embedded algorithms) and also are more suitable to differentiate closely-

related modes. Customarily, time-varying effects are often neglected or dismissed to 

simplify this analysis, but such can not be the case for sinusoidally loaded structures 

containing spinning multi-bodies. A more complex scenario is constituted when dealing 

with both periodic mechanisms responsible for the vibration shaft of the rotor-blade 

system and the interaction of the supporting substructure. Transformations of the cyclic 

effects on the vibrational data can be applied to isolate inertial quantities that are different 

from rotation-generated forces that are typically non-stationary in nature. After applying 

these transformations, structural identification can be carried out by stationary techniques 

via data-correlated Eigensystem realizations. In this paper, an exploration of a periodic 

stationary or cyclo-stationary subspace identification technique is presented here for 

spinning multi-blade systems by means of a modified Eigensystem Realization Algorithm 

(ERA) via Stochastic Subspace Identification (SSI) and Linear Parameter Time-Varying 

(LPTV) techniques. Structural response is assumed to be stationary ambient excitation 

produced by a Gaussian (white) noise within the operative range bandwidth of the 

machinery or structure in study. ERA-OKID analysis is driven by correlation-function 
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matrices from the stationary ambient response aiming to reduce noise effects. Singular 

value decomposition (SVD) and eigenvalue analysis are computed in a last stage to 

identify frequencies and complex-valued mode shapes. Proposed assumptions are 

carefully weighted to account for the uncertainty of the environment. A numerical 

example is carried out based a Spinning Finite Element (SFE) model, and verified using 

ANSYS® Ver. 12. Finally, comments and observations are provided on how this 

subspace realization technique can be extended to the problem of modal-parameter 

identification using only ambient vibration data. 

 
1.  
2.  
3.  
4.  
5.  
6.  

6.1 Introduction 

 

   Rotating machinery and spinning structures have been positioned in the past two 

decades as emerging technologies for energy mass production. An illustrative example 

for this tendency is the emergence of wind energy-harvesting technologies as a major 

component of the clean energy production mix worldwide over the past years. In order to 

maximize power productivity and minimize operation costs, engineering design 

tendencies are trending toward larger and more slender spinning structures [DLR & 

EREC 2010]. For this reason, spinning-induced response analyses for structural health 

monitoring (SHM) techniques have attracted intensive attention in the structural 

engineering and engineering mechanics communities, specifically in the subspecialties of 

reliability and risk assessment focused on rotor blades and associated mechanisms. Great 

flexibility and slenderness ratio are trademarks of these types of aerodynamic structures 

that are typically treated as flexible dynamic multi-body systems [Lanzafame and 

Messina 2007]. In order to increase efficiency in energy generation and reduce the high 

cost of delivered energy production, it is imperative to incorporate technological 

innovations, such as SHM schemes, that could help to mitigate the risk of failure 

associated with flexible and slender blade/beam elements. Current system identification 

techniques (an integral part of the SHM approach) are partially able to integrate some of 

the peculiarities of the cyclic motion of rotor blade/beam systems in a stationary fashion 

[Bertha et al. 2012]. Most numerical methods and recursive least-squares algorithms 
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[Franklin et al. 2002] [Kuo 1995] are thought to be – and interpreted as – grey boxes AR-

structure type, generally aimed for control applications of gearboxes, break systems, and 

pitch control.  

 

   The task for finding actual modes from induced vibrations generated by the along- and 

across- rotor-dynamic forces exciting the rotor blades is usually not a straightforward 

procedure and has not been tackled effectively in recent times. Some authors have 

proposed to perform transient simulations for further analysis of the dominant modes 

[Svend et al. 2002]. Linear parameter varying (LPV) systems have gained popularity over 

the past years [Verdult and Verhaegen 2002] in topics related to control applications 

based on Kernel methods and separable least squares. Some authors [Lopes dos Santos et 

al. 2007] have treated a bilinear association between the time-varying periodic parameter 

and the state vector as a white Gaussian noise, in order to identify the system using multi-

input/multi-output (MIMO) recursive subspace system identification algorithms. This 

algorithm is based on the Picard method [Hsu et al. 1985] and employs general inputs 

and finite linear Kalman filter to assess the augmented input over multiple iterations. 

Muller [Muller et al. 2000] has demonstrated the need of a linear control algorithm able 

to adapt a schedule scheme to handle in the changes in rotor dynamics throughout time, 

switching from time-periodic model (constant spinning velocity) to linear parameter-

varying (LPV) (changing spinning velocity). Verdult [Verdult 2004] proposed a linear 

parameter-varying state-space model from a set of local linearizations of input/output 

data to studying the out-of-plane bending dynamics of a helicopter rotor blade. That study 

presents a general approach of LPV state-space models capable of dealing with time 

periodic, parametrically varying and nonlinear systems. The author proposes an extended 

identification technique competent for periodic systems, but presents some drawbacks 

due to its high sensibility to the selection of the model structure. For their part, Lee and 

Poolla [Lee and Poolla 1996] developed an identification LPV system using nonlinear 

programming that focuses on the output-error identification, by means of a geometrical 

approach that minimizes the prediction error-based cost function. Some important efforts 

have been made to formulate stochastic subspace identification (SSI) methods using 
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linear periodically time-varying (LPTV) systems. Jhinaoui [Jhinaoui et al. 2012] derived 

a solution using Lyapunov-Floquet transformations to replace the state transition matrix 

by a monodromy matrix, opening thus the possibility of using classical time-invariant 

identification algorithms to solve the linear sequences. A first group of time-varying 

identification methods is based on previous information of the variation patterns of the 

turbine blades [Liu 1997], and employs recursively adaptive algorithms efficient for 

small variations of the rotational dynamics. On the contrary, a second group of time-

varying identification methods utilizes a selected pack of output signals with the same 

time-varying behavior upon which a classical time-invariant algorithm (i.e. ERA-OKID) 

can be applied.  

 

   This paper proposes a LPTV method formulated now for cyclo-stationary systems of 

arbitrary order. A stochastic subspace identification scheme based on linear parameter 

time-varying and covariance-based methods is presented in this study. It uses selected 

combinations of output signals (i.e. absolute accelerations, velocities or displacements in 

three orthogonal directions) to reduce the numerical calculations and achieve numerical 

stability. The methodology presented here is preferably competent for data collection of 

output signals in the in-plane spinning direction, given the sinusoidal frequency content 

dominant in such orientation. A cyclo-stationary Fourier phasor function of finite partial 

sinusoidal content of order s is then introduced to account for the periodic nature of the 

output signals, embedding time-varying linear-parameter system matrices to properly 

characterize the sinusoidal dynamic nature of these mechanical systems within an 

acceptable approximation range. The theory presented is general and suitable enough for 

deterministic and non-deterministic external loads. It is also adequate for smooth 

transitions of the time variations of the spinning velocity, and convenient for the 

identification of both constant and tapered-swept variations of the beam cross section. 

Deviations and insights from the initial assumptions prevailed for random independency 

of noise, among output signals, are also discussed. Difficulties to ensure randomness on 

the loading combination acting along the beams, especially when dealing with specimens 

of short length spinning at high frequencies, always prevail. However, for large 
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prototypes rotating in slow motion and under turbulent flow streams, this approximation 

is acceptable. As a final note, the system identification technique developed in this study 

is majorly inspired by the actual challenges existing in the field of Structural Health 

Monitoring (SHM) applied to rotating machinery and spinning structures. The proposed 

method is also convenient as a numerical tool for applications in the field of sustainable 

energy-harvesting technologies; such is the case of the so-called Horizontal Axis Wind 

Turbines (HAWTs). 

 

6.2 Numerical Model 
 
 

6.2.1 Subspace Realization 

 

Consider a discrete-time state-space model of the form: 

 

                                                
kkkk

kkkk

vDuCxy
wBuAxx 1

        (6.1) 

 

where 1
1

nxxk  is the state vector, 1rxuk  the input vector, 1mxyk  the output 

vector, nxnA  the state transition system matrix, nxrB  the state transition 

controllability matrix, mxnC  the state transition observability matrix, mxrD  the 

state transition output amplification matrix, 1nxwk  the input noise approximated as 

white Gaussian zero-mean random variable, and 1mxvk  is the output noise assumed 

equally white Gaussian zero-mean as well. Here, n is the number of realization states, r is 

the number of inputs, and m is the number of outputs. It is assumed that the stochastic 

process is stationary and the transition state system matrix A is uncorrelated with both 

input and output noises. For the case of rotating machinery and spinning structures, the 

assumption of white Gaussian distribution being as independent of the measured 

excitation tends to be imprecise or vague [Kailath 1980]. In a more critical scenario, 

external power forces that provoke rotational motion should be treated as non-stationary 



 
 
 
 

142 
 

and correlated with input/output noises. For the case of free-gyre based rotational 

structures subjected to, for example, wind blasts, buffeting and gusts, it is important to 

consider the coupling turbulent – therefore non-stationary – environment these structures 

are immersed in. Characterization errors are often crucial for a proper assignation of 

noise, e.g. external turbulent coupled forces are sometimes approximated as constant 

parameters within the sampling time interval from which the data is collected. Moreover, 

the interaction between rotor elements, its supporting structure, and the differences in the 

circulatory pressure violates the assumption of white Gaussian noise stated before [Chen 

1984], consequence of coupling phenomenon and shadowing interaction. Under the 

assumption that these inaccuracies are small, consider an impulse response excitation of 

the form u0 = 1 and uk = 0 for k = 1, 2,…, and assume a clean signal where wk = 0, vk = 0. 

Expanding the state-space system of Equation (6.1) for k states 000  , Duy0x ,

01 Bux , 101 DuCBuy , etc. It can be seen that, in general, DY0 , CBY1 , 

CABY2 , …, BCAY 1k
k , commonly known as the Markov parameters [ibid. 

Kailath 1980]. Consequently, the Hankel matrix Hk-1 is given by [Van Overschee and De 

Moor 1996]: 
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H                   (6.2) 

 

valid for dimensions n  and n  both acting as control/threshold parameters to 

determine the order of the system, whereas the Hankel matrix is of rank n. Similarly, 

Equation (6.2) for the case of state shift k = 1: 
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rmβαα

β

0

x21

32

121

YYY

YYY
YYY

H        (6.3) 

 

Note that Y0 = D is not included in H0. Substituting now the identified Markov 

parameters in Equation (6.3) and decomposing the block Hankel system in a triad of 

matrices using a similarity transformation, then the k-1 order matrix will take the form 

CAOH ˆˆ
1k , where Ô  is expanded as T

x
12 ]   ...       [ˆ

nmCACACACO  and 

rnx
12 ]   ...         [ BABAABBC . Here, Ô  is called the observability matrix of rank 

n and Ĉ  is known as the controllability matrix of the same rank n [Juang 1994]. From 

this point on, and given the uncertainty nature of the data entries referred as inputs uk, the 

stochastic models are conducted through the so-called stochastic subspace using only 

output signals yk characterized with random noise content as stated in [ibid. Van 

Overschee and De Moor 1996]. 

 

6.2.2 Stochastic Subspace 

 

   For the case of a realization with noisy discrete-time output-only data, the state space 

model is a reduced version of Equation (6.1) [ibid. Van Overschee and De Moor 1996]: 

 

                                                  
kkk

kkk

vCxy
wAxx 1

        (6.4) 

 

assuming again a perfect zero white noise scenario wk = 0, vk = 0. The covariance-driven 

block Hankel matrix is constructed by several finite dimensional sub-matrices 

representing the product of shifted Hankel matrices built from correlations of output-only 

system Markov parameters. Assuming that noise intensities are small but not zero, having 

wk 0 and vk 0, let’s reframe an impulse response excitation of the form u0 = 0 and uk = 
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0 for k = 1, 2,… Expanding the state-space system of Equation (6.1) for k states 

000  , vy0x , 01 wx , 101 vCwy , 102 wAwx , 02 CAwy 21 vCw , etc. In 

general, the l number of system Markov parameters of size mxm are derived as mmx0 IY , 

mnx1 CIY , mnx2 CAIY , …, mn
k

k x
1ICAY , being I the identity matrixin order to 

derive the block Hankel matrix is given by [Di Ruscio 2009]: 
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   By definition, and recalling Equation (6.2) and Equation (6.3), T
0HHH k

c
k , where 

T
000 HHHc  is the zero-block covariance Hankel matrix with no shift nor lag in time, 

defined as: 
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Block correlation matrices c
kH  and c

0H , both of size mmx , consist of 

autocorrelations and cross-correlations of the output-only Markov parameters Yk, and 

contain less noise artifacts than the Hankel matrices of Equation (6.2) and Equation (6.3). 

It can be seen that canonical correlation analysis is performed by the product of two 

double infinite matrices that would validate the state sequence of the stochastic model. 
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Simultaneously, parameters  and  are the row and column size of the Hankel matrix 

that depend on the size of the signal (sampling length). Those values must be adjusted 

arbitrarily having in mind that higher ’s and ’s mean bigger correlation matrices, 

which in turn mean more accuracy but greater computational effort. For its part, the 

correlation matrix c
0H  must contain less noise compared to 0H

 

at every transition state 

and throughout the data sampling. Therefore, correlation matrix c
kH  can be easily re-

expressed as TTT
0

ˆˆˆˆ OCCAOHHH k
k

c
k , ckc

k CAOH ˆˆ  where TT ˆˆˆ OCCCc  of size 

nx m, and Ô  is of dimensions mxn. It is important to underline the similarities 

between the k-th Markov parameter BCAY 1k
k  associated with Equation (6.1) and the 

block Hankel matrix c
kH  of Equation (6.5). In both cases there is a product of three 

matrices with the discrete-time transition state matrix of k-th order in between. Thus, the 

reason why a block correlation Hankel matrix must be implemented in to eventually 

compute the Ô , kA , cĈ triad, then solve the stochastic identification problem with 

standard SI methods (i.e. Eigensystem Realization Algorithm (ERA)) by means of 

employing output signals only. A direct solution of this probabilistic based identification 

framework can be achieved by comparing Equation (6.5) and Equation (6.6) with 

traditional numerical schemes for the deterministic case (i.e. ERA/OKID or ERA/DC). 

For this approach, the output covariance matrix, defined as ][E T
kiki yyΛ  of size 

mxm, can be adopted as a good stochastic approximation and may be treated as a block 

correlation matrix of system Markov parameters, similar to the covariance Hankel 

matrices defined in Equation (6.5) and Equation (6.6). A linear array of the output 

covariance terms ][E T
kiki yyΛ  will produce the desired block correlation Hankel 

matrices as follows: 

 



 
 
 
 

146 
 

                                  
mmβαkαkαk

βkkk

βkkk

c
k

x11

132

21

ΛΛΛ

ΛΛΛ
ΛΛΛ

H        (6.7) 

                                      
mmβααα

β

β

c

x11

132

21

0

ΛΛΛ

ΛΛΛ
ΛΛΛ

H        (6.8) 

   Here,  =  due to the fact that correlations are assumed real-positive square matrices, 

whereas in order to obtain a full rank Hankel matrix c
kH  the number of shifts applied to 

must be at least the estimated order of the system divided by the number of output signals 

( mn / ) [Ljung 1987]. Both c
kH  and c

0H  are of size mm x , and must satisfy 

lmm 1212  and nmm . As mentioned before, Equation (6.7) and 

Equation (6.8) are composed by positive real sequences that are obtained directly from 

the output data, with no need of information coming from the state space model. In 

principle, a stochastic stationary process can be ruled by expectation identities among the 

state xk, the output yk, the input noise wk and the output noise vk vectors. Assuming the 

latter two wk and vk as zero-mean white gaussian signals as stated in a previous section, it 

can be proved that [ibid. Van Overschee and De Moor 1996]: 
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   Expected values of the state xk pairs are temporarily assumed constant [Katayama 

2005], where the identity Σxxxx T ][E][E T
ikikkk  of size nxn stands for stationary 

conditions. It is easily reproducible from Equation (6.1) that 

11
21 ... ikk

i
k

i
k

i
ik wwAwAxAx  for initial conditions x0 = 0. The shifted 

expectation of the state vector can be obtained by post-multiplying the latter series 

expansion by xk
T and taking expectations in both left and right hand sides of the state 

vector xk+1, then retrieving the first identity of Equation (6.4), in other words 

ΣAxx i
kik ][E T  of size nxn holds as an identity of the transition state in stationary 

conditions. In parallel, identity terms of the output expectations are defined from shifted 

expectations ikik Λyy ][E T , size mxm, of the outputs where 

0
TT ][E][E Λyyyy ikikkk  is a particular case of the solution at no shift when i = 0. In 

principle, Equation (6.4) is governed by noise vectors {wk} and {vk} that obey 

expectation sequences of covariance matrices defined as follows: 
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     (6.11) 

 

where the term klδ  is the delta of Dirac. The state covariance matrix is assumed constant 

at every state k because the transition state is treated as a stationary process. Q is the 

auto-covariance matrix of the input noise of size nxn, R the auto-covariance matrix of the 

output noise of size nxn, and S the cross-covariance matrix of the input and output noises 

of size nxm. The end goal of this stochastic state-space model is to compute the order n of 

the unknown system by means of a similarity transformation that equates the second-

order statistics of the output of the model with the second-order statistics of the measured 

output. To accomplish this goal, examination of the controllability and observability 

matrices is made through a factorization decomposition of the block Hankel matrix c
0H  

defined in Equation (6.8) [Kameyama and Ohsumi 2007]. Recalling ckc
k CAOH ˆˆ , where 

the observability and controllability expansions for the case of the stochastic system 



 
 
 
 

148 
 

identification problem are modified to the block series T
x

12 ]  ...        [ˆ
nmCACACACO  

and ...         [ˆ 2IAAIICc
mnx

1 ]  IA . Applying singular value decomposition (SVD) to 

the non-shifted block Hankel matrix cc COH ˆˆ
0 : 
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where nΣ  groups the largest non-zero n singular values (user defined order of the 

system) from c
0H , whereas sΣ  is the complementary matrix containing the dismissed 

information. The same rule applies for the left-singular vectors Rn and Rs as the 

eigenvectors of the notable product c
0H

T
0
cH , whereas Sn

T and Ss
T operate as the 

counterpart eigenvectors of the T
0
cH c

0H  product. Both Rn and Sn
T are shaped by the 

primary n dominant columns and it can be observed that the observability matrix Ô  is 

related to Rn, while the controllability matrix Ĉ  is associated with Sn
T. A balanced 

choice of the SVD product of Equation (6.12) would be 2/1ˆ ΣRO n  and T2/1ˆ
nSΣC . 

Consequently, c
kH  can be expanded for k = 1 as T2/12/1

1 nnnn
c SAΣΣRH , and solution 

of the triad ckCAO ˆˆ  is: 
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Up to this point, no cyclo-stationary effects have been induced yet, and the question 

raises on how a cyclic induced motion could be filtered out from contaminated – noisy – 
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output-only random signals, then ensure a description of the output signal content 

associated exclusively to the structural performance of the spinning structure. 

 

6.2.3 Cyclo-Stationary Stochastic Subspace 

 

   Consider an unknown cyclic noisy stochastic system represented by the state-space 

realization using outputs only, as a special case of Equation (6.1) (see Figure 6.1), 

rewritten as follows [Lopes dos Santos et al. 2005]: 

 

 
Figure 6.1. Rotating beam element under stochastic subspace identification using output signals 

only, and governed by a cyclo-stationary time-varying motion (t). 
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where A  and C , of order nxn and mxn, respectively, are unknown stationary state and 

observation matrices variable in time and of periodic nature, whereas A0 and C0 of sizes 

nxn and mxn as well, represent the non-cyclo-stationary dependent state and observation 

matrices. To obtain the unknown cyclo-stationary dependent system matrices A  and C
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, it is convenient to establish first a linear parameter time-varying system (LPTV) [Tóth 

2008], which can be induced as a linear system sinusoidal series containing system 

matrices, as a function of a known time-varying parameter vector. For the case of 

rotational structures and spinning machinery, a so-called cyclo-stationary operator 

))(( kp  is proposed to appraise the incidence of the spinning contribution to the rotor-

structure modal dynamics, according to a stochastic stationary identification model. In 

this way, the stochastic state-space will be a function of the time-varying spinning 

velocity (k) for k = 0,1,2,… states of the rotary system. For this study, an expansion of 

the state-space representation of Equation (6.14) takes the form [ibid. Lopes dos Santos et 

al. 2005]: 

 

                                    kk
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kk
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pp
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1
01

]  [

]  [

    (6.15) 

 

where s
i skisickici pp1 ]  [ AAA  and s

i skisickici pp1 ]  [ CCC , pcki = cos(i (k k) and pski = 

sin(i k k). Therefore, ]  [10 skisickici
s
i pp AAAA  is the combined cyclo-

stationary and linear parameter time-varying state-transition matrix; whereas 

]  [10 skisickici
s
i pp CCCC  is the combined cyclo-stationary and linear parameter 

time-varying observation matrix. Matrices Aci and Asi of order nxn each can be 

interpreted as cyclo-stationary cosine and sine transition matrices for the linear parameter 

i = 1,2,…,s. In equal circumstances, Cci and Csi of order mxn each are the corresponding 

cyclo-stationary cosine and sine observation matrices. The series dimension s is an 

arbitrary number that depends on the complexity and the order of the rotational system. Is 

a user defined value and the selection of the model structure is critical in terms of 

computational effort. A trade-off must be analyzed to balance complexity and accuracy 

according to the state size n [ibid. Kailath 1980]. For rotor elements with constant cross-
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section as illustrated in Figure 6.1, the state dimensionality s can take small values (i.e. 

12m DOF’s), whereas for higher order tapered-swept variations of geometry and inertia s 

becomes larger. The state-space relations of Equation (6.15) may also be expanded in the 

form: 

 

                                 
kkskpskckpckk

kkskpskckpckk

vxpCxpCxCy

wxpAxpAxAx

}{}{

}{}{

0

01
    (6.16) 

 

where ]  ...    [ 21 csccpc AAAA  of size nxsn, and ]  ...    [ 21 ssssps AAAA  of size nxsn, are 

the cosine and sine blocks of the linear parameter time-varying state matrix, respectively. 

The same illustration can be made for ]  ...    [ 21 csccpc CCCC  dimension mxsn, and 

]  ...    [ 21 ssssps CCCC  size mxsn, as the cosine and sine blocks of the linear parameter 

time-varying observation matrix. The cyclo-stationary cosine-driven vector is described 

by T
21 }{ cksckckck p ... p pp size sx1, whereas the associated cyclo-stationary sine-driven 

vector is defined as T
21 }{ skssksksk p ... p pp  with size sx1. System matrices A0 and C0 

are non-cyclo-stationary in nature, and are presumed constant throughout the analysis. 

The operator  is known as the Kronecker product formulated as 
T

21 }{ kckskckkckkck ppp xxxxp or T
21 }{ kskskskkskksk ppp xxxxp , 

both of size snx1. A block diagram of the Markov model is depicted in Figure 6.2. Given 

pck and psk as periodic functions – and therefore stationary – with covariance matrices 

[Rpcck]sxs and [Rpssk] sxs, and cross-covariance matrix [Rpcsk]sxs, being pck and psk 

independent of xk (i.e., 0][E ;0][E skck pp ); two cyclo-stationary products of size snx1 

can be written as kckck xpz  and ksksk xpz . The expectation of such products 

is the expectation of either pck and psk. In other words, ][E][E kckck xpz  

0xp ][E][E kck  and ][E][E ksksk xpz 0xp ][E][E ksk . The covariance 

matrices for the cyclo-stationary products zck and zsk can be expanded as a lag expectation 

that takes the form ][E][ T
1x ckckzcck zzR snsn }]{ }  [{E T

1
T

1 kckkck xpxp
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][E T
1ckckpp ][E T

1kk xx . Then ΣRR pcckzcck  for (k,k) pairs and 0R zcck  for 

(k,k+i) pairs. Here, ][E T
ickckpcck ppR  is interpreted as the cyclo-stationary cosine 

covariance matrix, Rzcck is the cyclo-stationary state covariance matrix of the cosine 

block, and Σ  is the state covariance matrix as defined previously. Proceeding similarly 

for [Rzssk]snxsn, the cyclo-stationary sine covariance matrix is operated as 

][E T
iskskpssk ppR  and follows the same rule as for Rpcck. Therefore, it is said that zck and 

zsk are cyclo-stationary processes of the state xk with variance ΣR pcck  and ΣR pssk , 

respectively. Furthermore, it can be shown [ibid. Lopes dos Santos et al. 2005] that the 

noise expectation of zck is ]][ [E][E TT
kkckkck wxpwz ]][ [E T

kkck xwp  

0][E][E T
kkck wxp . In the same fashion, 0wz ][E T

ksk , 0vz ][E T
kck  and 

0vz ][E T
ksk . Taking now the expected value of the product xk+1xk+1

T from the first 

relation of Equation (6.16), and applying general properties of the Kronecker products 

and expectation outcomes subscribed in Equation (6.9) and Equation (6.11), combined: 

 

 
Figure 6.2. Block diagram of a cyclo-stationary stochastic subspace system with time-varying 

linear parameters Apc, Aps, Cpc, Cps. Symbol Δ  stands for delay. 
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Proceeding now in a similar fashion as Equation (6.17), now for the auto-covariance of 

the outputs: 
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               (6.18) 

 

Defining the one-shifted cyclo-stationary gain from Equation (6.16) as: 
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    (6.19) 

 

whereas the i-shifted cyclo-stationary gain version of Equation (6.19) is computed as 

follows: 
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   (6.20) 

 

Retaking the output covariance matrix definition of Equation (6.18), now shifted by i 

states. 
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    (6.21) 

 

The next logical step would be to apply any output-only stochastic method to solve for 

the triad nmx0 ][C , 1
x0 ][ i
nnA , and mnx][G  from Equation (6.21) (i.e., forward innovation 

stochastic identification algorithm [Van Overschee et al. 1991]). A direct solution of the 

stochastic cyclo-stationary linear parameter time-varying identification framework can be 

achieved by comparing Equation (6.21) with the stochastic subspace skim presented in 

Section 6.2.2. Solution of the triad GAC 1
00

i  will follow a similar scheme as that of 

Equation (6.13), but now removing  shifted lags in the form :),:1(ˆ
0 mOC  and 

):1(:,ˆ mCG  . In other words: 
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   Once the subspace realization has been consolidated, the cyclo-stationary effects of the 

system can be disassembled by first, picking either the velocity profile from the output 

channels in the frequency domain (i.e. Fast Fourier Transformation: FFT), or supplying 

information by the user, then assigning (k) as a time-varying local parameter. It is 

important to note that the spinning velocity (k) time history does not necessary has to 

be constant over time, but it should be able to be represented by a smooth transition curve 

from one velocity to another. This limit is a requirement for keeping consistency and 

validation of the mathematical framework presented in this study. For instance, the 

calculation of the total transition system matrix A and total observability matrix C, from 

the forward innovation stochastic identification solver, will serve to draw conclusions of 

the actual order of the system. Further down in the analysis, the computation of the 

sinusoidal correlation matrices Rpcck and Rpssk will occur based on the actual value of 

(k) at step k = 1,2,…. The final procedure would be computing Apc, Aps, Cpc and Cps 

provided that these are the cyclo-stationary state and observation matrices to be filtered 

out from the inherent structural loading dynamics. Simultaneously, selection of the 

magnitude of the control parameter s will be in accordance to the complexity of the 

model as explained before (i.e. s:= 12m for constant cross sections (less accuracy), s:= 

24m for linear variation (middle accuracy), s:= 36m for parabolic tapered-swept gradient 

variation (higher accuracy)). Quantification of external noises wk and vk, as may well be 

based on the difference between real and predicted states of the system (real + noise = 

predicted), as described in the following section. 

 

6.2.4 Prediction and Residual States 

 

Knowing that the bilinear terms zck and zsk are cyclo-stationary white noise processes, 

uncorrelated with wk and vk, the cyclo-stationary stochastic model of Equation (6.16) can 

be rewritten in the form: 
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kskpsckpckk

kskpsckpckk

vzCzCxCy
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     (6.23) 

 

   For the sake of the stability and convergence of the numerical algorithm, consider a 

cyclo-stationary Kalman filter with predicted state kx̂ of the linear form [Grewal and 

Andrews 1993] (see Figure 6.3): 

 

                    

]ˆˆˆ[ˆˆˆˆ 001 skpsckpckkkskpsckpckk zCzCxCyKzAzAxAx    (6.24) 

 

 
Figure 6.3. Kalman filter block diagram of a cyclo-stationary stochastic subspace system with 

time-varying linear parameters Apc, Aps, Cpc, Cps. Symbol Δ  stands for delay. 

 

where expected noises are zero all and [Kk]nxm is the Kalman gain, valid when the noise is 

canceled out as a result of the filtering action of the feedback quantity, known as the 

innovation term. Similarly, as stated for the cyclo-stationary products zck and zsk, the 

corresponding predicted states are also cyclo-stationary and are computed as 

]ˆ[ˆ kckck xpz  and ]ˆ[ˆ ksksk xpz  with both dimensions snx1. Now, from Kalman 

filter theory [Kalman 1960], the innovation term should be uncorrelated with kx̂ , ckẑ  

and skẑ . Residual white noise processes can be described as kskpsckpcnk wzAzAw ~~}~{ 1x  

and kskpsckpcmk vzCzCv ~~}~{ 1x . They can be interpreted as a cyclo-stationary process and 
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measurement residual noises, respectively, of the linear time-varying model of the LPTV 

system. Residual cyclo-stationary states are given by the difference between real and 

predicted quantities ckckck zzz ˆ~  }ˆ{}{ kckkck xpxp  and sksksk zzz ˆ~

}ˆ{}{ kskksk xpxp , both size snx1 where the residual state is computed kkk xxx ˆ~ , 

known as the sinusoidal state estimation error. Both kx~  and kx̂  have to comply with 

orthogonality  principle by assuming elimination or reduction of noises wk and vk. 

Redefine now snnpspc 2x]    [ AAA , snmpspc 2x]    [ CCC  and 1x2}ˆ{ snkz T}ˆ  ˆ{ skck zz . 

Under stationary conditions, the cyclo-stationary residual state T
1x2 }~  ~{}~{ skcksnk zzz  is 

a white noise process due to the fact that pck is also white noise, and the same rule of 

orthogonality  applies for the kz~ , kẑ  duo. If the cross-covariance matrix is rank 

deficient, then kx~  and kx̂  have to be dependent vectors, and consequently 0xx ]ˆ~[E kk . 

In reality this occurrence is not credible, therefore kx~  and kx̂  are assured orthogonal. 

The same projection applies for kz~  and kẑ  pairs, where 0zz ]ˆ~[E kk . On the other hand: 
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   In order to demonstrate the cyclo-stationary LPTV system, the modified state-space 

relations in Equation (6.23) can be expanded as follows: 
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Reducing terms of Equation (6.26) and applying previous identity definitions: 
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   The LPTV system identification problem of Equation (6.27) is equivalent to the white 

noise driven bilinear system identification problem presented in Equation (6.14), now 

articulated by a feedback Kalman gain. The estimates for the LPTV case A  and C  may 

be obtained by the Picard type Kalman filter chain [Hsu et al. 1985]. At each k-state of 

the chain, and resuming Equation (6.24), the Kalman filter is typed from a predicted state 

as: 

 

                                 

]ˆˆ[ˆˆˆ 001 kkkkkkk zCxCyKzAxAx      (6.28) 

 

where the Kalman gain Kk now changes over time and is presumed cyclo-stationary in 

nature. The idea to ensure numerical stability and integrity of both states xk and zk, based 

on their predicted counterparts kx̂  and kẑ , depends on the ability to compute a feedback 

quantity that could take into account the induced noise at every step, then reduce to its 

minimum. Such quantization is known as the innovation process. 

 

6.2.5 Innovation Model 

 

   In order for the process to converge to 0xx kk ˆˆ 1  as k , the quantity 

kkk zCxCy ˆˆ0  is called the innovation process, {ek}mx1. Define the innovation process 

as ][E kkk yye  where 1x0}{ me ][E 00 yy 00 yy , being 1x0}{ my  the initial 

mean values of the outputs. Also, define 1x00 }{ˆ nxx  as the one step predicted estimate 
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– initial mean value – at launching state k = 0, noting also that by definition ][Eˆ kk xx  

and ][Eˆ kk zz . It can be easily demonstrated that 0e ][E k  and 0ee ][E T
1 kk . 

Hence: 
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where kkk vzCxCy 00 . This is how, from Equation (6.29), the auto-covariance of 

the innovation process is given by: 
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validated whenever the expectation of the cyclo-stationary state error estimation is 

presumed as: 
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  (6.32) 

 

where [Rpk]2sx2s is the total covariance matrix of the periodic funcions pck and psk, 

whereas snsnzk 2x2]
~[R  is the auto-covariance of the residual cyclo-stationary state kz~ . 

Under the understanding that pck and psk are white noise zero mean sinusoidal sequences, 

and being ]~~[E]~[ x kknn xxΣ , ΣRR ~]~[ x pccksnsnzcck , snsnzssk x]~[R ΣR ~
pssk , 

0ΣRR ~]~[ x pcsksnsnzcsk , ][E T
1ckckpcck ppR  and ][E T

1skskpssk ppR . Similar to the 

previously stated expectations, the identities 0vzvx ]~[E]~[E TT
kkkk  provided that vk is 

uncorrelated with pck and psk. It can be easily demonstrated by following similar 

derivations obtained for Equation (6.25), that the expectation 0xz nsnkk x2
T ]~~[E . 

Moreover, the expected value between the state and the innovation process using 

Equation (6.29), the first equality of Equation (6.27), and identities from Equation (6.25): 
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   In order to construct an algorithm that could solve for the unknown quadruple Apc, Aps, 

Cpc and Cps of Equation (6.23), a Kalman filtering scheme must be introduced to generate 

one-step predictions of the state. This piece of information would become valuable 

enough to predict the system in steady-state conditions one step ahead, given an 

input/output noise level, complying with a modified state-space version of Equation 

(6,17) in the form of Equation (6.28) called the innovation model: 
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where )cov( ke TT
000

~~ CRCCΣCΛ zk . 

 

6.2.6 Kalman Filter 

 

   Under the premises described by Equation (6.34) and Equation (6.31), the Kalman gain 

matrix can be inscribed as the product 1TT
1x ][E ][E][ kkkkmnk eeexK ; in other words: 
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Retrieving Equation (6.28) and taking into account that the residual state is given by 

kkk xxx ˆ~ : 
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The expectation of both sides of the previous Equation (6.37) yields 

]~[E]  []~[E 001x1 kknk xCKAx ]~[E]  [ kk zCKA , where ]~[E kx  and ]~[E kz  are of 

dimensions nx1 and 2snx1, respectively. If wk and vk are independent of kx~ , then: 
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Therefore, the state error covariance matrix boils down to the following expression by 

means of Equation (6.17), Equation (6.32) and Equation (6.38): 
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valid for initial conditions 00ˆ xx  and 00
~ ΣΣ . Now, factorizing Equation (6.39) and 

reducing terms: 
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   Remembering covariance definitions ][E T
kk xxΣ  and ][E T

0 kk yyΛ  from Section 

6.2.2, the solution of Equation (6.40) can be treated as an Algebraic Riccati-like Equation 

(ARE) [Faurre 1976]. This relation can be thought of as the covariance matrix of the 

predicted estimate kx  and the residual of the state covariance in the form ΣΣΣ ˆ~
. It is 

said: 
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Assuming both SCRACΣAG TT
00x

ˆˆ][ zkmn  and RCRCCΣCΛ TT
00x0

ˆˆ][ zknn  are 

co-variance matrices computed as predictions product of the prediction state covariance 

Σ̂ , then the Kalman gain of Equation (6.36) and its transpose can be reintroduced as: 
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   It can be seen that the Riccati-like equation converges to a constant covariance matrix 

as k  as ΣΣ~ . Thus, the stationary Kalman gain of Equation (6.36) reaches 

steadiness when: 
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   In order to derive steadiness of the original infinite dimensional problem that Equation 

(6.41) imposes, a recursive optimization solution 1
xx ][][ nnnn ΣΩ  may employed to 
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guarantee convergence by finding a stable maximum Σ  associated with the covariance 

matrices of the system [Bittanti et al. 1991]. 

 

6.2.7 Stationary State Covariance 

 

   Taking the terms associated with Σ  from Equation (6.41), in particular 
TT

00 ARAΣAAΣ zk
T

00 [ ΣCCKk
TT ] kzk KRCRC , then applying Kalman filter 

identities of Equation (6.43), as well as noise covariances presented in both Equation 

(6.18) and Equation (6.19), expressly noise matrices GS TT
00 CRAΣCA zk , or 

TT
00

TT ARCΣACGS zk  and 0ΛR T
00ΣCC TCRC zk . In sum: 
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     (6.45) 

 

   Stable solution of the discrete-time Riccati form of Equation (6.45) involves finding the 

maximum and minimum of an optimal marker 1
xx ][][ nnnn ΣΩ  – therefore 

1
2x22x2 ][][ snsnzksnsnzk RΡ  – with initial conditions 0Ω0  and 0Ρz0 , that evolves 

over time to get kk
ΩΩ lim  and 0ΡΡ zkkz lim  when k , for cyclo-stationary 

zero-mean terms. Expressly, this limit (boundary) pair Ω , zΡ  of the optimization 

matrix Ω

 

 is supposed to be positive definite and is obtained as a modified inverse-

recursive version of the cyclo-stationary LPTV state covariance matrix of Equation 
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(6.45). In other words: 
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   At this point, and once the cyclo-stationary stochastic model has been identified, a 

reconstruction of the output signals {y}mxl ={y1 y2 … yk … y1} can be achieved by means 

of the predicted system Markov parameters as explained in the next section. 

 

6.2.8 Stochastic Cyclo-Stationary System Markovs 

 

   Expanding the innovation model state-space series of Equation (6.35), and recalling 

from Equation (6.15) the  linear – now time-varying – parameter definitions 
s
i skisickicik pp1 ]  [ AAA  and kC s

i ckici p1  [ C ] skisi pC , it can be seen that: 
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A set of trotting states for initial conditions x0 = 0 will derive as 00 ey , 01ˆ eKx k , 

100101 ][ eeKCCy , 11102 ˆ][ˆ eKxAAx k , 0202 [ [ ]  [ ACCy 001 eKA 211 ] eeK . In 

general: 
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where the Toeplitz (noise) matrix, associated with Equation (6.48), is described by an 

arrangement of innovation processes: 
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that solve for the predicted output signals lmlmlmlmprd xxx ][][}{ UYy . Equation (6.48) and 

Equation (6.49) can be truncated to block series of size q < l by just by changing sub-

indexes accordingly. As of now, the only pending task is to determine is the 

reconstruction and identification of noise signals wk and vk, as well as the innovation 

process ek from the covariance and cross-covariance matrices defined in Equation (6.10). 

 

6.2.9 Noise Identification 

 

   Under the assumption of white noise Gaussian distribution, a generation of random 

realizations of a noise vector, take {v}mxl ={v1 v2 … vk … v1} as an example, can be 

achieved by means of diagonalizing the covariance matrix that governs the process, in 

this case R (see Equation (6.10)) [Rybicki and Press 1992]. The objective is to uncouple 

modes that are statistically independent, then select m random Gaussian independent 

variations, of zero mean and unit variance, by finding eigenvalues and eigenvectors of the 

ruling symmetric and positive definite correlation matrix [Rc]mxm. This result can be 

computed from covariance matrix R as follows: 
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where R(i,j) is the (ith,jth) element of the covariance matrix R. Therefore, the signal 

decomposition will be carried out by uncoupling Rc in the form 
T

21  )],...,,(diag[][ φ φR mc , where φ  is an orthogonal matrix acquiesced by the resulting 

eigenvector columns ] ...   [][ 21x mmm φφφφ , and m,...,, 21  are the corresponding 

eigenvalues. Let ] ...   [][ 21x mmm φφφφ  be a vector of l independent Gaussian random 

deviates of zero mean and unit variance. A realization of v will be constituted as: 

 

                                           

vv m
T2/12/1

2
2/1

1  )],...,,(diag[ φ φ       

(6.51) 

 

where v  is any wished baseline mean value, typically 0v . The same procedure can be 

reproduced for input noise vector w and/or innovation process e by engaging 

eigenrealization of Q and R matrices, respectively. Having established a mathematical 

scheme for stochastic cyclo-stationary systems, it is now feasible to propose a recursive 

algorithm for the solution of the cyclo-stationary based system matrices, in specific the 

quadruple Apc, Aps, Cpc and Cps, previously established in Equation (6.16). 

 

6.2.10 Iterative System Identification Algorithm 

 

   The proposed output-only cyclo-stationary linear-parameter time-varying stochastic 

subspace identification algorithm is synthetized in Figure 6.4 and outlined as follows: 

 

Step 0. Set the outputs vector {y}mxl = {{y1}mx1 {y2}mx1…{yk}mx1…{yl}mx1} of dimension  

mxl from experimental data, as well as the spinning velocity time-history vector 

} ...  ...  {}{ 211 lkl ΩΩΩΩΩ x from experimental work including sampling time tΔ , 
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where m is the number of output channels (sensors) and l is the total sampling 

size. Predefine the positive integer parameter s of Equation (6.12) as the LPTV 

dimensionality of the system, remembering that this is a trade-off between model 

accuracy and computational effort.  

 

Step 1. Compute the non-shifted output covariance matrix mmx0 ][Λ  

][E][E T
11

T
kkkk yyyy  and as many as 2 +1 of i-shifted output covariance 

matrices ][E][ T
x kikmmi yyΛ , in order to construct block Hankel matrices c

kH  

and c
0H  articulated in Equation (6.7) and Equation (6.8), respectively. 

 

Step 2. Compute the SVD of c
0H  as stated in Equation (6.12), then solve for the triad 

GAC 00  in accordance to Equation (6.22). 

 

Step 3. Compute the state-space covariance matrix Σ , delineated in Equation (6.45), by 

means of iterative repetitions of the convergent Algebraic Riccati-like Equation 

(ARE) presented in Equation (6.46), in order to ensure a symmetric positive-

definite matrix 1
xx ][][ nnnn ΩΣ . 

 

Step 4. Compute the initial Kalman gain K0 assuming no cyclo-stationary effects have 

been established yet. Employ a reduced version of Equation (6.42), namely 
1T

000
T

00x0 ] [ ] [][ ΣCCΛΣCAGK mn . 

 

Step 5. Generate the initial non cyclo-stationary noise covariance matrices Q0, R0 and S0 

established in Equation (6.11), by trimming out Equation (6.17), Equation (6.18) 

and Equation (6.19) in reduced forms T
000 ΣAAΣQ , T

0000 ΣCCΛR

, and T
000 ΣCAGS , respectively. 
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Step 6. Reconstruct noises and innovation process time histories v, w and e by applying 

the scheme presented in Section 6.2.9, based on the definitions induced in 

Equation (10), for R0, Q0, R0, respectively. 

 

Step 7. Setup initial conditions x0 = 0, 0A0  and 0C0  at initial state k = 0. 

 

Step 8. Compute cyclo-stationary functions T
21 } { cksckckck p ... ppp  and complmentary 

T
21 }{ skssksksk p ... p pp  given pcki = cos(i (k k) and pski = sin(i k k). Obtain 

current kckck xpz  and ksksk xpz  declared in Section 6.2.3. Then derive 

the integrated cyclo-stationary state T
1x2 }  {}{ skcksnk zzz . 

 

Step 9. Assess Rzk similar to the residual cyclo-stationary state covariance matrix set out 

in Equation (6.32), through the calculation of the expected values of the cyclo-

stationary operators {pck} and {psk}, as follows: 
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Figure 6.4. Output-Only Cyclo-Stationary Linear-Parameter Time-Varying Stochastic Subspace 

Identification (CS-SSI-LPTV) algorithm. 
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Step 10. Compute the new Kalman gain Kk using the first expression of Equation (6.42). 

 

Step 11. Compute the one-step forward state prediction by means of the innovation model 

of Equation (6.28), where kẑ  is approximated to zk and kx̂  to xk to get 1ˆ kx  as 

k . 

 

Step 12. Solve for kA  and kC  by means of Equation (6.14) extended to Equation (6.27), 

holding the approximations mentioned in Step 11:  

 

                                                
ttt

ttt

kkkkkkk

kkkkkkk

zvzxCzyC

zwzxAzxA

0

01
                (6.53) 

 

where the operator t stands for the pseudo-inverse. Disassemble directly kA  and 

kC  to obtain linear-parameter system matrices Apck, Apsk, Cpck and Cpsk at each 

step k as augmented in Equation (6.16). The latter LPTV matrices can be 

expanded for the s sinusoidal pair contributions in the form 

]   ...     [ 21 cskkckcpck AAAA  and ]   ...     [ 21 sskkskspsk AAAA  (see Equation 

(6.16)). 

 

Step 13. Compute the total state matrix kk AAA 0  and the total observation matrix 

kk CCC 0  as originally defined in Equation (6.14). 

 

Step 14. Re-evaluate noise covariance matrices Qk, Rk, Sk from to the extent of Equation 

(6.17), Equation (6.18) and Equation (6.19) as TT
00 kzkkk ARAΣAAΣQ , 

TT
000 kzkkk CRCΣCCΛR , and TT

00 kzkkk ARAΣCAGS . 

 

Step 15. Assign k = k + 1. 
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Step 16. Go to Step 8 and repeat recursively until k = l. 

 

Step 17. Reconstruct the model predicted output signal y according to the guidelines of 

the Section 6.2.8, where lmlmlmlmprd xxx ][][}{ UYy  and both Y and U are defined in 

Equation (6.48) and Equation (6.49), respectively. 

 

Step 18. Compare structural properties such as damping ratios, frequencies, mode shapes, 

and participation factors as a function of the resultant noisy-cyclo-stationary 

system matrices A0 and C0 from Step 2, with the corresponding filtered and 

integrated system matrices Ak and Ck, recognized in Step 13. Employ standard 

derivations from discrete to continuous time expressions of the System 

Realization Theory (SRA) [ibid. Kuo 1995] in order to generate spectral 

decompositions of the system matrices A0 or Ak, and compute dynamic 

properties accordingly (see Table 6.1). 

 

Step 19. If desired, and following the same directive of Step 18, compute the weighted 

Modal Phase Collinearity (MPC) and Modal Amplitude Coherence (MAC) 

indexes to distinguish true modes from noise modes [Vold et al. 1982]. The 

MAC can be thought as the dot product between (1) the vector composed of a 

chosen number of time steps of the unit pulse response history associated with a 

mode of the identified model, and (2) the corresponding vector from the pulse 

response data – experimental – used in the identification. In other words, MAC 

index is the theoretical unit pulse response versus its experimental counterpart. 
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6.3 Numerical Example 
 

6.3.1 Prototype 

 

   A numerical model consisting of six degrees of freedom (DOF’s) is presented in this 

section to illustrate the capabilities, strengths and limitations of the proposed cyclo-

stationary linear-parameter time-varying stochastic subspace identification model (CS-

SSI-LPTV). It is composed of an arrangement of six lumped masses with corresponding 

stiffness intensities and damping coefficients, as illustrated in Figure 6.5. Dynamic 

outputs yi, i = 1,2,…,6 from the spinning finite element (SFE) numerical solver [Yunus et 

al. 1991][ANSYS 2011], acceleration, velocity or displacement channels, were treated as 

an output signals – data time histories – for the CS-SSI-LPTV algorithm (see Figure 6.6). 

The model is composed of masses m1 = 2 N*sec2/m, m2 =m3=m4=m5= 1.5 N*sec2/m and 

m6= 1 N*sec2/m; with stiffnesses k1 = 1,800 N/m, k2 = k3 = k4 = k5 = 1200 N/m and k6 = 

600 N/m. Damping coefficients c1, c2, c3, c4, c5 and c6 were subjected to the current 

values of the damping ratio 0.001 0.5 and the dominant static eigen-frequencies i, i 

= 1,2,…,6 of the system. A set of six random concentrated loads at each node are applied 

to exercise the harmonics of the system in spinning motion. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 
 
 

174 
 

Table 6.1. Structural Dynamic Properties from Eigensystem Realization Theory. 
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6.3.2 Results 

 

   Table 6.2 summarizes twelve cases of the multivariable fourth order and Kalman 

filtered stochastic innovation systems for different damping ratios  and for four 

spinning-velocity (t) time histories, including null spinning, constant, linear increasing 

and smooth random variations. Hankel dimension-based parameters were set to q = 500, 

 = 5, 10, 20 and 30. Recognition of the non-zero singular values are typically self-

evident for low damping ratios and smaller (t) magnitudes. Extra pairs of non-zero 

singular values, not associated with the structure, are evident when spinning motion 

overlaps the natural frequencies of the system. Boundaries between clusters of zero and 
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non-zero singular values become less distinct for linear and non-linear variations of the 

spinning intensity, as illustrated in the last two rows of Table 6.2. A better identification 

of computational modes and system modes, for the case of variable spinning motion, can 

be achieved by increasing the size of the Hankel matrix by four times (at minimum) with 

respect to the static and constant speed cases. Table 6.3 illustrates several configurations 

of the so-called stability curves for different structural damping ratios and different 

spinning time histories, for Hankel dimensionality q = 500 and  = 200. Plots are 

presented for 100 different orders n of the system with their corresponding cyclo-

stationary eigen-frequencies. Again, simulations with low damping ratios ( 0.05) are 

better identified compared to highly damped rotating blade systems ( 0.1). The 

differences between the static and the constant spinning cases are minor in terms of 

frequency identification and frequency variation. This fact means the proposed CS-SSI-

LPTV algorithm performs best under controlled cyclo-stationary conditions, when 

constant spinning speed is guaranteed. It is important to underline the relevance that the 

high sampling rate and sufficiently long sampling duration have both on the accuracy of 

the identification when CS-SSI-LPTV is employed. These considerations are imperative 

for non-linear and random – spline like – variations of the rotational speed, as clearly 

stated in the last two rows of Table 6.3, where the spinning-frequency (t) wobbles and 

threads around minimum and maximum rotating speeds. This chart tries to emulate the 

behavior of different identification systems under rotational lows and highs, and exhibits 

how the frequency associated with the spinning motion is filtered out from the solely 

structural system. A numerical effort is highlighted when the CS-SSI-LPTV algorithm 

tries to detach structural high frequency content from the spinning action, producing 

characteristic wave forms that follow the path of motion. Table 6.4 summarizes the 

correlation distribution of a several cases for the auto-covariance matrix Q of the input 

noise wk for the four different structural damping ratios and three different spinning time 

histories, q = 500 and  = 200, n = 12. It can be seen that correlation is good for low 

damping ratios and decreases regularly among modes for higher energy absorption cases. 

Spinning velocity profile plays a role by inducing noise when the slope of the time 

history descriptor is steeper. In other words, sudden changes in speed contaminate the 
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impulse response (Markov chains) of the output signals. A similar pattern can be 

observed for the case of the state covariance matrix  as presented in Table 6.5, q = 500, 

 = 200, and n = 12.  

 

 

 

 

Figure 6.5. Chain-like spinning finite element model governed by a cyclo-stationary time-

varying spinning velocity (t). A preliminary set of six random out-of-plane loads (inputs) were 

imprinted on each node to excite the modal harmonics of the structure. 

 

 

   Correlation among the DOF’s is highlighted for high energy absorption ( = 0.5) in 

static conditions (t) = 0. Therefore, additional data points are needed in order to get 

good estimates of , which in turn is critical to prevent ill-conditioned models by 

achieving positive real matrices of the quadruple 000 ,,, ΛGAC . There is a possibility to 

encounter numerical issues since the estimated finite covariance sequence may not 

positive real. Table 6.6 depicts similar cases for the distribution of the auto-covariance 

matrix R of the output noise vk, again, q = 500,  = 200, and n = 12. Clearly, the 

covariance distributions denote a pattern due to the fact that vk is closely related to the 
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controlled outputs yk. Similar to the general distribution of Q (see Table 6.4), the output 

covariance noise, is more controlled for less damped systems and low spinning velocities 

(t); whereas for either high intensities or/and high variations of (t), the noise 

covariance distribution generates shifted correlation waveforms towards the tip of the 

blade. Similar patterns can be observed for the input-output cross-covariance matrix S, as 

seen in Table 6.7. In order to achieve numerical stability in the solution of the state 

covariance matrix , a set of nit = 100 recursive iterations of the inverse matrix 1ΣΩ  

were made for distinct spinning velocity profiles and damping ratios, using the same 

values for q,  and n as before (see Table 6.8). Plots are generated on the convergence of 

the 12 states associated with the 12th computational DOF (last row) of Ω . Stability in the 

covariance coefficients can be induced at higher states of the system as illustrated. A 

symmetric positive-definite state covariance  is critical for the identification success. It 

can be observed that, for a particular cluster of states xi, as a function of the actual order 

of the system n, the projected values in the associated cells of 1ΣΩ  tend to oscillate 

around a baseline average that, for well conditioned systems, produce the desired 

symmetric positive-definite matrix. The last row of Table 6.8 exemplifies how nonlinear 

changes in the spinning velocity complicate the extraction of a stable state covariance 

matrix, not the case for static systems (first row) or systems with constant spinning 

velocity (second row). Given the cyclo-stationary nature of the state matrix A0 and 

observation matrix C0, numerical convergence is captured more rapidly when the 

spinning velocity changes over time, as observed in the last row of Table 6.8. The cyclo-

stationary phenomenon tends to create more coherence in the computed states, thus 

promoting a faster convergence. Complementary to the covariance matrices analysis, 

Table 6.9 incorporates spectral density functions -1 )( zz i iΛΦ  in the z-domain of 

the six output signals yk in order to illustrate their contribution to the stochastic 

identification of the rotational system. The contribution of the sixth output channel (tip of 

the blade) is relevant for low damping ratios and decreases as the energy absorption 

becomes stronger. For the cases of variable rotational speed, there is a loss of information 

in the frequency content, due to the alignment of modes, that can be associated to the 

effects that the centrifugal force and gyroscopic motion have on the system [Velazquez 
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and Swartz 2012]. This phenomenon impacts directly on the quality of the identification 

of higher modes (high frequencies and damping ratios, as illustrated in Table 6.10, Table 

6.11, and Table 6.12, respectively). For those cases, a comparison of the identified 

dominant modes, frequencies and damping ratios of the system, is achieved versus the 

contended exact solution of the SFE system. In all cases, the spinning velocity 

contribution is filtered out from the structural dynamics. By comparing the last two rows 

of Table 6.11 and Table 6.12, it is seen that systems with both high damping and high 

variable rotational speeds tend to be more difficult to identify. To demonstrate the 

accuracy of the CS-SSI-LPTV algorithm, Figure 6.7 draws four cases of the prediction of 

the output signal at the sixth node y6 versus the corresponding measured channel, for 

different spinning velocity profiles and different damping ratios. Here, q = 500,  = 200, 

n = 12, and each cluster contains five cases that match up, from top to bottom:  = 

0.0001,  = 0.001,  = 0.01,  = 0.1 and  = 0.5. Finally, Figure 6.8 outlines 

computational-time trending curves of CS-SSI-LPTV versus the cyclo-stationary 

transition-matrix coefficient s, for different orders of the system n, and performed for 

three different orders of the Hankel matrix  = 10,  = 30 and  = 50. In all cases q = 

300 and 6000 sample points at t = 0.01 sec were carried out. Comparing numerical 

results from those of the deterministic system identification techniques group, some 

numerical issues related to unstable poles were encountered. The data analysis indicates 

that the identification method presented in this study using cyclo-stationary stochastic 

system identification is sensitive to the application of a transition state dimensionality 

criterion s (i.e., s = 12m, 24m, 36m, etc.). This effect is especially true for the goodness-

of-fit ratio, prediction error, and output noise intensities. Analysis of different combined 

output data pairs showed some numerical inconsistencies and prediction errors at times. It 

is important to note that predicted outputs of sensor devices located in the proximity of 

the outboard end were difficult to characterize for highly damped structures with high 

spinning velocity variability, whereas the ones located in the inboard end were much 

easier to handle presumably due to the larger signal to noise ratios for flexural vibrations. 

Similarly, singular values were pin-pointed with acceptable accuracy whereas unstable 

poles manifested themselves when the block Hankel matrix size was increased. Similarly, 
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the goodness-of-fit ratio of a model depends greatly on properties of the data set used for 

validation such as sampling size, distance from sensor to sensor, independency among 

signals, noise content, smoothness of (t), and energy absorption ratios. Despite the 

integrity of the mathematical framework presented here, numerical stability issues have 

emerged as a result of the high sensitivity of the periodic linear time-varying 

parametrization and sinusoidal cyclo-stationary functions. It is also important to comment 

that the application of coherent external forces to the rotating system produce more 

correlation in the data sets, which translates into a deterioration of the signal content for 

CS-SSI-LPTV identification purposes. As observed in Figure 6.6, cyclo-stationary 

motion is coherent in nature, and coherence becomes stronger as (t) increases.  
 

 
                                        (a)                                                                 (b) 

Figure 6.6. (a) Typical set of outputs yi(t) (input data time histories for CS-SSI-LPTV model) 

adopting velocity signals (m/sec) of the spinning finite element (SFE) model running at constant 

spinning velocity  = 10 RPM. (b) Corresponding spectral density functions. 

 

   Consequently, parameter identification turns out to be difficult in some particular cases, 

and when output signals are picked up in the rotating plane only. Although this research 

has produced some acceptable results, it has also produced several inquiries. A more in-

depth analysis of nonlinear identification techniques may be worthwhile to apply, 

considering now rotational in-plane and rotational out-of-plane combined signals. 
 

 



 
 
 
 

180 
 

 

 

 

 

Table 6.2. Distribution of the Hankel matrix Singular-Value-Decomposition (SVD) values 

employed to define the order of the system n via CS-SSI-LPTV identification method. 
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Table 6.3(a). Stability curves for distinct orders of the system n and for different structural 

damping ratios and three distinct spinning-velocity profiles, by means of the CS-SSI-LPTV 

identification algorithm. 

 

 = 0.001  = 0.01 
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Table 6.3(b). Stability curves for distinct orders of the system n and for different structural 

damping ratios and three distinct spinning-velocity profiles, by means of the CS-SSI-LPTV 

identification algorithm. 
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Table 6.4. Distributions of the auto-covariance matrix Q of the input noise wk, for different 

structural damping ratios  and for three different spinning velocity time histories (t). 

Q  = 0.001  = 0.01  = 0.1  = 0.5 
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Table 6.5. Correlation distributions of the state covariance matrix  for different structural 

damping ratios  and for three different spinning velocity time histories (t). 
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Table 6.6. Distributions of the auto-covariance matrix R of the output noise vk, for different 

structural damping ratios  and for three different spinning velocity time histories (t). 

R  = 0.001  = 0.01  = 0.1  = 0.5 
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Table 6.7. Distributions of the cross-covariance matrix S of the input/output noise pair wk and vk, 

for different structural damping ratios  and for three different spinning velocity time histories 

(t). 

S  = 0.001  = 0.01  = 0.1  = 0.5 
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Table 6.8. Recursive nit = 100 iterations of the state-covariance inverse matrix 1ΣΩ  aimed to 

reach stationary conditions of the covariance matrices, for different structural damping ratios  

and for four different spinning velocity time histories (t). 
1ΣΩ   = 0.001  = 0.01  = 0.1  = 0.5 
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Table 6.9. Spectral density functions )(zΦ  of output signals yk for different structural damping 

ratios  and for four different spinning velocity time histories (t). 

)(zΦ   = 0.001  = 0.01  = 0.1  = 0.5 
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Table 6.10(a). Comparison of the identified first three dominant modes of the system computed 

for different structural damping ratios  and different spinning-velocity time histories (t). CS-

SSI-LPTV identification algorithm is benchmarked with the exact solutions from SFE. 
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Table 6.10(b). Comparison of the identified first three dominant modes of the system computed 

for different structural damping ratios  and different spinning-velocity time histories (t). CS-

SSI-LPTV identification algorithm is benchmarked with the exact solutions from SFE. 
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Table 6.11. Comparison of the identified dominant frequencies of the system computed for 

different structural damping ratios  and different spinning-velocity time histories (t). CS-SSI-

LPTV identification algorithm is benchmarked with a standard procedure (non cyclo-stationary) 

of Stochastic ID, and with the exact solutions from SFE. 
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Table 6.12. Comparison of the identified CS-SSI-LPTV damping ratios versus SFE structural 

damping ratios  at different spinning-velocity time histories (t). 
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                                    (a)                                                                     (b) 

Figure 6.7(a)(b). Measured vs prediction of the output signal of the sixth node y6 for different 

spinning velocity profiles (t). For each cluster (a) null or (b) constant spinning velocity, 

simulations with five damping ratios are computed, from top to bottom,  = 0.0001,  = 0.001,  

= 0.01,  = 0.1 and  = 0.5. 

 

     
                                    (c)                                                                     (d) 

Figure 6.7(c)(d). Measured vs prediction of the output signal of the sixth node y6 for different 

spinning velocity profiles (t). For each cluster (c) linear or (d) smooth random spinning 

velocity, simulations with five damping ratios are computed, from top to bottom,  = 0.0001,  = 

0.001,  = 0.01,  = 0.1 and  = 0.5. 
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                                          (a)                         (b)                         (c) 

Figure 6.8. Computational time versus cyclo-stationary transition-matrix coefficient s, for four 

distinct orders of the system n, via CS-SSI-LPTV algorithm. (a)  = 10, (b)  = 30 and (c)  = 

50. 

6.4 Conclusions 
 

   This paper presented a proposed approach for identifying modal properties of spinning 

beam structures with varying spinning velocities for rotating machinery and spinning 

structures models. In general terms, identification of the cyclo-stationary effects was 

successful with some reservations and constraints on the numerical precision and 

numerical stability for both prediction of input/output noise distributions and innovation 

processes, and the assurance of a symmetric positive-definite state covariance matrix. 

The proposed stochastic subspace identification with time-varying linear parameters 

method was implemented using numerical verification data sets to explore its 

dependencies on features such as spinning velocity variation, noise level, damping, and 

input frequency content. The analytical framework has proven numerically feasible when 

there is consistency and smoothness of the time-varying non-stationary spinning 

velocities. Further analysis must be performed to better characterize the effects of zero-

mean white Gaussian input/output noise approximations, and discussion must be 

contended for an optimized algorithm architecture suitable in practical applications such 

as automated, embedded system or in wireless sensor networks. Following, Chapter 7 

establishes the basis of an iterative numerical method for updating the rotor-blades 

structural model, based on both canonical Adaptive Simulated Annealing (ASA) and 

complex-conjugate Modal Assurance Criterion (MAC). This numerical machinery will 

link the principles of Spinning Finite Element, previously established in Chapter 4 and 

Chapter 5, with the experimental probabilistic identification skim presented in here, in 
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such a way that the objectives of the Thesis document can be fully crowned. 
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Chapter 7. Model Updating via Adaptive Simulated Annealing 
 

   Rotational machinery such as Horizontal Axis Wind Turbines (HAWTs) exhibit 

complex and nonlinear dynamics (e.g., precession and Coriolis effects, torsional 

coupling); and are subjected to nonlinear constrained conditions (i.e., aeroelastic 

interaction). For those reasons, aeroelastic and computer-aided models reproduced under 

controlled conditions may fail to predict the correct non-stationary loading and resistance 

patterns of wind turbines in actual operation. Operational techniques for extracting modal 

properties under actual non-stationary loadings are needed in order to: improve computer-

aided elasto-aerodynamic models to better characterize the actual behavior of HAWTs in 

operational scenarios, monitor and diagnose the system for integrity and damage through 

time, and optimize control systems. For structural health monitoring (SHM) applications, 

model updating of stochastic aerodynamic problems has gained interest over the past 

decades. A probability theory framework is employed in this study to update a HAWT 

model using such a stochastic global optimization approach. Structural identification is 

addressed under regular wind turbine operation conditions for non-stationary, 

unmeasured, and uncontrolled excitations by means of Stochastic Subspace Identification 

(SSI) techniques. This numerical framework is then coupled with an adaptive simulated 

annealing (ASA) numerical engine for solving the problem of model updating. Numerical 

results are presented for an experimental deployment of a small HAWT structure. 

 

7.1 Introduction 
 

   The aim of structural health monitoring (SHM) is to identify and characterize damage 

in structures from operational data [Farrar and Worden 2012]. In many SHM 

applications, the presence and characterization of damage is informed by comparing 

measured behavior to models of expected behavior. To rectify these two sources of 

information, combinatorial optimization is an important tool and consists of a set of 

problems that are necessary in many engineering disciplines, not just SHM [Imregun and 

Visser 1991]. Research in this area aims to develop efficient techniques for finding 

minimum or maximum values of some function of independent variables [Mottershead 
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and Friswell 1993], usually called the cost function or objective function, that represents 

a quantitative measure of the “goodness” of a complex system realization. The cost 

function depends on the detailed configuration of the many parts of the system. A major 

goal of this approach is to identify an optimal model that represents the system by 

minimizing this cost function. All exact methods known for determining an optimal route 

require a computational effort that increases exponentially with the number of 

independent (target) variables n. Model updating using Simulated Annealing belongs to a 

large class of NP-complete (nondeterministic polynomial time complete) problems, 

which has received extensive attention in the past years [Davis 1987] due to its ability to 

discriminate between a global minimum from many local minima in a stable and 

relatively efficient manner and its demonstrated capacity for parallelization in wireless 

sensor networks [Zimmerman and Lynch 2009], which is a useful technology for 

monitoring the so-called Horizontal Axis Wind Turbines (HAWT) systems [Swartz et al. 

2010][Song et al. 2013]. 

 

   In this study, a model updating approach for use with a dynamic vibrational model of 

operational wind turbine blades, suitable for SHM, and based on simulated annealing is 

proposed. Analytical models of wind turbines are usually managed by standard Finite 

Element Methods (FEM) and often neglect spinning dynamics [Mares and Surace 1996] 

which creates problems for model updating algorithms. In addition, nearly all commonly-

used modal identification methods are based on the assumption of viscous (linear) 

damping. Damped-gyroscopic systems such as wind turbines are an exception and must 

be modeled to account for both gyroscopic damping and complex mode shapes. Typical 

outputs of modal identification algorithms of this kind of system are eigenfrequencies, 

complex-mode pairs, and modal damping. This study will details the steps required to 

extract these parameters from operational wind turbine vibrational data via cyclo-

stationary stochastic subspace identification and use them to update novel spinning finite 

elements that can form the basis of an SHM model. A new variant of Adaptive Simulated 

Annealing (ASA) is implemented to optimize for rotation speed of the rotor blades. This 

numerical engine is tested using several objective functions via eigensystem Realization 
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Algorithm (ERA) first, then Stochastic Subspace Identification (SSI) as the prime modal 

analysis technique. 

 

   The ERA algorithm allows to identify a state-space model of the structural system 

under some uncertainty of measurement noise based on the Least Squares (LS) approach 

[Juang 1994]. In contrast, Stochastic Subspace Identification (SSI) employs Markov 

models to simulate stationary stochastic process, associated with a covariance matrix, to 

identify the state-space system [Katayama 2010]. ERA is based on rendering a minimum 

model order realization in the absence of noise and can be very suitable for complex 

structures such as HAWT wind turbines. SSI renders a minimum stochastic realization by 

using the deterministic realization theory and linear matrix inequality (LMI), contended 

by the state covariance matrix. ERA state-space realizations are relevant to modal testing 

because the first-order form descriptor enhances linear system behavior with, either 

classical, or non-classical damped structural dynamics. Conversely, SSI derives a first-

order form descriptor of valid stochastic state sequences with a finite number of output 

measurements as inputs, treating either classical or non-classical damping by assuring a 

positive definite covariance matrix. The next section of this paper discusses relevant 

considerations of the ERA and SSI methods to compute eigenfrequencies and 

eigenvectors and realize relevant real modes from extracted complex modes. The 

following section describes the general approach of a novel Spinning Finite Element 

(SFE), reframed for high order tapered-swept variations of the blades cross section. Some 

guidelines that are required to compute the eigenrealization of damped-gyroscopic 

systems are discussed and the alternative solutions are proposed to handle complex 

frequencies and complex modes that result from the low-order state-space representation. 

These results should be consistently equiparable with the values driven by both ERA and 

SSI. 

 

   Having identified the basic elements to conform the SFE model updating, the complex-

domain modal assurance criterion (MAC) is presented as a means of quantitatively 

comparing the mode shapes realized from the mechanics-driven and the data-driven 
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models, and weight coefficients, required to ensure convergence of the numerical 

optimization algorithm via Adaptive Simulated Annealing (ASA), are defined. In 

addition, the thermodynamic equilibrium basis of the ASA is delineated for adapting the 

general methodology to rotor blade systems with variable speed. A search algorithm is 

presented for low-temperature stages by fixing the value of the spinning velocity 

previously identified on the input-output data sets. Finally, a numerical experiment using 

data generated from a numerical model of a small wind turbine (BWC XL.1) is included 

to demonstrate some features of the ASA numerical method proposed here. 

 

7.2 Eigensystem Realization Algorithm (ERA) 
 

   The ERA is a group of subspace identification algorithms designed to estimate the 

sequences directly from a given data, either explicitly or implicitly, through an orthogonal 

or oblique projection of the row spaces of block Hankel matrices of data into the row 

spaces of shifted block Hankel matrices, followed by a singular value decomposition 

(SVD) and QR decomposition that sets the order, the state sequence, and the 

observability matrix of the system [ibid. Juang 1994]. In a final stage, the extraction of 

the state space model is achieved using a least-squares approach. Modal parameter 

identification applied to rotator machines, such is the case of wind turbines, is based on a 

transfer function matrix that generates Markov parameters from an impulse response 

point of view. Hankel matrices are built upon Markov parameters and form the basis of 

the realization of a discrete-time state-space model. 

 

Much research effort in automated model realization (e.g., for autonomous SHM 

systems) has been made on linear time-invariant (LTI) systems, whereas the literature on 

time-varying (TV) cases is limited [Ljung 1999]. Time-varying methods are suited for a 

set of output sequences that have the same time-varying (cycling) behavior [Verhaegen 

and Yu 1995] under steady-state conditions making possible the application of the 

classical data-correlated ERA identification algorithm, leading to the need to consider the 

Stochastic Subspace Identification (SSI) family of algorithms. However, as the name 

implies, this approach is stochastic in nature, which makes the construction of the 
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physical properties of the system from an eigenrealization algorithm cumbersome. 

Meanwhile, mode shapes are solved in the stochastic complex-number domain, and arise 

from a non-deterministic source and therefore cannot be computed easily. This limitation 

presents computational challenges that are difficult to overcome requiring the 

computation of envelopes and phase shifts as a function of position coordinates [Hoen 

2005]. However, for low spinning velocities and steady-state rotational motion, it is 

possible to classify and filter out the spinning frequency embedded in a cyclic system. 

This observation goes hand in hand with the explicit derivation of the damped-gyroscopic 

dynamic system derived for the SFE model (see the following section). Under this 

assumption, and given the scope of the present study, a classical ERA scheme is 

implemented with the inclusion of eigen-properties in the identified bandwidth that can 

be extracted from the continuous time realization results [Bernal 2006]. By limiting the 

realization to modes conforming to the SFE model it is possible to discern between 

computational modes and system modes. The goal is to demonstrate a numerically-stable 

platform for Simulated Annealing where the dominant modes, typically flap and chord 

bending for the case of wind turbine rotor blades, are matched with the same dominant 

modes that the eigensolution produces from the SFE model. 

 

In structural dynamics, it is customary to refer the concept of shape modes as the 

eigenvectors associated with the undamped problem 0xKxM BB  or equivalent array 

MB
-1KB eigenvectors. Given the assumption that the modes have a clearance or gap 

between the closest eigenvalue, the latent – physical – vectors can be normalized to the 

real component and provide a good approximation of the undamped modes when the 

damping is treated as classical [Lancaster 1966]. However, for the case of wind turbine 

blades, damping is by default presumed as non-classical, and this characteristic carries 

out a series of impediments to compute latent vectors in a straightforward way. When the 

associated response of a system is complex, it cannot vibrate freely in a single complex 

mode but rather the resulting shape is a superposition of the latent vector and its 

associated complex conjugate. Extracting undamped modes from system identification 

analysis works well when the stiffness and mass matrices are estimated from known 
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physics reflected within the mechanistic (in this case, finite element) models. Decoupling 

the damping mechanism (and also the gyroscopic effect when blades are in yaw motion) 

gives the best chance to adjust the model parameters as close as possible to those 

supported by the measured data. It is important to determine the quality of the prediction 

of ERA by discarding computational modes from system modes [Papa and Elliot 1993]. 

Newland [Newland 1989] has interpreted the complex eigenvectors as counter rotating 

phasors, but does not show how they are translated into a real valued response. A solution 

can be found by investigating the inverse problem and computing flexibility matrices 

from the eigenrealization in the complex domain. Once the flexibility matrices MB
-1 and 

KB
-1 are determined, they can be linearized to a certain level, at least for the first 

dominant frequencies associated with flap bending and chord bending modes, which 

dominated the blade response observed during the experimental portion of this study 

[Velazquez and Swartz 2013]. However, a more direct solution is to work directly with 

complex modes, characterizing their similarity using a complex MAC [Vacher et al. 

2010] taking advantage of the phasor information to aid in the model updating process. 

This result provides the basis used in this study to establish comparisons between ERA 

and SFE models, but also serves to benchmark mass and stiffness matrices from both 

sources, and subsequently verify the quality of the convergence algorithm from the 

Simulated Annealing engine. Again, the problem of modal truncation needs to be clarified 

with the goal to establish a platform numerically stable and theoretically valid for 

Simulated Annealing calculations. 

 

7.3 Stochastic Subspace Identification (SSI) 
 

   To deal with the problem of truncation of modes, Stochastic Subspace Identification 

(SSI) is a set of subspace identification algorithms designed to compute stochastic state-

space models from a given output data set. Compared to ERA, the main idea of SSI is to 

introduce canonical correlations of two matrices that are assumed semi-infinite [Akaike 

1975]. A finite-dimensional vector series defined by sequential covariances of output 

signals to form a block Hankel matrix would be a valid state sequence of the stochastic 

model. Similar to the provisions for ERA introduced above, a singular value 
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decomposition (SVD) of the block Hankel matrix will help to set the order and state 

sequence, according to positive definite state-covariance matrix rule, in order to extract 

the model from the identified low-order eigenrealization [van Overschee and De Moor 

1996]. From there, extraction of the state space model can be executed traditionally 

following the ERA guidelines presented in a previous section. For this aim, and compared 

to the ERA outline composed by minimum Markov realizations, SSI employs block 

Hankel matrices upon minimum covariances of output signals to form the basis of the 

realization. As was mentioned above for ERA, the question arises on how to filter out the 

spinning velocity contribution from the real dynamics of the system. In other words, how 

a cyclic induced motion could be removed or dismissed from contaminated – noisy – 

output-only random signals. A cyclo-stationary stochastic subspace identification 

algorithm using linear-time-varying parameters CS-SSI-LPTV is used here to tackle this 

problem [Verdult and Verhaegen 2002][Lopes dos Santos et al. 2007]. The goal is to 

introduce a linear parameter varying (LPV) scheme variable in time that would follow a 

sinusoidal – therefore cyclic – stationary function to rule out the spinning effect from the 

identification [Verdult 2002][Kameyama and Ohsumi 2007]. The goal is to perform a 

numerically-stable solution for ASA where the identified dominant modes of the blade, 

expressed in the complex-numbers domain, matches the dominant modes of the SFE 

model, expressed also in the same complex-numbers domain. Given this parity in the 

nature of the modes, it is possible to establish an indexed criteria containing both 

amplitudes and phases of the resulting latent vectors in a complex-conjugate duality, 

namely MAC under complex vectorizations. Consequently, it is not necessary to convert 

complex-number modes to their physical counterparts during the iterative annealing 

process while updating the model. CS-SSI-LPTV provides a viable solution to face both 

SSI and SFE models towards a proper identification, adequate characterization and 

efficient update of numerical HAWT models (Figure 7.1). 

 

7.4 Spinning Finite Element (SFE) 
 

   The general damped-gyroscopic dynamic equation that governs the response of a 

spinning tapered-swept wind turbine blade element is given by [Leung and Fung 
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1988][Christensen and Lee 1986][Baumgart 2002][Larwood 2009][Nelson 1985]: 

 

                       0qKKKqCGqM )(]  [)(]2[)( ttt BcBeBBBB       (7.1) 

 

where BM and eBK  are the mass and elastic stiffness matrices for non-rotating beam 

elements, BG is the skew-symmetric gyroscopic matrix, BC  is a classical damping 

matrix, assumed proportional to the mass and stiffness matrices. 

 

 
Figure 7.1. Scope of the Adaptive Simulated Annealing engine for SFE model updating via CS-

SSI-LPTV. 

 

   Matrix BK  is the stabilizing stiffness spinning matrix and cBK is the destabilizing 

centrifugal stiffness matrix, )(tq  is the global nodal displacement vector (inboard and 

outboard ends) when the oscillation occurs about the steady state as a function of time. 

Prime notation means differentiation with respect to time t. In principle: 
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where )(sA , EA(s), A(s), EIy(s), EIz(s), GJ(s) and Fc(s) are the tapered-swept variations 

of mass density, elastic modulus, cross-section area, moments of inertia around y, 

moment of inertia around z, polar moment of inertia around x, and generalized axial 

(centrifugal) force, respectively. The matrix R is the transformation matrix of size 3x3 

composed by the direction cosines tensor, N is the Hermite cubic shape functions matrix 

of size 12x12 contemplating twelve degrees of freedom (six for inboard and six for 

outboard ends). Spinning matrix is defined as  = (t) [0,0,1; 0, 0, 0; -1, 0, 0]. Similarly, 
uN , vN , wN , θN , φN  and ψN  are the shape function vectors for longitudinal along x, 

transverse across y, transverse across z, torsion around x, rotation around y, and rotation 

around z, respectively. With the same token, cu, cv, cw, c , c and c  are damping 

coefficients for ux, vx, wx, x , x , x directions, respectively. The gyroscopic system as 

Equation (7.1) is composed by two real nonsingular, one symmetric, and one skew 

symmetric matrices. For such systems, Meirovitch [Meirovitch 1974] developed a 

numerical solution where the eigenvalue problem is transformed and expanded into one 
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composed by real symmetric matrices by means of state-vector principles and 

orthogonality relations. Due to the non-classical damping nature of Equation (7.1), but 

most importantly, the incidence of yaw (gyroscope) motion of the turbine that affects the 

spinning finite element a calculation of complex-mode-shape pairs is inevitable. The 

eigensolution of the state-space system of the form: 

 

                                    B

B

B

BBB

M0
0K

B
0M

MCG
A                                       (7.4) 

 

where A is skew-symmetric and B is symmetric, leads to reduce the eigenvalue problem 

to a standard form in terms of two real symmetric matrices for both the real and 

imaginary parts of the eigenvectors. Still, the problem of modal truncation of the 

eigensolution of Equation (7.4) prevents a direct computation of real modes from 

complex eigenvectors. It is imperative to compare and calibrate the SFE through an 

experimental data set in order to gain, with a level of acceptance, the correct 

characterization of the dynamic loads on the wind turbine model. This updating is also 

necessary to reveal the presence of changes in the blade over time that might be 

indicative of damage. Hence, the complex form of the modal assurance criterion (MAC) 

is used in the objective function for the model updating step of this study. 

 

7.5 Complex-Conjugate Modal Assurance Criterion (MAC) 
 

   The aim of the SFE model updating is to correctly identify the geometric/inertial 

properties that would feasibly reproduce the measured data, interpreted the latter as the 

correct layout from where comparisons will be driven by several SFE models. An 

objective function or energy absorption E(s) is computed to calculate the distance 

between measured ERA natural frequencies and mode shapes, from one side, and 

predicted SFE natural frequencies and mode shapes, from the other. Namely [Marwala 

2010]: 
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where i is the ith natural frequency, iφ  is the ith mode shape vector, nm is the number of 

modes, i is a weighting factor that measures the relative distance between the measured 

ERA frequency for the ith mode, and the estimated SFE frequency for the same mode. 

Parameter  is the weighting function that pairs ERA and SFE modes. MAC is the Modal 

Assurance Criterion acting is a measure of the least-squares deviation of the computed 

mode shapes from the measured mode shapes in a straight-line correlation. The MAC 

between two complex-conjugate mode shapes is defined as: 
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where the superscript * stands for complex-conjugate mode shape [ibid. Vacher et al., 

2010]. Parameter , closely associated with MAC ratio, is a correction coefficient that 

compensates for the maximum distortion between the measured ERA modes and the 

worst conditional SFE modes accepted by the cooling schedule of the SA algorithm 

employed. In other words,  measures the range of possible mode shape predictions and 

scales down accordingly to ensure the energy absorption at iteration stage s is 

consistently lower than an acceptable probability of occurrence. Both i and  are critical 

to ensure “thermodynamic” stability, numerical convergence, and iteration speed within 

the selected optimization solver. The weighting factor i accounts for the vague estimates 

and numerical impairments that the ERA algorithm tends to produce for high frequencies 

and their related shape modes. Thus, i penalizes for high frequencies and versus low 

frequencies. When the spinning velocity  is fixed for any SFE realization, a narrow set 

of predictions can be subscribed to reach the maximum target peak. This means i and  

can become less penalizing, resulting in an alleviation of the convergence process. A 
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similar treatment of the MAC index value can done for the case of CS-SSI-LPTV simply 

by exchanging the ERA superscripts of Equation (7.5) and Equation (7.6) with the CS-

SSI-LPTV ones. Once the MAC metric has been established to conjure both SFE and 

ERA – or CS-SSI-LPTV – data inflows, it is convenient now to introduce the principles 

of adaptive simulated annealing for wind turbine blades. 

 

7.6 Adaptive Simulated Annealing (ASA) 
 

   A new adaptive numerical technique is proposed in the present paper aiming to 

withstand an efficient SA (potentially parallel) implementation dedicated to HAWT blade 

models with tapered-swept variation of order nt. The algorithm is designed with two 

parts: (1) an adaptive version of the traditional SA scheme validated for high cooling 

temperature stages (Ts > 0.1); and (2) a speculative solution for low cooling temperatures 

(Ts < 0.1), where independent random assignations to different geometric/inertial 

conditions are established resulting in a more efficient convergence as the spinning 

constraints are imposed to the model (i.e., constant spinning velocity). This is how a 

number of previously accepted models, for a given temperature intensity, offer a 

reference point to fix the upcoming predictions in normal distribution, by generating a 

previous knowledge of the spinning modulation of the SFE model. This numerical 

optimization is typically called Adaptive Simulated Annealing (ASA) and previous 

efforts have been made to adapt suitable algorithms for rotating structures [Ziaei-Rad 

2005]. Also, hybrid Monte-Carlo algorithms have been proposed to speed up 

convergence for multivariate target functions [Salazar and Toral 2008], such is the case of 

the present study. 

 

   The temperature and the step size is adjusted such a way that the sampling happens in a 

coarse – initial – search space resolution for the early stages, validated against defective, 

ill-conditioned, or corrupted rotor blade model characterization. Here, the spinning 

velocity of the model, , is treated as variable and a uniform distribution within the valid 

range for this parameter is considered in order to catch a first round of achievable 

realizations set. This accommodation will define the subsequent optimized paths at Ts < 
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0.1. Once this temperature is reached, a refined model is adopted, reducing the operating 

window for the n-dimensional normal distribution once the spinning velocity is fixed. 

Simultaneously, the search path progresses towards the maximum peak. The approach 

also makes use of thermodynamic principles by adjusting and reducing the temperature 

trot according to a minimum energy absorption rule between two consecutive stages 

[Metropolis et al. 1953]. The objective here is to find a method or rule to get the lowest 

energy state from all possible, stable, and well conditioned SFE models. The temperature 

is then lowered little by little until freeze conditions appear and no new solutions are 

generated. The annealing process, properly implemented, assures to pick the global 

minimum from a large number of possible SFE models constrained, to a spinning 

velocity  that should match the one identified from the experiments. This assurance is 

obtained only if the maximum temperature is sufficiently high and the cooling schedule is 

done sufficiently low. Otherwise, the solver will freeze into a meta-stable state rather than 

into a minimum energy state. Hence, if the lowering of the temperature is decreased 

slowly enough, the solid can reach thermal equilibrium at each temperature. 

 

   To simulate annealing it is necessary to consider the underlying thermodynamics 

behind the process. The ASA engine implemented here for wind turbine blades with 

complex geometry utilizes the Boltzmann equation principle to describe thermal 

equilibrium between one modal realization and another [Levin et al. 1998]. The state is 

described as a modal solution from a set of all possible SFE model outcomes. Each 

acceptable model must be well conditioned by assuring a minimal (observable) gap 

among frequencies, numerical stability on damped-gyroscopic system eigenrealizations, 

and modal property feasibility considerations. 

 

   Each cooling temperature state Ts absorbs an energy E(Ts) = E(s) associated with it 

according to an objective function that computes the distance or state s between measured 

natural frequencies and mode shapes resolved from either ERA or CS-SSI-LPTV 

experimental data, from one side, and frequencies and mode shapes obtained from the 

SFE model, on the other. The probability of the system being in a state Ss  is computed 
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as [Levin and Lieven 1998] ws kTwE
Sw

kTsE eesp /)(/)( /)(  where S is the space of all 

possible cooling energy outcomes and k is the Boltzmann constant. To account for the 

way in which the model reaches a thermal equilibrium, a nearby randomly chosen state 

snew with a corresponding energy E(snew) is perturbed. If the energy emitted decreases, the 

new stage is accepted otherwise an acceptance probability is computed to match 

Boltzmann distribution [Kirkpatrick et al. 1983] and reach thermal equilibrium: 

 

                                       
ssoldnew kTsEkTsEsE eesp /)(/)()()(                       (7.7) 

 

   Here, the state of the system is established as the input parameters, temperature Ts 

operates as a convergence control, and the energy E(s) function is managed as the 

objective function. The lowest energy state at stable freezing temperature translates to a 

global minimum and the input parameters associated with it represent the update set of 

tapered-swept geometric/inertial properties of the studied rotor blade. Transition from an 

old state to a new one depends on either the uniform (Ts > 0.1) or normal (Ts < 0.1,  = 

cst) random neighbor functions and a cooling schedule (Figure 7.2). 
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Figure 7.2. Adaptive Simulated Annealing (ASA) flowchart. 

 

   This cooling schedule consists of starting at an initial temperature T0 = 1 and letting the 

minimum energy absorption algorithm run for ns successful steps. The minimum energy 

depends on the progressing computed state values for MAC and the ratio between either 

ERA and SFE, or CS-SSI-LPTV and SFE frequencies, as described in Equation (7.7). A 

thermal equilibrium is established at passing ns steps and the new equilibrium 

temperature is reduced by a schedule Ts+1 = Ts/(1+ ) where  is the cooling rate. The 

algorithm terminates when very few moves are accepted at a stabilized freezing 

temperature. For this study ns is computed as ns = 100*nd where nd = 13 is the total 

dimension of the geometric/inertial set, namely: A0, Al , p0 , pl , A0 , Al , y0 , 

yl , z0 , zl , GJ0 , GJl , and  geometric/inertial properties. Here  is material 

density, A the area of the cross section, Ip the mass polar moment of inertia, Iy and Iz 

moments of inertia in two orthogonal planes, J the area polar moment of inertia, E Young 

modulus and G shear modulus. Subscripts 0 and l stand for inboard end and outboard 
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end, respectively. It is discussed briefly an example of the ASA engine proposed in this 

paper, now applied to a small wind turbine system instrumented for CS-SSI-LPTV 

analysis and modeled via SFE method. 

 

7.7 Numerical Simulation 
 

   A representative numerical wind turbine model composed of 12 DOF’s is implemented 

in this study (see Figure 7.3) and employed for both reconstruction of cyclo-stationary 

based output data and model updating. It has a starting wind speed of 3 RPM and cut-in 

wind speed 300 RPM. The blade material is modeled as a homogeneous composite and 

pultruded fiber glass E-Glass with standard traits E = 1,9305.3196 MPa,  = 1826.873 

kg/m3, and  = 0.33. For simplicity, blade is projected with constant cross section all 

along with geometric properties A0=Al = 6.392X10-4m2, Iy0 = Iyl = 5.453X10-9 m4, Iz0 = Izl 

= 3.637X10-7 m4, J0 = Jl = 3.691X10-7 m4, and Ip0 = Ipl = 1.865X10-5 m2. Maximum 

design wind speed is 54 m/s and rotor blade specimen consist of a 1.25 m. diameter. 

Cross-section profile is a recreation of a SH3045 type airfoil with no pitch nor is yaw 

(free) control available for the system. 
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(a) 

 
(b) 

 
(c) 

Figure 7.3. Overview of wind turbine BWC XL.1(a) power generator, (b) blade airfoil cross 

section SH3045 profile type, (c) sensors deployment and instrumentation. 

 

7.8 Results 
 

   Results of the model updating process applied to the numerically generated blade 

vibrational data under a range of spinning velocities (i.e., = 0, 50, 150, and 300 RPM) 

are presented in this section. Figure 7.4 illustrates an example of the Modal Assurance 

Criterion (MAC) principle applied to compare complex-conjugate modes between the 

measured CS-SSI-LPTV algorithm and the predicted SFE model scheduled for updating. 

In Figure 7.4 MAC values for 6 identified modes from the CS-SSI-LPTV and 6 SFE 

modes are compared (left-to-right) as the adaptive simulated annealing algorithm 

progresses to its freezing temperature. It can be seen that MAC matrix tends towards a 

Triaxial 
Uniaxial 
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unitary-diagonal correlation representative of the updated real modes at the end of the 

cooling schedule. This trend can be seen to be true for the investigated range of spinning 

velocities presented in Figure 7.4(a-d). It is observed that the MAC coefficient tends to 

converge more rapidly for data sets with higher values of , with the disadvantage being 

that the accuracy of time-history prediction made with the identified model seems to 

decrease as  increases. The reason likely being that modes tend to stiffen together in a 

similar wave form towards a common shape alignment as the rotational speed increases, 

producing shadowing and overlapping of modes. Alternatively, convergence is reached 

more slowly as the system tends to be less rotating (pseudo-static). In these cases the 

energy absorption tends to become more diffuse as the neighborhood-phase space 

solution is broader (Figure 7.5). Figure 7.5(b) depicts the stiffening phenomenon 

occurring at high speed rotations. One of the axes is related to a new update of the model 

whereas the complementary axis is in relation to an old version. The distance between the 

two of them defines the relative energy absorption at the decremented cooling step, 

according to Equation (7.5). One of the axes tests one updated model – first state – at a 

spinning velocity i, while the other axis is a subsequent model case – second state – 

with spinning velocity j. Here, the computation of a new update of the model from an 

old version, according to a randomized generator rule (i.e., uniform distribution), takes 

the previous solution as input and gives a valid consecutive solution (i.e., some point in 

the solution space) as output with a consistent lower energy rule because of the alignment 

of modes, as exemplified in Figure 7.6. Therefore, Boltzman differential energy tends to 

be more stable for higher  during the cooling-schedule. Dominant frequencies depicted 

in Figure 7.6(d) do not reach a fixed value because of the speed of the numerical 

convergence at high spinning velocities. In this case, the number of iterations is reduced 

to less than ten, so the algorithm has limited time to stabilize the trend of the frequencies, 

as energy dissipation decreases very fast because of the alignment of modes at high 

spinning rates. 
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                                                                    (a) 

 
                                                                   (b) 

 
                                                                   (c) 

 
                                                                   (d) 

Figure 7.4. Progression of Modal Assurance Criterion (MAC) for (left to right) initial Ts = 1, 

1/3Ts, 2/3Ts, and Ts obtained through the ASA engine using CS-SSI-LPTV algorithm and SFE 

model, applied to four different cases: (a)  = 0 RPM (final Ts = 0.0015), (b)  = 50 RPM (final 

Ts = 0.0181), (c)  = 150 RPM (final Ts = 0.0037), (d)  = 300 RPM (final Ts = 0.0196). 
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                                     (a)                                                         (b) 

Figure 7.5. (a) Spinning velocity  vs frequencies SFE
if  of the updated model. (b) Energy 

absorption probability for different spinning velocities  produced by neighborhood-phase 

realizations of the updating model. The energy absorption is smaller - therefore convergence 

faster - for higher speeds. 

 

 
                                     (a)                                                          (b) 

                             
                                     (c)                                                          (d) 

Figure 7.6. Update progression of three dominant SFE model frequencies obtained with the ASA 

engine using CS-SSI-LPTV algorithm, applied to four different cases: (a)  = 0 RPM (final Ts = 

0.0015), (b)  = 50 RPM (final Ts = 0.0181), (c)  = 150 RPM (final Ts = 0.0037), (d)  = 300 

RPM (final Ts = 0.0196). 
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   Table 7.1 summarizes a comparison between the exact and final updated values of the 

target geometric/inertial parameters for the same model running at four different spinning 

velocities. In general, the identification of model parameters is better at low frequencies. 

Similarly, Figure 7.7 illustrates the statistical distribution of the identified parametrization 

values for the same models through many realizations of the ASA algorithm. The default 

random parametrization function generates a new set of geometric/inertial values which 

slightly differs from the input vector in one adjacent neighborhood-phase space. The 

sparcity norm (i.e., uniform distribution) generates a neighbor random integer that is 

dejected in order to smooth the step transition, then added to the old assigned set of target 

parameters aiming to obtain the new neighbor set.  

 

Table 7.1. Comparison of exact and final predictions of target geometric/inertial parameters 

obtained with the ASA engine using CS-SSI-LPTV algorithm and SFE model, by means of MAC 

complex-conjugate mode shapes applied to four different cases: (a)  = 0 RPM (final Ts = 

0.0015), (b)  = 50 RPM (final Ts = 0.0181), (c)  = 150 RPM (final Ts = 0.0037), (d)  = 300 

RPM (final Ts = 0.0196). 

Target Exact  = 0 RPM  = 50 RPM  = 150 RPM  = 300 RPM 

[RPM]  0.08 48.322 145.226 290.846 

A0 [kg/m] 1.167 1.147 1.080 1.261 1.585 

Al [kg/m] 1.167 1.150 1.019 1.281 1.619 

Ip0 [kg2/m] 0.034 0.031 0.029 0.029 0.025 

Ipl [kg2/m] 0.034 0.032 0.029 0.024 0.019 

EA0 [N] 1.234e+007 1.255e+007 1.270e+006 1.497e+007 1.203e+007 

EAl [N] 1.234e+007 1.261e+007 1.304e+007 1.403e+007 1.195e+007 

EIy0 [N*m2] 105.271 100.707 99.144 120.492 148.484 

EIyl [N*m2] 105.271 101.074 100.529 118.916 153.2504 

EIz0 [N*m2] 7.021e+003 6.638e+003 6.624e+003 6.558e+003 7.669e+003 

EIzl [N*m2] 7.021e+003 6.896e+003 6.650e+003 6.534e+003 7.780e+003 

GJ0 [N*m2] 2.678e+003 2.519e+003 2.263e+003 2.764e+003 2.801e+003 

GJl [N*m2] 2.678e+003 2.409e+003 2.236e+003 2.707e+003 2.786e+003 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 7.7. Statistical distribution of target geometric/inertial parameters obtained with the ASA 

engine using CS-SSI-LPTV algorithm and SFE model, by means of MAC complex-conjugate 

mode shapes applied to four different cases: (a)  = 0 RPM (final Ts = 0.0015), (b)  = 50 RPM 

(final Ts = 0.0181), (c)  = 150 RPM (final Ts = 0.0037), (d)  = 300 RPM (final Ts = 0.0196). 

 

   As previously commented, the probability distribution of the target parametrization 

tends to be wider as  increases. This implies that while the updating convergence is fast, 

the accuracy is denigrated in the same proportion. The orthogonality condition of the 

mode shapes fits best when dealing with complex-conjugate eigenvectors rather than 

physical mode shapes. Conversion to physical shapes is not necessary during the ASA 

model-updating process, because the MAC indicator can operate in the complex-numbers 

vectors domain. Disturbances identified among the experimental (CS-SSI-LPTV) and 
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theoretical (SFE) complex-conjugate mode shapes are the result of errors produced by – 

or as consequence of – the CS-SSI-LPTV identification algorithm and measurement data, 

as depicted in Figure 7.8. Examples of sources of error are noise in the output signals, 

dependent – ill conditioned – output channels, low frequency content, waveform, 

sampling size, and close proximity among frequencies. For comparison purposes, Figure 

7.9 depicts a set of transformed physical modes from dominant modes shapes at  = 0 

RPM (final Ts = 0.0015), comparing source, CS-SSI-LPTV – Figure 7.9(a), and target, 

SFE – Figure 7.9(b), transformed real-modes at the end of the ASA cycle where Ts is 

reached. Figure 7.9(c) depicts the evolution of the mode shapes over one realization of 

the ASA algorithm in order to verify its random nature. 
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                                              (c)                                                                           (d) 

Figure 7.8. Measured (CS-SSI-LPTV) vs predicted (SFE) complex mode shapes at minimum 

energy absorption obtained with the ASA engine by means of MAC complex-conjugate mode 

shapes applied to four different cases: (a)  = 0 RPM (final Ts = 0.0015), (b)  = 50 RPM (final 

Ts = 0.0181), (c)  = 150 RPM (final Ts = 0.0037), (d)  = 300 RPM (final Ts = 0.0196). 

 

   It was found that the ASA algorithm, optimized for constant spinning velocity, 

accelerated the numerical convergence by up to 40% (Ts < 0.1,  = cst), compared to the 

uniform distribution randomization for (Ts > 0.1,  = variable). Random and bias-based 

errors can be carried out by both CS-SSI-LPTV and SFE in terms of numerical 
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truncation, non-linearity produced by the damped gyroscopic-effects, theoretical 

approximations of the SFE model, floating point errors due to the concatenated – reverse 

operation – iterations of the system (typically expressed as the pseudo-inversion of a 

2nx2n state-space matrix, where n is the order of the system), the existence of unstable 

poles, no positive definite covariance matrices and ill-conditioned finite models, are all 

possible source of numerical errors in the algorithm. Increasing the number of observer 

Markov chains employed for the identification of measured output channels, reducing 

signal noise and minimizing damping (energy absorption), all may produce more accurate 

CS-SSI-LPTV. This effort will impact the efficiency of the ASA engine in terms of 

convergence speed, a faster cooling schedule, a smaller margin in the energy acceptance 

probability, minimum energy dissipation, and subsequently, higher marks on the MAC 

coefficient. Figure 7.10 depicts the progression of energy prediction error and acceptance 

probability for the same cases studied above. 

 

 
                                                        (a)                                     (b) 

 
                                                                               (c) 

Figure 7.9. Transformation from complex-numbers to physical counterparts of the first four 

dominant modes shapes for (a) CS-SSI-LPTV and (b) SFE. (c) Update progression of two 

dominant SFE physical modes.  = 0 RPM (final Ts = 0.0015). 
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                         (a)                               (b)                                 (c)                                (d) 

Figure 7.10. Progression of energy acceptance probability and its corresponding energy error 

obtained with the ASA engine using CS-SSI-LPTV algorithm and SFE, applied to four different 

cases: (a)  = 0 RPM (final Ts = 0.0015), (b)  = 50 RPM (final Ts = 0.0181), (c)  = 150 RPM 

(final Ts = 0.0037), (d)  = 300 RPM (final Ts = 0.0196). 

 

7.9 Discussion 
 

   If numerical truncation occurs, numerical overflow exists, or out-of-memory errors 

occur, one possibility is to switch output types using either acceleration, velocity, or 

displacement channels (an admittedly difficult tactic in experimental studies). A good 

identification can be achieved with a cyclo-stationary noise content lower than 1% of the 

maximum modal amplitude. Another possibility is to escalate or filter down/up signals to 

increase the CS-SSI-LPTV identification observability. In general terms, and given the 

stochastic nature of the CS-SSI-LPTV method, randomized outputs are more proclive to 

improve outcomes in the updated model. Simultaneously, SFE models with uncoupled 

modes (axial, flexural, and torsional) are more likely to correlate with their CS-SSI-

LPTV counterparts because of their orthogonality composure against the coupled models 

(axial-flexural-torsional coupling). The complex-conjugate adjustment process using 

parity modes is less tedious for independent (uncoupled) mechanical elements given that 

coupled damped-gyroscopic SFE models are more absorbent energy, therefore the energy 

acceptance probability has to exceed during the ASA cooling schedule algorithm. 

Another source of perturbation comes from the phase angle of the complex-conjugate 

modes while comparing MAC coefficients, an indicator of the computational effort 

invested to achieve an acceptable confidence ratio while controlling the Boltzman 

temperature-cooling schedule variation. A drawback in the damped-gyroscopic SFE 
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implemented in this study is that the eigenvalue problem consists of two real nonsingular 

matrices, one symmetric (mass and stiffness matrices) and the other skew symmetric 

(damped-gyroscopic matrix), which can present computational issues. Reducing this 

eigenvalue problem to a standard form (i.e., two real symmetric matrices) by 

reassembling the eigenvalue problem of a non-rotating structure at each ASA iteration 

reduces the risk of falling into indeterminacy for ill-conditioned cases while testing 

adjacent geometric/inertial sets. For example, high damping ratios matching high 

spinning velocities will produce shadowing effects on the complex eigenvalues and 

eigenvectors. For this case, the ASA engine is programmed to dispose of such 

indeterminate and ill-conditioned cases. In practical terms, variations of the rotation 

speed are unpredictable, but must be held as steady as possible in order to reduce 

potential numerical issues. For this project, only constant rotational speed was 

considered. To work in the current framework, spinning velocity changes should be 

smooth and gradual during identification and within the SFE model. Any abrupt jumps in 

the spinning velocity time-history will lead to errors. There will be some extra poles 

during the identification process due to the spinning rotation (no structural) action, self-

evident when dismantling the stochastic output signals via Singular Value 

Decomposition. Similarly, rotational frequencies alien to the structure may computed 

during the inverse method of the complex-conjugate eigen-realization procedure. The 

MAC index coefficient comparison algorithm should discard this contribution as a 

thermodynamic energy argument. The ASA numerical engine presented here removes 

this information by establishing as an online random variable. For stochastic output 

signals it may be feasible to repeat the simulation with the exact conditions (i.e., order of 

the system) and expect similar outcomes, but not exactly as obtained previously. 

 

7.10 Conclusions 
 

   The Adapted Simulated Annealing (ASA) proposed in the present study was applied to 

update a Spinning Finite Element (SFE) model via numerical data by means of the Cyclo-

Stationary Stochastic Subspace ID via Linear Parameter Time-Varying Method (CS-SSI-

LPTV) for Horizontal-Axis Wind Turbines (HAWT) model updating. Different updating 
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geometric/inertial parameter sets were selected for the analysis of a wind turbine blade 

with constant cross-section variations. The numerical example presented suggested that 

the objective function treated as non-classical damped- gyroscopic system has many local 

minima and tends to be sensitive to the assigned value of spinning velocity especially 

high rotating speeds. The choice of parameter sets for model updating, assurance of a 

clean and independent set of outputs for system identification, sustained spinning 

velocity, and assignation of proper damping ratios– structural energy absorption – are of 

extreme importance for an efficient ASA model update. Numerical instability was 

recognized for a segment of both potential eigen-solutions of the gyroscopic system and 

stochastic identification. SFE model was acceptably updated and final solution showed 

improved correlation for dominant frequencies and mode shapes, suggesting that the 

calibrated SFE actually represents the physical structural used in the numerical algorithm. 

Having successfully reached the goals of the Thesis project, it is time now to draw some 

observations on future work, as well as final remarks and conclusions in the next Chapter 

8. 
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Chapter 8. Final Remarks 
 
8.1 Future Work 
 

   Some of the topics that are pending for future work are the design, analysis, and 

optimization of special and complex multi-body dynamic structures, near-collapse 

characterization, and development of dependable/disposable long-range wireless sensors 

for long-lasting deployments. In the long run, it is advisable to venture into the analysis 

and design of expert systems for near-collapse scenarios of overall wind-harvesting 

structures, human decision making and automated control; all applied in growing 

research areas, that is the case of Structural Health Monitoring (SHM). Similarly, to 

explore new energy-harvesting avenues, that is the case of wind-pyroelectric and wind-

piezoelectric technologies. 

 
8.2 Summary 
 

   Great technological expectation and outstanding commercial penetration has shown the 

so-called Horizontal-Axis Wind Turbines (HAWT) technologies. Given its great 

acceptance, size evolution of wind turbines over time has increased exponentially. 

However, safety and economical concerns have emerged because of the newly design 

tendencies for massive scale wind-turbine structures presenting high slenderness ratios 

and complex shapes, typically located in remote areas (e.g. offshore wind farms). In this 

regard, the Thesis project was focused to tackle down some aspects of the safety 

operation that requires not only having first-hand information regarding actual structural 

dynamic conditions under aerodynamic loading, but also a deep understanding of the 

environmental factors in which these multi-body rotating structures operate. Given the 

cyclo-stochastic patterns of the wind loading exerting pressure on a HAWT, a 

probabilistic framework seemed to be appropriate to characterize the risk of failure in 

terms of resistance and serviceability conditions, at any given time. Furthermore, sources 

of uncertainty such as material imperfections, buffeting, flutter, aeroelastic damping, 

turbulence, and most importantly, gyroscopic effects, have pleaded for the use of a more 
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sophisticated mathematical framework that could properly handle all these sources of 

indetermination. The attainable modeling complexity that emerged because of these 

characterizations demanded a data-driven experimental validation methodology to 

calibrate and corroborate the mathematical model.  

 

   For this aim, System Identification (SI) techniques were implemented to establish 

numerical methods appropriated for stationary, deterministic, and data-driven numerical 

schemes, capable of predicting actual dynamic states (eigen-realizations) of traditional 

time-invariant dynamic systems. Consequently, it was proposed a modified data-driven 

SI metric based on the so-called Subspace Realization Theory, an approach now adapted 

for stochastic non-stationary and time-varying systems, as is the case of HAWT’s 

complex aerodynamics. Simultaneously, it was explored the characterization of the 

turbine loading and response envelopes for critical failure modes of the structural 

components the wind turbine is made of. In the end, both aerodynamic framework 

(theoretical model) and system identification (experimental model) merged in a 

numerical engine formulated as a search algorithm for model updating, also known as 

Simulated Annealing (SA) process. This iterative engine is founded on a set of function 

minimizations computed by a metric called Modal Assurance Criterion (MAC) in order 

to optimize the model in study. To date, little progress has been done in this direction, 

and as a result, some questions have emerged that should be clarified. As an example, the 

dismantling or uncoupling of the cyclo-stationary frequencies coming from the wind-

turbine gearbox disturbing the resistance of the rotor blades in terms of structural fatigue 

and exhaustion. Another example is the optimization of the ratio between maximum 

power generation and maximum wind loading (serviceability and fatigue), in both the 

along- and across-wind directions. A novel contribution of this investigation advances in 

these issues is the development of a Spinning Finite Element (SFE) capable of 

characterize combined gyroscopic effects, torsion coupling, and non-classical damping in 

a comprehensive theoretical framework sufficiently low order to operate in an 

autonomous Structural Health Monitoring (SHM) system. 
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8.3 Conclusions 
 

   The present Thesis project delivers a simulation of the structural response of a spinning 

system composed by three rotor blades with tapered-swept cross-section, under stochastic 

along-wind distributed load. Results reveal the influence of the gyroscopic action on the 

structural response above bedplate level (hub elevation). Simulation of the along wind 

field has been achieved by adopting a rotational sampled spectral density function via 

spectral analysis in the frequency domain. The generation of an analytical wind turbine 

model by spinning finite elements has been carried out with the objective of both 

accuracy and simplicity, compared against alternative methods such as standard finite 

element models, or time-domain model-updated techniques. It is demonstrated that 

careful attention should be paid to the eccentricity of rotor components and to the 

location of the nacelle center of mass. The stress state on the tower bedplate changes 

considerably due to the moment caused by the equivalent eccentric mass of the rotor 

blades arrangement, at any moment in time. Gyroscopic torque is generated throughout 

GB influencing the vibration of the upper structure of the wind turbine. It also shown that 

gyroscopic torque is very small compared to the bending moment caused by the along-

wind force, given a low spinning velocity  and constant cross-section (less than 5%). 

On the other hand, higher spinning rates proportionally increment the free-yaw motion. 

Eigen-frequencies tend to be more unstable for this latter scenario. Similarly, the 

gyroscopic effects tend to alter the fundamental frequencies and reduce critical speeds of 

the rotating machinery. Damping has a major role in the amplification otherwise 

reduction of the gyroscopic effects, specially evaluated in the surroundings of the hub 

component. Therefore, a proper definition of CB is imperative to have a good prediction 

of the model. For individual, rather combined, tapered-swept blades analysis it has been 

shown the importance of embracing gyroscopic effects. A combined system composed by 

rotor blades, shaft, nacelle and tower substructures is less propitious to represent the 

overall gyroscopic action. Gyroscopic effects are characterized with a non-symmetric 

equivalent damping matrix and require a non-symmetric numerical eigen-solution to 

solve for natural frequencies and mode shapes, both expressed in complex-numbers 

domain. Gyroscopic motion transmits a dynamic torque in the wind turbine tower, not 
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addressed in the present study. On the other hand, an adverse scenario where coincident 

turbine yaw rate and rotor speed, large enough to induce high gyroscopic moments, can 

be placed in one of the following worst scenarios: (a) rapid changes in wind direction 

related to wind speed increments, (b) presence of turbulent flow, (c) all the above. The 

maximum base shears and moments are practically unaffected by the gyroscopic moment. 

Self weight and out-of-plane forces dominate the stress field; so for reliability purposes 

this effect has no practical consequences, not the case for the risk of having fatigue loads 

beyond an acceptable level at the bedplate location. 
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Appendix A 
 
A.1 General Parameters. 
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A.2 Mass Matrix. 
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A.3 Gyroscopic Matrix. 
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A.4 Stiffness Matrix. 
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A.5 Spinning Stiffness Matrix 
 

lAB AAlaK 36
30 0

2
11

)1,1(  

lAB AAlaK 134490
420 0

2
12

)2,1(  

lAB AAlaK 134490
420 0

2
13

)3,1(  

lAB AAlaK 3810
420 0

22
13

)5,1(  

lAB AAlaK 3810
420 0

22
12

)6,1(  

lAB AAlaK 343
60 0

2
11

)7,1(  

lAB AAlaK 222615
420 0

2
12

)8,1(  



255 
 

lAB AAlaK 222615
420 0

2
13

)9,1(  

lAB AAlaK 232
210 0

22
13

)11,1(  

lAB AAlaK 232
210 0

22
12

)12,1(  

lAB AAlaK 1970145
630 0

2
22

)2,2(  

lAB AAlaK 1970145
630 0

2
23

)3,2(  

lAB AAlaK 175065
2520 0

22
23

)5,2(  

lAB AAlaK 175065
2520 0

22
22

)6,2(  

lAB AAlaK 222615
420 0

2
12

)7,2(  

lAB AAlaK 233523
630 0

2
22

)8,2(  

lAB AAlaK 233523
630 0

2
23

)9,2(  

lAB AAlaK 193425
2520 0

22
23

)11,2(  

lAB AAlaK 193425
2520 0

22
22

)12,2(  

lAB AAlaK 1970145
630 0

2
33

)3,3(  

lAB AAlaK 175065
2520 0

22
33

)5,3(  

lAB AAlaK 175065
2520 0

22
23

)6,3(  

lAB AAlaK 222615
420 0

2
13

)7,3(  

lAB AAlaK 233523
630 0

2
23

)8,3(  



256 
 

lAB AAlaK 233523
630 0

2
33

)9,3(  

lAB AAlaK 193425
2520 0

22
33

)11,3(  

lAB AAlaK 193425
2520 0

22
23

)12,3(  

lAB AAlaK 255
1260 0

23
33

)5,5(  

lAB AAlaK 255
1260 0

23
23

)6,5(  

lAB AAlaK 232
210 0

22
13

)7,5(  

lAB AAlaK 253419
2520 0

22
23

)8,5(  

lAB AAlaK 253419
2520 0

22
33

)9,5(  

lAB AAlaK 585
2520 0

23
33

)11,5(  

lAB AAlaK 585
2520 0

23
23

)12,5(  

lAB AAlaK 255
1260 0

23
22

)6,6(  

lAB AAlaK 232
210 0

22
12

)7,6(  

lAB AAlaK 253419
2520 0

22
22

)8,6(  

lAB AAlaK 253419
2520 0

22
23

)9,6(  

lAB AAlaK 585
2520 0

23
23

)11,6(  

lAB AAlaK 585
2520 0

23
22

)12,6(  

lAB AAlaK 63
30 0

2
11

)7,7(  



257 
 

lAB AAlaK 904413
420 0

2
12

)8,7(  

lAB AAlaK 904413
420 0

2
13

)9,7(  

lAB AAlaK 1083
420 0

22
13

)11,7(  

lAB AAlaK 1083
420 0

22
12

)12,7(  

lAB AAlaK 1457019
630 0

2
22

)8,8(  

lAB AAlaK 1457019
630 0

2
23

)9,8(  

lAB AAlaK 655017
2520 0

22
23

)11,8(  

lAB AAlaK 655017
2520 0

22
22

)12,8(  

lAB AAlaK 1457019
630 0

2
33

)9,9(  

lAB AAlaK 655017
2520 0

22
33

)11,9(  

lAB AAlaK 655017
2520 0

22
23

)12,9(  

lAB AAlaK 552
1260 0

23
33

)11,11(  

lAB AAlaK 552
1260 0

23
23

)12,11(  

lAB AAlaK 552
1260 0

23
22

)12,12(  

 
 
A.6 Centrifugal Stiffness Matrix 
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