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Abstract

Using robotic systems for many missions that require power distribution can decrease the

need for human intervention in such missions significantly. For accomplishing this capa-

bility a robotic system capable of autonomous navigation, power systems adaptation, and

establishing physical connection needs to be developed. This thesis presents developed

path planning and navigation algorithms for an autonomous ground power distribution sys-

tem. In this work, a survey on existing path planning methods along with two developed

algorithms by author is presented. One of these algorithms is a simple path planner suitable

for implementation on lab-size platforms. A navigation hierarchy is developed for experi-

mental validation of the path planner and proof of concept for autonomous ground power

distribution system in lab environment. The second algorithm is a robust path planner de-

veloped for real-size implementation based on lessons learned from lab-size experiments.

The simulation results illustrates that the algorithm is efficient and reliable in unknown en-

vironments. Future plans for developing intelligent power electronics and integrating them

with robotic systems is presented. The ultimate goal is to create a power distribution sys-

tem capable of regulating power flow at a desired voltage and frequency adaptable to load

demands.
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Chapter 1

Introduction

1.1 Motivation

As our world advances technologically, we are continuing to find a plethora of new appli-

cations for the devices we utilize. One such example is the use of autonomous robots with

new applications introduced everyday, in variety of fields. Examples of current applica-

tions include disaster relief/recovery efforts at Fukushima meltdown [1] and the prolonged

search and rescue mission for the Malaysian MH370 flight [2]. However, as research is

increasing, our scope of autonomous vehicles can also widen to include space, littoral, air,

and ground efforts [3, 4, 5, 6]. Expanding ground efforts leads to many more possibilities.

Some of the possible applications can include system monitoring in remote areas, power
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restoration, or even assistance to unintelligent systems [7].

Due to the increased use of autonomous devices and their applications, limitations are

beginning to show in overall systems. One major issue becoming more evident is the

lifetime of a device due to its power supply [8]. Having devices that are severely limited

by their supply of power has researchers improve the strategic approach to an application.

However, approaching this problem by conservative means such as optimizing applications,

can limit the effort in optimizing the devices used [9]. In the long term this limited scope

will lead to a fleet of devices that are confined to very specific tasks, wasting vital resources.

Our contribution is to combine autonomous vehicles and algorithms capable of navigating

complex and remote environments, supplying power to necessary devices.

To widen the scope of these autonomous devices, researchers have been developing ideas

to provide systems with energy autonomy. Energy autonomy refers to a system’s devices

being intelligent and self-sufficient, recharging themselves when needed [10]. Energy au-

tonomy would give a system and its devices a greatly increased time of operation instead of

relying on equipped power sources [9]. Current research of energy autonomy is focused on

providing power to a system through either another robot or a docking system via trophal-

laxis (donation through host power supply.) Either of these methods requires the robot to

cease operation and make a physical connection to recharge [11, 12, 10], or performing a

battery exchange [9, 13, 14].

An example system that may need emergency response in remote locations is a cellular

2



telephone communication tower during a natural disaster [7].The conventional process in

such instances was deploying personnel to power up the system using generators. This type

of system is typically served by 208 Vac three-phase power diesel backup generators. In

such scenarios, energy autonomous systems can compensate for lack of human resources

for power recovery efforts. This approach is not limited to ground vehicles and can be

extended to underwater systems [3] or air vehicles [5, 6].

Figure 1.1: A team of autonomous microgrid robots re-establish power to

a communication tower. Right: connection and generation agent, middle:

two renewable energy agents, back left: power conversion agent

Addressing this example, Fig. 1.1 shows four autonomous microgrid robots with different

power network functionality. Two of these four robots have renewable energy generation

and storage capability, another has a conventional diesel genset, and the fourth contains

intelligent power electronics for conversion and hard-line interconnection, and switchgear.

After assessing the power requirements and available resources, the robots would physi-

cally organize and electrically interconnect to form a microgrid.

3



1.2 Scope and Objectives

The goal of this project is to create microgrids that are capable of self-configuration. A

microgrid is a collection of energy resources that contribute to a common network. The

resources include, but are not limited to, generation, conversion, loads, and storage [15].

Currently the power generation approach consists of two conventional models, centralized

and distributed generation. Of these methods, centralized generation is being gradually

replaced by distributed generation [16]. The model of distributed generation grants each

individual device the ability to act as a power node if required by the system. Having this

ability directly attests to the substantial flexibility this system has.

The idea of having an autonomous mobile power-grid is a recent application of autonomous

vehicles and is currently in its initial stages of research [17]. In an autonomous power distri-

bution system, each robot can act as a power node agent to help establish a microgrid. The

system would be able to operate autonomously during disturbances in the utility network

and increase reliability with minimal human interference [18]. In addition, the interconnec-

tion and networking of groups of microgrids can reduce the energy storage requirements to

many differing applications.

Our plan is to find and validate practical solutions for deploying and controlling mobile

microgrid systems and their capability to restore power quickly to various locations and

4



equipment.

Deploying an autonomous microgrid system to re-establish electrical power for the crucial

components of a system with minimal human interference can have a significant impact in

many situations. This system can be more effective, with more consistency in operation,

and enable power distribution faster than traditional methods and reduce the fuel delivery

demands, if it:

† contains sources to generate electrical power

† has a self-configurable framework to reach optimal formation based on power de-

mand

Our final objective is to integrate vehicle robotics with intelligent power electronics and

electric power assets to create self-organizing, ad-hoc electric microgrids. These compo-

nents ensure the capability to restore power quickly to critical need sites. We start with

finding and validating a practical solutions for employing and control of a mobile power-

grid.
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1.3 Contribution and Outline

To best of our knowledge, we are among the first to integrate vehicle robotics with in-

telligent power electronics to create self-organizing, ad-hoc, microgrids. Our aim is to

develop a control algorithm that accounts for uncertainty in predictions, requires minimal

communication between agents, provides real-time guarantees on the performance of path

planning, and reaches the targets while making electrical connections.

Some of the main challenges that can affect the practicality of such algorithms are that they

have to guarantee 1) navigation of remote unknown environments and 2) complex design

of power connectors.

For this project two path planning algorithms were developed. The first algorithm is a ro-

bust sensor-based, geometric, local path planning algorithm with the assumption of having

a completely unknown environment. In this method the geometric properties of the robot

are fully taken into consideration to guarantee reliable obstacle avoidance. This algorithm

is capable of taking the sensor’s limits into consideration and can be easily implemented

on an embedded system. The second algorithm is a simple path planning algorithm that

was developed with the idea of implementation on a lab-sized platform with limited func-

tionality potential. The aim of this implementation was proofing the feasibility of using

autonomous systems for power distribution.

6



Concepts and components used in this work are discussed as follows; Chapter 2 describes

the developed path planning algorithm, it also includes a literature review of available local

and global path planning methods. Navigation methods and a control hierarchy developed

for autonomous power distribution proof-of-concept is discussed in chapter 3. A descrip-

tion of supporting hardware, validation of autonomous power distribution concept, and

practicality of the path planning algorithms are studied in chapter 4. Conclusions derived

from this study and future works are discussed in chapter 5.
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Chapter 2

Path Planner

2.1 Introduction

Any autonomous system with moving parts needs a method for administering the trajecto-

ries. The reliability of an autonomous system, especially during its interaction with people,

objects, and devices, is strongly related to dynamic properties of the robot and assump-

tions, considerations, and robustness of its dynamic control method. The navigation of

robots (or more specifically, path planning of robots) is an old problem and has continu-

ously improved. A proper navigation method should guarantee a safe and collision-free

path and also it should try to optimize other desirable parameters such as vehicle’s time

of travel, time of path generation, robustness, flexibility, length of trajectory, compatibility

9



with robot’s maneuverability, etc.

Methods of solving trajectory planning problems can be put into two main categories, one

is global path planning and the other is local path planning.

In global path planning methods, the problem is solved with the assumption of having a

thorough knowledge about the environment in advance. Hence, the characteristics of sen-

sors and their limitations usually do not play a big part in these methods. These type of

methods try to solve the problem for optimality of different parameters, for example the

shortest path is one of most popular parameters in previous studies. Although these meth-

ods can result in optimal solutions, they have limitations for implementation in applications

where the environment is unpredictable or some information is missing.

On the other hand, in local path planning approaches, the robot learns about its environment

while trying to reach its destination. Hence, output of these methods is constrained by the

limitations of the robot’s knowledge of its environment. These limitations include sensor’s

maximum distance range, sensor’s angular range, number of measuring dimensions, posi-

tion and geometric characteristics of the obstacle, dynamic characteristics of the obstacle,

feasibility of generating a complete path, etc.

In this chapter, section 2.2 provides a survey on different path planning algorithms. Section

2.3 presents a path planning algorithm developed for robust obstacle avoidance in cluttered

area. Finally, in section 2.4 results of this developed method are discussed.

10



2.2 Literature Review

In this section a review on different path planning methods is presented to show a history

of limitations, assumptions, and achievements.

2.2.1 Cell Decomposition

One of the global path planning methods is cell decomposition in which all the free space

in the environment is divided into non-overlapping cells. An adjacency relation of all the

cells in the environment is then calculated. For calculating a successful path, a series of

cells needs to be extracted. This series starts with the cells that include the start point

and destination. From adjacency relation of the cells in an environment, a set of cells that

connect these two cells is also added to the series.

There exist two main strategies for decomposing the environment into cells. One is exact

cell decomposition [19] and the other is approximate decomposition [20, 21, 22]. The exact

method can lead to difficulties in computation in case of having obstacles with irregular

boundaries. In the approximate method, the free space is approximately covered by cells,

making it easier to compute but it might result in ignoring some of the possible solutions.

11



2.2.2 Bug Algorithm

The original bug algorithm [23, 24, 25] introduce a minimal sensing method to help a robot

to reach its target. Bug Algorithm does not need global knowledge about its environment.

A global goal and local knowledge about the environment is enough for finding a complete

path. This method can’t handle dynamic environments though. In such environments, the

position and geometric characteristics of obstacles are unknown and only the coordinates

of the robot and target are known. Information about the surroundings essentially comes

from tactile sensors but can be extended to proximity sensors. This information needs to be

updated repeatedly during the mission. This method does not need to do an approximation

of geometry of obstacles, but it does not guarantee an optimal path and the real-time motion

planning. For this method, the ultimate performance expected from path generation is equal

to the distance between the start and destination points and the perimeters of the obstacles

that intersect with the line between these two points.

The conventional method that was introduced in [24] proposes two versions of Bug algo-

rithms; Bug 1 and Bug 2. Each one of these algorithms have their relative benefits and

disadvantages.

Bug 1 algorithm (example in Fig. 2.1) repeats the following steps until it reaches the target:

† robot starts moving towards the target along a straight line (M-line) until it reaches

12



Figure 2.1: Bug 1 algorithm performance

the target or an obstacle.

† if it reaches the target the algorithm terminates.

† if it reaches an obstacle, the point that the obstacle was introduced to the robot is

considered as a “hit point”. Then the robot should follow the obstacle boundary and

measuring its distance from the target until it reaches the hit point again. The point

with minimum distance from the target is set as the leave point which the robot moves

towards it.

Bug 2 algorithm (example in Fig. 2.2) repeats the following steps until it reaches the target:

† Robot starts moving towards the target along a straight line (M-line) until it reaches

the target or an obstacle.

† If it reaches the target, the algorithm terminates.

† If it reaches an obstacle, the robot starts following the obstacle’s boundary until it

13



Figure 2.2: Bug 2 algorithm performance

reaches the straight line again at a point with less distance from the target than the hit

point.

Bug 1 and Bug 2 outperform each other in different cases. Bug 1 in an exhaustive search

algorithm but Bug 2 is a greedy algorithm. In Fig. 2.2 the Bug 2 algorithm outperforms

Bug 1 algorithm for the example presented.

In contrast to Fig. 2.2, in some environments such as the one illustrated in Fig.2.3 Bug 1

performs better than Bug 2.

2.2.3 Vector Field Histogram

This method is developed with the idea of having an algorithm capable of fast detection and

avoidance of unknown obstacles while moving towards the target [26, 27, 28]. This method

is a local path planning algorithm and does not guarantee a complete or optimal path. In this

14



Figure 2.3: Example of a setting where Bug 1 outperforms Bug 2

method, the world surrounding the robot (Fig. 2.4) is modeled using a Cartesian histogram

Fig. (2.5).

This histogram grid gets updated continuously via proximity sensors installed on the robot

to equip the robot with flexibility of managing environment changes. This world model

is then transformed from a two dimensional to a one dimensional polar histogram around

the robot’s position (Fig. 2.6). The next step is analyzing this polar histogram to find

the direction with the lowest obstacle density. The chosen direction is set as the moving

direction of the robot.
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Figure 2.4: Environment c©1991 IEEE

Figure 2.5: Cartesian Histogram Model c©1991 IEEE
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Figure 2.6: Polar density in Cartesian and polar form before applying

threshold c©1991 IEEE

2.2.4 Dynamic Window Approach

This obstacle avoidance method chooses circular trajectories while considering kinematic

and dynamic constraints of the robot for reliable obstacle avoidance [29, 30, 31]. In this

approach, the robot searches through a set of tuples of translational and angular velocities.

Fig. 2.7 shows an environment that will be translated into velocity space. Admissible

velocities are extracted (Fig. 2.8) that allow the robot to avoid hitting the obstacle based on

its current position, velocity, and applicable acceleration range.

Between filtered velocities, the one that can be achieved fastest considering current velocity

and robot’s acceleration is chosen (Fig. 2.9).

Unfortunately, this method can cause the robot to get trapped in local minimas since it is

a local path planner. This algorithm is combined with a grid-based navigation algorithm
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Figure 2.7: An example setting for dynamic window approach c©1997

IEEE

Figure 2.8: Admissible velocities c©1997 IEEE

resulting in an approach called “global dynamic window” [32], which can avoid traps but

needs complete information about the environment in advance.

2.2.5 Elastic Band

Elastic band method [33, 34, 35, 36] involves simultaneous path planning and control for

robot vehicles by combining global path planning and real time obstacle avoidance. The

robot moves on a free path between start point and the destination that is deformed by
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Figure 2.9: Dynamic window representation c©1997 IEEE

virtual forces from obstacles. The deformation is done in real time and results in a smooth

path, which maintains clearance from all the obstacles in the environment. This path can

change its shape and length based on the changes happening in the dynamic environment

sensed by sensors mounted on the robot. This method uses a three-level hierarchy in which

the first level is global path generation (Fig. 2.10). This path is then deformed based on the

effect of two types of virtual forces. One type is the external repulsion forces from obstacles

and the other type is internal contraction force of the elastic band. The external repulsion

forces result in providing clearance from obstacles and counteract the internal force. The

final stage is using control methods for path tracking and having the robot moving on the

developed path.

This approach eliminates the need for doing the global path planning multiple times dur-

ing the mission and only deforms the path according to changes in the environment. The

downside of this method is unsuccessful performance when there are big changes in the

environment.
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Figure 2.10: ElasticBand c©1993 IEEE

2.2.6 Potential Field

Potential field method is one of the popular local path planning methods due to its computa-

tional and mathematical simplicity [37, 38, 39]. Potential field has many modified versions

and they are all based on the idea proposed by Khatib [37]. In this method, the robot is

considered a point under influence of an attraction force from the destination and repulsion

forces from obstacles. A conventional potential field is as follow:

U(x) =

⎧⎪⎪⎨
⎪⎪⎩

η
2

(
1
ρ − 1

ρo

)
i f ρ ≤ ρo

0 i f ρ ≥ ρo
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Figure 2.11: Unstable performance of potential field in narrow corridors

c©1991 IEEE

In which ρ represents distance between the robot and obstacle and ρ0 represents the influ-

ence distance of this potential field. η is a constant controlling the magnitude of repulsion

force.

In potential field method, the destination is a global minimum in the environment and

obstacles are peaks. The trade-off for the simplicity and efficiency of this algorithm is its

undesirable performance in local minimas which lead to the robot getting trapped in narrow

passages (Fig.2.11) that can result in unstable behavior.
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2.2.7 Fractional Potential Field Method

Fractional potential field [42, 43] is a modified version of potential field method. In this

approach the potential field is not only a function of relative position of the robot with

respect to target and obstacles but also the relative velocity of these components define

the potential value of robot. The attraction force between target and robot is calculated as

follow:

Uatt(p,v) = αp||ptar(t)− p(t)||m +αv||vtar(t)− v(t)||n

Where p and ptar denote the positions of respectively the robot and the target. v and vtar

represent respectively the velocities of the robot and the target. The rate of change in

potential is controlled by αp,αv,m, and n, which are positive parameters. The repulsion

force is also a function of relative position and velocity:

U(x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 if ρs(p, pobs)−ρm(vRO)≥ ρ0 or vRO ≤ 0

η
2

(
1

ρs(p,pobs)−ρm(vRO)
− 1

ρo

)
if 0 < ρs(p, pobs)−ρm(vRO)< ρ0 and vRO > 0

Not Defined if vRO > 0 and ρs(p, pobs)< ρm(vRO)
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In which ρs is the shortest distance between the robot and the obstacle, ρ0 is a positive

value that controls the distance from the obstacle that starts influencing the potential. η is

also a positive constant and can be used for adjusting the influence range of the obstacle’s

potential field. vRO is the relative velocity of robot with respect to an obstacle, meaning

if this value is positive, the robot and obstacle are getting closer to each other and vice

versa. ρm(vRO) is the distance to be traveled considering maximum applicable acceleration

of robot that allows the relative velocity to drop to zero:

ρm(vRO) =
v2

RO(t)
2amax

This work was again extended in [44] to add the acceleration parameter to the potential

value. One should keep in mind that estimation of velocity, and especially acceleration of

moving obstacles (tangential and angular) in an unknown environment, needs very robust

algorithms and accurate sensors. Another study on this type of path planning can be found

in [45].

2.3 Robust Path Planner

This algorithm is a geometric path planner to give the most optimal and stable performance

with respect to limited information about the environment. To be able to analyze and
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improve the control algorithm, a simulation environment is developed to accommodate

flexibility for testing. The simulation environment consists of different parts, starting with

a model of the surrounding of the robot. It also includes models of sensors used by the

robot to understand the surrounding (such as range sensor). Information received from

the sensors is then fed to the control system. The control system by itself consists of

two parts, one is decision making on behavior of the robot (path planning) and the other

one is calculating the actions needed to achieve desired states by the robot considering its

characteristics (path tracking). The outputs of control system are forces produced by motors

and then motion of the vehicle. The simulation of the vehicle’s position and orientation

through the simulation time is the final result used for analysis and comparisons.

2.3.1 Modeling

In this section, different models used in the simulation will be discussed. These models are

the means of interaction between the control systems of ground vehicle and environment

and are needed to test and analyze the performance of the path planning algorithm. The

main goal during development of these models was that they should be general enough to

support different types of components (e.g. different sensors, vehicles, obstacle shapes and

sizes, etc). Also, the graphical visualization method for each component will be discussed

separately.
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Figure 2.12: Environment representation

Environment: The simulation uses black and white images provided by the user represent

the test setup and present outputs on which all the other information is shown. The white

pixels in the image represent obstacles and the black pixels are empty spaces. These images

can be made in any graphical editor software and be imported in to the simulation as long

as they are black and white. At any point during the simulation, overlap of the vehicle’s

body and white pixels (obstacles) indicate collision.

Proximity sensor: This part of the algorithm models proximity sensors. This type of

sensors are used to measure the distance from obstacles they are facing. This algorithm

is capable of measuring one or two dimensions for generality purposes. Two dimensional

sensors can output distances sensed in multiple angles at the same time. For modeling

the performance of a two dimensional sensor, lines are drawn starting from the sensor and

extended outward until reach an obstacle (white pixel). These lines are limited by the

25



Figure 2.13: Two dimensional sensor representation

configurable distance range and angular range, also they and are distributed according to

angular step from model’s configurations. By decreasing the angular range of the sensor to

zero, the algorithm can be used to model an one dimensional proximity sensor. An array

consisting of the length of each line and an array of corresponding angles are the products

of proximity sensor modeling algorithm.

Motor Controller and Vehicle Dynamics: Input of motor controllers is usually in the

form of velocities of left and right wheels. The motor controller calculates the difference

between commanded tangent velocity and current tangent velocity of the vehicle and also
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Figure 2.14: Path representation

considers the difference between commanded angular velocity and current angular velocity.

The output will be two forces applied to the body of the vehicle, one on the right side and

the other on the left side. These forces are proportional to the mentioned calculated errors.

Using Newton’s law, tangential and angular accelerations of the vehicle are calculated. The

future position of robot for each time step can be calculated from these accelerations along

with current tangential and angular velocity, position, and orientation of the robot.

All the modeling components mentioned in this section equip the robot to make decisions

based on the environment and the visualization method of each component helps us evalu-

ate and compare the performance of the control algorithm.
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2.3.2 Algorithm

The reason for developing a simulation environment was to provide us with enough tools

for developing a path planning algorithm. This algorithm is mainly expected to be capable

of performing in an unknown environment. The main challenge in such environment is

inability to achieve a pre-calculated path. The robot has to avoid each obstacle when it

is in the robot’s sensing range in real-time. Moreover, the limitations of implementing

the developed algorithm on a real vehicle should be considered. To reach this, the path

planning algorithm needs to only rely on the mentioned models of sensors and actuators

and be a sensor-based algorithm. Also, it should be simple enough to support real-time

calculation on the robot’s embedded system, since planning a newly introduced obstacle

should be done with minimal risk. This simplicity should not counteract the autonomy of

the system and its independence of human intervention. In the end, it needs to be capable

of performing in cluttered environments with different obstacle sizes and shapes.

This path planning method is based on analyzing the environment to determine the optimal

direction to move at any given time according to the position of the vehicle, obstacles, and

target. To achieve a solution close to optimal, it is expected to use all of the potential of

range sensor and consider all the obstacles as soon as they enter the range of the sensor

unlike other algorithms that only change their path based on obstacles in close proximity.

The algorithm also shows stable performance in narrow corridors and can handle local
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minimas. The process of using sensor outputs and generating paths can be divided into

multiple steps:

Obstacle Segmentation: The algorithm receives data from proximity sensor and trans-

lates it into a set of obstacles for further analysis. All the elements of the distance array

received from proximity sensor that do not reflect any reading and their corresponding

angles are filtered out. Then the filtered arrays are translated from polar to Cartesian refer-

ence. All the readings that have a distance less than a safe distance with their neighboring

readings are grouped into one obstacle. Two obstacle segmentation examples are illustrated

in Fig. 2.15. The safe distance is calculated based on the dimension of the robot which is

1.2 times of the robot’s diagonal length. The output of this step is a list of left side and right

side direction of all the segmented obstacles.

Calculation of subgoal candidates: The next step is calculation of two safe directions

for each obstacle, one on the right side and one on the left side. Each subgoal is positioned

along one of these directions. Figure 2.16 shows the method of calculating these directions.

From the robot’s perception, all the larger obstacles are constructed from these small ob-

stacles. So for a large obstacle, the same calculation is done for each reading in the group

and the out-most right and the out-most left are considered as final subgoal candidates and

all the subgoals positioned in between are discarded. The result will be a safe direction to

move (any of the two final subgoals).

Selection of best subgoal: A method of comparison is employed to find the best direction
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Figure 2.15: Obstacle Segmentation

Figure 2.16: subgoal candidates
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Figure 2.17: Subgoals candidates and the best subgoal: Best candidate has

a purple highlight, final destination is the unfilled blue circle on the right

side

from all the subgoals of all the obstacles. In this part of the algorithm, the ultimate desti-

nation of the robot is set as the initial subgoal. The robot will start analyzing this goal, if

the straight path towards this goal is not between the left and right subgoals of any of the

obstacles then the robot starts moving towards it. But if the subgoal is between safe direc-

tions of an obstacle, one of the subgoals around that obstacle with least difference from the

original goal is selected as the new subgoal. For some instances, the new subgoal is also

blinded by another obstacle. For this reason, the algorithm is repeated again until no more

changes in selected subgoal is made.

In conclusion, the algorithm uses all of the sensor’s potentials, meaning as soon as an

obstacle is in sensor’s field of view, it will potentially affect the calculation of robot’s path.

31



Figure 2.18: Test results of robust path planning algorithm in an environ-

ment similar to indoors

2.4 Robust Path Planning Algorithm Results

Figures 2.18 and 2.19 show the performance of the robust algorithm detailed in 2.3. It can

be seen that the robot avoids obstacles with minimal divergence from the shortest path. In

Fig. 2.18 robot finds the only path towards the goal in first try, and also is able to show

satisfactory results moving in very narrow spaces. Fig. 2.19 is the same algorithm in an

environment with multiple possible paths where the robot chose the shortest path while

keeping enough clearance from obstacles.
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Figure 2.19: Test results of robust path planning algorithm in an environ-

ment similar to outdoors
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Chapter 3

Navigation for Power Distribution

Systems

For completing an autonomous mission, three processes are associated with navigation of

the machine: mission planner, path planner, and path tracker. The first process in mission

planner, translates the objectives of the mission to assumptions of the path planner. For

example the mission planner sets the path planner’s destination position based on the re-

quirements of the mission for moving to different targets one after another. During the next

process, the path planner method uses the positions (also, in some methods, directions) of

start point and destination and generates a path via an algorithm. Different types of path

planning methods were detailed in chapter 2. The final process of navigation is the path
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tracking, which outputs actuator commands by considering the system’s dynamic charac-

teristics and use of a controls system to follow the path planner’s chosen trajectory with

minimal error.

In this chapter, a navigation solution developed for autonomous power distribution proof-

of-concept is detailed.

3.1 Multi-layered Control Hierarchy Structure

A multi-layered hierarchy has shown to be a practical method of administrating an au-

tonomous mission [46, 33] That can be configured to deliver redundancy and ease the way

for modifications.

In this project, a tailored mission control hierarchy with multi-feedback (Fig. 3.1) has been

implemented on robots to provide on-site autonomous assessment, generate safe paths, and

facilitate physical connection. The process is developed to be distributed and decentralized,

with minimal communication requirement, and general enough for use in a real-size system

with different perception modules and different sensor suites.

Each block in Fig. 3.1 carries out a specific task. Mission planner divides the mission

into multiple tasks and decides which task should be completed at each moment. While

performing the mission, the mission planner decides which target to switch to. This is
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Figure 3.1: Control hierarchy of 2 agents

done based on the information gathered from the robot and environment to accomplish the

mission goal. The mission planner sends the decided target information to the path planner

one at a time. The path planner algorithm decides on the future position and direction of the

robot based on the position of the introduced target, current position of robot, and visible

obstacles. Actuation control achieves these states using a feedback controller and sends

signals to hardware. Speed and position of the robot is fed back to actuation control to

compensate for the error in the robot’s behavior. A detailed description of each block can

be found in Sections 3.2-3.4.

Along with having the mentioned hierarchy implemented on both robots, a decision regard-

ing the method of communication between two robots was needed. In a control hierarchy,

deeper algorithms like actuation control need to be updated and the results of these algo-

rithms need to be monitored at higher rates than top-level algorithms like mission planner.
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On the other hand, having continuous and simultaneous communication cannot be guaran-

teed in different mission environments. Hence it is preferred to have most of the control

hierarchy levels independent from information sent from other agents. To accomplish this,

it was decided to only have communication on the mission planner level. The down side of

this decision is having no centralized path planner, which can lead to requiring more com-

plicated algorithms to overcome dynamic obstacles. But it is possible to get to a solution

by aid of the dependent mission planner. Details of the extended mission planner for each

robot will be discussed in the following subsection.

3.2 Mission Planner

This high level algorithm is developed to control the stages of accomplishing the power

distribution mission. As described in section 3.1, the mission planner assigns the robot

with sub-goals to achieve the overall mission goal. In other words, from the mission planner

point of view, the robot is climbing a ladder of sub-goals step by step. Having two agents

in a mission with different tasks requires that the mission planner of each agent to allocate

a set of sub-goals that are defined based on the role of the robot and its objective.

For the purpose of this work, mission planners of robots are designed to execute the fol-

lowing steps:
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1. The power source agent moves towards the imaginary point in front of one of the

power loads. This power load can be chosen based on priority or based on initial

distance of the power source agent or the mixture of two.

2. The power source agent moves towards the contact point of the first power load. At

this point the first load is powered up.

3. The power source agent informs the cabling agent to start its mission.

4. The cabling agent moves towards the imaginary point in front of the second electrical

contact point on the power source agent.

5. The cabling agent reaches the second electrical contact point and make the connec-

tion.

6. The cabling agent then moves towards the imaginary point in front of the second

power load.

7. The cabling agent reaches the electrical contact point of second power load and

makes the connection.

The reason for having an imaginary target in front of the connection points is to ensure

proper facing while making the electrical connection.

Based on the proposed scenario, the second robot should start moving towards the connec-

tion agent as soon as the connection agent finishes its final goal (i.e. making a physical
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connection with power load). For communication between agents on this level, the mission

planner of the first robot transmits a Boolean value for the successful accomplishment of its

final goal. The second robot monitoring this value continuously and as soon as it realizes

that first agent has accomplished its goal, it starts moving towards the first agent and makes

a physical connection with it in the same manner that the first agent connected to the first

power load.

3.3 Simple Path Planner

This algorithm was developed for experimental validation of autonomous power distribu-

tion system on lab platforms in unknown environments.

The idea of having an unknown workspace requires repeated execution of the path planning

algorithm to facilitate robust avoidance from moving obstacles or late recognized obstacles.

Moreover, system should tolerate errors caused by environmental noises and disturbances.

The flowchart of path planning algorithm is illustrated in Fig. 3.2. The process starts by re-

ceiving a target location from the mission planner, then it will make a straight path to reach

the target point and command the agent to face the target. The agent starts following the

line and at the same time gets feedback from the environment through IR sensor readings.

Sensing obstacles through the feedback alters the original direction of movement. In the
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Figure 3.2: Path planning and target reaching algorithm flowchart

feedback process, the safest direction in front of the robot is chosen as the feedback value.

If this direction is different from the direction towards the target (i.e. there is obstacles in

front of the robot), the path planner algorithm stores the distance value from the closest

IR reading and commands on moving in the suggested (alternative) direction. The new

direction will be followed as far as the stored distance value. After reaching the end of the

alternative line, the agent faces the actual target point again and repeats the process until it

reaches the destination.

As Fig. 3.3 shows, each IR reading goes through a Butterworth filter in order to reduce
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Figure 3.3: Direction choosing algorithm using IR scan

noise. The filtered data then goes into the direction-choosing algorithm. Based on this

algorithm, each angle in the scanning area gets a score between zero and one. If the IR

reading for an angle is less than a constant (e.g. 100 cm), it gets a score of zero and if it

is more than a larger constant (e.g. 150 cm), it receives a score of 1. All the readings in

between get scores based on linear interpolation. All these scores are put into an array that

has an element to represent each angle. In the next step each score (element) is multiplied

with its neighbors (e.g. 25 neighbors on each side), which allows the algorithm to choose a

direction with neighbors of equally good scores. Then the score of each angle is multiplied

with the cosine of the angular difference with the target’s direction so that the algorithm

has a tendency to choose a direction close to the target’s direction, but at the same time this

direction has a reasonable distance from the obstacle due to multiplication by its neigh-

bors. The number of affecting neighbors is dependent on the accuracy and scanning rate

of the proximity sensor and geometrical properties of the robot. In this case, accuracy and
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scanning rate had the most effect on the risk of crashing into obstacles, so the number of

affecting neighbors was chosen based on trial and error only. A more reliable proximity

sensor equipped with an algorithm that considers the geometric properties of robot can re-

sult in choosing directions that not only avoids obstacles but also eliminates paths that are

not time efficient and are too far from obstacles.

3.4 Path tracking

A feedback controller was designed using the first order kinematics model of the vehicle.

The mathematical model of robot’s kinematics can be described as follow:

⎡
⎢⎢⎢⎢⎢⎢⎣

ẋc

ẏc

θ̇c

⎤
⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎣

cos(θ) 0

sin(θ) 0

0 1

⎤
⎥⎥⎥⎥⎥⎥⎦
.

⎡
⎢⎢⎣

v

w

⎤
⎥⎥⎦

where v and w are tangential and angular velocities of robot and xc, yc and θc are position

and direction of vehicle in the workspace. A trajectory can be defined as a function of time

like (xr(t),yr(t)) using the inverse kinematic equation and this trajectory can be translated

to the robot inputs for feed-forward control:

vr(t) =±
√

ẋ2
r (t)+ ẏ2

r (t))
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wr(t) =
ẋr(t)ÿr(t)− ẏr(t)ẍr(t)

xr(t),yr(t)

This kind of mobile vehicle usually takes wheel velocity as input, which can be derived

from feed-forward control inputs mentioned earlier, vR = v+ wL
2 and vL = v− wL

2 , where vL

is the velocity of left wheel and vR is the velocity of right wheel.

Defining errors as differences between reference position of the robot on the path and the

robot’s actual position is the first step in forming the feedback controller.

⎡
⎢⎢⎢⎢⎢⎢⎣

e1

e2

e3

⎤
⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎣

cos(θ) sin(θ) 0

−sin(θ) cos(θ) 0

0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦
.

⎡
⎢⎢⎢⎢⎢⎢⎣

xr − x

yr − y

θr −θ

⎤
⎥⎥⎥⎥⎥⎥⎦

After linearizing around an operating point (e1 = e2 = e3 = 0,v1 = v2 = 0), feedback values

can be calculated from:

⎡
⎢⎢⎣

v1

v2

⎤
⎥⎥⎦=

⎡
⎢⎢⎣
−k1 0 0

0 −sign(ur1)k2 −k3

⎤
⎥⎥⎦ .

⎡
⎢⎢⎢⎢⎢⎢⎣

e1

e2

e3

⎤
⎥⎥⎥⎥⎥⎥⎦

A proportional feedback controller is used and the gains are tuned based on trail and error

considering hardware limitations, algorithms, and data transfer rates, which can have great

effects on stability of the robot.
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This method of path tracking and actuation control has shown satisfactory results in pre-

vious experiments for different applications. The same method is used for path tracking

component in control algorithm of the simulation. The method does not eliminate the er-

rors of nonlinearities of the vehicle but it is simple enough to keep running in a loop in high

frequency and compensate for these errors.
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Chapter 4

Power Distribution Experimental

Results

4.1 Scenario

An example system that can benefit from autonomous power distribution systems is a com-

munication tower in remote places. These devices demand three-phase 208 Vac, so the

robots need to fulfill this demand through power sources, line connections, and electri-

cal power conversion [47]. While performing power distribution for such systems, there

might be additional power needs by systems that use dc voltage such as telephony systems

[48]and also there exist other devices that need a combination of ac and dc voltages [49].

47



Different power requirements during one mission call for an on-board conversion system,

capable of converting power from the source to other forms needed by all these devices

[50].

We consider a multitude of disaster scenario that require power restoration as a proof of

concept. This concept requires extensive coordination of many distinct research disciplines,

including path planning and coordination of autonomous vehicles [51, 52, 53, 54, 55] ,

power electronics and microgrids [56, 57], and disaster impacts and response [58, 59, 60].

In such scenarios, a small pallet or cargo containing an autonomous robotic microgrid sys-

tem could be dropped by helicopter. It would then restore power quickly, requiring minimal

human intervention. The autonomous robots will first establish a physical connection with

the on-sight resources and loads. Then the on-board power electronics [50] will do the

proper conversion of one form of electricity to another. The general steps that the system

will take are:

1. Robot assets arrive and assess the power requirements of the local system.

2. Robots autonomously physically connect sources and loads into a microgrid struc-

ture.

3. The on-board power electronics convert source energy to a common distribution

level.

4. Load-connected robots convert the distribution voltage to the needs of the load.
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Figure 4.1: Initial state of power source robot, cabling robot, and two power

loads

5. Robots re-configure system as energy assets and load change.

For proof-of-concept a scenario comprised of two autonomous microgird robots was cho-

sen (Fig. 4.1); a power source robot, a cabling robot, and two stationary power loads. The

power source robot can be representative of a mobile photovoltaic array, diesel generator

system, or simply a battery, and the power loads could be representative of a hybrid vehicle

charging station, or a communication tower. Fig. 4.1-4.4 show a step-by-step isometric

interpretation of a power distribution mission implementation. Once the connections are

established, the power source will start to deliver power to the loads.

For implementing and study of the performance of navigation and performing the proof-

of-concept, some supporting components are needed. Section 4.2 presents these remaining

components required for performing a lab-scale autonomous power distribution mission.
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Figure 4.2: power source robot moves towards one of the power loads

(blue) and makes an electrical connection

Figure 4.3: Cabling robot moves towards the other power load (red) and

makes an electrical connection

Figure 4.4: Cabling robot moves towards the power source robot and makes

the final connection

Section 4.3 gives an explanation of the results of simple path planning algorithm accompa-

nied with supporting hardware.
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Figure 4.5: A Microgrid Agent and a Power Load; Photo by author

4.2 Hardware

In this section, required hardware for performing an example scenario for autonomous

power distribution is presented. Fig. 4.5 shows some of the main components for the

power distribution mission.

4.2.1 Power Electronics

The main element in development of autonomous power distribution systems is equipping

robots with power modules that provide them with the capability to act as microgrid nodes.

A microgrid is a collection of energy resources on a common network. These resources

include generation, conversion, loads, and energy storage devices [15]. The microgrid
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Figure 4.6: Power Electronic Building Block (PEBB)

concept gives a solution for integration of a large number of distributed generations without

causing disruption in the utility network. Microgrids also allow for local control of the

distributed generation units and attests.

Along with developing a robotic team capable of executing such missions, Michigan Tech-

nological University has also developed a microgrid testbed utilizing a robotic platform and

a custom designed and built Power Electronic Building Block (PEBB) module (Fig. 4.6).

This module is a medium to make adoption between power sources and power loads with

different characteristics possible.

Each PEBB module is capable of power conversion of up to 1 kW at voltages up to 600 V .

This hardware enables a very flexible and re-configurable platform to develop algorithms

and controls for dc and ac microgrids. The PEBB design from Fig. 4.6 can be configured
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Figure 4.7: Types of conversion, dc-to-dc, dc-to-ac, and ac-to-ac through

back-to-back dc to ac converters.

Figure 4.8: Photovoltaic panel and a regulated dc to dc converter with max-

imum power point tracking.

into several conversion processes. Fig. 4.7 shows three basic conversion processes and can

be implemented by a common PEBB hardware architecture. The PEBB is mounted to the

back of the robot and each of these conversion processes (dc-to-dc, dc-to-ac, and ac-to-ac)

can be configured autonomously on-sight in response to the system needs.

In addition, other assets could be included. For example a PEBB can be pared with a solar

panel array as shown in Fig. 4.8 to provide renewable energy to the system. Other assets,

such as batteries or super capacitor banks could also be configured.
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dc dc

Figure 4.9: dc to dc conversion module

dc ac

Figure 4.10: dc to ac conversion module

The PEBB circuit shown in Fig. 4.6 can carry out several conversion processes. The basic

dc-to-dc converter is shown in Fig. 4.9. This configuration converts energy from a high

voltage dc to a low voltage dc and is a bi-directional conversion process, meaning that the

current can flow in either direction by being controlled via the on-board control system. The

PEBB circuit can also be configured to include a dc-to-ac conversion shown in Fig. 4.10

which also has bi-direction power flow.
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Figure 4.11: Combination of a power source robot and a cabling/conversion

robot to power up a 48 Vdc and a 24 Vdc load

While robots are completing physical connection between each other or stationary nodes,

they communicate their individual terminal voltage characteristics. Then each converter

will configure their respective PEBBs to provide the necessary voltage and current. The

mobile converter robot will configure the control system of the internal converter structure

based on this information.

Fig. 4.11 shows a power source robot supplying a power load with 48 Vdc and a cabling/-

conversion robot uses the same power source to supply a 24 Vdc power load using a PEBB

which is the equivalent of Fig. 4.4 from power electrics point of view.
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4.2.2 Ground Robot

For prototyping the algorithms, a small mobile robot platform known as DaNI (Fig. 4.5)

was used. DaNI is part of the National Instruments Robotics Starter Kit and is made specif-

ically for teaching and research purposes. The DaNI is equipped with the National In-

struments sbRIO-9632. The National Instruments sbRIO (Single-Board Reconfigurable

Input/Output) is an embedded controller designed with real-time processing and rapid pro-

totyping in mind. It features a field-programmable gate array (FPGA) and I/O ports that

allow communication with various sensors. The sbRIO allows network traffic by means of

both web and file servers. If needed it can also support communication via RS-232 serial

port. The 256MB on-board non volatile memory was utilized in order to: store and run the

obstacle avoidance, path planning, and path tracking. For the close area obstacle recogni-

tion and distance measurement a simple IR sensor was used. This particular IR sensor has

a range between 20 and 150cm. This sensor was mounted on a servo motor allowing a data

return range between −75◦ to 75◦ in front of the DaNI.

4.2.3 Magnetic Electrical Connections

In this work, the goal is to make physical connection between a power source robot and two

power load nodes. Establishing a good electrical connection is a major factor, along with
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Figure 4.12: Male magnetic connector with wire pulley; Photo by author

performing in cluttered unknown areas. In this project a magnetic connection was designed

to reduce the risk of faulty connections. This design is a reliable solution for establishing

electrical connection without human intervention. For this design, neodymium magnet

with a protective coating was selected. The magnets have two countersunk holes which

facilitate mounting electrical connections through the magnet while remaining shielded of

the magnet. The polarization property of the magnets allow the electrical connectors to

align properly for every connection. The angled design of magnet mounts also helps with

eliminating the risk of misalignment. Each connection includes a male (Fig. 4.12) and a

female part (Fig. 4.13).

As the agent approaches the target, the male connector is absorbed by the female connector

and pulls out of the mount on the agent and connects to female component. Two wires are
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Figure 4.13: Female magnetic connector; Photo by author

connected to this male component that are rolled around a pulley (Fig. 4.12) and unwind as

the agent moves away from the target and established electrical connection. The other side

of these wires go through the pulley and come out of the center of it and connect to another

pulley with the same structure with another male connector.

4.2.4 Camera System and IR Sensor

knowledge of position and state of targets, vehicle, and obstacles is the most important

information needed for assuring a successful mission. This information is among the inputs

of the hierarchy’s blocks and is updated during the whole operation as a feedback to these

blocks (see Fig. 3.1).
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Figure 4.14: Marker placement on robot and objec; Photo by author

To accurately measure the position of the DaNIs and power loads, a Qualisys Oqus motion

capture camera system is used. The camera system allows the detection and localization of

objects. These cameras work by emitting light in the infrared (IR) spectrum and reflecting

off of the IR markers (Fig. 4.14) within the area. These reflections are then recorded with a

high frame rate. The camera software can track individual objects by means of the markers

positioned on the actual object very accurately (Fig. 4.15). This approach of data gathering

was used in order to imitate the GPS system.

A sharp GP2Y0A02YK0F Long Range Infrared Proximity Sensor was used to detect ex-

istence and distance of obstacles. This IR sensor has been mounted on a servo which

oscillates to the right and left in order to imitate scans of a two dimensional laser range

finder.
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Figure 4.15: 3D representation of objects in workspace by camera system

software utilizing markers

4.3 Results

The algorithms discussed in chapter 3 were validated in a lab-size setting, using hardware

discussed in section 4.2. Before discussing the results of path planning algorithms, the

performance of IR data filtering and directions choosing algorithm is analyzed. Failure in

satisfactory performance of the IR sensor reading can have a drastic impact on the overall

completion of the mission.

4.3.1 IR Filtering and Direction Choosing Algorithms Results for

Simple Path Planning Algorithm

The key element for successful obstacle avoidance is having a robust performance from the

combination of IR sensor and the algorithm which processes its data. Fig. 4.16 illustrates 1)
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Figure 4.16: Example of IR readings, scoring, and direction choosing re-

sults

a sample of IR sensor readings, 2) process results of these readings based on the algorithm,

and 3) the final output direction of direction choosing algorithm. The black line represents

IR readings after going through a Butterworth filter. The red line shows the score of each

angle multiplied by its neighbors. In order to have a better illustration of these scores, they

are all multiplied by a factor of 100 before displaying them on the graph. The green line is

cosine value of absolute of subtracting each angle from desired angle (target’s direction).

The blue line is the multiplication of scores represented by red line and cosine values.

Finally the black circle shows the direction chosen for vehicle (by algorithm) in order to

avoid obstacles.

As it can be seen the final direction produced by the IR algorithm (black circle) maintains

a reasonable divergence from direction of obstacles which results in successful obstacle
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avoidance during the mission.

4.3.2 Simple Path Planning Algorithm Results

Satisfactory results from the process of IR reading leads us to analysis of path planing per-

formance. The test setup for proof of concept includes two power loads, two autonomous

ground vehicles, and a number of arbitrary obstacles with sufficient height for IR sensor

reading. All of the mentioned components were positioned arbitrary (only requiring enough

clearance in front of the target connections) and each robot is only given information ad-

dressing the position and orientation of power nodes (loads in this case) and itself through

the camera system.

The path of each robot after successful completion of the mission is shown in Fig. 4.17. In

this figure the blue line represent the first vehicle (power source agent) and its path, also

the red line represent the second vehicle (cabling agent) and its path and the obstacles are

shown by black circles.

Different stages of a completely successful mission can be seen in Fig. 4.17. Mission

planner of power source agent guides the robot towards the imaginary point in front of the

first power load and after reaching this point, the destination of path planner is changed

to the actual touch point of this power load via the mission planner. By the time that first

connection is made, the power source agent moves back from the electrical connection
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Figure 4.17: Test results of path planning of mission of two agents provid-

ing power to two power loads

touch point location due to safety reasons. At this point, the mission of power source agent

is completed and the mission of cabling agent starts. First, robot starts moving towards

an imaginary point behind the power source agent and then towards the touch point on the

back of the power source robot. After making the connection and backing from the power

source, the imaginary target in front of the second power load is set as the destination

for cabling agent. The autonomous power distribution is finalized when the cabling agent

makes the electrical connection with second power load. Fig. 4.17 illustrates that both
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agents managed to completely avoid any collision with obstacles while assembling power

connection with both power loads.
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Chapter 5

Conclusion and Future Works

5.1 Conclusion

In this work, it was stated that a self-configuring autonomous microgrid has great impact on

autonomous mission duration and providing power to other systems in need. The focus is

using autonomous mobile power-grids to help re-establish power in areas with limited hu-

man resources. The organization, layout, and operation of such mobile robotic microgrids

are highly dependent on the assets in the area of operation.

In this effort a lab-size hardware setup was used to demonstrate the capability of power

distribution through physical wiring and efficient communication between the agents of
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the microgrid. A practical hierarchy was presented that accounts for uncertainty in pre-

dictions, minimal required information of the operation environment, minimal required

communication between agents, and is scalable to real-size robots with different percep-

tion modules and sensor suites. Path planning is the main component of this hierarchy by

providing a collision free path. For this purpose two algorithms were developed one for

implementation on an unsophisticated lab platform as a proof-of-concept and a preliminary

study on path planning requirements. The other algorithm was a geometric path planner

addressing the limitations and assumptions derived from experimenting with simple path

planner algorithm. For the power electric element of the project, a module being developed

in Michigan Technological University was introduced that will be installed on the robotic

platform to perform adaptation between power sources and power loads that are different

in their electrical power format. This module equips robots with capability of changing the

voltage and current type (ac versus dc) of the transferring power, that is provided either

from a power source installed on the robot or through an external electric connection. For

validation of autonomous power distribution concept a magnetic connection system was

designed, prototyped, and manufactured to guarantee reliable physical electric connections

between different nodes of the microgrid.

At the end, these components were implemented and tested in a lab environment and

demonstrated a reliable autonomous power distribution system to navigate through obsta-

cles, make electrical connections, and establish a microgrid. While the power module’s

development is in progress, the proof of concept was carried out with a power source robot
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dc

dc

Figure 5.1: Four robot system. Robot A converts power from 24 Vdc source

to 48 Vdc common bus. Robot B converts power from bus to 48 Vdc load.

Robot C converts power to/from 12 Vdc battery. Robot D converts power

to/from bus to 120 Vac source.

equipped with a battery as source that is compatible with power loads characteristics and a

cabling robot.

5.2 Future Developments

While we presented the results of this project up to this stage, there is much more being

developed to the ultimate goal. The integration of autonomous mobile platforms and PEBB

is the next step of this project to create self-organizing, ad-hoc microgrid. Below is a

description of developments that will be added to the current system in near future.
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Figure 5.2: Four robot system. Robot A converts power from 24 Vdc source

to 48 Vdc common bus. Robot B converts power from bus to 48 Vdc load.

Robot C converts power to/from 12 Vdc battery. Robot D converts power

to/from bus to 120 Vac source. Robot E provides renewable energy from a

on-board solar panel and regulated dc to dc converter.

Fig. 5.1 shows a larger system with four robot/PEBBs and uses a common 48 Vdc bus to

create a microgrid with a 24 Vdc source, a 48 Vdc load, a 12 Vdc battery and a 120 Vac power

source. The robot/PEBBs communicate their positions and connection voltages to then

configure the PEBBs to provide the proper voltages and currents through the common bus.

The battery in Fig. 5.1 is used to support the system, charging and discharging depending

upon the profile of the load.

Fig. 5.2 shows the system from Fig. 5.1 with the addition of a renewable energy

robot/PEBB. In this configuration
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We believe that once the physical electrical system is connected, intelligent power electron-

ics on the robots will automatically determine the required energy conversion to meet the

energy and power consumption of the loads. If loads, generation, or other assets change,

then the nodes can physically and electrically reconfigure to meet the new demand or gen-

erate new configurations to compensate for renewable energy generation fluctuations and

energy storage. Investigating optimal connection methods for establishing connections be-

tween microgrids is another area of focus. The connection positions will be optimized

and in parallel reconfiguration mechanisms in presence of resource or power requirement

changes will be determined. With this approach, the developed ad-hoc electric microgrid

system will be highly reconfigurable and robust.

The robust path planning algorithm will be implemented on a real-size robotic platform in

future for experimental validation. It will also be equipped with dynamic obstacle avoiding

capability using a hierarchical fuzzy rule [61] to show satisfactory result in avoiding local

minimas and deadlocks [62]. A new vehicle platform is under construction at this moment

which will be equipped with an effective sensor suit and powerful embedded systems. The

sensors utilized on this vehicle and the vehicle’s dynamics have been modeled in the new

simulation environment leading to better assessing the vehicle performance. This platform

is a tracked vehicle with two electrical motors and a sensor suit consisted of a LIDAR (laser

range finder), multiple infrared and sonar proximity sensors, an inertial measurement unit,

a GPS, and two motion monitoring systems for each electrical motor. The control system of

the vehicle is consisted of a xPC target machine for control algorithm and communicating
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with the LIDAR, a sbRIO 9642 for path tracking and communication with the rest of the

sensors, and a RoboteQ motor controller to control the two electrical motor which actuate

the tracks. This platform is capable of functioning in most of rough terrain settings and

providing the potential for complete investigation of robustness of the control algorithm.

Considering environments with limited communication with GPS satellites such as indoors,

accumulative errors of an inertial measurement unit, inaccurate output of magnetometers,

lack of 3D perception of the surrounding, and the need for recognition of a target without

information about the exact position justifies utilization of a vision sensor unit. The recent

improvements in processing capabilities of modern embedded systems has opened a gate

towards using real-time image processing algorithms in order to provide much more infor-

mation to autonomous systems. In future developments vision sensors will be utilized for

simultaneous localization and mapping (SLAM).
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tential field approach,” Robotics and Autonomous Systems, vol. 57, no. 1, pp. 55–63,

2009.

77



[46] W. Burgard, A. B. Cremers, D. Fox, D. Hähnel, G. Lakemeyer, D. Schulz, W. Steiner,

and S. Thrun, “Experiences with an interactive museum tour-guide robot,” Artificial

intelligence, vol. 114, no. 1, pp. 3–55, 1999.

[47] A. Sannino, G. Postiglione, and M. H. J. Bollen, “Feasibility of a dc network for

commercial facilities,” IEEE Transactions on Industry Applications, vol. 39, no. 5,

pp. 1499–1507, 2003.

[48] D. Salomonsson and A. Sannino, “Low-voltage dc distribution system for commercial

power systems with sensitive electronic loads,” IEEE Transactions on Power Deliv-

ery, vol. 22, no. 3, pp. 1620–1627, 2007.

[49] J. M. Guerrero, J. C. Vasquez, J. Matas, L. G. de Vicuña, and M. Castilla, “Hierar-

chical control of droop-controlled ac and dc microgridsâĂŤa general approach toward
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Appendix A

Navigation Code for Unsophisticated

Platform
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Appendix B

Robust Path Planning Algorithm Codes

B.1 Front End

clc

close all

clear all

t=0;

SimLength=3;

TimeStep=.01;

prompt = ’Wanna Record Results? ’;

record = input(prompt,’s’);
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display(record);

recordBool=strcmp(record,’Yes’)||strcmp(record,’yes’)||

↪→ strcmp(record,’y’)||strcmp(record,’Y’);

if recordBool

c=fix(clock);

cstr=strcat(mat2str(c),’.avi’);

SimulationVideo = VideoWriter(cstr);

open(SimulationVideo);

axis tight

set(gca,’nextplot’,’replacechildren’);

set(gcf,’Renderer’,’zbuffer’);

end

XRecord=nan*ones(1,SimLength/TimeStep+1);

YRecord=nan*ones(1,SimLength/TimeStep+1);

Base=SimBase();

ImportMap(Base,’workspace.bmp’);

agent=RobotStates();

hold on

while t<SimLength&&abs((agent.X-agent.TargetX)^2+(agent.Y-

↪→ agent.TargetY)^2)>100
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clc

Show(agent);

ShowField(agent);

MoveRobot(agent,Base,TimeStep);

drawnow

t=t+TimeStep;

if recordBool

frame = getframe;

writeVideo(SimulationVideo,frame);

end

XRecord(round(t/TimeStep+1))=[agent.X];

YRecord(round(t/TimeStep+1))=[agent.Y];

display(t);

end

plot(XRecord,YRecord,’c’,’LineWidth’,1.5)

if recordBool

close(SimulationVideo);

end
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B.2 Workspace Object Definition

classdef SimBase < handle

properties

Width=400;

Length=800;

Matrix;

end

methods

function Base=SimBase(Width,Length)

if(nargin>0)

Base.Width=Width;

Base.Length=Length;

end

Base.Matrix=zeros(Base.Width,Base.Length);

end
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function Obj=ImportMap(Obj,str)

Obj.Matrix=flipud(imread(str));

Obj.Width=size(Obj.Matrix,1);

Obj.Length=size(Obj.Matrix,2);

Show(Obj);

end

function Base=AddWall(Base,StartPoint,Width,Length)

Base.Matrix(StartPoint(2):(StartPoint(2)+Length)

↪→ ,StartPoint(1):(StartPoint(1)+Width))=1;

end

function Show(Base)

BaseFigure = figure;

set(BaseFigure,’name’,’Figure of the workspace’,

↪→ ’numbertitle’,’off’)

imshow(Base.Matrix);

set(gca, ’Ydir’, ’normal’);
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set(gca, ’XLim’, [1 Base.Length], ’YLim’, [1

↪→ Base.Width]);

end

end

end

B.3 Robot Object Definition

classdef RobotStates < handle & Lidar

properties

Name;

X=150;

Y=120;

Theta=0;

Length=100;

Width=50;

LidarOffCenter=40;

TangentVelocity=0;
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AngularVelocity=0;

MaxTangentVelocity=200;

SafetyRadius;

Rank=1;

FieldNumber=5;

TargetX=1200;

TargetY=400;

RobotFigures;

FieldPlot=[];

ArrowsPlot=[8,8,8];

Mass=1;

FieldDampDistMemory;

EdgePlot;

end

methods

function obj=RobotStates()

obj=obj@Lidar();

obj.FieldDampDistMemory=zeros(obj.AngularRange/

↪→ obj.ScanStepSize+1,1);

%if(nargin==1)

%end
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end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% Show

function Show(obj)

D=20;

if ishandle(obj.RobotFigures)

delete(obj.RobotFigures);

end

[PatchX,PatchY]=RobotCorners(obj);

obj.RobotFigures(1)=line([PatchX,PatchX(1)],[

↪→ PatchY,PatchY(1)],’Color’,’w’); %shows robot

XLidar=obj.X+cos(obj.Theta*pi/180)*obj.

↪→ LidarOffCenter;

YLidar=obj.Y+sin(obj.Theta*pi/180)*obj.

↪→ LidarOffCenter;

obj.RobotFigures(2)=rectangle(’Position’,[XLidar

↪→ -D/2,YLidar-D/2,D,D],... %shows lidar

’Curvature’,[1,1],...

’LineWidth’,1.5,’edgecolor’,’r’);

94



obj.RobotFigures(3)=line([XLidar,XLidar+D*cos(

↪→ obj.Theta*pi/180)/2],[YLidar,YLidar+D*sin(obj.Theta*pi

↪→ /180)/2],’Color’,’r’,’LineWidth’,3); %shows rest of

↪→ lidar

daspect([1,1,1]);

obj.RobotFigures(4)=rectangle(’Position’,[obj.

↪→ TargetX-10,obj.TargetY-10,20,20],... %shows target

’Curvature’,[1,1],...

’LineWidth’,1.5,’edgecolor’,’c’);

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% Robot Corners

function [Xs,Ys]=RobotCorners(obj)

Xs=[... %Robot corners

obj.X+cos(obj.Theta*pi/180)*(obj.Length/2)+

↪→ sin(obj.Theta*pi/180)*obj.Width/2,...

obj.X+cos(obj.Theta*pi/180)*(obj.Length/2)-

↪→ sin(obj.Theta*pi/180)*obj.Width/2,...

obj.X-cos(obj.Theta*pi/180)*(obj.Length/2)-

↪→ sin(obj.Theta*pi/180)*obj.Width/2,...
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obj.X-cos(obj.Theta*pi/180)*(obj.Length/2)+

↪→ sin(obj.Theta*pi/180)*obj.Width/2];

Ys=[...

obj.Y+sin(obj.Theta*pi/180)*(obj.Length/2)-

↪→ cos(obj.Theta*pi/180)*(obj.Width/2),...

obj.Y+sin(obj.Theta*pi/180)*(obj.Length/2)+

↪→ cos(obj.Theta*pi/180)*(obj.Width/2),...

obj.Y-sin(obj.Theta*pi/180)*(obj.Length/2)+

↪→ cos(obj.Theta*pi/180)*(obj.Width/2),...

obj.Y-sin(obj.Theta*pi/180)*(obj.Length/2)-

↪→ cos(obj.Theta*pi/180)*(obj.Width/2)];

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% Show Field

function ShowField(obj)

if ishandle(obj.FieldPlot)

delete(obj.FieldPlot)

end

obj.SafetyRadius=.6*sqrt(obj.Length^2+obj.Width

↪→ ^2);

k=3;
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C=2;

Er=abs(obj.TangentVelocity/(C*obj.

↪→ MaxTangentVelocity));

PlotTheta=(0:360)*pi/180;

temp=1;

for e=0:Er/(obj.FieldNumber-1):Er

PlotDist=(k*e*obj.SafetyRadius*obj.Rank./(1-

↪→ e*cos(PlotTheta))+obj.SafetyRadius);

% obj.FieldPlot(temp)=plot(PlotDist.*cos(

↪→ PlotTheta+obj.Theta*pi/180)+obj.X, PlotDist.*sin(

↪→ PlotTheta+obj.Theta*pi/180)+obj.Y,’w’);

temp=temp+1;

end

clear temp;

daspect([1,1,1]);

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% Lidar Data

function [LidarReadingAngles,LidarReadingDistances]=

↪→ LidarData(obj,Base)
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[LidarReadingAngles,LidarReadingDistances]=

↪→ LidarData@Lidar(obj,Base);

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% Translate to robot refrence

function [DistancesVectorRobotRefrence,

↪→ ThetasVectorRobotRefrence]=LidarToRobotCenter(

↪→ DistancesVectorLidarReference,

↪→ ThetasVectorLidarReference,obj)

DistancesVectorRobotRefrenceX=

↪→ DistancesVectorLidarReference.*cos(

↪→ ThetasVectorLidarReference*pi/180)+obj.LidarOffCenter;

DistancesVectorRobotRefrenceY=

↪→ DistancesVectorLidarReference.*sin(

↪→ ThetasVectorLidarReference*pi/180);

DistancesVectorRobotRefrence=sqrt(

↪→ DistancesVectorRobotRefrenceX.^2+

↪→ DistancesVectorRobotRefrenceY.^2);

ThetasVectorRobotRefrence=atan2(

↪→ DistancesVectorRobotRefrenceY,

↪→ DistancesVectorRobotRefrenceX)*180/pi;
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end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% Force of each reading

function ForceMag=ForceArrayOfReading(

↪→ DistancesVectorRobotRefrence,ThetasVectorRobotRefrence

↪→ ,obj,TimeStep)

NumberOfReadings=length(

↪→ DistancesVectorRobotRefrence);

obj.SafetyRadius=.6*sqrt(obj.Length^2+obj.Width

↪→ ^2);

DistancesVectorRobotRefrence=

↪→ DistancesVectorRobotRefrence-obj.SafetyRadius;

k=3;

C=2;

rho0=.1;

ForceMax=0;

ForceMag=zeros(NumberOfReadings,1);

Er=abs(obj.TangentVelocity/(C*obj.

↪→ MaxTangentVelocity));

Dmax=k*Er*obj.SafetyRadius*obj.Rank./(1-Er*cos(

↪→ ThetasVectorRobotRefrence));
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Dmin=rho0*Dmax;

DampRatio=0;

for i=1:NumberOfReadings

if Dmax(i)<10

Dmax(i)=10;

end

if DistancesVectorRobotRefrence(i)>=Dmax(i)

ForceMag(i)=0;

else

ForceMag(i)=(Dmax(i)-

↪→ DistancesVectorRobotRefrence(i))*ForceMax/(Dmax(i)-

↪→ Dmin(i))...

-DampRatio*(

↪→ DistancesVectorRobotRefrence(i)-obj.

↪→ FieldDampDistMemory(i))/TimeStep;

end

end

obj.FieldDampDistMemory=

↪→ DistancesVectorRobotRefrence;

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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%% Repulsion force calculation

function [RepulsionForceXTotal,RepulsionForceYTotal

↪→ ]=RepulsionForce(ForceMag,ThetasVectorRobotRefrence,

↪→ obj)

RepulsionForceX=cos(ThetasVectorRobotRefrence*pi

↪→ /180).*ForceMag;

RepulsionForceY=sin(ThetasVectorRobotRefrence*pi

↪→ /180).*ForceMag;

RepulsionForceXTotal=sum(RepulsionForceX);

RepulsionForceYTotal=sum(RepulsionForceY);

RepulsionForceMagTotal=sqrt(RepulsionForceYTotal

↪→ ^2+RepulsionForceXTotal^2);

RepulsionForceAngleTotal=atan2(

↪→ RepulsionForceYTotal,RepulsionForceXTotal)+pi;

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% Forces

function [ForcesSummationMagnitude,

↪→ ForcesSummationAngle]=...
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Forces(DistancesVectorLidarReference,

↪→ ThetasVectorLidarReference,obj,TimeStep,

↪→ AttractionForceAngle)

% Repulsion

[DistancesVectorRobotRefrence,

↪→ ThetasVectorRobotRefrence]=LidarToRobotCenter(

↪→ DistancesVectorLidarReference,

↪→ ThetasVectorLidarReference,obj);

ForceMag=ForceArrayOfReading(

↪→ DistancesVectorRobotRefrence,ThetasVectorRobotRefrence

↪→ ,obj,TimeStep);

for i=1:length(obj.ArrowsPlot)

if ishandle(obj.ArrowsPlot(i))

delete(obj.ArrowsPlot(i));

end

end

[RepulsionForceXTotal,RepulsionForceYTotal]=

↪→ RepulsionForce(ForceMag,ThetasVectorRobotRefrence,obj)

↪→ ;

% attraction force

Q=80;
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% Summation

ForcesSummationX=-RepulsionForceXTotal+Q*cos(

↪→ AttractionForceAngle);

ForcesSummationY=-RepulsionForceYTotal+Q*sin(

↪→ AttractionForceAngle);

ForcesSummationMagnitude=sqrt(ForcesSummationX

↪→ ^2+ForcesSummationY^2);

if ForcesSummationMagnitude<30

ForcesSummationMagnitude=30;

end

ForcesSummationAngle=atan2(ForcesSummationY,

↪→ ForcesSummationX);

% obj.ArrowsPlot(3)=arrow([obj.X obj

↪→ .Y],[obj.X+ForcesSummationMagnitude*cos(

↪→ ForcesSummationAngle),...

% obj.Y+ForcesSummationMagnitude

↪→ *sin(ForcesSummationAngle)],...

% ’EdgeColor’,’m’, ’FaceColor’,’

↪→ m’);

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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%% Potential Field

function [ForcesSummationMagnitude,

↪→ ForcesSummationAngle]=PotentialFieldController(obj,

↪→ Base,TimeStep)

[LidarReadingAngles,LidarReadingDistances]=

↪→ LidarData(obj,Base);

AttractionForceAngle=GapFinding(

↪→ LidarReadingAngles,LidarReadingDistances,obj);

[ForcesSummationMagnitude,ForcesSummationAngle

↪→ ]=...

Forces(LidarReadingDistances,

↪→ LidarReadingAngles,obj,TimeStep,AttractionForceAngle);

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% Obstacle Recognition

function index=obstacleRecognition(obj,

↪→ DistancesVectorLidarReference,

↪→ ThetasVectorLidarReference)

readings=length(DistancesVectorLidarReference);

index=nan*ones(readings,1);

noOfReturns=1;
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range=.95*obj.DistanceRange;

for limitFinder=1:readings

if DistancesVectorLidarReference(limitFinder

↪→ )>range

DistancesVectorLidarReference(

↪→ limitFinder)=nan;

ThetasVectorLidarReference(limitFinder)=

↪→ nan;

else

index(limitFinder)=noOfReturns;

noOfReturns=noOfReturns+1;

end %if

end %for

DistancesVectorLidarReference(isnan(

↪→ DistancesVectorLidarReference))=[];

ThetasVectorLidarReference(isnan(

↪→ ThetasVectorLidarReference))=[];

if ~isempty(ThetasVectorLidarReference)

[readingsX,readingsY]=pol2cart(

↪→ ThetasVectorLidarReference*pi/180,

↪→ DistancesVectorLidarReference);
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firstObstacleEnd=1;

for obstacleEndIteration=1:int32(obj.

↪→ AngularRange/obj.ScanStepSize)+1

for limitFinder=length(readingsX):-1:

↪→ obstacleEndIteration

if ((readingsX(limitFinder)-

↪→ readingsX(obstacleEndIteration))^2+(readingsY(

↪→ limitFinder)-readingsY(obstacleEndIteration))^2)<=4*

↪→ obj.SafetyRadius^2;

firstObstacleEnd=limitFinder;

break

end%if

end %for

if firstObstacleEnd==

↪→ obstacleEndIteration

break % end found

end

end

numberOfObstacles=0;

scanStart=firstObstacleEnd+1;

obstacleElement=firstObstacleEnd+1;
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obstacleLimits=[nan,nan];

while obstacleLimits(end)~=mod(

↪→ firstObstacleEnd-1,length(

↪→ DistancesVectorLidarReference))+1&&numberOfObstacles

↪→ <10

numberOfObstacles=numberOfObstacles+1;

obstacleLimits(numberOfObstacles,1)=mod(

↪→ scanStart-1,length(DistancesVectorLidarReference))+1;

obstacleLimits(numberOfObstacles,2)=

↪→ scanStart;

% find end of the obstacle and begining

↪→ and end of

% safe space

while obstacleLimits<=length(

↪→ DistancesVectorLidarReference)+firstObstacleEnd+1

temp2=mod(obstacleElement-1,length(

↪→ DistancesVectorLidarReference))+1;

for limitFinder=length(

↪→ DistancesVectorLidarReference)+firstObstacleEnd:-1:

↪→ obstacleElement
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temp=mod(limitFinder-1,length(

↪→ DistancesVectorLidarReference))+1;

if ((readingsX(temp)-readingsX(

↪→ temp2))^2+(readingsY(temp)-readingsY(temp2))^2)<=4*obj

↪→ .SafetyRadius^2;

obstacleLimits(

↪→ numberOfObstacles,2)=temp;

break

end%if

end %for

obstacleElement=obstacleElement+1;

if obstacleLimits(numberOfObstacles

↪→ ,2)==temp2

scanStart=obstacleLimits(

↪→ numberOfObstacles,2)+1;

break % end found

end

end

end

[~,index] = ismember(obstacleLimits,index);
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else

index=[];

end

end %obstacleRecognition

%% LineTracking

function [CommandTangentVelocity,

↪→ CommandAngularVelocity]=LineTracking(Magnitude,Angle,

↪→ obj)

K1=.7; %.7

K2=.1; %.05

K3=0; %1.5

MagnitudeRatio=1;

ErrorX=MagnitudeRatio*Magnitude*cos(Angle-obj.

↪→ Theta*pi/180);

ErrorY=MagnitudeRatio*Magnitude*sin(Angle-obj.

↪→ Theta*pi/180);

ErrorTheta=wrapToPi(Angle-obj.Theta*pi/180);

FeedbackTangentVelocity=-K1*ErrorX;

FeedbackAngularVelocity=-K2*sign(obj.

↪→ TangentVelocity)*ErrorY-K3*ErrorTheta;
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CommandTangentVelocity=obj.TangentVelocity*cos(

↪→ ErrorTheta)-FeedbackTangentVelocity;

CommandAngularVelocity=-FeedbackAngularVelocity;

VelocityRight=CommandTangentVelocity+

↪→ CommandAngularVelocity*obj.Width/2;

VelocityLeft=CommandTangentVelocity-

↪→ CommandAngularVelocity*obj.Width/2;

if abs(VelocityRight)>obj.MaxTangentVelocity

VelocityRight=obj.MaxTangentVelocity*sign(

↪→ VelocityRight);

end

if abs(VelocityLeft)>obj.MaxTangentVelocity

VelocityLeft=obj.MaxTangentVelocity*sign(

↪→ VelocityLeft);

end

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% MoveRobot

function obj=MoveRobot(obj,Base,TimeStep)

[Magnitude,Angle]=PotentialFieldController(obj,

↪→ Base,TimeStep);
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[CommandTangentVelocity,CommandAngularVelocity]=

↪→ LineTracking(Magnitude,Angle,obj);

[ForceLeft,ForceRight]=VelocityToForce(

↪→ CommandTangentVelocity,CommandAngularVelocity,obj);

[TangentAcceleration,AngularAcceleration]=

↪→ ForceToActuation(ForceLeft,ForceRight,obj);

obj.TangentVelocity=TangentAcceleration*TimeStep

↪→ +obj.TangentVelocity;

obj.AngularVelocity=AngularAcceleration*TimeStep

↪→ +obj.AngularVelocity;

obj.X=obj.X+obj.TangentVelocity*cos(obj.Theta*pi

↪→ /180)*TimeStep;

obj.Y=obj.Y+obj.TangentVelocity*sin(obj.Theta*pi

↪→ /180)*TimeStep;

obj.Theta=obj.Theta+obj.AngularVelocity*180*

↪→ TimeStep/pi;

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%

function [ForceLeft,ForceRight]=VelocityToForce(

↪→ CommandTangentVelocity,CommandAngularVelocity,obj)
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TangGain=30;

AngGain=300;

ForceRight=TangGain*((CommandTangentVelocity-obj

↪→ .TangentVelocity)...

+AngGain*(CommandAngularVelocity-obj.

↪→ AngularVelocity)/obj.Width);

ForceLeft=TangGain*((CommandTangentVelocity-obj.

↪→ TangentVelocity)...

-AngGain*(CommandAngularVelocity-obj.

↪→ AngularVelocity)/obj.Width);

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%

function [TangentAcceleration,AngularAcceleration]=

↪→ ForceToActuation(ForceLeft,ForceRight,obj)

Damp=20;

TangentAcceleration=(ForceRight+ForceLeft-abs(

↪→ Damp*obj.TangentVelocity))/obj.Mass;

AngularAcceleration=((ForceRight-ForceLeft)*obj.

↪→ Width-abs(Damp*obj.AngularVelocity))/(obj.Mass*(obj.

↪→ Width^2+obj.Length^2)/12);
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end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%

function [XX,YY]=robotReferenceToGlobal(obj,Angles,

↪→ Distances)

XX=obj.X+Distances.*cos((Angles+obj.Theta)*pi

↪→ /180);

YY=obj.Y+Distances.*sin((Angles+obj.Theta)*pi

↪→ /180);

end%function

%

↪→ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

↪→

%%

function [subgoalsDistances,subgoalsTheta]=subgoals(

↪→ lidarDistances,lidarThetas,obj)

index=obstacleRecognition(obj,lidarDistances,

↪→ lidarThetas);

[robotDistances,robotThetas]=LidarToRobotCenter(

↪→ lidarDistances,lidarThetas,obj);

numberOfReadings=length(lidarDistances);
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numberOfObstacles=size(index,1);

subgoalsTheta=nan*ones(numberOfObstacles,2);

subgoalsDistances=nan*ones(numberOfObstacles,2);

if ~isempty(index)

if index(1,1)~=0

if index(1,2)<index(1,1)

index(1,2)=index(1,2)+

↪→ numberOfReadings;

end

tem=mod((index(1,1):index(1,2))-1,

↪→ numberOfReadings)+1;

temp=real([robotThetas(tem)-asind(obj.

↪→ SafetyRadius./robotDistances(tem))]);

shift=min(temp);

else

shift=0;

end

robotThetas=wrapTo360(robotThetas-shift);

for i=1:numberOfObstacles

if index(i,2)<index(i,1)
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index(i,2)=index(i,2)+

↪→ numberOfReadings;

end

toCompare=index(i,1):1:index(i,2);

for j=toCompare

element=mod(j-1,numberOfReadings)+1;

temp1=real(robotThetas(element)-

↪→ asind(obj.SafetyRadius/robotDistances(element)));

temp2=real(robotThetas(element)+

↪→ asind(obj.SafetyRadius/robotDistances(element)));

if temp1<-.0001

temp1=temp1+360;

temp2=temp2+360;

end

temp3=subgoalsTheta(i,1);

temp4=subgoalsTheta(i,2);

[subgoalsTheta(i,1),ind]=min([temp3,

↪→ temp1,temp2]);

if ind~=1

subgoalsDistances(i,1)=

↪→ robotDistances(element);
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end

[subgoalsTheta(i,2),ind]=max([temp4,

↪→ temp1,temp2]);

if ind~=1

subgoalsDistances(i,2)=

↪→ robotDistances(element);

end

end

end

subgoalsTheta=wrapTo360(subgoalsTheta+shift)

↪→ ;

else

subgoalsTheta=[];

end

end%function

%

↪→ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function selectedSubgoal=selectSubgoal(obj,

↪→ targetDistance,targetTheta,lidarDistances,lidarThetas)

for i=1:length(obj.EdgePlot)

if ishandle(obj.EdgePlot(i))
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delete(obj.EdgePlot(i));

end

end

[subgoalsDistances,subgoalsTheta]=subgoals(

↪→ lidarDistances,lidarThetas,obj);

targetTheta=wrapTo180(targetTheta);

for i=1:size(subgoalsTheta,1)

if subgoalsTheta(i,1)>subgoalsTheta(i,2)

subgoalsTheta(i,1)=subgoalsTheta(i,1)

↪→ -360;

end

end

subgoalsTheta2=wrapTo180(subgoalsTheta);

difference=abs(targetTheta-subgoalsTheta2)+

↪→ subgoalsDistances.*abs(wrapTo180(subgoalsTheta2))*.01;

selectedSubgoal=[targetDistance,targetTheta];

if ~isempty(subgoalsDistances)

for i=1:size(subgoalsDistances,1)

diff=wrapTo180(subgoalsTheta(i,:)-

↪→ selectedSubgoal(2));

if diff(1)>diff(2)
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diff(1)=diff(1)-360;

end

if (sign(diff(1)*diff(2))==-1)&&

↪→ selectedSubgoal(1)>sum(subgoalsDistances(i,:))/2

[~,Indx]=min([difference(i,1),

↪→ difference(i,2)]);

selectedSubgoal=[subgoalsDistances(i

↪→ ,Indx),subgoalsTheta2(i,Indx)];

elseif (subgoalsTheta2(i,2)<

↪→ subgoalsTheta2(i,1)||subgoalsTheta(i,2)>360)&&

↪→ targetDistance>sum(lidarDistances(i,:))/2

if selectedSubgoal(2)<subgoalsTheta2

↪→ (i,2)&&selectedSubgoal(2)>subgoalsTheta2(i,1)

[~,Indx]=max([difference(i,1),

↪→ difference(i,2)]);

selectedSubgoal=[

↪→ subgoalsDistances(i,Indx),subgoalsTheta2(i,Indx)];

end

end%if

end%for
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end

for i=1:size(subgoalsDistances,1)

start=subgoalsTheta2(i,2);

stop=subgoalsTheta2(i,1);

angels=[start,stop];

start=subgoalsDistances(i,2);

stop=subgoalsDistances(i,1);

distances=[start,stop];

[XX,YY]=robotReferenceToGlobal(obj,angels,

↪→ distances);

obj.EdgePlot(i)=plot(XX’,YY’,’c:o’,’

↪→ MarkerSize’,10,’MarkerFaceColor’,’c’,’LineWidth’,1);

end%for

[subgoalX,subgoalY]=robotReferenceToGlobal(obj,

↪→ selectedSubgoal(2),selectedSubgoal(1));

obj.EdgePlot(size(subgoalsDistances,1)+1)=

↪→ rectangle(’Position’,[subgoalX-5,subgoalY-5,10,10],...

↪→ %shows subgoal
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’Curvature’,[1,1],’LineWidth’,3,’edgecolor’,

↪→ ’m’);

end%function

%

↪→ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%

function Direction=GapFinding(LidarReadingAngles,

↪→ LidarReadingDistances,obj)

DistanceFromTarget=sqrt((obj.TargetX-obj.X)^2+(

↪→ obj.TargetY-obj.Y)^2);

TargetDirection=wrapTo180(atan2((obj.TargetY-obj

↪→ .Y),(obj.TargetX-obj.X))*180/pi-obj.Theta);

NumberOfReadings=length(LidarReadingAngles); %

↪→ from LIDAR

SeeObstacle=zeros(NumberOfReadings+2,1);

for i=1:NumberOfReadings % does it see obstacle

if (LidarReadingDistances(i)<obj.

↪→ DistanceRange)&&(LidarReadingDistances(i)<

↪→ DistanceFromTarget)
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SeeObstacle(i+1)=1;

else SeeObstacle(i+1)=0;

end%if

end%for

targetTheta=TargetDirection;

targetDistance=DistanceFromTarget;

selectedSubgoal=selectSubgoal(obj,targetDistance

↪→ ,targetTheta,LidarReadingDistances,LidarReadingAngles)

↪→ ;

if targetDistance==selectedSubgoal(1)&&

↪→ targetTheta==selectedSubgoal(2)

else

targetDistance=real(selectedSubgoal(1));

targetTheta=real(selectedSubgoal(2));

end%if

Direction=wrapTo180(targetTheta+obj.Theta)*pi/180;

end %GapFinding

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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end %end methods

end

B.4 LIDAR Object Definition

classdef Lidar < handle

properties

Type;

DistanceRange=250;

AngularRange=260;

ScanStepSize=1;

LidarPlot;

end

methods

function obj=Lidar()
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end

function [LidarReadingAngles,LidarReadingDistances]=

↪→ LidarData(Robot,Base)

LidarPositionX=Robot.X+cos(Robot.Theta*pi/180)*

↪→ Robot.LidarOffCenter;

LidarPositionY=Robot.Y+sin(Robot.Theta*pi/180)*

↪→ Robot.LidarOffCenter;

Map=Base.Matrix;

MapSize=size(Map);

LineStep=1;

if ishandle(Robot.LidarPlot)

delete(Robot.LidarPlot)

end

LidarReadingAngles=(-Robot.AngularRange/2+Robot.

↪→ ScanStepSize/2:Robot.ScanStepSize:Robot.AngularRange

↪→ /2-Robot.ScanStepSize/2)’;

LidarReadingDistances=zeros(Robot.AngularRange/

↪→ Robot.ScanStepSize,1);
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for i=1:Robot.AngularRange/Robot.ScanStepSize

m=(LidarReadingAngles(i)+Robot.Theta)*pi

↪→ /180;

TravelStep=1;

exceed=0;

while exceed==0

LightTravel=TravelStep*LineStep;

LightedPix(TravelStep,:)=[int16(

↪→ LidarPositionX+LightTravel*cos(m)),int16(

↪→ LidarPositionY+LightTravel*sin(m))];

if LightedPix(TravelStep,1)>0&&

↪→ LightedPix(TravelStep,1)<MapSize(2)&&LightedPix(

↪→ TravelStep,2)>0&&LightedPix(TravelStep,2)<MapSize(1) %

↪→ if inside map

if Map(LightedPix(TravelStep,2),

↪→ LightedPix(TravelStep,1))==1 %if hit a wall

LidarReadingDistances(i)=

↪→ LightTravel;
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exceed=1;

end

TravelStep=TravelStep+1;

if LightTravel>Robot.DistanceRange

LidarReadingDistances(i)=

↪→ LightTravel-LineStep;

exceed=1;

end

else

LidarReadingDistances(i)=LightTravel

↪→ ;

exceed=1;

end

end
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Robot.LidarPlot(i)=line([LidarPositionX,

↪→ LidarPositionX+LidarReadingDistances(i)*cos((

↪→ LidarReadingAngles(i)+Robot.Theta)*pi/180)],[

↪→ LidarPositionY,LidarPositionY+LidarReadingDistances(i)

↪→ *sin((LidarReadingAngles(i)+Robot.Theta)*pi/180)],’

↪→ Color’,’y’,’LineWidth’,.1,’LineStyle’,’:’);

end

end

function PlotLidar(Sensor)

end

end

end
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Appendix C

Letters of Permission

Permission letter for figures 4.6, 4.7,4.8,4.9,4.10, 4.11, 4.1, refFirstStage, 4.3, and 4.4.
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Figure C.1: Figure permission from Wayne W. Weaver
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Figure C.2: Figure permission from Wayne W. Weaver; Continued
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Permission letter for figures 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 2.10, and2.11.

Figure C.3: IEEE figures permission
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Eric Sucks
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