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Preface 

This thesis is composed of three published (or submitted for publishing) papers.  The 

author’s contributions are described hereafter.   

Chapter 2 is “Life cycle analysis of silane recycling in amorphous silicon-based solar 

photovoltaic manufacturing” published in the journal Resources, Conservation, and 

Recycling (http://dx.doi.org/10.1016/j.resconrec.2012.10.002).  This article was written by M. 

Kreiger, D. Shonnard, and J. Pearce.  M. Kreiger’s contribution to this paper was the 

literature review, entire life-cycle analysis, remaining analysis, results, figures, writing, 

and multiple revisions.  D. Shonnard’s contribution was advice on life-cycle analysis and 

editing.  J. Pearce’s contribution was writing, editing, and consultation. 

Chapter 3 is “Life cycle analysis of distributed 3-D printing and conventional 

manufacturing of polymer products” which is planned for submission to the Environmental 

Science and Technology.  This paper was written by M. Kreiger and J. Pearce.  M. 

Kreiger’s contribution to this paper was the literature review, experimental data, entire 

life-cycle analysis, figures, tables, results, writing, and multiple revisions. J. Pearce’s 

contribution was writing, editing, and consultation. 

Chapter 4 is “Life cycle analysis of distributed recycling of post-consumer high density 

polyethylene for 3-D printing filament” which has been submitted to the journal 

Resources, Conservation, and Recycling.  This paper was written by M. Kreiger, M. 

Mulder, A. Glover, and J. Pearce. M. Kreiger’s contribution to this paper was the 

methods, help building the filament spooler, contacting the recycling companies and life 

cycle analysis company to determine locations and values, entire life-cycle analysis, 

table, remaining analysis, experimental values using the RepRap, writing, and multiple 

revisions. M. Mulder’s contribution was preliminary work and literature review. A. 

Glover’s contribution was the development of the filament spooler and energy readings. 

J. Pearce’s contribution was the RecycleBot, the idea, writing, editing, and consultation.  
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Abstract      

This thesis is composed of three life-cycle analysis (LCA) studies of manufacturing to 

determine cumulative energy demand (CED) and greenhouse gas emissions (GHG).   The 

methods proposed could reduce the environmental impact by reducing the CED in three 

manufacturing processes.   

First, industrial symbiosis is proposed and a LCA is performed on both conventional 1 

GW-scaled hydrogenated amorphous silicon (a-Si:H)-based single junction and a-

Si:H/microcrystalline-Si:H tandem cell solar PV manufacturing plants and such plants 

coupled to silane recycling plants. Using a recycling process that results in a silane loss of 

only 17 versus 85 percent, this results in a CED savings of 81,700 GJ and 290,000 GJ per 

year for single and tandem junction plants, respectively.  This recycling process reduces 

the cost of raw silane by 68 percent, or approximately $22.6 and $79 million per year for 

a single and tandem 1 GW PV production facility, respectively. The results show 

environmental benefits of silane recycling centered around a-Si:H-based PV 

manufacturing plants.  

Second, an open-source self-replicating rapid prototype or 3-D printer, the RepRap, has 

the potential to reduce the environmental impact of manufacturing of polymer-based 

products, using distributed manufacturing paradigm, which is further minimized by the 

use of PV and improvements in PV manufacturing. Using 3-D printers for manufacturing 
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provides the ability to ultra-customize products and to change fill composition, which 

increases material efficiency. An LCA was performed on three polymer-based products 

to determine the CED and GHG from conventional large-scale production and are 

compared to experimental measurements on a RepRap producing identical products with 

ABS and PLA. The results of this LCA study indicate that the CED of manufacturing 

polymer products can possibly be reduced using distributed manufacturing with existing 

3-D printers under 89% fill and reduced even further with a solar photovoltaic system. 

The results indicate that the ability of RepRaps to vary fill has the potential to diminish 

environmental impact on many products.  

Third, one additional way to improve the environmental performance of this distributed 

manufacturing system is to create the polymer filament feedstock for 3-D printers using 

post-consumer plastic bottles. An LCA was performed on the recycling of high density 

polyethylene (HDPE) using the RecycleBot. The results of the LCA showed that 

distributed recycling has a lower CED than the best-case scenario used for centralized 

recycling.  If this process is applied to the HDPE currently recycled in the U.S., more 

than 100 million MJ of energy could be conserved per annum along with significant 

reductions in GHG.  This presents a novel path to a future of distributed manufacturing 

suited for both the developed and developing world with reduced environmental impact. 

From improving manufacturing in the photovoltaic industry with the use of recycling to 

recycling and manufacturing plastic products within our own homes, each step reduces 

the impact on the environment.  The three coupled projects presented here show a clear 

potential to reduce the environmental impact of manufacturing and other processes by 

implementing complimenting systems, which have environmental benefits of their own in 

order to achieve a compounding effect of reduced CED and GHG.
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1. Introduction  

1.1 Motivation 

The objective of this research was to study various methods to which the environmental 

impact and energy use could be reduced in manufacturing. It is proposed that process 

gas recycling in photovoltaic manufacturing with 3-D printers powered with solar, and 

distributed recycling of polymers provide gateways to a new manufacturing paradigm 

that radically reduces the impact of manufacturing on the environment. 

1.2 Thesis Outline 

This thesis will begin in chapter 2 by introducing the reader to a case study published 

by the author where the energy and environmental impact for an existing process can be 

improved (recycling of silane in amorphous silicon solar photovoltaic manufacturing). 

Chapter 3 will discuss how the manufacturing process of polymer products and 

components can be revolutionized using distributed manufacturing, while reducing the 

environmental impact of production. In addition, the use of distributed generation of 

electricity from solar cells is quantified to drive this process.  In chapter 4, this 

distributed manufacturing process can be further improved with the introduction of 

distributed recycling of post-consumer goods.  Chapter 5 will discuss how all of these 

processes can be used in conjunction to reduce the environmental impact of 

manufacturing.
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2. Life-cycle analysis of silane recycling in amorphous silicon-based 
solar photovoltaic manufacturing1 

Abstract  

Amorphous silicon (a-Si:H)-based solar cells have the lowest ecological impact of 

photovoltaic (PV) materials. In order to continue to improve the environmental 

performance of PV manufacturing using proposed industrial symbiosis techniques, this 

paper performs a life cycle analysis (LCA) on both conventional 1 GW-scaled a-Si:H-

based single junction and a-Si:H/microcrystalline-Si:H tandem cell solar PV 

manufacturing plants and such plants coupled to silane recycling plants. Both the energy 

consumed and greenhouse gas emissions are tracked in the LCA, then silane gas is reused 

in the manufacturing process rather than standard waste combustion. Using a recycling 

process that results in a silane loss of only 17 percent instead of conventional processing 

that loses 85 percent silane, results in an energy savings of 81,700 GJ and prevents 4,400 

tons of CO2 from being released into the atmosphere per year for the single junction plant. 

Due to the increased use of silane for the relatively thick microcrystalline-Si:H layers in 

the tandem junction plants, the savings are even more substantial -  290,000 GJ of energy 

savings and 15.6 million kg of CO2 eq emission reductions per year.  This recycling 

process reduces the cost of raw silane by 68 percent, or approximately $22.6 million per 

year for a 1 GW a-Si:H-based PV production facility and over $79 million per year for 

tandem manufacturing. The results are discussed and conclusions are drawn about the 

technical feasibility and environmental benefits of silane recycling in an eco-industrial 

park centered around a-Si:H-based PV manufacturing plants. 

Keywords:  amorphous silicon; cryogenic separation; life cycle analysis; photovoltaic 

manufacturing; silane; recycling 

 
 
 
 
                                                           
1 “The material contained in this chapter was previously published in Resources, Recycling, 
and Conservation.” 
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2.1 Introduction                                                                                                     

The world requires inexpensive, reliable, and sustainable energy sources. As world 

population and affluence increase, it is projected that between 2 to 10 times the energy 

currently produced will be required over the next 50 years (Lewis and Nocera, 2006; 

Allen and Shonnard, 2012).  In order to provide future generations with sufficient energy, 

environmental impacts per unit of energy produced will have to be reduced significantly.  

Solar photovoltaic (PV) technology, which converts sunlight directly into electricity, 

offers a globally-scalable technically-sustainable solution to the projected enormous 

future energy demands (Dincer, 2000; Pearce, 2002; Fthenakis, et al., 2009). The 

potential for PV to be a sustainable technology has been reinforced by numerous life 

cycle analysis (LCA) studies considering both embodied energy and emissions ( Alsema 

2000; Alsema and de Wild-Scholten, 2005; Alsema and Nieuwlaar, 2000; Alsema, et al., 

2006; Fthenakis and Alsema, 2006; Fthenakis and Kim, 2007; Fthenakis, et al., 2008; 

Mason, et al., 2006; Palz and Zibetta, 1991; Pearce and Lau, 2002). However, in order to 

compete economically with fossil fuels in all markets in the current subsidy landscape, 

further decreases in the levelized cost of electricity from solar are needed (Branker, 

Pathak & Pearce, 2011). If this were to occur the potential market would be substantial 

and begin to rival the traditional fossil-fuel-based energy market in size. For example, 

consider recent work by Keiser that showed that at US$3 per watt for complete PV 

systems – and some commercial projects are at this level now – addressable electricity 

consumption rises to 440 billion kWh, equivalent to over 300GW of capacity in the U.S. 

alone (Keiser, 2011). To meet the cost goals for solar electricity to compete economically 

with fossil fuel-fired electricity, work has started exploring the use of industrial symbiosis 

to obtain economies of scale and increased manufacturing efficiencies for solar PV cells 

(Andrews and Pearce, 2011; Nosrat et al., 2009; Pearce, 2008a). Of the PV materials, 

hydrogenated amorphous silicon (a-Si:H)-based PV, a second generation thin film 

technology, offers the best ecological balance sheet (Alsema, 2000; García-Valverde, 

Cherni, and Urbina, 2010; Jungbluth, 2009; Palz and Zibetta, 1991;  Pearce and Lau, 

2002; Wronski, et al., 2002.).  This type of PV has an energy payback time around 1 year 

and can produce up to 31 times the amount of energy its initial consumption within a 30-
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year lifetime (Pearce and Lau, 2002). In addition, increased stabilized efficiencies (> 10%) 

have been demonstrated with dual junction a-Si:H / microcrystalline ( c-Si:H) tandem 

solar cells, which further improve ecological performance of Si:H-based PV.  

Unfortunately, there is a significant amount of waste in the Si:H material deposition 

process as only approximately 15 percent of the silane (SiH4) is used (Briend, 2011).  

Embodied energy and greenhouse gas emissions of silane are very large, 1,146 MJ / kg 

silane and 61.3 kg CO2 equivalents (eq.) / kg silane respectively (Ecoinvent, 2012), 

suggesting recycling as a promising approach to reduce impacts of a-Si:H 

manufacturing despite the small quantity of active semiconductor in the entire module.  

In order to continue to improve the environmental impact of PV manufacturing, this 

paper investigates this opportunity by performing an LCA on four scenarios:  (1) 

conventional 1GW-scaled a-Si:H-based single junction plant,  (2) a conventional 1GW 

a-Si:H/ c-Si:H tandem cell solar PV manufacturing plant, (3) a 1GW-scaled a-Si:H-

based single junction plant  coupled to silane recycling plant, and (4) a 1GW a-Si:H/ c-

Si:H tandem cell solar PV manufacturing plant coupled to silane recycling plant . Both 

the energy consumed and carbon dioxide (CO2) equivalent emissions (all important 

greenhouse gases included) from the processing of silane are tracked in the LCA and 

the silane gas is reused in the manufacturing process rather than standard combustion. 

The results are discussed and conclusions are drawn about the technical feasibility and 

environmental benefits of silane recycling in an eco-industrial park centered around an 

a-Si:H-based PV manufacturing plant. 

 

2.2 Background 

2.2.1 A-Si:H-based PV Manufacturing 

The current manufacturing process for Si:H-based PV cells varies between different 

substrates, methods, and manufacturers, but the actual deposition of a-Si:H and μc-Si:H 

layers are formed by running the substrate through a set of chambers and exposing it to 

a mixture of hydrogen and silane using plasma-enhanced chemical vapor deposition 
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(PECVD) (Street, 2000; Wronski and Carlson, 2001).  The layers of a-Si:H PV are 

constructed in a p-i-n or n-i-p device structure.  The p-layer is usually a boron-doped a-

Si:H or a-SiC:H , followed by an i-layer of either undoped a-Si:H or amorphous silicon 

germanium a-SiGe:H and an n-layer of phosphorous doped a-Si:H (Izu and Ellison, 

2003; Street, 2000; Wronski and Carlson, 2001; Wronski et al., 2002).  

For the tandem cell structures, μc-Si:H has been shown to be  able to act as an active 

layer in p-i-n solar cells (Meier, et al., 1998; Keppner, et al., 1999; Meier, et al., 2006;). 

Compared to the bandgap of a-Si:H (1.8eV), μc-Si:H was found to have a significantly 

lower energy bandgap of around 1 eV and thus the combination of both materials (two 

absorbers with different gap energies) leads to a  tandem cell structure, referred to as 

the “micromorph” cell, with superior performance to both single and double junction a-

Si:H-based cells because of increased use of the solar spectrum (Meier, et al., 2006).  

Silane is the primary source gas for both amorphous and microcrystalline Si:H-based 

PV manufacturing.  When silane is deposited, only approximately 15% of the gas gets 

used, while the remaining 85% goes unused and is treated as waste (Briend, 2011). The 

typical method of disposing of unused silane, which is a pyrophoric gas that undergoes 

spontaneous combustion in air, is to utilize combustion. 

 

2.2.2 LCA of Si:H PV Manufacturing 

Hydrogenated amorphous silicon PV has one of the lowest total embodied energy 

demands for PV modules of 1200 MJ eq. per meter squared (Alsema, 2000) and energy 

payback times between 1-3 years (García-Valverde, Cherni, and Urbina, 2010; Pearce 

and Lau, 2002).  This is in part due to the minimal amount of silicon needed to produce 

a-Si:H modules, utilizing only a fraction of what is found in conventional crystalline 

silicon-based cells and the ability for a-Si:H to utilize roll-to-roll production (Izu and 

Ellison, 2003), which reduces both production time and transportation costs with the 

production of these modules (Jungbluth, 2009). The performance of tandem Si:H-based 

cells is expected to be even better because of the increased cell performance with only 
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an increased energy expense due to the increased thickness of 2.5 microns, of the μc-

Si:H absorber layer.  

Although this ecological performance is excellent particularly when compared to fossil-

fuel based  energy sources that it replaces, the emissions due to Si:H-based PV 

manufacturing can cause a carbon emissions / energy cannibalization effect that limits 

the carbon neutral growth rate of the technology (Kenny, et al., 2010). Energy 

cannibalism refers to an effect where rapid growth of an entire energy producing 

industry creates a need for energy that uses (or cannibalizes) the energy of existing 

power plants (Pearce, 2008b). Thus, as PV is experiencing rapid growth the industry as 

a whole could produce no net energy because new energy is used to fuel the embodied 

energy of future power plants. A similar analysis is made for greenhouse gas (GHG) 

emissions and thus it is important to reduce the embodied energy and emissions of PV 

as much as possible to allow for accelerated growth rates of the industry (Kenny, et al., 

2010). With global PV production having proved it is capable of >100% growth per 

annum, reducing the energy payback time is necessary to stay ahead of the carbon 

neutral growth rate. 

 

2.3 LCA Methods 

2.3.1 Goal, Scope, and Functional Unit 

The goal of this study is to determine if in-situ silane recycling is environmentally 

feasible during PECVD manufacturing of Si:H-based PV (both single junction a-Si:H 

and tandem a-Si:H/ μc-Si:H) . The scope of this life cycle analysis will be limited to 

differences in inputs for processing (“cut-off method”) of silane for recycling versus 

not-recycling.  The functional unit is 1 kg of silane used in PV production. However, 

the inventory data associated with these inputs will embody a “cradle-to-gate” system 

boundary. These results will be compared with previous LCA results from the literature 

to quantify the variance in embodied energy and greenhouse gas emissions. 
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2.3.2 LCA Software, Inventory, and Impact Assessment Methods 

SimaPro v. 7.3 (Pré, 2012) was used to complete an energy and emissions LCA of a 

Si:H based PV manufacturing and silane recycling plants.  SimaPro is a life cycle 

analysis tool that gives a quantitative measure of the impact of a product or service.  In 

this analysis, the Ecoinvent v. 2.2 database of materials was used, which is based 

directly off of data from industry, evaluated by professionals, and is well known as a 

reliable database (Jungbluth, Tuchschmid, Wild – Scholten, 2008).  Cumulative energy 

demand was used to analyze the overall energy costs and the model developed by 

Intergovernmental Panel on Climate Change in 2007 for the global warming potential 

over a 100 year time period, IPCC 2007 GWP 100a (Pachauri, 2007; Solomon 2007), 

was used to calculate the CO2 equivalent emissions for the recycling comparison. 

2.3.3 Silane Recycling 

The silane recycling protocol studied here was proposed by Briend (2011) and is outlined 

in Figure 2.1.  Figure 2.1 shows the relationship between the 1 GW Si:H-based PV 

manufacturing plant (4) and the semiconductor recycling plant (5) in an eco-industrial 

park proposed by Pearce (2008a). This production plant size is evaluated because of the 

previously discussed benefit of scale (Pearce, 2008a). It should be noted that the use of 

silane recycling is considered an in-process form of recycling, although the context of the 

study is in an 8 plant eco-industrial park. The waste silane mixture from the reaction 

chamber in the PV plant can be recycled by first pumping the waste silane from the 

reaction chamber at near atmospheric pressure and mixing it with nitrogen to avoid 

ignition.  The diluted silane/nitrogen mixture can be processed using a filter (centrifugal 

separator, scrubber, etc.).  If the mixture is free of corrosive compounds, a compressor 

can then be used to bring the pressure to 2-35 bars (Briend, 2011). Otherwise, additional 

filters must be placed before the compressor to reduce corrosion. After obtaining the 

proper pressure, a cryogenic separator is used to condense/solidify the silane and remove 

the hydrogen/nitrogen mixture.  This point allows another potential recycling 

opportunity, the nitrogen and hydrogen can also be purified and reused, but will be left 

for future work.  From this point, the silane needs to be distilled to achieve the proper 
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purity level for the reaction chamber and the recycled silane can then be put into storage 

bottles/tanks or pumped through a system of parallel buffers and run through the 

deposition process directly again. 

Figure 2.1: Schematic of LCA of silane recycling in an industrial symbiotic system manufacturing 
Si:H-based PV. 

  

Currently, only 15% of the silane is used in the standard deposition process (Briend, 

2011) and the remaining 85% is wasted.  The percentages of potential silane wasted 

using the process outlined by Briend were calculated using: 

ar (%) = 1 - ad(%)-  aw(%) x av                              (2.1) 

where ar is the total percent of waste that can be recycled, ad is the total percent of 

silane deposited, aw is the percent of silane originally wasted, av is the fraction due to 

the efficiency of recoverable silane by use of recycling. From this 85 percent waste, the 

recycling process outlined by Briend (2011) is able to save up to 80 percent, thus 

saving up to 68 percent of the original amount injected into the PEVCD.  This leaves a 

waste of 17 percent using silane recycling versus the original 85 percent waste.   

The inputs for the energy and nitrogen required to create 1 kg of raw silane and 1 kg 

recycled silane mixture for both single junction a-Si:H PV and tandem a-Si:H/ μc-Si:H 
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PV production are shown in Table 2.1.  Inputs for components outlined by Briend 

(2011) were estimated from manufacturer specifications and calculations for the 

application of recycling silane (Edwards Limited, 2012; Hijet Engineering Ltd, 2012; 

Kaeser Compressors Inc, 2012; Praxair Inc, 2003). Electrical use was calculated using 

the power rating for one hour, divided by the amount of silane recycled from one hour 

of continuous production from a 1 GW-scaled manufacturer. This results in an 

overestimate of the amount of electricity used to produce 1 kg of recycled silane. A 

facility at this scale would present a need for 8.61 kg of usable recycled silane to be 

produced every hour from an a-Si:H facility and 30.14 kg of usable recycled silane 

every hour from a tandem a-Si:H/ μc-Si:H. The inputs differ for a-Si:H and tandem a-

Si:H/ μc-Si:H PV due to a difference in the volume of silane moving through the 

recycling system, when there is more volume at the same theoretical energy usage, the 

energy per unit volume is decreased.  Inputs for the United States (US) were used when 

possible, otherwise European (RER) inputs were used. The SimaPro LCA input for 1 

part was 1 kg of raw silane (silicon tetrahydride, at plant/RER U) used 100% raw 

materials. The terms S and U behind their country designation, refers to “system 

process” and “unit process”.  The system process includes all processes of the system as 

a whole, whereas the unit process shows references to previous processes. 

After designing an input for the recycled silane component, the LCA can be conducted 

for the actual deposition using recycled silane by considering Equation 2.1, which will 

be referred to as the recycled silane mixture.  Using equation 2.1, it is found that 32% 

raw silane will be needed for the deposition process in conjunction with 68% recycled 

silane, due to the 32% loss during the initial deposition process and the recycling 

process.  
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Table 2.1 

LCA inputs for 1 kg of Recycled Silane Mix for both  a-Si and tandem PV production: using 32% of 

1 kg input of Raw Silane and 68% of the Recycle Process Silane Inputs for 1 kg output using the 

process as outlined by Briend (2011) (Figure 1).  Ecoinvent ecoprofiles are listed for each input. 

Acronyms US/US refer to United States (US) made inputs used within the US, and RER refers to 

European (RER) inputs. The S at the end of the input name means that all processes to create the 

input are considered as a whole. 

Recycle Process Silane Inputs a-Si:H Tandem Unit Details 
Nitrogen, liquid, at plant/RER S 1.875 1.875 kg 

Pump: Edwards – iH80 Dry Pump 460V 
Electricity, production mix US/US S 0.313 0.090 kWh 

Electricity, production mix US/US S 0.910 0.910 kWh Filter/Compressor: Centrifugal 
Separator w/ Kaeser compressor 

Electricity, production mix US/US S 0.605 0.605 kWh Basic Cryogenic Air Separator 

Electricity, production mix US/US S 1.742 0.498 kWh Distillation Column: Vacuum distillation 
unit 

These inputs were determined using a 1GW-scaled PV manufacturing plant, running 

continuously, with 70 W/m2 for the single junction a-Si:H PV and 100W/m2 for the 

tandem a-Si:H/μc-Si:H PV produced.  It should be pointed out here that the 

fundamental differences in the inputs between a-Si:H/μc-Si:H and single-junction a-

Si:H PV is the thickness of the absorber layers. The absorption coefficient of the i-layer 

of the μc-Si:H cells are relatively low and necessitate a factor of five increase in 

thickness.  For this analysis, the gas plant was assumed to be located next to the 

manufacturing plant due to the scale of the PV plant, so transportation of silane and 

nitrogen to the PV plant was assumed to be negligible to minimize cost and downtime 

due to transportation time. A sensitivity analysis was done and showed that a 

transportation distance of 1000 miles had less than 0.1% effect on the results.  No other 

inputs besides those necessary for recycling were included for comparison between the 

life cycles of raw and recycled silane. 

2.4 Results  

The analysis of the cumulative energy demand results in the recycled silane mixture for 

an a-Si:H PV facility and a tandem a-Si:H/μc-Si:H PV facility having an impact of 409 

and 397 MJ per kg of usable silane, respectively. For entire production process of raw 
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silane, 1,146 MJ are used to create one kilogram.  This means that the amount of energy 

to recycle silane in an a-Si:H PV plant is only 35.7% and in a tandem a-Si:H/μc-Si:H 

PV plant is even less at 34.6% of what it takes to create raw silane, as shown in Figure 

2.2.   

 

Figure 2.2: Cumulative energy demand and CO2 emissions for raw and recycled silane for 1kg of 
silane, scaled for a 1 GW a-Si:H and tandem a-Si:H/μc-Si:H factory. 

Using the IPCC 2007 GWP 100a v 1.02 method to determine greenhouse gas emissions 

in carbon dioxide equivalents for raw and recycled silane, the total emissions are 22 kg 

CO2 per kg recycled silane mixture at an a-Si:H plant,  21.2 kg CO2 per kg recycled 

silane mixture at a tandem a-Si:H/μc-Si:H plant, and 61.3 kg CO2 per kg raw silane.  

The amount of greenhouse gas emissions related with the recycled silane mixture is 

35.8% for a-Si:H and 34.8% for tandem a-Si:H/μc-Si:H PV of that of raw silane as seen 

in Figure 2.2. 

The amount of CO2 emitted differs from the amount of energy use by a small amount 

due to the various inputs required for silane to be produced.  Various steps in the 

production of silane use different forms of energy, and some processes produce a 

greater amount of emissions for the same amount of energy used.   

Raw Silane Recycled (a-Si) Recycled (Tandem) Raw Silane Recycled (a-Si) Recycled (Tandem)
0

200

400

600

800

1000

1200

0

10

20

30

40

50

60
GHG emissions
Renewable, water
Renewable, biomass
Non-renewable, fossil, nuclear, biomass

C
um

ul
at

iv
e 

En
er

gy
 D

em
an

d 
(M

J/
kg

 u
sa

bl
e 

si
la

ne
)

G
re

en
ho

us
e 

G
as

 E
m

is
si

on
s 

(k
g 

C
O

2 
eq

/k
g 

us
ab

le
 s

ila
ne

)



12 
 

2.5 Discussion 

As the results in Figure 2.2 show, recycling silane in Si:H-based PV manufacturing 

consumes less energy and emits less greenhouse gas emissions compared to silane 

produced from new resources.  This is due to the high level of processing and 

transportation required in making PV-grade silane from new resources.  The difference 

in total energy demand is 736 MJ per kg between the recycled silane mixture and the 

raw silane for a-Si:H single junction PV manufacturing.  For comparison, 1 kg of silane 

can produce approximately 129 m2 of a-Si:H PV material with 15 percent deposition 

efficiency.  This means that for every meter squared produced, a total savings of 5.7 MJ 

can be realized.  To put this figure into context, for a 1 MW scaled factory, 1 m2 of 

frameless PV material, consumes approximately 1,200 MJ of energy (Alsema, 2000).  

If it is assumed that the difference in recycling for such a smaller plant will be 

approximately the same due to the store of the waste gas, reducing the size of the 

recycling process, and/or limiting the running time for the process, then recycling has 

the potential to save up to 5.7 MJ of the total manufacturing energy demand for each 

meter squared created at the MW scale.  It should be pointed here that the embodied 

energy due to the buildings and equipment were not included in the study as it was 

found to be negligible (<2% of total energy demand in photovoltaic systems – 

ecoinvent database (SCLCI, 2012). 

If a tandem module of a-Si:H/μc-Si:H is compared to a single-junction a-Si:H module, 

the effect of recycling is increased, as shown in Figure 2.3.  Assuming all inputs and 

methods are approximately the same except for a total i-layer absorber silicon thickness 

of 2.5 microns, 1 m2 of tandem PV material would have a cumulative energy demand of 

1235.6 MJ using raw silane.  By recycling silane, this type of PV material has the 

potential to save 29.1 MJ for every meter squared produced, resulting in a cumulative 
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energy savings of 2.4%.  

 

Figure 2.3: Cumulative energy demand comparison between raw and recycled silane for 1 meter 
squared of a-Si:H and tandem a-Si:H/μc-Si:H photovoltaic material 

 

A 1 GW single-junction a-Si:H manufacturer running continuously will use 111,000 kg 

of silane per year of which 94,300 kg of silane will go through the deposition chamber 

and be wasted.  By recycling, there is a potential to save 55,400 kg for reuse in the 

deposition chamber, with an end result of only 18,900 kg being disposed.  When the 

difference in the amount of energy and CO2 associated with 1 kg of silane is considered 

and multiplied by the amount of silane used per year, the end result of recycling silane 

is approximately 81,700 GJ of energy savings and 4.4 million kg of CO2 eq per year.   

These are substantial energy and emission savings. To put this into perspective, these 

values can be compared to other methods previously discussed in the literature in 

relation an industrial symbiosis centered on a 1 GW a-Si:H manufacturing plant.  For, 
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example Nosrat et al. investigated the glass used for the front and back substrate of a-

Si:H at this scale (2009). The energy that could be saved by maximizing recycling of 

glass in a-Si:H-based PV in a similarly scaled plant is 220,000 GJ (Nosrat, et al., 2009).  

Thus, the embodied energy conserved by recycling silane is about one third that of 

potential savings from using recycled glass in the back glass layer.  

Raw silane has a cost associated with its purchase approximated by Sematech at 

US$0.30/g for bulk production (Visokey, et al., 1995), although it should be noted that 

costs are highly variable. Thus, the process outlined here for recycling reduces this cost 

by 68 percent, or approximately $22.6 million/year for a 1 GW a-Si:H-based PV 

production facility. These cost savings thus help provide a cushion for thin film PV 

manufacturers from volatile silane cost fluctuations. However, these economic savings 

also may provide a direct competitive advantage for a-Si:H fabs that recycle silane by 

potentially reducing overall production costs and presumably market prices. However, 

it should be noted that the capital and operating costs need to be determined for the 

recycling process in future work. As previously noted, reduction in the installed cost of 

PV can have dramatic effects on consumer acceptance and market size (Keiser, 2011).  

The impacts of recycling silane in a 1 GW tandem a-Si:H/μc-Si:H manufacturing plant 

under the same recycling assumptions is even more substantial. The tandem fab will use 

388,000 kg of silane per year and could save 264,000 kg of silane by recycling.  This is 

equivalent to 290,000 GJ of energy savings and 15.6 million kg of CO2 eq per year. 

This represents a larger potential embodied energy savings than integrating recycled 

glass in the back glass encapsulation layer (Nosrat, et al., 2009).  Most strikingly, silane 

recycling results in a reduction of raw silane purchase costs of approximately $79.2 

million/year for a 1GW-scaled tandem a-Si:H/μc-Si:H manufacturing plant. At a thin 

film PV module cost of $0.70/Wp a 1GW-scaled plant generates $700 million in 

revenue/year, so the potential cost savings from silane recycling are approximately 11% 

of revenue. The percentage of potential savings from recycling would increase, as cost 

declines are made possible by improved efficiency and increased market competition 

reduces margins.  
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Future work is needed to do a full life-cycle economic analysis of this process that 

would compare the economic benefit from recycling silane with the increased costs of 

capital equipment and operating energy costs needed to recycle the silane outlined in 

Table 2.1.  In addition, Briend et al. (2011) outlined methods to recover both nitrogen 

and hydrogen, which could also be considered for future work to continue to depress 

the already small embodied energy, energy payback time, and ecological footprint 

while increasing the already substantial energy returned on energy invested (EROI) of 

Si:H-based PV manufacturing. Finally, a full LCA including all impact categories of 

the environmental analysis should be investigated as energy and silane are not the only 

contributers in the process to environmental impact. 

 

2.6 Conclusions 

This is the first LCA study of silane recycling in GW-scaled Si:H-based PV 

manufacturing plants. From the results found in this study, it is clear that not only 

would silane recycling allow Si:H-based PV manufacturers to become less dependent 

on silane cost volatility, but that silane recycling reduces energy consumption  and 

emissions in Si:H-based PV production. In the case of a 1 GW a-Si:H plant this 

amounts to savings of approximately 81,700 GJ and over 4,000 metric tons of CO2e per 

year. For the more material intensive 1 GW-scaled tandem a-Si:H/μc-Si:H PV 

manufacturing plant the savings are even more substantial: 290,000 GJ of energy 

savings and 15.6 million kg of CO2 eq per year.  It can be concluded that instead of 

buying all new silane only to discard 85%, it is more environmentally-responsible for 

thin film Si:H-based PV manufacturers to begin recycling silane and only 

supplementing the recycled supply with raw silane.  The recycling process outlined 

here reduces the cost of raw silane by 68 percent, or over $22 million/year for a 1 GW 

single-junction a-Si:H-based PV production facility and over $79 million/year for a 

tandem a-Si:H/μc-Si:H PV manufacturing plant. These savings represent a significant 

fraction of revenue and thus silane recycling offers the potential to reduce the LCOE of 
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Si:H-based PV, which could in turn make it more competitive in the PV market and 

increase PV penetration in the overall grid.   
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3. Life Cycle Analysis of Distributed 3-D Printing and Conventional 
Manufacturing of Polymer Products2 

 

Abstract 

With the recent development of the RepRap, an open source self-replicating rapid 

prototyper, distributed low-cost 3-D printing is now a technically viable form of 

distributed manufacturing of polymer-based products. Using 3-D printers for distributed 

manufacturing provides the ability to ultra-customize products and to change fill 

composition, which increases material efficiency. This property combined with the 

reduction in embodied energy of transportation made available by home manufacturing 

allow for the possibility that it could be less energy and greenhouse gas emission 

intensive than conventional manufacturing. However, the aggregate environmental 

benefits of distributed manufacturing are not clear due the potential for increases in the 

overall embodied energy of the manufacturing due to reduction in scale (e.g. 

thermodynamic limitations to working with smaller volumes). To quantify the 

environmental impact of distributed manufacturing using 3-D printers, a life cycle 

analysis (LCA) was performed on three plastic products. The embodied energy and 

emissions from conventional large-scale production in low-labor cost countries and 

shipping are compared to experimental measurements on a RepRap producing identical 

products with acrylonitrile butadiene styrene (ABS) and poly-lactic acid (PLA). The 

results of this LCA study indicate that the cumulative energy demand of manufacturing 

polymer products can be reduced by 25 to 64% using distributed manufacturing with 

existing low-cost open-source 3-D printers when using PLA under 25% fill. These 

savings are increased to 45-74% with the use of solar photovoltaics, along with a 

dramatic decrease in emissions. These positive environmental results for distributed 

manufacturing are expanded to ABS, which demands hotter bed and extruder 

temperatures when low emission intensity sources of power are utilized such as solar 

photovoltaic technology, with a savings of 34-53% under 25% fill.  The results indicate 
                                                           
2 “The material contained in this chapter is planned for submission to the Environmental 
Science and Technology” 
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that the ability of RepRaps and similar 3-D printers to vary fill percentage has the 

potential to significantly diminish environmental impact on many products.  It can be 

concluded from the results of this study that open-source additive layer distributed 

manufacturing is both viable and beneficial from an ecological perspective.  

3.1 Introduction 

The benefits of large-scale manufacturing are well established and include reduction in 

costs due to the economies of scale from: i) purchasing (bulk buying of materials, 

supplies, and  components through long-term contracts), ii) increased specialization of 

employees and managers, iii) favorable financing in terms of interest, access to capital 

and variety of financial instruments, iv) marketing and v) purely technological advantage 

of returns to scale in the production function.1-3 The last advantage is in part due to lower 

embodied energy during manufacturing of a given product because of scale. These 

advantages have created a general trend towards large-scale manufacturing in low-labor 

cost countries, especially for inexpensive plastic products.4,5   The environmental burden 

that plastics consumption has on the environment is well established due to their slow 

decomposition rate and pollution of land, water and air.6-8 With annual global production 

of 245 million tons increasing by approximately 6% per year, there is a clear need to 

reduce the environmental impact on global plastic consumption.9 

One new potential method of reducing the environmental impact of plastic products is to 

use distributed manufacturing with low-cost open-source 3-D printers10-13  as the nature 

of 3-D printing allows for the minimization of production waste while maximizing 

material utilization.16 The technological development of 3-D printers has been 

substantial14,15, which has benefited many industries; however, the costs of 3-D printers 

have historically been too expensive to be feasible for distributed or home-based 

manufacturing.16  Recently, several open-source (OS) models of commercial rapid 

prototypers have been developed,16 which offer an alternative model of low-cost 

production. The most successful of these is the self-replicating rapid prototyper (Rep 

Rap), which can be built from printed parts, open-source electronics, and common 

hardware for under $500.17,18 The RepRap, has opened the door of additive layer 
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manufacturing to a wide range of potential users due to cost and simplicity while making 

distributed small-scale production technically feasible.10,19 The ability to change fill 

composition allows more complicated shapes to be produced with structural integrity 

while minimizing material use. This property combined with the reduction in embodied 

energy of transportation made available by distributed manufacturing allow for the 

possibility that it could be less energy and emission intensive than conventional 

manufacturing. However, the aggregate environmental benefits of distributed 

manufacturing are not clear due the potential for increases in the overall embodied energy 

from reduction in scale (e.g. thermodynamic limitations to working with smaller 

volumes).  

This study evaluates the technical potential of using a distributed network of 3-D printers 

to produce several types of plastic components and products. A life cycle analysis (LCA) 

of energy consumption and greenhouse gas (GHG) emissions is performed for distributed 

manufacturing using low-cost open-source 3-D printers and compared to conventional 

manufacturing overseas with shipping. To further evaluate the distributed manufacturing 

system, a distributed electricity generation system using solar photovoltaic (PV) 

technology was quantified, as the embodied emissions are highly dependent on the grid 

emission intensity.[20] These results are evaluated and discussed to draw conclusions 

about the viability and environmental performance of distributed manufacturing. 

3.2 Methods 

3.2.1 Production methods 

The RepRap (Prusa Mendell variant) with a 200 mm x 200 mm x 140mm (height) build 

envelope was used to print all product/product components using the thermoplastics: 

acrylonitrile butadiene styrene (ABS) and polylactic acid (PLA).21 PLA is made from 

organic material and has a low environmental impact, making it a good alternative 

plastic.22 The ABS extruder temperature was 230°C and bed temperature was 110°C.  

PLA was printed using an extruder temperature of 185°C, with a first layer bed 

temperature of 63°C to ensure adhesion, followed by print bed temperature of 60°C.  

Energy measurements were taken using a multimeter (±0.005 kWh) during initial heating 
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and while printing each individual object.   

Three products were 3-D printed with 45 degree fill using a rectilinear pattern in ABS 

and PLA: a “block”, a “water spout”, and a “juicer” (Fig. 3.1).  

The Naef building block is a simple, but expensive toy that is typically handcrafted in 

Switzerland from hardwood. The fill percentage was varied to include 0, 5, 10, 25, and 

100% fill, as seen in Fig.3.2, within the PLA block in order to determine the relationship 

between fill percentage and environmental impact.  The ABS blocks were printed only at 

25% fill. 

The water spout attaches to a post-consumer 2-Liter bottle and can be used to water 

plants replacing a typical watering can. PLA and ABS were printed at 100% fill to ensure 

leak protection. 

The citrus juicer is used to produce juice from oranges, grapefruits, lemons, limes and 

other citrus fruit. It is fixed upon a post-consumer glass jar for collection.   A 15% fill was 

used in order to reduce the amount of plastic used to produce it, while maintaining the 

necessary functional mechanical strength. 

 

Fig. 3.1:  Naef building block23 (A), water spout24 (B) and juicer25 (C) 
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Fig. 3.2: Fill percentages for blocks 0, 5, 10, and 25% (left to right). 

3.2.2 Life-cycle analysis methods 

Life-cycle assessment is a growing topic of study26 and was used here to quantify the 

difference in environmental impact between distributed and conventional manufacturing. 

Similar studies compare and improve the environmental impact of various goods, 

production methods, fuel sources, etc., such as lubricants27 and cement.28  SimaPro 7.2 

was used to get the cumulative energy demand (CED 1.07) and global warming potential 

over 100 years (IPCC GWP 2007 100a) as kg CO2 equivalent emissions for each product 

using the database EcoInvent v2.0.  A “cradle-to-gate” analysis was done (from raw 

material extraction from nature to the product exiting the factory gate), with the gate 

located in the United States. 

3.2.2.1 Distributed manufacturing methods 

Distributed manufacturing was quantified using the electricity consumption of the 

RepRap and the material inputs by weight for ABS or PLA, where inventory data was 

obtained from these ecoprofiles: (Electricity, Production Mix, US) or (Electricity, PV, at 

3kWp, a-Si panel, Switzerland) was used as an input, in addition to (Polylactide, 

NatureWorks Nebraska, US) and (Acrylonitrile-butadiene-styrene copolymer, 

Switzerland). Plastic production was assumed to be in the United States for the 

distributed case. United States eco-profiles were used when available, otherwise 

European eco-profiles were used. 
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3.2.2.2 Conventional manufacturing methods 

Conventional manufacturing was input into SimaPro assuming a 100% fill and was input 

based on the weight from experimental results.   The inputs used for conventional were 

material inputs PLA or ABS, as done for distributed assuming production of plastics in 

China, in addition to injection molding (Injection molding, Switzerland) and shipping 

9,213 km using (Transoceanic freight ship, international) from Shanghai, China to 

Seattle, WA.29 The injection molding was done with the European eco-profile due to 

limitations on Chinese inputs, this is presumed to underestimate the energy use and 

emissions due to higher regulations in Europe and the large dependence of China on coal-

fired electricity. The injection molding input states that the finished product is 99.3% of 

its input, this was considered in the analysis for both the material input and the injection 

mold.      

One additional version of the conventional manufacturing was done for the case of the 

“block” to consider wood using inputs (Sawn timber, hardwood, kiln dried U=10%, 

Switzerland) using a wooden cube with 2” sides and shipping 6,275 km using 

(Transoceanic freight ship, international) using the approximate distance from Bern, 

Switzerland to New York, NY.29 Additional processing is unknown for the case of the 

wood block and is assumed to be underestimated in this study.  

3.2.2.3 Additional assumptions and study limitations 

Processing for each of these cases should be assumed to underestimate total cumulative 

energy demand and emissions, as additional processing may be required for consumer 

use (i.e. sanding, finishing, etc). Overseas shipping distance is an underestimate due to 

taking a straight-line trip across the ocean.  Shipping over land, infrastructure, molds, 

packaging and waste were not included in this analysis thus underestimating the 

embodied energy of traditional manufacturing and are left for future work.  The materials 

PLA and ABS were used as an example for each product, but may not be the ideal 

materials for these products or may require additional coatings to make them food-grade 

or child-safe.  Limitations on input locations exist in this study, as noted above. 
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3.3 Results and Discussion 

Measured experimental values from the RepRap are shown in column “Measured 

Energy” in Table 3.1 and were input into SimaPro and compared to conventional 

methods as described for cumulative energy demand (CED) and greenhouse gas 

emissions in global warming potential over 100 years (GWP) (Table 3.1).   

Table 3.1.                                                                                                            
Experimental values (measured energy), conventional (conv.) and distributed (distr.) manufacturing 
total cumulative energy demand values using SimaPro (CED) and emission values in global warming 
potential (GWP) and for distributed manufacturing with and without the use of solar PV to provide 

low emission intensity electricity. 

Prod. Method Fill Plastic Measured  
Energy CED 

Δ 
from 
Conv. 

CED 
w/PV 

Δ 
from 
Conv. 

GW
P 

Δ 
from 
Conv. 

GWP 
w/PV 

Δ 
from 
Conv. 

  % PLA or 
ABS kWh MJ eq % MJ eq % 

kg 
CO2 
eq 

% 
kg 

CO2 
eq 

% 

Block Conv. 100 PLA ~ 7.09 ~ ~ ~ 0.26 ~ ~ ~ 

 Distr. 0 PLA 0.09 2.52 -64.5 1.84 -74.0 0.11 -57.7 0.05 -80.8 

 Distr. 5 PLA 0.1 2.77 -60.9 2.02 -71.5 0.12 -53.8 0.06 -76.9 

 Distr. 10 PLA 0.11 3.21 -54.7 2.38 -66.4 0.14 -46.2 0.07 -73.1 

 Distr. 25 PLA 0.14 4.22 -40.5 3.16 -55.4 0.19 -26.9 0.09 -65.4 

 Distr. 100 PLA 0.24 8.23 16.1 6.42 -9.4 0.35 34.6 0.19 -26.9 

 Conv. 100 ABS ~ 9.76 ~ ~ ~ 0.44 ~ ~ ~ 

 Distr. 25 ABS 0.26 6.58 -32.6 4.62 -52.7 0.34 -22.7 0.17 -61.4 

Spout Conv. 100 PLA ~ 1.93 ~ ~ ~ 0.07 ~ ~ ~ 

 Distr. 100 PLA 0.1 2.55 32.1 1.80 -6.7 0.12 71.4 0.05 -28.6 

 Conv. 100 ABS ~ 2.38 ~ ~ ~ 0.11 ~ ~ ~ 

 Distr. 100 ABS 0.19 4.20 76.5 2.77 16.4 0.22 100 0.09 -18.2 

Juicer Conv. 100 PLA ~ 11.58 ~ ~ ~ 0.43 ~ ~ ~ 

 Distr. 15 PLA 0.31 8.66 -25.2 6.32 -45.4 0.39 -9.3 0.18 -58.1 

 Conv. 100 ABS ~ 13.71 ~ ~ ~ 0.62 ~ ~ ~ 

 Distr. 15 ABS 0.52 12.96 -5.5 9.03 -34.1 0.68 9.7 0.32 -48.4 

The environmental impacts of the distributed manufacturing cases were minimized using 

a solar PV array to provide electricity following recommendations by Pearce et al.  that 

would allow for 3-D printing fabrication in most locations in the world.19 It has been well 

established that PV technology is a sustainable source of energy that significantly reduces 

environmental impact of electricity use and is amenable to distributed generation30,31 and 
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the embodied energy of PV decreases as advancements are made.32 PV technology has 

the potential to prevent a significant amount of emissions33 with at least 89% of air 

emissions produced by conventional electricity.31 Although there are no commercial PV-

powered RepRap 3-D printers, proof of concepts already exist and the open-source 

development community that supports the RepRap has been experimenting with 

variants.34 These variants would enable distributed manufacturing even in remote 

communities without access to the conventional electric grid. 

3.3.1 Naef building block 

The results for the block prints had the CED and emissions compared to conventional and 

wood synthesis (Table 3.1 and Figs. 3.3-3.5). In the Figures, the CED is split into two 

categories: renewable and non-renewable energy sources involved to display the level of 

sustainable energy for each case.  Renewable consists of renewable bio-mass, wind, solar, 

and water energy sources that are part of the conventional energy mix and does not 

directly relate to the PV-powered systems. Non-renewable consists of non-renewable 

energy sources fossil fuels, nuclear, and bio-mass. The CED for the blocks can be found 

in Table 3.1 and Figure 3.3.  The CED for wood block is 2.16 MJ with emissions of 0.02 

kg CO2 eq. The CED for the conventional method for PLA and ABS at 100% fill was 

found to be 7.09 MJ and 9.76 MJ, respectively, which is a factor of roughly four times the 

embodied energy of the wood case. The CED for the distributed 25% ABS block was 

6.58 MJ and with a PV system 4.61 MJ, representing 33-53% decrease over conventional 

production. As expected, Figure 3.4 shows a linear trend between fill ratio and energy use 

for blocks printed in PLA with and without PV. The addition of a PV system results in a 

saving of emissions from the traditional energy source between 22-27%. The CED values 

under the PV distributed system were less than the conventional manufacturing values for 

all fill percentages, while the traditional energy source distributed system is less than the 

conventional below 79% fill. The typical print is done at 25% fill or less, depending on 

the structural integrity needed, with the majority of prints being 15% or less.  Producing 

goods with less than a 79% fill is easily achieved by the average 3-D printer for this 

reason, implying that distributed manufacturing will have less of an environmental 

impact than conventional for almost all print jobs.  
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The emissions for the blocks are shown in Table 3.1 and Figure 3.5.  The emissions for 

the conventional ABS block is 0.44 kg CO2 eq, while the distributed case without and 

with PV had 23 and 61% savings in emissions respectively at 25% fill. The emissions for 

the conventional PLA block was 0.26 kg CO2 eq, while the distributed system PLA 

blocks were between 0.11-0.35 kg CO2 eq and between 0.05-0.19 kg CO2 eq for the 

distributed + PV system. The distributed manufacturing cases have the lowest emission 

values compared to traditional manufacturing for all cases, except for distributed without 

PV for 100%. Again, it is clear for this particular product 100% fill is unnecessary. This 

implies that without PV, distributed manufacturing should be done at the smallest percent 

fill acceptable for an application in order to reduce energy consumption and concomitant 

GHG emissions. With the use of PV, distributed manufacturing minimizes the emissions 

for manufacturing compared to the conventional methods. The wood block has the lowest 

emissions out of all cases due to being handmade and made from potentially renewable 

resources, but if this product was to switch to plastic, distributed PLA + PV at 0 or 5% fill 

should be considered as the CED is even slightly lower than the wood value for these 

cases.  Since PLA is made from organic materials, bio-degradable, and has a high green 

design ranking among plastics, it would make a good alternative to wood.22 Similar 

products with the same potential would be other toys or household goods in addition to 

other products that could be made lightweight by replacing the inside with a hatch fill to 

provide structural integrity.   
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Fig. 3.3: CED of the blocks showing wood, conventional PLA and ABS at 100% fill, distributed PLA 
from 0-100% fill, distributed ABS 25% fill, along with the effect of PV electricity.  

 

Fig. 3.4: Blocks - Fill ratio vs. energy demand. The conventional value is put here for comparison 
purposes, but is at 100%. If other fill percentages were possible for the conventional method, this 
value would change based upon fill. 
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Fig. 3.5: Greenhouse gas emissions in kg CO2 eq (GWP 100a) for the block for wood, conventional 
PLA and ABS 100% fill, distributed PLA from 0-100% fill, distributed ABS 25% fill, along with the 
effect of PV electricity. 

3.3.2 Water spout 

The distributed manufactured water spout not only replaces a centralized manufactured 

one, but also provides the interesting complexity of allowing for the re-use of a 2L bottle, 

while replacing a conventional watering can. The comparison was done between the 

distributed case and the conventional case (Figs. 3.6, 3.7).  It is important to stress that 

this analysis was done for a spout using both distributed and conventional manufacturing, 

when in reality the spout created would actually be replacing a full watering can that 

would use more material and energy to create than shown here. For example, a 210g 2L 

watering can35 made in China using injection molding in PLA or ABS would require a 

cumulative energy demand of 19.8 MJ  or 27.4MJ and emissions of 0.738 or 1.23 kg CO2 

eq, respectively.  

The CED and emissions for conventional manufacturing at 100% fill using PLA and ABS 

were found to be 1.93 and 2.38 MJ, and 0.07 and 0.11 kg CO2 eq, respectively. The 

distributed case using 100% fill without PV yielded slightly higher values for PLA and 

ABS of 2.55 and 4.2 MJ, and 0.12 and 0.22 kg CO2 eq for CED and emissions, 
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respectively. While these values are higher than the conventional method listed, a full 

watering can under conventional methods would require 6.5 times more energy than 

distributed for ABS and 7.5 times more for PLA, due to the amount of plastic and 

processing required to make the entire can.  The distributed values were minimized for 

PLA and ABS using PV to get 1.8 and 2.77 MJ, and 0.05 and 0.09 kg CO2 eq, 

respectively. PLA with PV resulted in a 6.7% cumulative energy savings over the 

conventional spout production, while ABS with PV was 16.4% larger than the cumulative 

energy for conventional. Using the same fill percentage (100%) for distributed and 

conventional manufacturing resulted in conventional having lower CED values for all 

cases except distributed PLA + PV. The emissions were reduced using distributed 

manufacturing PLA + PV and ABS + PV, as shown in Figure 3.7. The production of an 

entire watering can was 7.5 times higher than that of a spout produced out of PLA with 

conventional electricity, which implies that reducing the amount of raw materials used in 

production by replacing a large volume object with a post-consumer good that requires 

little to no additional processing, will dramatically decrease the environmental impact 

associated with the end product.

 
Fig. 3.6: CED of the spout showing conventional PLA and ABS at 100% fill, distributed PLA and 
ABS at 100% fill, along with the effect of PV electricity.  
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Fig. 3.7: Greenhouse gas emissions in kg CO2 eq (GWP 100a) for the watering can and spout for 
conventional PLA and ABS 100% fill, distributed PLA and ABS at 100% fill, along with the effect of 
PV electricity. 

3.3.3 Citrus juicer 

Conventional PLA and ABS citrus juicers at 100% fill had CED of 11.58 and 13.71 MJ, 

respectively; while distributed PLA and ABS juicers at 15% fill and made with 

conventional electricity decreased these values by 25% and 6%. The addition of a PV 

system reduced the values an additional 20-29 percent. Similar results were seen for 

emissions as can be seen in Fig 3.9.   The energy is minimized using distributed 

manufacturing for the juicer and is made possible by using a smaller fill percentage. This 

not only reduces material use in the product itself, but also the environmental impact of 

the processing and embodied energy use in the raw material extraction and transportation. 

The use of PV to power the RepRap minimizes both the emissions and the energy use for 

distributed manufacturing even further.  

The emissions are lower for the distributed manufacturing systems for all cases except 

the ABS juicer without PV.  This is due to the relatively large amount of energy needed to 

keep the heated build platform at operating temperature for the ABS.  Future work is 

necessary to reduce the energy needed for the build platform. This can be done by using 

chemical means to enable better adhesion, using zoned heating so only the parts of the 
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bed under the part are heated, better insulating the bottom of the bed, or using a 

controlled environmental chamber to insulate the entire RepRap from cold ambient 

temperatures.  

 
Fig. 3.8: CED of the juicer showing conventional PLA and ABS at 100% fill, distributed PLA and 
ABS at 15% fill, along with the effect of PV electricity. 

 
Fig 3.9: Greenhouse gas emissions in kg CO2 eq (GWP 100a) for the juicer for conventional PLA and 
ABS 100% fill, distributed PLA and ABS at 15% fill, along with the effect of PV electricity. 
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3.4 Discussion 

Conventional manufacturing is limited on internal manipulation of a product, however 

with the use of the RepRap, this is no longer a barrier to improved material efficiency.  

The use of 3-D printers allows for previously impossible shapes under conventional 

manufacturing methods (e.g. injection molding) along with the ability to manipulate the 

inside of an object during production in multiple ways, such as, adding internal parts or 

fill composition, which can be altered by pattern (rectilinear, honeycomb, etc), angle, 

percentage, along with adding solid fill layers when necessary.10,18,36 This ability has the 

potential to reduce additional machining during processing, since holes and other needs 

that were impossible using methods similar to injection molding had to previously be 

done using tools, such as, drill presses.  These steps are now able to be created during the 

design step, have the digital design files shared and automatically produced using any, 

open-source 3-D printer.10   

The results of this study show that distributed manufacturing with a 3-D printer requires 

less cumulative energy than conventional manufacturing when products are made from 

PLA and ABS for a fill composition less than 0.79. For many products or components 

that do not have a need for significant mechanical strength may be possible to print 

considerably below 79% fill, indicating that it may be possible to 3-D print products at a 

lower environmental impact than conventional manufacturing. It should be pointed out 

that if more products are printed simultaneously on the heating bed, it is possible to 

reduce the energy to print even further due to the initial heating energy being dispersed 

among more individual products.  For example, when printing two blocks simultaneously 

under the same conditions and settings as a single block made out of PLA at 10% fill 

under conventional electricity, there was an energy savings of 4% and an emission 

reduction of 5% over printing a single block. When distributed manufacturing is used in 

conjunction with a solar PV system, the cumulative energy is further decreased. This 

benefit could also be applied to the conventional system, although the scale of PV for 

conventional manufacturing makes this more difficult due to the high energy 

requirements associated with mass-scale production.  PV is much more practical for 

distributed manufacturing, as there is a smaller energy requirement for production.  
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Distributed manufacturing creates fewer emissions than conventional manufacturing 

when PLA is used at a minimal fill composition and in cases using PV electricity with 

ABS.  The environmental benefits of PLA are already being considered in the 3-D 

printing community due to the reduction of toxins, material use, and other impacts on the 

environment.  

Distributed recycling is also being developed to recycle post-consumer products into 

filament for a 3-D printer, which could further reduce cost and resources required for 

distributed manufacturing.37-40 The open-source small-scale models of commercial plastic 

extruders currently under development are the RecycleBot41,42, the Filabot43,44 and the 

MiniRecycleBot.45 For the juicer, which requires 0.31 kWh to produce, if it could be 

produced for the same amount of electricity in recycled HDPE using the distributed 

recycling system, the juicer would cost only 4 cents, instead of $2.76 using PLA filament 

or $7-25 commercially.40  All other products (water spout, blocks), under the same 

conditions, use less electricity to produce and less material, meaning that any of these 

items can be produced well under 4 cents, even at 100% fill. Similarly, for the water 

spout (watering rose) or the watering can, which can be bought retail for about $10, using 

the distributed water spout can save over $9.96 or 99%. If the blocks are compared to a 

set 16 Naef wood blocks which retail for $160, a set of 16 blocks using recycled filament 

would cost you less than 64 cents, that is $159.36 savings or over a 99% savings.  Future 

work needs to be done to compare printer cost and maintenance per part manufactured 

and added to this preliminary cost analysis. 

The 3-D printing community is fast growing and the amount of RepRaps in use has 

increased from 4 to 4500 between 2008 and 2011.16  3-D printing has the potential to 

revolutionize how people think about manufacturing.  This allows people to make things 

within their own homes and as customized as they would like instead of buying mass 

produced items off the shelf.  Almost any amount of plastic good can be produced using a 

RepRap and research is underway on using other printing materials.  Since the RepRap 

community is open-source, this allows anyone to build and use their own 3-D printer and 

create any item that is on the Internet. This sharing is already quite established. For 
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example, Thingiverse, a database of designs for real physical objects, the vast majority of 

which can be printed on a RepRap currently houses over 26,000 items. These designs are 

generally shared with some form of open license, thereby adding value to anyone that 

owns a 3-D printer. As this database and other similar efforts continue to grow the value 

of access to 3-D printing expands and thus creates a positive feedback loop. 

This was a study on a limited number of products and future work is necessary to 

quantify the LCAs of distributed vs. conventional manufacturing of other types of 

products. An ideal study would consist of a cradle-to-grave analysis for both 

conventional and distributed manufacturing, including all infrastructure, packaging, and 

transportation.  For distributed manufacturing, a various number of products being 

printed on several different printers in order to get an estimate of the average energy use 

for 3-D printers.  For conventional manufacturing, a more accurate analysis could be 

done by communicating with plastics manufacturers to determine any additional inputs or 

processes required for manufacturing.  Limitations with EcoInvent currently consists of a 

lack of available inputs for the country needed, such as China, as these inputs become 

available, the limitations of future studies can be minimized as the EcoInvent database 

grows. 

The results of this LCA study indicate that the environmental impact of manufacturing 

polymer products can be reduced using distributed manufacturing with existing low-cost 

open-source 3-D printers when using PLA. This indicates that distributed manufacturing 

is technically viable and environmentally beneficial because of both reduced energy 

consumption and greenhouse gas emissions. These positive environmental results for 

distributed manufacturing are expanded to ABS, which demands hotter bed and extruder 

temperatures when low emission intensity sources of power are utilized such as solar 

photovoltaic technology. The results indicate that the ability of RepRaps and similar 3-D 

printers to vary fill percentage has the potential to significantly diminish environmental 

impact on many products.  It can be concluded from the results of this study that open-

source additive layer distributed manufacturing is both viable and beneficial from an 

ecological perspective. 
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4. Life Cycle Analysis of Distributed Recycling of Post-Consumer High 
Density Polyethylene for 3-D Printing Filament3  

Abstract  

Life cycle analysis studies were performed on the recycling of high density polyethylene 

(HDPE) into filament suitable for additive layer manufacturing with 3-D printers. The 

conventional centralized recycling system for high population density and low population 

density rural locations was compared to the proposed in home, distributed recycling 

system.  This system would involve shredding and then producing filament with an open-

source plastic extruder from post-consumer plastics and then printing the extruded 

filament into usable, value-added parts and products with 3-D printers such as the open-

source RepRap.  The embodied energy and carbon dioxide emissions were calculated for 

HDPE recycling using SimaPro 7.2 and the database EcoInvent v2.0. The results showed 

that distributed recycling uses less embodied energy than the best-case scenario used for 

centralized recycling.  For centralized recycling in a low-density population case study 

involving substantial embodied energy use for transportation and collection these savings 

for distributed recycling were found to extend to over 80%.   If the distributed process is 

applied to the U.S. HDPE currently recycled, more than 100 million MJ of energy could 

be conserved per annum along with the concomitant significant reductions in  greenhouse 

gas emissions.  With the open-source 3-D printing network expanding rapidly the 

potential for widespread adoption of in-home recycling of post-consumer plastic 

represents a novel path to a future of distributed manufacturing appropriate for both the 

developed and developing world with lower environmental impacts than the current 

system. 

Keywords (6): distributed recycling; life cycle analysis; plastic; polymer; recycling; 

transportation energy 

                                                           
3 “The material contained in this chapter has been submitted to Resources, Recycling, and 
Conservation.” 
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4.1 Introduction 

Plastic has become an integral part of society as population growth and technological 

development have resulted in the global production of plastic increasing by 500% over 

the last 30 years and it is expected to continue to grow to 850 million tons per year by 

2050 (Lebreton, et al., 2012; Lotfi, 2009; Shen et al., 2009).  Plastics are not only used 

for food packaging and cheap parts, but are now being used to replace metal, wood, 

paper, and glass in a variety of engineering applications (Arena et al., 2003), mulch 

(McCraw and Motes, 2012), sports fields, and even human body parts (Bow and 

Parvizi, 2011; Xue, 2011).  This increase in plastic usage results in a substantial 

environmental burden on both land (Rees, 1980) and water pollution (Derraik, 2002) as 

plastics are slow to decompose naturally – taking from 10 to 450 years in a landfill 

(U.S. National Park Service, 2012) and toxic to burn (Lewis and Sullivan, 1992).  

Plastic processing, use, and disposal also comprise a significant source of energy 

consumption (Arena et al., 2003; Björklund, 2005; Craighill, 1995; Perugini et. al., 

2005; Powell, 2010; Reich, 2005; Ross, 2003; Rydberg, 1995; Song and Hyun, 1999; 

Subramanian, 2000).  First, plastics can be regarded as a form of stored potential energy 

as each year producing virgin plastics requires 4% of the world’s oil production 

(Cambridge-MIT Institute, 2005) equivalent to 1.3 billion barrels a year (EIA, 2011) 

equivalent to the amount of oil Texas used in 2010 (EIA, 2010).   As the cost of oil is 

expected to escalate due to rising energy prices it is likely companies will look for 

alternative feedstocks (Chemical Engineering Progress, 2008) thus there are both strong 

environmental as well as economic interests in large-scale recycling of plastics (Lotfi, 

2009). 

Today seven types of plastics are commonly recycled. Historical trends in polymer 

recycling have been towards large centralized facilities to take advantage of economies 

of scale in producing low-value commodities (Missouri DNR, 2012; Redd, 1993).  One 

of the primary reasons that plastic is recycled at such low rates in conventional 

centralized recycling is the challenge of collection and transportation for high volume, 

low weight polymers. Thus, plastic recycling is often not economical and when it is 

recycled, the collection is ‘subsidized’ by higher value recycled content material such 
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as aluminum (Hood, 1995). Two recent open-source hardware technological 

developments, 3-D printers and RecycleBots, offer a new approach to polymer 

recycling encompassing the potential for distributed processing to high-value added 

products, which reverses the historical trend towards centralized recycling facilities. 

Commercial 3-D printers, which allow for accurate fabrication of products or scale 

models, are a useful production and design tool. The development of additive 

manufacturing for rapid prototyping and 3-D printing in a number of technologies has 

been substantial (Crane et al., 2011;  Gebhardt et al., 2010; Gibson et. al., 2010; 

Petrovic et al., 2010; Upcraft and Fletcher, 2003). Recently, following the open source 

(OS) model, the RepRap has been developed that can be built for under $500, greatly 

expanding the potential user base of 3-D printers. Between 2008 and 2011, it is 

estimated that the number of RepRaps in use had increased from 4 to 4500 (Sells et al., 

2011). These machines could feasibly be used for small-scale manufacturing or as an 

enabling tool for green manufacturing (Kreiger and Pearce, 2012; Kreiger and Pearce, 

2013; Pearce, et al., 2010). The primary expense of operating a 3-D printer is the 

filament or “3-D ink” and thus the operating costs of the RepRap can be further reduced 

using post-consumer plastics as feedstock. 

Commercial extrusion of plastic utilizes a screw to move material through a heated 

barrel where it is compressed, melted, mixed and forced through a die (Rosato, 1997).  

One such device, which turns post-consumer plastic into a growth medium for plants 

(Torcellini, 2010), has been modified here to create a new, semi-automated open source 

“Recyclebot” to prepare RepRap feedstock from post-consumer household plastic such 

as bottles and laundry detergent containers (Baechler et al., 2013). Researchers 

throughout the world have attempted to adapt these principles and construct small-scale 

plastic extruders with varying degrees of success (Braanker et al., 2010; Kreiger et al., 

2012; RecycleBot, 2010). As the RecycleBot is an open-source project there are several 

other variants under development: the Filabot, which includes an open-source shredder 

(McNaney, 2012), the Lyman Filament Extruder (Lyman, 2012) and the 

MiniRecycleBot (MiniRecyclebot, 2012), which could be utilized as post-consumer 
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plastic RecycleBots. Bad prints, broken or worn out parts can also be recycled by this 

method.  There is also currently work being done in the open-source community on the 

creation of a shredder designed to be used with the RecycleBot system.  These open-

source shredders are capable of shredding entire milk jugs or other recyclables. Their 

use, in place of a commercial paper shredder, would remove the need for cutting bottles 

by hand, thus reducing processing time (Thymark, 2012). The use of an open-source 

shredder would also increase the usable mass of post-consumer plastic containers.    

Fabrication of feedstock with RecycleBots from post-consumer plastic also has the 

potential to reduce the environmental impact of 3-D printing, and may provide an 

incentive for distributed, in-house recycling of plastic  (Pearce et al., 2010).  Baechler 

et al. (2013) have demonstrated acceptable 3-D filament production from a RecycleBot 

using high density polyethylene (HDPE). HDPE, recycled plastic number “2”, is used 

primarily for non-food packaging, pipes, and plastic lumber.  In 2010, 984 million 

pounds of HDPE were recycled in the U.S. (American Chemistry Council and 

Association of Postconsumer Plastic Recyclers, 2011), which is 27.8% of the HDPE 

produced (Sandhill Plastic, 2010). The total energy used annually to produce virgin 

HDPE is 124 billion MJ.  Using the cut-off method of life cycle analysis (LCA), the 

embodied energy of recycled HDPE is 24% less than virgin plastic (Grant and James, 

2005), indicating that in there is an enormous waste of energy and material resources 

from not recycling HDPE. 

This study explores this technical potential of using a distributed network of 

RecycleBots to process post-consumer goods into 3-D printing feedstock. To 

demonstrate the feasibility of this approach, HDPE is used as a test material. The LCA 

of energy consumption and carbon dioxide (CO2) emissions is determined for this 

distributed approach and are compared to the standard centralized model. A sensitivity 

analysis is performed on two case studies comparing both the best and worst case 

scenarios in Michigan of geographic distribution of post-consumer plastic from a 

centralized facility. These results are discussed and a preliminary financial analysis is 

performed to draw conclusions about the viability of distributed recycling. 
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4.2 Methods 

The embodied energy and CO2 emissions were calculated for HDPE recycling using 

SimaPro 7.2 and the database EcoInvent v2.0. The LCA began with collection and 

transportation of post-consumer plastic through the recycling process as indicated for 

the conventional recycling process shown in Figure 4.1.  For the distributed recycling 

process, the LCA was calculated for the plastics from transportation through filament 

drawing in the RecycleBot as seen in Figure 4.2.  

In the conventional recycling process (Figure 4.1), after a plastic product is purchased 

and used if it is recycled it is collected at curbside and transported to a collection 

center.  At the collection center, HDPE is either sorted on site or sent to a separation 

facility to sort and produce bales.  After separation the HDPE bales are sent to a 

reclamation facility to be purified and pelletized to be sold to manufacturers to create 

new goods. 

As can be seen in Figure 4.2, for the distributed recycling case post-consumer plastic is 

first collected in the home and cut with scissors to be fed into a commercial paper 

shredder. This method produces 49g of usable mass (87% of total mass) of a milk jug, 

thus 20 jugs/kg. These shreds are then fed into the post-consumer plastic extruder 

(RecycleBot)  , which melts them and forms a 3mm filament that is then used in a 

RepRap or other 3-D printer, as detailed in (Baechler et al., 2013; Kreiger, et al., 2012). 

The RecycleBot used in this study had improved insulation (1.5 inch high-temperature 

calcium silicate wrapped in kapton tape) compared to no insulation (Baechler et al., 

2013) and modest insulation (Kreiger, et al, 2012). 

 

Figure 4.1: Schematic of Conventional HDPE Recycling 
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Figure 4.2: Schematic of Distributed HDPE Recycling 

The energy consumption of the distributed recycling process was quantified 

experimentally using watt/electrical energy meters (±0.005 kWh) to monitor an 

insulated RecycleBot during extrusion of 10m and averaged. Data was recorded for 

each stage of filament production, including shredding (kWh/g), auger drive, heating 

and a filament spooler, however previous work showed that the shredding even in an 

uninsulated RecycleBot was negligible and was ignored here (Baechler et al., 2013).  

The experimental value was then put into SimaPro using the input (Electricity, 

Production Mix, US).  

LCAs were completed for both processes, with recycled pellets or filament as the end 

point, using a best and worst case scenario outlining the maximum and minimum 

collection distances in the U.S. An example of a “best case scenario” for conventional 

recycling is a city like Detroit, MI, where there are four collection centers in metro 

Detroit, as well as curbside pickup, which funnels into one processing center (Horton, 

2009) for greater Detroit.   After separation at the processing center, the plastic bales 

are sent to BATA plastics in Grand Rapids, MI, 157 miles away, where the bales are 

made into quality pellets and sold to manufacturers for re-use. It is assumed that the 

curbside recycling trucks are never at capacity and would make the curbside pickup 



48 
 

without the collection of post-consumer plastic and that the additional weight of the 

plastic would have a negligible effect on the fuel efficiency of the collection vehicles. 

Therefore only the embodied energy of transportation and emissions due to the 

transport from the collection centers to the processing center were included and 

normalized per unit mass.   A life-cycle inventory study of conventional recycling of 

HDPE was previously completed using confidential information from recycling 

companies to quantify the impact and energy demand (Franklin Associates, 2011) and 

was used as an approximation here on the scale of 1 kg output.  

For the “worst case scenario” for centralized recycling, which represents a low 

population density, small, geographically isolated town of Copper Harbor, MI was 

used.  Located at the top of the Keweenaw Peninsula, Copper Harbor is a 48 mile drive 

north of the nearest recycling collection center in Houghton, MI and there is no 

curbside pickup.  The sole purpose of this drive is assumed to be recycling.  From 

Houghton, MI the plastics are then driven in a garbage truck to Green Bay, WI, 212 

miles away, to the processing center. Transport after this point is included in the 

literature input (Franklin Associates, 2011). The average household generates 16.9 

pounds of recyclables per week (EPA, 2010).  The average amount of HDPE post-

consumer waste, out of the total amount of recyclables, is approximately 5.2 pounds or 

31 % (Franklin Associates, 2011).  For this case, two options are considered, recycling 

biweekly or monthly. The inputs used in SimaPro for conventional recycling were 

(Operation, passenger car, petrol, fleet average, 2010, Switzerland) for the round trip 

drive from Copper Harbor to Houghton, MI, (Operation, lorry 3.5-20t, full, fleet 

average, Switzerland) for the drive from Houghton to Green Bay,WI, and a similar 

input for an empty truck for the return trip to Houghton. Assuming the average load for 

the truck was 38,990 lbs and a contamination amount of 8% (Franklin Associates, 

2011).  
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4.3 Results 

Table 4.1 summarizes the results of the embodied energy and greenhouse gas emissions 

for centralized and distributed recycling of HDPE in the high population density and 

low population density cases. The embodied energy values can be compared directly.  

The RecycleBot required an initial heating provided by 0.06 kWh before starting any 

extrusion and a running requirement of 0.0036 kWh per meter of filament produced. 

The initial heating amount is applied to the production of 1 kg filament output and is 

assumed to overburden this process; this amount would realistically be allocated over 

the entire amount produced. As the mass per unit length of HDPE is 5.64g/m, a kg of 

HDPE is 177.3 m of filament. The total energy use for filament production (including 

shredding(assumed negligible), melting and extrusion) is 0.694 kWh per kg HDPE 

filament, which is about 2.5 MJ/kg. In comparison, the average embodied energy of 

virgin HDPE feedstock over 11 records is 79.67 MJ/kg (Hammond and Jones, 2008). It 

should be noted that this figure for conventional processing is HDPE material alone and 

there may be additional embodied energy for forming filament acceptable for 3-D 

printing. Despite this it is clear from the results that using distributed recycling reduces 

embodied energy of HDPE over virgin material by 89%.The RecycleBot's greenhouse 

gas emissions were calculated using SimaPro IPCC 2007 GWP for 100 years, with the 

only input being the electricity production mix of the U.S. It should be pointed out here 

that extreme care is necessary in comparing the greenhouse gas emissions shown in 

Table 4.1. The kg CO2 eq per kg HDPE is heavily dependent on the emission intensity 

of the grid where the case is run. Previous work by Kreiger et al. showed that using 

low-emission intensity solar photovoltaic devices for distributed electrical generation 

for distributed recycling significantly reduces overall emissions for HDPE filament 

fabrication (2012). 

There is also an apparent discrepancy between the energy demand and GHG emissions 

for recycled and virgin resins; as the former differ by an order of magnitude and the 

latter by a few percent. The reason for the difference in magnitude between the energy 

demand and the emissions is that the recycled HDPE does not include the energy 
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content of the materials that end up in the product, but the energy content of any fuels 

or electricity inputs to the recycling process are included. Whereas, the virgin HDPE 

counts the energy content of the resources from nature (e.g  crude oil and natural gas) 

that go directly into the HDPE plus the energy content of any fuels or electricity inputs 

used for the conversion processes. Since the natural resources used to make virgin 

HDPE are not used as fuel, the emissions are not released, thus the difference in 

magnitude. 

 
Table 4.1 

Energy Demand & Greenhouse Gas Emissions 

Case 
Energy Demand 

(MJ/kg HDPE) 

Percent Reduction 

(%) for Distributed 

Recycling c 

Greenhouse Gas Emissions 

(kg CO2

 
eq per kg HDPE) 

Distributed Recycling: 

Insulated RecycleBot 
8.74 -- 0.52 

Virgin Resin 79.67a 89 1.82b 

Centralized Recycling – High 

Density Population: Detroit 
9b 3 0.63b 

Centralized Recycling – Low 

Density Population: Copper Harbor 

(monthly) 

28.4 69 2.65 

Centralized Recycling – Low 

Density Population: Copper Harbor 

(bi-weekly) 

48.9 82 4.04 

Notes: 

a (Hammond and Jones, 2008) 

b Estimate based on 1kg output (Franklin Associates, 2011)  

c. Percent reduction  

 

The amount of energy for the conventional cases attributed 7.51 MJ from the recycling 

process and transport needed between each step (Franklin Associates, 2011), while the 

remainder is from transportation due to collection and from the collection center to the 

processing center.  As can be seen in Table 4.1, when comparing the centralized 

recycling for low density population on either a bi-weekly or monthly recycling trip 
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case, the distributed recycling can decrease the embodied energy by 69%-82%. In 

addition, even with varying emission intensities it is clear the distributed recycling is 

beneficial from an ecological standpoint. In these low population density cases the 

embodied energy and emissions for the personal transportation of the HDPE to a 

collection facility have a substantial impact on the LCA values and is added to the 

values for the complete process in the high-population density case. The transport from 

Houghton, MI to Green Bay, WI was found to be minimal at a value of 0.41 MJ eq. 

Every 2 weeks every kg of HDPE consumes 41 MJ from the round-trip drive from 

Copper Harbor to Houghton, MI.  This  amount of energy for simple collection dwarfs 

the entire embodied energy of a high population density centralized recycling or the 

distribute recycling cases.   The use of conventional recycling in this rural case is worse 

for the environment in terms of energy use and emissions than creating all new products 

from virgin resin. For such locations, these values of transport can only be reduced by 

transporting more recyclable materials per trip. Thus, if one month of the total amount 

of post-consumer recyclables could fit in the vehicle, this results in an energy 

consumption of 20.5MJ/kg HDPE for collection and thus a total embodied energy of 

only 28.4 MJ/kg, which is again about one third of that of virgin material.    

4.4 Discussion 

The results clearly show that distributed recycling of HDPE uses less energy than 

conventional recycling. If the population density is spread out these reductions can be 

significant ~70% reduction, but even in the best case scenario for conventional 

recycling it still uses 3% more energy than distributed recycling.  A 3% reduction 

should be looked at with caution, as there is a 0.5% error in experimental measurement 

and a small improvement in conventional recycling can outweigh this amount for the 

ideal case.  The best case conventional method and distributed method are almost equal, 

however in any low population density area distributed manufacturing has an 

environmental advantage over conventional recycling for HDPE.  It should be noted 

that a switch to renewable energy can reduce these numbers.  If the 984 million pounds 

of HDPE that are currently recycled in the U.S. per year in the best case for 

conventional recycling are instead diverted to distributed recycling the savings of 
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116,000,000 MJ of energy, equivalent to the energy used by more than 2,800 American 

household's per year (EIA, 2011).  However, it can be presumed that as the economic 

value of producing 3-D filament from household recycling became widespread the 

recycling rate could also be increased from the current value of less than a third. If the 

total HDPE supply was recycled using the distributed process offsetting all virgin 

HDPE over 100 billion MJ could be conserved per year. 

The distributed recycling advantage comes from both the low-overhead equipment of 

the RecycleBot and the complete elimination of embodied energy for transportation, 

which as can be seen in the Copper Harbor examples can be substantial. It is clear that 

recycling of HDPE should occur as close to the source of plastic waste as possible with 

the largest load and lowest fuel consumption to reduce impact.  The results for both 

embodied energy and emissions show that for cases where the user is far from a 

recycling center, it is significantly better for the environment to do on-site recycling 

using a RecycleBot, than to use conventional recycling of any kind.   If close to a 

recycling center, on-site recycling reduces energy demand and will reduce emissions as 

well.  Not only does distributed recycling reduce energy and emissions, it will have 

farther reaching implications.   

The amount of fossil fuels and concomitant GHG emissions required to transport 

billions of pounds of plastics from residences to collection centers to processing centers 

is considerable.  If all plastics, which make of 10.5% of all recycled goods (Ohio DNR, 

2012) are largely eliminated from the waste stream these trucks would not have to 

circulate as often. Eliminating even a fraction (e.g. 3% via elimination of the HDPE) of 

that through distributed recycled would be environmentally beneficial.  The decrease in 

materials would be substantial as well.  With fewer waste management trucks traveling 

over public roads, less damage will be done to the roads, requiring less frequent road 

maintenance.  Similarity, when fewer plastics go through the large scale recycling 

system, less materials are used to build and maintain the facilities.   

Combining the open-source distributed recycling of the RecycleBot with the distributed 

production of the RepRap combination systems would be the most economically 
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beneficial for those interested in a complete distributed manufacturing process. This 

could even be accomplished on a household level.  The RecycleBot could be used for 

disposing of a single household’s recycling, saving trips to return bottles and a stop for 

curbside collection.  The RepRap could be used to print parts for simple household 

repairs and solutions, such as bike parts, knobs and handles, cooking utensils, toys, 

eyeglass frames, and an enormous sum of individual parts.  Although these parts or 

products can often be purchased in most locations, they can be printed often for 

considerably lower costs and be made more customized or appropriate for the 

consumer.  For example, at an average U.S. utility cost of $0.1153/kWh (Electric 

Choice, 2010), an orange juicer of volume 63.4 cm3 of PLA uses 0.31 kWh to produce 

on a RepRap (Kreiger and Pearce, 2012; Kreiger and Pearce, 2013). This would cost 

about 3.5 cents in electricity to print. If purchasing commercial filament at $36/kg of 

filament for a 75.47g juicer of 3mm PLA filament, this costs $2.72 in material, for a 

total cost of $2.76. Citrus juicers of lower quality and utility can be found on-line for $1 

and of approximately the same quality at $7-$25, so distributed manufacturing is not 

necessarily economical for low-value plastic products. However, if a RecycleBot is 

used to make the juicer from HDPE the material costs drop to the electricity needed 

(0.56 cents), bringing a total manufacturing cost to a remarkably low 4 cents. Thus the 

RecycleBot/RepRap combination allow for two orders of magnitude price decreases 

even for low-value products if people are willing to invest their time to make them. The 

cost of the RecycleBot/RepRap system is approximately $700 and should be factored 

into this decision, if high value items are produced, the system cost is easily paid for.  

As has previously been shown such radical decreases in costs can be obtained for high-

value items such as scientific equipment (Pearce, 2012) using only the RepRap and 

would be reduced even further using recycled post-consumer plastic for filament as 

shown in this paper. Yet it is not necessary for the RecycleBot operator to even make a 

finished product to profit financially. Even considering only the cost of commercial 3-D 

filament (ABS or PLA) that currently ranges from $36-50/kg, the RecycleBot is 

economic as it can produce 1 kg of filament from about 20 milk jugs for under 10 cents. 
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The economic advantages to moving to a distributed recycling/manufacturing process 

are clear. This method would especially appeal to those in the burgeoning 'make 

movement' who enjoy making things themselves over purchasing them.  However, 

those involved with the more traditional informal economy would also potentially 

benefit from this distributed manufacturing/recycling process.  This sector is made up 

of people who are self-employed, untaxed, and unmonitored by the government, but 

still work within the legal limit (Sparks and Barnett, 2010).  These people often run 

small-scale service businesses that would be well suited for a rapid prototyper.  For 

example, someone who does computer repairs out of their home could use a RepRap 

printer to print any of the following: computer mouse, computer case, I/O cover plates;  

adapter brackets for hard drives and SSD, laptop stand, laptop privacy shields, wireless 

chording keyboard, docking stations, keyboard parts, etc.  Other examples of people 

who would benefit from the use of the RepRap would be artists, as the RepRap has 

nearly unlimited possibilities for artistic creations. Thingiverse is a repository of digital 

designs, most of which can be printed on a RepRap, currently holds over 36,000 open-

source designs and is growing rapidly (Thingiverse, 2012). There is a network effect to 

sharing open-source hardware designs as each design added to the commons adds value 

to all existing 3-D printers.   

With the open source 3-D printing network expanding rapidly the applications of 3-D 

printing for distributed manufacturing are also expanding rapidly. Dozens of new 

designs are shared on Thingiverse daily. In addition, the methods for inputting designs 

are expanding rapidly. Now rather than simply using existing CAD, Google Sketchup, 

or other drawing software, OpenSCAD is gaining popularity which allows for 

parametric computer coding of 3-D designs. Finally, there are also physical inputs.  

Development has started on open-source scanners that can produce 3-D meshes, which 

are compatible with RepRap printers.  For example the MakerScanner uses a low-power 

laser and a webcam to scan a selected object into open-source software which translates 

it into a CAD design (MakerScanner, 2012). There is also a free commercial package 

from Autodesk, 123D Catch, which enables the same 3-D model making from 

combining digital photographs taken from many angles. These methods could be used 
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to assist RepRap users in easily duplicating objects or customizing products for specific 

people or cultures. The use of fairly specialized tools such as the RecycleBot and 

RepRap are not developed enough for mass consumer appeal at the moment, although 

the trend in reliability is heading in that direction. Thus, it is likely that the tools would 

first become available for many communities in quasi-centralized facilities such as 

schools, libraries, companies, and maker spaces. Already Staples has announced they 

will be offering 3-D printing services similar to their historic 2-D printing services. As 

their utility and reliability expand the number of tools and their distribution would be 

likely to expand – again following current trajectories. 

 The low cost and reproducibility of the RecycleBot and RepRap and their product 

designs make them ideal for use in a developing world (Pearce, et al., 2010).  A self-

replicating 3-D printer could be used to make appropriate technologies for energy 

generation, water distribution, utensils, shoe insoles, parts of medical equipment, parts 

of water filters, etc., as well as spare parts and copies of itself.  A major concern in the 

developing world is water distribution. One of the PeaceCorps objectives is to install 

drip irrigation to places where water is limited, as drip irrigation efficiently uses water 

without much loss to evaporation (Peace Corps, 2011). 3-D printers can be used to 

make parts and fittings for drip irrigation, potentially changing the water shortage in 

developing countries and solving the food crisis in many areas. The ability to make 

these useful parts or products from recycled waste using the distributed recycling 

paradigm discussed here, not only has the potential to radically reduce the 

environmental impact of HDPE-containing products, but also to substantially reduce 

costs for developing world communities. 

4.5 Conclusions 

The results of this LCA showed that distributed recycling of post-consumer HDPE for 

3-D printing filament uses less embodied energy than the best-case scenario 

investigated for a high-population density city using centralized recycling.  For 

centralized recycling in a low-density population case study involving substantial 

embodied energy use for transportation and collection these savings for distributed 
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recycling were found to extend over 80%.   On the scale of U.S. yearly HDPE recycling 

this would amount to over 100 million MJ of energy conservation and substantial GHG 

emissions reductions even in the best case scenario for centralized recycling.   With the 

open-source 3-D printing network expanding rapidly the potential for widespread 

adoption of distributed recycling of HDPE represents a novel path to a future of 

distributed manufacturing appropriate for both the developed and developing world 

with lower environmental impacts than the current system. 
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5.  Conclusions and Future Work 

5.1 Overview 

There are aspects in manufacturing which have room for improvement in order to 

reduce environmental impact.  The need to reduce, reuse, and recycle is pivotal.  There 

are areas which could benefit from small improvements (ie. recycling or improving the 

efficiency of a system) and other areas where new technology can improve the 

environmental impact of manufacturing. 

5.2 Conclusions 

Based on the results of the case studies explored the following conclusions are drawn: 

5.2.1 Silane Recycling 

 Silane recycling allows Si:H-based PV manufacturers to become less dependent 

on silane cost volatility and reduces energy consumption  along with emissions 

in Si:H-based PV production.  

 In the case of a 1 GW a-Si:H plant this amounts to savings of approximately 

81,700 GJ and over 4,000 metric tons of CO2e per year and in a 1 GW-scaled 

tandem a-Si:H/μc-Si:H PV manufacturing plant the savings are increased: 

290,000 GJ of energy savings and 15.6 million kg of CO2 eq per year.   

 Instead of discarding 85%, it is more environmentally-responsible for thin film 

Si:H-based PV manufacturers to recycle silane.   

 Recycling reduces the cost of raw silane by 68 percent, or over $22 million/year 

for a 1 GW single-junction a-Si:H-based PV production facility and over $79 

million/year for a tandem a-Si:H/μc-Si:H PV manufacturing plant.  

 This could in turn make a-Si – based PV more competitive in the PV market and 

increase PV penetration in the overall grid, while at the same time reducing 

costs for distributed generation with PV of manufacturing processes.    
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5.2.2 Distributed Manufacturing 

 The environmental impact of plastics manufacturing can be reduced using 

distributed manufacturing of polymers with existing low-cost open-source 3-D 

printers when using PLA. 

 Control of the fill percentage with 3-D printing has the potential to decrease 

environmental impact from cumulative energy demand by up to 64.5% and 

greenhouse gas emissions by up to 57.7% due to reduced material and energy 

use. 

 Solar photovoltaic technology used as distributed electrical generation for the 3-

D printing can further decrease environmental impact of cumulative energy 

demand up to 74% and greenhouse gas emissions by up to 80.8%.  These values 

can even be improved further if recycling and industrial symbiosis takes place at 

the PV manufacturing facility, as seen in Chapter 2. 

 Distributed manufacturing is technically viable and environmentally beneficial 

due to reduced environmental impact 

5.2.3 Distributed Recycling 

 Distributed recycling of waste HDPE for 3D printing filament reduces embodied 

energy of conventional recycling in a high population area by 13.5%. 

 Rural population use a substantial amount of energy for transportation and 

collection, which amount in a savings over 90% for distributed recycling. 

 Potential for over 1.78 billion MJ of energy conservation and substantial GHG 

emissions yearly, which is over 6 times the amount of energy saved from the 

large-scale PV manufacturing facility from Chapter 2. 
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5.2.4 Overview 

 The union of the improving electricity production, manufacturing, and recycling 

has tremendous possibilities.  Using distributed recycling or manufacturing with 

PV dramatically improves environmental impact and by further reducing the 

environmental burden of PV production, this impact is reduced. Small changes 

for environmental good have wide-reaching and dramatic effects on not only the 

system directly affected, but any adjoining processes associated with it. 

5.3 Future Work 

This research was conducted as a preliminary study on recycling of silane, distributed 

manufacturing, and distributed recycling and there are several aspects which should be 

explored further. 

 5.3.1 Silane Recycling 

 Setting up an experimental recycling system would give greater insight on the 

energy use and environmental impact of the silane recycling system.  This 

would assist in solving the technical issues within the recycling system, which 

are discussed in the patent, in order to find solutions and improve the system. 

 Look at other methods of decreasing waste by decreasing gas through the 

reactor (make reactor smaller). 

 Make this a full analysis without the “cut-off” method to quantify the system 

entirely so that it can be compared to other systems beyond silane, by including 

inputs outside of the direct recycling system, such as the included the energy 

associated with the infrastructure, such as the technology (vacuum chamber, 

etc), and allocated energy from processing and transporting raw silane. This 

would expand the scope to include any additional inputs. 
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 A full life-cycle economic analysis of  the recycling process would compare the 

economic benefit from recycling silane with the increased costs of capital 

equipment and operating energy costs needed to recycle the silane 

 Further analysis of the silane system using experimental data would give a 

greater insight on the energy use and environmental impact on the recycling 

system.   

 A full recycling system recycling not only silane, but the nitrogen, hydrogen, 

and any other resulting gas products that are wasted.  Use the outlined methods 

in the patent to recover both nitrogen and hydrogen, which would continue to 

depress the already small embodied energy, energy payback time, and 

ecological footprint while increasing the already substantial energy returned on 

energy invested (EROI) of Si:H-based PV manufacturing. 

5.3.2 Distributed Manufacturing 

 A “cradle-to-grave” analysis to yield an energy use and emission value that 

would better describe the system as a whole.  Conventional manufacturing 

would benefit from communications and experience with industry to get a more 

accurate number for conventional manufacturing of plastic goods. The amount 

of waste should be quantified for both systems to give a more accurate 

comparison. This should include infrastructure (build materials, labor, 

processes), actual overseas distance (using shipping paths), shipping over land, 

molds, packaging, and waste, as well as any additional processes to make the 

products food-grade or child-safe. 

 Set up a RepRap + PV system and measure the electricity usage to get a more 

accurate number and better estimate the distributed manufacturing system.  This 

would allow a life-cycle analysis to be done to include a solar panel and 

additional hardware, such as power and storage, instead of using the SimaPro 

input for PV generated electricity.  
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 Examine energy requirements to make parts traditionally to determine whether 

PV would be possible for conventional methods of manufacturing or whether 

electricity must come from the grid. 

 Full economic analysis should be done.  Compare printer cost and maintenance 

per part manufactured and examine the rate of production. 

 More products should be looked at to further explore the benefits of fill and 

design. In addition to other plastics which should be investigated, such as 

HDPE, recycled HDPE filament, polycaprolactone, and polypropylene. 

 Expand the materials currently available to be printed using a RepRap, by 

creating a system for printing ceramics, metals, composites, electronic materials, 

etc. 

 Bed adhesion needs to be improved in order to reduce energy waste. This can be 

done by using chemical means to enable better adhesion, using zoned heating so 

only the parts of the bed under the part are heated, better insulating the bottom 

of the bed, or using a controlled environmental chamber to insulate the entire 

RepRap from cold ambient temperatures. 

5.3.3 Distributed Recycling 

 Similar methods to those mentioned for distributed manufacturing future-work 

would benefit the distributed recycling. Adding a PV system would improve the 

environmental impact.  The recycling or creation of filament using other plastics 

and materials, such as PLA, ABS, polycaprolatone, and polypropylene.  Then a 

full “cradle-to-gate” analysis including all build components and infrastructure 

associated with distributed and conventional recycling, as well as an allocated 

amount for the raw materials.  

 Further advancement of the RecycleBot needs to be done, by making it cheaper, 

all-in-one (shredding/extruding/etc), automated, more accurate in filament size 
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and consistency, in conjunction with a thermal chamber, and more energy 

efficient. 

 Compare all current models of RecycleBot type plastic recycling systems to 

determine which is has the lowest environmental impact and issues, such as the 

FilaBot, MiniRecycleBot, and future models that will come available.  In 

addition to exploring a system where the RecycleBot directly feeds filament into 

the RepRap. 
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