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Abstract

With the insatiable curiosity of human beings to explore the universe and our solar

system, it is essential to benefit from larger propulsion capabilities to execute efficient

transfers and carry more scientific equipments. In the field of space trajectory optimization

the fundamental advances in using low-thrust propulsion and exploiting the multi-body

dynamics has played pivotal role in designing efficient space mission trajectories. The

former provides larger cumulative momentum change in comparison with the conventional

chemical propulsion whereas the latter results in almost ballistic trajectories with negligible

amount of propellant. However, the problem of space trajectory design translates into an

optimal control problem which is, in general, time-consuming and very difficult to solve.

Therefore, the goal of the thesis is to address the above problem by developing a

methodology to simplify and facilitate the process of finding initial low-thrust trajectories

in both two-body and multi-body environments. This initial solution will not only provide

mission designers with a better understanding of the problem and solution but also serves as

a good initial guess for high-fidelity optimal control solvers and increases their convergence

rate. Almost all of the high-fidelity solvers enjoy the existence of an initial guess that

already satisfies the equations of motion and some of the most important constraints.

Despite the nonlinear nature of the problem, it is sought to find a robust technique for a

wide range of typical low-thrust transfers with reduced computational intensity.

xxi



Another important aspect of our developed methodology is the representation of low-thrust

trajectories by Fourier series with which the number of design variables reduces

significantly. Emphasis is given on simplifying the equations of motion to the possible

extent and avoid approximating the controls. These facts contribute to speeding up the

solution finding procedure. Several example applications of two and three-dimensional

two-body low-thrust transfers are considered. In addition, in the multi-body dynamic, and

in particular the restricted-three-body dynamic, several Earth-to-Moon low-thrust transfers

are investigated.
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Chapter 1

Introduction

1.1 Overview

Space has played an important role in providing a better knowledge about our existence

and interplanetary space travels made the space exploration possible. The problems of

spacecraft trajectory design and optimization attracted the attention of researchers since

the mid 1920s when Walter Hohmann published his work on trajectory design [1]. The

natural motion of a spacecraft around a celestial body is described by a second order

vectorial differential equation assuming that the spacecraft is attracted only by a perfect

sphere celestial body [2]. A fundamental task in the design process of any space mission is

to design the trajectories of the spacecraft [3].
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The mission objectives could be: rendezvous with another planet or asteroid, deflecting

hazardous near-earth objects, landing on a moon, a round-trip mission to get samples from

a planet and return to Earth, or discover life in other galaxies. In such missions, it is

usually desired to minimize the fuel budget of the mission to allow for more payload to

be carried, or to reduce the overall weight of the flight spacecraft. For this reason, the

mission trajectory scenario may turn out to be composed of several trajectory segments.

One or more segments may have continuous thrust applied at different thrust levels and

in different directions. A fundamental task in a global trajectory optimization tool is to

find the optimal trajectory for a continuous-thrust trajectory segment, where the spacecraft

needs to depart from a current state (planet or asteroid) and arrive at another one in a given

time of flight.

This chapter introduces low-thrust trajectories and their associated optimal design. First,

low-thrust propulsion is briefly introduced along with the description of the most relevant

missions that relied on this technology as the main source of propulsion. A summary of

the current state-of-the-art low-thrust trajectory optimization tools is given. Finally, the

motivations and objectives of this work are presented.
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1.2 Low-Thrust Propulsion

The main purpose of a propulsion systems is to provide the necessary overall velocity

change of the mission. The measure for characterizing different propulsion systems in

efficient consumption of the propellant is called specific impulse, Isp. According to the

definition, it represents the force with respect to the amount of propellant used per unit

time. The other decisive factor in categorizing propulsion systems is the level of the thrust,

T . Table 1.1 provides a list of typical propulsion systems with their associated features. The

Table 1.1

Features of typical propulsion systems

Propulsion system Thrust [N] Isp[sec]

Cold gas 0.05 - 200 50-250

Chemical 0.1 - 1.0e6 140-460

Electrical 1.0e-5 - 5 150-8000

Solar Sail 0.001-0.1 ∞

main reason of using cold gas thrusters is due to their simplicity and reliability while their

performance is the lowest. They are the primitive propulsion systems and are mostly used

as vernier engines for controlling the attitude. Chemical engines are used on the launchers

and launch vehicles for both endo and exo-atmoshperic phases of flight to put a spacecraft

onto a park orbit. The important feature of these engines is their highest value of thrust, T

required for orbit injection. Yet, they have a low value of Isp. The word "low-thrust" can

attribute to the electric and solar-sail thrusters with much emphasis on Electrical Propulsion
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(EP). Electrical engines work according to the principle of ejecting charged particles by

using electrical energy. High Isp and low thrust are the main characteristics of these engines.

The immediate consequence of using low thrust is that the thruster has to operate for longer

periods of time to provide a desired velocity increment. On the brighter side, the higher

Isp indicates that the same mission can be carried out with less propellant. A thorough

survey of EP engines is given in Ref. [4] and Ref. [5]. Deep Space 1 [6], opened a new

era in the low-thrust trajectory design by using an EP as the primary propulsion system

for the first time. Smart 1 [7], is the European Space Agency (ESA) spacecraft that used

EP for getting into an orbit around the moon launched at 2003. The next two famous

missions are Japan’s Hayabusa [8] and the Dawn mission [9]. The task of the former was to

return an asteroid sample whereas the latter is aimed at reaching asteroids Ceres and Vesta.

The Dawn mission would not have been possible using the chemical engines because the

required velocity increment is beyond the capability of such engines. In the next section,

the low-thrust trajectory optimization is explained.

1.3 Low-Thrust Trajectory Optimization

The trajectory design and optimization is a fundamental step in designing space missions.

The problem can be stated as to find the optimal continuous-thrust trajectory, where the

spacecraft needs to depart from a current state (planet or astroid) and arrive at another one

in a given time of flight and satisfy all of the existing technological and path constraints.
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The optimality is measured with respect to fuel or time i.e. fuel-optimal and time-optimal.

In regard to the low-thrust trajectories, both the direction and magnitude of the engine

thrust have to be determined over longer time periods (see section 1.2) in comparison with

the overall mission time. In other words, the problem of optimal low-thrust trajectory

design migrates from a domain of finite continuous design variables (impulses in chemical

engines) to a more challenging realm of infinite continuous design variables. This problem

becomes even more challenging knowing the existence of sequences of thrust modulation

(on and off) that affects the optimality and are not known a priori. The mentioned reasons

make the overall low-thrust trajectory design and optimization more challenging.

There are a bunch of techniques developed over the years to tackle this problem and all

of these techniques can be assessed through some defined criteria i.e. robustness, speed,

accuracy and flexibility. Robustness can be defined as the sensitivity of the method to the

quality of the initial guess. Speed is simply the required time to find a solution and it is

preferred to have a fast technique. Accuracy is the criterion for measuring the optimality

of the final solution and satisfying the dynamics. Flexibility points at the fact that the

technique should be applicable to a wide range of problems. In the literature there are

numerous techniques for solving low-thrust problems [10, 11, 12]. A comprehensive survey

on the various tools used at NASA is given in Ref. [13].

The continuous-thrust trajectory optimization can be modeled as a two or multiple points

boundary value problem, of which there is no general analytic closed-form solution to
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date [14]. There are two general techniques for solving this type of problem: direct and

indirect methods [11] and both of them depend on the availability of some sort of an initial

guess for the design variables. In essence, direct methods convert the problem into a

nonlinear programming (NLP) problem by using different schemes of control and states

parametrization. Although direct methods produce less optimal solutions, they are usually

preferred due to two main reasons. The first one is the reduced sensitivity of the problem

to initial guesses and the second one is due to the development of powerful packages and

codes that can efficiently solve the resulting NLP problem. The indirect methods, on the

other hand, provide the optimal solution by resorting to the calculus of variation techniques

and Pontryagin’s maximum principle. Indirect methods depend strongly on the accuracy

of the initial guess, and also double the size of the problem by introducing the so-called

co-states which are not physically intuitive. The latter requires less number of design

variables whereas the radius of convergence (of the usually unknown terminal co-states)

is so small that makes the solution procedure extremely hard.

1.4 Motivations and Objectives

All in all, the existing optimization methods that are mentioned in section 1.3 do not

consider all of the aforementioned criteria (see section 1.3) and trade one or some of them

for the others. That said, the overall intent of this thesis is to focus on the development

of a robust technique that provides a relatively fast feasible initial low-thrust trajectory for
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various problems. It is huge advantage to have some sort of an initial guess for almost all

of the existing algorithms. The list of the objectives in this thesis can be briefly mentioned

as

† To develop a robust and fast technique for fining feasible low-thrust trajectories

† To investigate the Finite Fourier Series (FFS) and their application for low-thrust

trajectory generation

† To investigate the FFS for approximating on-off thrust profile

† To extend the FFS to the general three-dimensional dynamic

† To investigate the FFS for generating trajectories in multi-body dynamic systems

1.5 Organization of the Thesis

This thesis is laid out with six chapters that covers the individual components described as

objectives in the previous section. These chapters are mainly based on the papers written

during this research.

In chapter 2, the concept of FFS is introduced and its application for generating planar

low-thrust trajectories with some examples are presented. In chapter 3, application of FFS

for providing an on-off thrust acceleration profile is sought. In chapter 4, FFS technique
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is extended to the general three-dimensional low-thrust trajectories with detailed examples

as well as the comparison of the results with those of a high-fidelity solver that uses a

direct approach. A new representation of states is also presented in chapter 4. In chapter

5, FFS is investigated on dynamics with more than one central body i.e. multi-body

dynamic. In particular, low-thrust trajectories in the restricted-circular three-body problem

of Earth-Moon is addressed. Finally, Chapter 6 summarizes the findings of this research

and concludes with recommendations for future work.

There are four appendices in this thesis. Appendix A gives the list of conference and journal

papers that are either published or are under review related to this work and the research on

trajectory optimization. Appendix B presents

1.6 Contributions

The body of work presented and proposed herein advances the state of the art in rapid

generation of feasible low-thrust trajectories. The contents of this dissertation have been

submitted so far as four journal papers. The complete list of papers (conference and journal)

related to this research can be found in Appendix A. The following summary lists the

contributions of this research.

Finite Fourier approximation
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Representation of states and their associated derivatives in a reduced compact form

which is suitable for the development of a robust and fast technique for fining feasible

low-thrust trajectories

Planar and three-dimensional modeling

Consideration of both planar and three-dimensional coordinate systems

Thrust profile

indirect approximation of on-off thrust profile using FFS

Multi-body dynamic

the first and only representation and generation of the so-called Fourier shape-based

methods for a multi-body dynamic model
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Chapter 2

Planar Finite Fourier Series Method

2.1 Introduction

In this chapter1, the Finite Fourier series method is explained. The continuous-thrust

trajectory optimization problem has received a great deal of attention in the literature.

Analytical solutions to the special cases of radial thrust for escape trajectories from circular

orbits have been developed [16, 2, 17, 18]. Reference [19] extended these methods

(assuming radial thrust direction) to the case of elliptical orbits. References [20, 21] studied

the case of tangential thrust for the problems of orbit raising and escape trajectories. The

minimum time low-thrust ascent from an initial circular planetary orbit to some specified

final energy level orbit was analytically investigated in [22, 23]. Reference [24] assumed

1The material of this chapter are copied in whole from Reference [15]
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zero in-plane (pitch) and constant out-of-plane (yaw) thrust pointing angles and derived

an analytic approximation for the total required velocity change to execute a low-thrust

transfer between inclined circular orbits. In Reference [25] the same problem of Reference

[24] was reconsidered with no constraints on the thrust pointing angles and better solutions

were revealed. The aforementioned direct and indirect methods are not well suited for the

preliminary low-thrust transfer design phase. The main reason is that they are not designed

for general rendezvous cases between two asteroids or planets in eccentric inclined orbits,

abundant in low-thrust trajectory problems.

Another set of recently growing optimization challenges are the Global Trajectory

Optimization Competition (GTOC) problems [26]. In GTOC problems, a spacecraft leaves

the earth with a certain budget of fuel and is usually required to rendezvous with as many

asteroids as possible (selected from a long list of asteroids) within a given mission time

frame. Sometimes, the spacecraft is required to carry out some scientific tasks in addition

to the rendezvous maneuver, which adds more complexity to the problem. Continuous

thrust is usually assumed in these asteroids missions. Any solution to a GTOC problem

should have the list of visited asteroids and the trajectory between each two consecutive

asteroids.

To that end, shape-based (SB) methods were developed to provide a fast initial guess for

the continuous thrust trajectory. In SB methods, the trajectory shape is assumed to have

the form of some function, and the problem boundary conditions are used to compute the
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function parameters. For instance, one of the SB methods utilizes exponential sinusoid

[27, 28, 29] for two-dimensional (2-D) problems:

r = k0 exp [k1 sin(k2θ +φ )] (2.1)

where k0,k1,k2, and φ are constants. In the exponential sinusoid method, the low-thrust

trajectory shape has a specified parametric form and is solved for the thrust magnitude

and steering angle such that it satisfies the boundary conditions(BCs) and Equations

of Motion(EoM). In a broader view, Reference [30] is of considerable importance

as it successfully presents a SB method for three-dimensional rendezvous trajectories,

based on the approximation of the pseudo-equinoctial elements. There, two shaping

functions suitable for solar and nuclear electric propulsion systems were proposed.

Recently, References [31] and [32] developed a two-dimensional, seven-parameter inverse

polynomial (IP) for low-thrust rendezvous trajectories. The shape of the trajectories is

assumed to always be of the form given in Eq. (2.2):

r =
1

a+bθ + cθ 2 +dθ 3 + eθ 4 + f θ 5 +gθ 6
(2.2)

GTOC problems usually require the assessment of several asteroid selections in terms of the

feasibility of these selections. Because there is always a constraint on the maximum thrust

level available onboard, not all asteroid selections are feasible. Hence, a computationally
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efficient feasibility assessment tool for continuous thrust trajectories between two asteroids

is needed. Both Eqs.(2.1) and (2.2) are applicable only to 2-D problems. Reference [31]

presents an implementation of shape-based methods in solving a reduced-order planar

version of the GTOC2 problem. The implementation in reference [31] for low-thrust

problems is equivalent to the Lambert solver for impulsive trajectories. However, the SB

methods provide an initial trajectory guess that satisfies only the problem BCs, without

assessing its feasibility in terms of the thrust constraint. The tool presented in this paper

will go one step further for feasibility assessment by taking into consideration the thrust

constraints. The initial guess trajectory obtained from this tool can be used as an initial

trajectory for the direct optimal control solvers.

Orthogonal functions have been implemented widely in solving engineering applications

[33]. In recent years, the orthogonal polynomial functions have been implemented in

solving various problems of dynamic systems. For example, Fourier series is used to

approximate the states in solving the linear optimal control problem in [34]. The Chebyshev

orthogonal functions are also used in approximating the states for the solution of the

minimum-time orbit transfer problem [35]. The use of orthogonal functions in [35] and [34]

reduced the original two-point boundary value problems to systems of algebraic equations;

hence providing an alternate method for solving complex nonlinear, multivariable,

constrained optimal control problems [36]. Fourier series is also implemented in systems

identification of nonlinear differential equations [37]. Recently, references [38] and [39]

used the Finite Fourier Series (FFS) for the representation of the thrust vector components,
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in continuous thrust trajectories.

This chapter presents a new method that provides an initial trajectory that satisfies given

thrust constraint and EoM at some discrete points, as well as the BCs. Shape-based methods

assume a fixed shape for the trajectory. This method, however, does not assume a specific

shape for the trajectory. Rather, it assumes an approximation for the trajectory shape in

terms of FFS expansion of states. For every different selection of the Fourier coefficients,

a different shape is obtained. BCs are used to evaluate some of the FFS coefficients. The

EoM are discretized at some points and used, along with the thrust level constraints, to

solve for the rest of the FFS coefficients. The proposed FFS method has the ability to solve

problems with a greater number of free parameters than previous SB methods which gives

it an advantage in terms of finding feasible solutions that satisfy both the flight time and

thrust limitation constraints.

The chapter is organized as follows. In section 2.2 a FFS representation for the trajectory

shape is presented. The use of FFS and discretization notions reduces the problem to a

system of algebraic equations in the FFS coefficients. The solver requires an initial guess

for these coefficients. Section 2.3, presents an efficient algorithm to find a good initial

guess for the FFS coefficients. Section 2.4 presents applications of the proposed method on

various 2-D problems. It compares results with other methods in the literature, and shows

details of the resulting trajectories in terms of thrust acceleration profile, trajectory shape,

and computational efficiency.
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2.2 The Finite Fourier Series Approach

In general, any periodic function can be written in terms of an infinite sum of sine and

cosine functions (Fourier series). If we consider the Fourier representations of two different

functions, the only difference is in the coefficients of the sine and cosine functions and

perhaps the number of terms in the Finite Fourier Series (FFS). In this paper, it is suggested

that a 2-D trajectory shape is approximated by a FFS, with enough terms (free coefficients),

rather than a fixed shape function as is the case in all previous SB methods. The sinusoid

and IP shapes are only able to generate low thrust trajectories that have the shapes presented

in the two equations (2.1) and (2.2), respectively. The coefficients in the exponential

exponential sinusoid and IP shapes are used to guarantee the satisfaction of the BCs and

the EoM. The coefficients in a FFS representation will not only satisfy the BCs, the EoM,

and any other constraints such as thrust constraints, but also they can be varied to represent

different solutions and different trajectory shapes. There are two options for approximating

the trajectory shape. The first is to assume the radius r as a function of the polar angle

θ , and expand this function using a FFS. The second option is to assume two functions,

r(t) and θ(t); each of them is a function of the independent time variable, t. In this paper,

the second option is adopted. In a polar coordinate system, and assuming that there is a
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solution, we approximate the radius, r, and the polar angle, θ , with FFS as follows:

r(t) =
a0

2
+

nr

∑
n=1

{

an cos
(nπ

T
t
)

+bn sin
(nπ

T
t
)}

(2.3)

θ(t) =
c0

2
+

nθ

∑
n=1

{

cn cos
(nπ

T
t
)

+dn sin
(nπ

T
t
)}

(2.4)

where T is the total time of flight and nr and nθ are the number of Fourier terms. Although

there is no upper limit on the number of included Fourier terms (nr ≥ 2,nθ ≥ 2), the

computational efficiency is an important consideration. The minimum number of 2 for

Fourier terms is selected such that each Fourier approximation satisfies the BCs in the case

of rendezvous. A discussion will follow in this paper in Section 2.4 on the appropriate

values for nr and nθ for each type of trajectory. The governing equations of motion of

a spacecraft in a two-body gravitational field can be written in the following polar forms

using the Newton’s gravitational law [31]:















r̈− rθ̇ 2 + µ
r2 = Ta sin(α)

2ṙθ̇ + rθ̈ = Ta cos(α)

(2.5)

where, as shown in Fig.2.1(a), r is the magnitude of the position vector~r, v is the magnitude

of the velocity vector ~v, θ is the polar angle, γ is the flight path-angle, α is the steering

angle, Ta is the Thrust Acceleration(TA) magnitude, and µ is the gravitational parameter.

In the 2-D trajectories, it is assumed that the thrust is aligned along or against the velocity
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(a) Trajectory Variables (b) Definition of angles

Figure 2.1: Nominal trajectory variables

vector [27, 28, 20, 21, 31]. Thus, the thrust pointing angle α can be written as:

α = γ +nπ (2.6)

where n is 0 or 1 for along or against the fight-path angle, respectively. From the second

relation of Eq.(2.5) one can write:

2ṙθ̇ + rθ̈ = Ta cos(α)⇒ Ta =
2ṙθ̇ + rθ̈

cos(α)
(2.7)

Substituting the value for thrust acceleration into the first relation of Eq.2.5 one can write:

r̈− rθ̇ 2 +
µ

r2
=

2ṙθ̇ + rθ̈

cos(α)
sin(α) =

(

2ṙθ̇ + rθ̈
)

tan(α) =
(

2ṙθ̇ + rθ̈
)

tan(γ) (2.8)

where the tangential thrust assumption can be written as:

tan(α) =
ṙ

rθ̇
(2.9)
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Finally, one can derive one combined relation for EoM:

f (r, ṙ, r̈, θ̇ , θ̈) = r2
(

θ̇ r̈− ṙθ̈
)

+ θ̇
(

µ −2rṙ2
)

−
(

rθ̇
)3

= 0 (2.10)

The TA constraint (C) can also be written according to the following formula

Ta =
2ṙθ̇ + rθ̈

cos(α)
; cos(α) = cos(γ) =

rθ̇
√

(ṙ)2 +
(

rθ̇
)2

C :

(

Ta

Ta,max

)2

≤ 1

(2.11)

where Ta,max is the maximum allowed value for TA. Assuming specific values for nr and nθ ,

the FFS approximation is defined in terms of the unknown coefficients. The total number of

unknowns are n = 2(nr +nθ +1). The Fourier approximations for r and θ are constrained

to satisfy the BCs. The BCs can be used to solve for some of the coefficients in terms of the

rest of the coefficients. The selection of the specific coefficients, to be solved for, will affect

the sensitivity of convergence. However, in this paper, the first eight coefficients are solved

in terms of the rest of the coefficients for rendezvous problems, as they play important

roles compared to low-order coefficients [35]. Appendix B.1 shows, for instance, how

these constraints are used to derive relations between the coefficients in the rendezvous

problem. Note that

θ f = θ0 +Nrev ×2π (2.12)
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The angle θ0 is the initial angle between ri and r f measured counterclockwise, as in

Fig.2.1(b), and Nrev is the number of revolutions about the attracting central body. The

value of Nrev is selected by trial and error in the test cases presented in this paper. In

an optimization process, it can be one of the optimization parameters. Substituting the

state approximations, Eqs.(2.3),(2.4) and (B.1) into Eq.(2.10), the differential equation

is converted to a nonlinear algebraic equation, in which the only unknowns are the FFS

coefficients and the independent time variable.

f (a0,a1 · · ·anr
,b1 · · ·bnr

,c0,c1 · · ·cnθ
,d1 · · ·dnθ

; t) = 0 (2.13)

Suppose the number of unknown coefficients is n. Eq.(3.2) is true at all times, from the

initial to the final times. In order to solve for the unknown coefficients, Eq.(3.2) will be

computed at m points, called discretization points (DPs). We can write an equation at

each of the DPs, to obtain m equations. There are generally several methods to solve the

resulting nonlinear programming problem, given the constraints on TA.

Some nonlinear programming solvers minimize the summation of the squared residuals

at all DPs, while other solvers find the exact solution if the system is square (number of

equations is equal to the number of unknowns, n = m). In order to construct a square

system, one should use a high number of terms in the Fourier series. Because the equations

of motion are discretized at the DPs, the number of DPs should not be too low, in order to

guarantee a feasible solution. The minimum number of DPs depends on the problem and
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the duration of the maneuver. It is possible to figure out the minimum number of DPs for a

specific problem after a few trials. Based on the cases presented in this paper, a safe choice

of 10 points per revolution eliminates the need for trial and error. Also, the maximum

number of terms in the FFS (after which no significant improvement in accuracy can be

obtained) is determined by trial and error. However, the maximum number of FFS terms

does not change much from one problem to another, as shown in the examples presented

in this paper. Because the number of FFS terms is always less than the number of DPs, an

over-determined system of equations is constructed (the number of equations is more than

the number of unknowns, m > n).

For the rendezvous case the procedure can be summarized as follows. Given departure time,

time of flight, Nrev, nr and nθ : (1) Compute the boundary values (ri,θi,r f ,θ f , ṙi, θ̇i, ṙ f , θ̇ f )

using the terminal position and velocity vectors (2) Compute initial guesses for the

unknown coefficients (a0 and c0 for the case with nr = nθ = 2) according to section 2.3. It

should be noted that the number of unknown coefficients for this section is 2(nr +nθ )−6

since eight of the coefficients can be calculated enforcing the BCs, i.e. Eqs.(B.5), (3) Use

Eqs.(B.5) to solve for eight of the coefficients using the coefficients from the previous

step as well as boundary values, (4) Divide the time of flight into intervals and evaluate

the equations of motion at the boundary points of these intervals to construct m algebraic

nonlinear equations, (5) Divide the equation of constraint on thrust Eq.(3.1) according to

the time discretization scheme to construct m equations, (6) Solve the resulting nonlinear

programming problem (m equations), subject to the m constraint obtained in the previous
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step. While the first m relations from the EoM are equalities the rest m relations from the

constraint are inequalities. Therefore, there are 2m relations to be satisfied by the Fourier

coefficients but m of them are inequalities. The minimum number of Fourier coefficients,

nr and nθ , is problem dependent. The interesting feature of this method is that, once the

time discretization is done, the cos and sine terms can be computed and stored once for

the next iterations. This will help to reduce the computational time in constructing the

equations. The case studies presented in this paper are from different categories of orbit

maneuvers (rendezvous, orbit raising, and phasing). The value of nr and nθ presented in

each of these examples may be considered as suggested values for all problems of the same

category.

2.3 Initial Guess for Fourier Coefficients

The unknowns in the nonlinear programming problem are Fourier coefficients. Solving this

nonlinear programming problem requires initial guesses for the coefficients. In the IP and

exponential sinusoid SB methods, one of the states is transcribed in terms of the other states,

e.g. r is represented as a function of θ . In the FFS method, the transcription of the states in

terms of the independent variable time, makes it easier to calculate the initial guesses. To

find a good initial guess, a simple shape is assumed for the trajectory and the corresponding

Fourier coefficients for this shape are used as initial guesses. To efficiently provide this

initial guess for the coefficients, two different categories of problems are considered: orbit
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changing problems and phasing problems.

2.3.1 Orbit changing problems

For orbit changing problems, such as interplanetary transfers, the profile of the radius,

r(t), increases (decreases), while the polar angle, θ(t), always increases. Two candidate

functions can be used to represent r: the Tangent Hyperbolic(TH) function and the Cubic

Polynomial(CP) function. For the TH approximation of r and θ , let:

r(t) =
1

2

[

(ar +br)+(br −ar) tanh

(

t − t0

ω

)]

(2.14)

θ(t) =
1

2

[

(aθ +bθ )+(bθ −aθ ) tanh

(

t − t0

ω

)]

(2.15)

where ar = r0,br = r f ,aθ = θi,bθ = θ f , t0 =
T

2
and ω is a measure of the width of the

function and can change in the given range 1 ≤ ω ≤ 3 (in TU/rad) so as to provide

reasonable gradual change. The TH provides a good approximation for the gradually

changing r. The CP approximation can be used to represent both r and θ as follows:

r(t) = at3+bt2+ ct +d (2.16)
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θ(t) = et3 + f t2 +gt +h (2.17)

The BCs are used to compute all of the coefficients in Eqs.(2.16) and (2.17), as detailed in

Appendix B.3.

2.3.2 Phasing problems

In a phasing maneuver, a spacecraft leaves its orbit and returns back to the same orbit, but

phased, in order to rendezvous with another vehicle. Therefore, the final radius is the same

as the initial one. Two jointed cubic polynomials are used for approximating the winding

inside (or outside) orbits, as shown in Figure 2.2. Figure 2.2 shows the two possible phasing

strategies: (i) increasing r, and then returning to the initial radius, and (d) decreasing r and

then returning to the initial radius. In both strategies, the trajectory is divided into two

segments: s1 and s2. The two segments meet at time tm, the time of maximum or minimum

value of r, 0 < tm < t f .

rs1(t) = as1t3+bs1t2+ cs1t +ds1 ; t ∈
[

0 tm

]

rs2(t) = as2t3+bs2t2+ cs2t +ds2; t ∈
[

tm t f

]
(2.18)

The coefficients in Eq. (2.18) can be computed from the BCs, as shown in Appendix B.4.

For the polar angle (θ ) Eq.(2.17) is used.
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Figure 2.2: Two jointed CPs approximation for r profile of the phasing

problem

2.3.3 Coefficient calculations

Once the approximate functions for r and θ are computed, an initial guess for the Fourier

coefficients is computed as follows. The approximate function for r(t) is evaluated at nr

points, uniformly distributed in time.

r(ti) =






















































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





Ar
T H(ti)

or

Ar
CP(ti)

or

A2CP
r (ti)

; i = 0 · · ·(nr −1) (2.19)
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where t0 = 0, tnr−1 = T and

r(ti) =
a0

2
+

nr

∑
n=1

{

an cos
(nπ

T
ti

)

+bn sin
(nπ

T
ti

)}

Ar
T H(ti) =

1

2

[

(ar +br)+(br −ar) tanh

(

ti − t0

ω

)]

Ar
CP(ti) = ati

3 +bti
2 + cti +d

A2CP
r =















as1t3 +bs1t2 + cs1t +ds1 ; 0 ≤ t ≤ tm

as2t3 +bs2t2+ cs2t +ds2 ; tm ≤ t ≤ t f

(2.20)

Similarly, the polar angle function is evaluated at nθ points:

θ(t j) = Aθ
CP(t j) ; j = 0 · · ·(nθ −1) (2.21)

where,

θ(t j) =
c0

2
+

nθ

∑
n=1

{

cn cos
(nπ

T
t j

)

+dn sin
(nπ

T
t j

)}

Aθ
CP(t j) = et j

3 + f t j
2 +gt j +h

(2.22)

Using Eqs.(2.19) and (2.21) for r and θ one can form a set of linear equations and solve

for the unknown coefficients with a simple matrix inversion for each one of the states, i.e.

X = A−1B, where matrix A, vector B, and calculation of the 2nr+1 Fourier coefficients are

discussed in Appendix B.5. This is the approach used to determine initial guesses for the

coefficients to start the solver for both the constrained and unconstrained cases.
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2.4 Test Cases

Four case studies for the application of the FFS method are presented in this section. The

solutions are compared to the IP method solutions. For Earth to Mars transfer, canonical

units are used such that 1 Distance Unit(DU) is 1 AU and 2 Time Unit(TU) is 1 year.

For the rest of the problems, 1 DU is 1 earth radius and 1 TU is 806.8 sec. In each

case, two FFS solutions are computed: one solution assumes no constraint on the thrust

(UFF) and the second solution assumes a constraint on the TA value (CFF). For UFF

and CFF problems, Matlab Fsolve and Fmincon functions are used respectively without

any first or second order derivative information. Computational efficiency of the different

algorithms are compared. The execution time, presented in the following case studies,

includes the initialization of coefficients until convergence for the FFS, and the convergence

for parameter d of the IP method. The difference between the time computation of both

methods is important as the FFS method handles the trajectory and TA constraint explicitly

while the IP method does it implicitly. Therefore, once the FFS solver converges the

trajectory is totally defined while for the IP method the convergence defines the total

coefficients of the shape and the trajectory needs to be constructed. The computational

efficiency of the FFS method is independent of the coefficients initialization function (TH

or CP). All of the test cases have been performed on an Intel Xeon Pentium 4 1.86 GHz

with Windows XP. There are some points worth noting. This method does not provide a

solution to any thrust level that is defined as a constraint. Thus, if a solution exists, the FFS
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method finds it in a reasonable time. However, if a solution does not exit, the constraint

FFS method needs more time to confirm that there is no solution. This drawback can be

overcome by defining a maximum number of iterations for the solver.

2.4.1 Earth-Mars transfer

The Low-thrust Earth-Mars transfer is considered. A spacecraft is transferred from the

Earth to rendezvous with Mars, given TA limitations [40]. The BCs and input parameters

are listed in Table 3.1. Figure 2.3 also shows the solution trajectories for the unconstrained,

Table 2.1

Input parameters and boundary conditions for Earth-Mars problem

BCs Input Parameters

ri = 1(DU) Nrev = 1

θi = 0 (rad) nr = 2

r f = 1.5234 (DU) nθ = 5

θ f = 9.831 (rad) Isp = 5.9728×10−4(TU)
ṙi = 0 (DU/TU) Ta,max = 0.02 (DU/TU2)
θ̇i = 1 (rad/TU) # of DPs = 22

ṙ f = 0 (DU/TU) T = 13.447 (TU)

θ̇ f = 0.5318 (rad/TU)

constrained, and the IP method. Figure 2.4 shows the TA history for the three methods. As

shown in Figure 2.4, the CFF was able to find a trajectory that satisfies the TA constraint;

the constrained trajectory resembles the FFS unconstrained solution in many parts of the

trajectory. The IP solution has a TA history that starts and ends at low levels and increases

to its maximum magnitude at about mid course of the total flight time; this is a typical
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profile for the TA obtained from the IP method.
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Figure 2.3: Earth to Mars trajectory
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Two parameters affect the accuracy of the solution: the number of DPs and the number of

terms in the FFS. The distribution of discretization points is selected to be uniform in time.

The computational performance in terms of time for CFF and IP methods are 0.08 and 0.11

seconds, respectively where the number of descetization points per revolution is NDP = 11

and the total DPs is calculated according to (Nrev + 1)NDP which results in 22 DPs. If

29



the number of DPs is less than 15, it will not be possible to fully capture the trajectory

topologies and the solver does not converge. If the number of DPs is more than 80 points,

no better accuracy is attained due to an increase in the residuals. It has been observed that

increasing the number of FFS terms, up to a limit, improves the solution accuracy. Beyond

this limit, the accuracy may be degraded because of the round off errors. For the IP method,

the initial value of d is set to zero as it was suggested in [31]. It is noted that, for the sake

of comparison with the IP method, the value of the TA constraint is selected such that the

IP solution violates it. In this example, it was found that the minimum thrust acceleration

level for which there exists a solution is 0.017 DU/TU2.

2.4.2 LEO to GEO orbit transfer (rendezvous)

The transfer maneuver from a low-Earth circular orbit to a geostationary circular orbit is

considered. The initial and final radii are: ri = 6,570Km and r f = 42,160Km [41]. The

original finite burn problem, solved in a Cartesian coordinate system, has a total time of

flight of about 120,000 seconds [41]. The practical LEO to GEO orbit transfer problem

is an orbit raising problem, in which the final value of the polar angle, θ f , is free. Shape

based methods such as IP and exponential sinusoid methods cannot handle this problem

in its general form; SB methods can only solve rendezvous problems. For the sake of

comparing the FFS method to the IP method, a final value for the polar angle, θ f , will be

assumed in this section. In section 2.4.3, the orbit raising problem will be solved using
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FFS. In this section, we will fix the final value of the polar angle by assuming θ0 = π . The

problem becomes a rendezvous-like problem. Reference [31] presents two shape-based

IP methods. One of them is the 7th degree IP method and is used to solve rendezvous

problems, with a fixed time of flight. The other method is a 6th degree IP method and it

solves time free rendezvous maneuvers.

Assuming that the time of flight for the LEO to GEO transfer is 120,000 seconds [41],

and applying the 7th degree IP method to solve the problem, results in a trajectory that

intersects the earth’s surface. The solution from the 7th degree IP method is shown in

Figure 2.5 where the trajectory winds inside the Earth surface. Figure 2.6 shows the thrust

profile for this non-feasible solution. The 6th degree IP method is used to solve the time

free version of this problem. The obtained solution performs 7 revolutions and has a total

flight time of 206,331.4 seconds. The trajectory and the TA history are also shown in

Figures 2.5 and 2.6.
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The FFS method is implemented in this LEO to GEO transfer problem. The input

parameters and BCs are listed in Table 3.2, where the value of θ f corresponds to θ0 = π .

The time of flight is assumed to be 120,000 seconds.

Table 2.2

Input parameters and boundary conditions for the LEO-GEO problem

BCs Input parameters

ri = 1.0313 (DU) Nrev = 7

θi = 0 (rad) nr = 2

r f = 6.61 (DU) nθ = 3

θ f = 47.123 (rad) Isp = 3.7183 (TU)

ṙi = 0 (DU/TU) # of DPs = 40

θ̇i = 0.95652 (rad/TU) Ta,max = 0.0153 (DU/TU2)
ṙ f = 0 (DU/TU) T = 148.73 (TU)

θ̇ f = 0.058842 (rad/TU)

Two cases are solved: no constraint on the thrust acceleration, and thrust acceleration is

constrained to be less than Ta,max = 0.15m/s2 = 0.0153DU/TU2.

The trajectories and TA for both the unconstrained and constrained solutions are depicted in
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Figure 2.8: LEO to GEO trajectory profile using FFS method

Figures 2.7 and 2.8. As it can be seen, the thrust constraint is active at the final point of the

CFF solution. The UFF TA profile in general looks pretty similar to the CFF method. The

distances from Earth for both solutions are also depicted in Figure 2.9. The two solutions

(unconstrained and constrained thrust acceleration) do not intersect the earth’s surface,

however, only the constrained version satisfies the TA constraint. For the Earth-bounded

problems, there is no clear way for guessing an initial value for the d parameter in the IP

method. Thus, three different values for d were tested in this problem. The computational
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Figure 2.9: LEO to GEO radius profile using FFS method

performance of CFF method is 0.06 seconds. Starting the IP d parameter with a zero value

leads to no convergence and the computational time for different initial d values of 0.001

and 3.5e-4 is 0.06 and 0.03 seconds respectively. The positive and negative values for the

TA correspond to acceleration and deceleration situations. It is also important to take it

into consideration that during the initial guess construction for a direct solver the direction

of the TA vector is against the velocity vector for negative values of TA. The switching

TA profile is another point worth noting. Since both the constrained and unconstrained

versions of the problem show switching, it is not due to the TA constraint enforcement. A

better explanation can be given in view of the results plotted in Figure 2.6. It is interesting

to note that the seventh degree IP also results in negative values of TA for considerable

amount of time during the initial phase of transfer which is counter intuitive and is a direct

consequence of the time constraint ( in the rendezvous case) as well as the assumed shape to

the extent that makes the resulted transfer trajectory infeasible. However, this phenomenon
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is not observed in the sixth degree IP due to the freedom in the time of flight. For the

constrained finite Fourier series the switching of TA profile happens at a bigger time and

since the TA profile is increasing at the beginning of the transfer there is no encounter with

the Earth surface. In fact, for this example if the time of flight is approximately bigger

than 177000 seconds no TA profile switching is observed. Therefore, the time of flight

constraint in the root cause for switching of the thrust acceleration.

35



2.4.3 LEO to GEO orbit raising

The FFS method can also handle problems with free arrival angle, θ f , as in the orbit-raising

problems. The FFS algorithm, presented in section 2.2, will be used with a minor change.

Because the final angle, θ f , is free, no boundary condition can be applied on θ f . Hence,

the number of Fourier coefficients that can be computed from BCs reduces from eight

to seven. The list of the seven coefficients and their expressions are listed in Appendix

B.2. This adds one more unknown to the unknown coefficients that are computed from

the equations of motion evaluated at the DPs; without affecting the solution algorithm of

the nonlinear programming problem. To generate the initial guess for the coefficients, an

approximate guess for the final value of the polar angle is assumed: θ f = 2π ×Nrev (this is

equivalent to θ0 = 0.) Note that this is merely an initial guess for θ f for the initialization

scheme.
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Figure 2.10: LEO to GEO raising using FFS method - TA profile
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Figure 2.11: LEO to GEO raising using FFS method - Trajectory
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For this LEO to GEO orbit-raising problem, both the unconstrained and the constrained

(Ta,max = 0.0102 (DU/TU2)) cases are solved using the FFS method. The problem BCs

are the same as those in Table 3.2, except for θ f , which is now free, and for the number of

Fourier terms. For the coefficients initialization of both CFF and UFF versions, the cubic

polynomial is used as the approximation profile for both the radius and the polar angle.

The total number of DPs is equal to 40. Figure 2.10 shows the TA profile for both cases.

Again the switching TA profile is a consequence of the fixed time of flight constraint and it

was explained in the previous test case. The trajectories of both cases are shown in Figure

2.11. Figures 2.12 and 2.13 show that the UFF and the CFF solutions are identical when

the radius and the polar angle are plotted as functions of time. As it is shown the CFF

method was capable of finding a satisfactory solution. In addition, the TA profiles of both

UFF and CFF methods are similar to each other except for the last segment of the trajectory

as shown in Figures 2.10. The final polar angle (θ f ) is 41.76 degrees. In addition, results

show that the UFF solution has the capability to be used as an initial guess for the CFF

method.

2.4.4 LEO Phasing Maneuver

The FFS method is applied to two phasing problems. In both problems, the spacecraft is in

a 200km altitude orbit. The required phasing, between initial and final positions, is 90o in

one case, and is 180o in the other case. This problem is of a practical importance. Because
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of the low altitude, some solution trajectories that attempt to go to a lower altitude for

phasing may go below the Earth radius and are obviously infeasible. In addition, phasing

maneuver problems differ from the other cases in that the radius returns to its initial value

after, in general, multiple revolutions. Hence, the radius, r, does not follow a monotonically

increasing or decreasing change. To provide a good initial guess for the FFS coefficients,

in this category of problems, the initial guess trajectory is assumed to take the shape of

two jointed cubic polynomials, as detailed in section 2.3. The problem BCs and input

parameters are listed in Table 3.3. For both cases the following parameters are common:

Nrev = 1, Isp = 3.7183(TU), nr = 3, nθ = 6. The solution results for the FFS and the IP

Table 2.3

Input parameters and BCs for the phasing problem: FFS and IP mehtods

Parameters & BCs Value

90o 180o

Ta,max (DU/TU2) 0.0204 0.0051

# of DPs 60 60

T (TU) 8.924 10.262

ri (DU) 1.0313 1.0313

ṙi (DU/TU) 0 0

θi (rad) 0 0

θ̇i (rad/TU) 0.9548 0.9548

r f (DU) 1.0313 1.0313

ṙ f (DU/TU) 0 0

θ f (rad) 7.8539 7.8539

θ̇ f (rad/TU) 0.9548 0.9548

methods are shown in Figures 2.14 and 2.15 for the 90o phasing, and in Figures 2.16 and

2.17 for the 180o phasing.
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Figure 2.14: Phasing trajectory - 90o phasing
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Figure 2.15: Phasing thrust profile - 90o phasing

Clearly, the FFS solution is able to satisfy the thrust constraint in both phasing cases.

From Figures 2.15 and 2.17, we can see that the unconstrained thrust profile resembles two

accelerations near the beginning and the end of the phasing mission, while almost coasting

during the rest of the trajectory. Adding the TA constraint increases the fluctuations in the

thrust during the course of the flight time.
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Figure 2.16: Phasing trajectory - 180o phasing
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Figure 2.17: Phasing thrust profile - 180o phasing

2.5 Conclusions

A new method is developed to provide feasible low-thrust trajectories based on using the

finite Fourier series to approximate the shape of the trajectories inversely. The new method

can handle constraints on the maximum thrust acceleration. Shape based methods typically

assume a fixed shape for the trajectory. This method, however, does not assume a specific
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shape for the trajectory. Rather, it assumes an approximation for the trajectory shape in

terms of finite fourier series expansion of states. For every different selection of the Fourier

coefficients, a different shape is obtained. Hence, it was possible to handle the thrust

acceleration constraint by searching for the Fourier coefficients that represent a solution

that satisfies the constraints. The ability of this method to solve problems with a greater

number of free parameters than shape-based methods seems to be a key point. In addition, it

can handle problems in both weak and strong gravity fields i.e. low Earth and interplanetary

transfers as it was shown in test cases.

In the absence of thrust acceleration constraints, the computational time of the FFS method

is observed to be in the same order of magnitude as the inverse polynomial shape-based

method. When thrust acceleration constraints are imposed, the computational time of the

FFS method depends on the existence of the solution. If a solution exists, the FFS method

finds it in about the same time as the unconstrained FFS method. If a solution does not

exist, the constraint FFS method needs more time to confirm that there is no solution.
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Chapter 3

Fourier Series for Modulated Thrust

3.1 Introduction

In this chapter1, based on the previously introduced concept of Finite Fourier series a new

capability of thrust modulation for trajectory generation is sought. The solutions are of

near thrust arcs and non-thrust arcs trend. In addition, the resulting solutions are good

initial guesses for direct optimization techniques. Few case studies are presented: simple

Earth-Mars rendezvous, LEO-to-GEO rendezvous, and phasing problems. Results, clearly

depict the capability of this method for modulated thrust profile solutions.

The FFS representation and discretization strategy has already been introduced in section

1The material of this chapter are copied in whole from Reference [42]
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2.2. The use of FFS and discretization notions reduces the problem to a system of

algebraic equations in the FFS coefficients. However, the TA constraint is dealt with

another approach and section 3.3 explains it. Section 3.3 presents applications of the

proposed method on various 2-D problems. It compares results with other methods in

the literature, and shows details of the resulting trajectories in terms of thrust acceleration

profile, trajectory shape.

3.2 Problem Formulation

The approach to handle TA constraint (C) is different from the previous paper in the

manner that it is translated to equality constraints and instead we are looking for the slack

variables such that they satisfy the thrust constraint. In essence the constraint can be written

according to the following formula

Ta =
2ṙθ̇ + rθ̈

cos(α)
; cos(α) = cos(γ) =

rθ̇
√

(ṙ)2 +
(

rθ̇
)2

C :
Ta

Ta,max
+σi = 1

(3.1)

where Ta,max is the maximum allowed value for TA and σi is the slack variable to be

determined and can take on values from 0 to 2 corresponding to different thrust values

of Ta,max, 0 and −Ta,max respectively.
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Substituting the state approximations, Eqs.(2.3),(2.4) and (B.1) into Eq.(2.10), the

differential equation is converted to a nonlinear algebraic equation, in which the only

unknowns are the FFS coefficients and the independent time variable.

f (a0,a1 · · ·anr
,b1 · · ·bnr

,c0,c1 · · ·cnθ
,d1 · · ·dnθ

; t) = 0 (3.2)

The same is true for Eq.(3.1) with the addition of slack variables:

C (a0,a1 · · ·anr
,b1 · · ·bnr

,c0,c1 · · ·cnθ
,d1 · · ·dnθ

; t;σi) = 0 (3.3)

Here the slack variables are forced to take on the different prescribed values. Suppose the

number of unknown coefficients is n. Eq.(3.2) is true at all times, from the initial to the

final times. In order to solve for the unknown coefficients, Eq.(3.2) will be computed at

m points, called discretization points (DPs). For the TA constraint i.e. Eq.(3.2) we will

divide the whole time into some intervals. At each interval, the values of σ ′s are equal to

each other. By doing so, we will decrease the number of slack variables and this makes

the execution time lesser. The schematic graph of a three interval thrust profile is shown in

Figure 3.1. It is important to note that at each interval the sigma’s are equal to each other

and in the provided figure there are only 3 slack variables to be determined and the other

slack variables are assigned based on the interval they are at. We can write an equation at

each of the DPs, to obtain m equations. There are generally several methods to solve the

resulting Mixed-Integer nonlinear programming problem.
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Figure 3.1: Three interval schematic view of thrust profile and slack

variables

3.3 Test Cases

Three case studies for the application of the Modulated FFS method are presented in this

section. For Earth to Mars transfer, canonical units are used such that 1 Distance Unit(DU)

is 1 AU and 2 Time Unit(TU) is 1 year. For the rest of the problems, 1 DU is 1 earth radius

and 1 TU is 806.8 sec. We have use Tomlab Matlab optimization toolbox for solving all of

the cases. All of the test cases have been performed on an Intel Xeon Pentium 4 1.86 GHz

with Windows XP. There are some points worth noting. This method does not provide a

solution to any thrust level that is defined as a constraint.
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3.3.1 Earth-Mars transfer

The Low-thrust Earth-Mars transfer is considered. A spacecraft is transferred from the

Earth to rendezvous with Mars, given TA limitations [40]. The BCs and input parameters

are listed in Table 3.1. Figure 3.2 also shows the solution trajectory. Figure 3.3 shows the

Table 3.1

Input parameters and boundary conditions for Earth-Mars problem

BCs Input Parameters

ri = 1(DU) Nrev = 1

θi = 0 (rad) nr = 20

r f = 1.5234 (DU) nθ = 20

θ f = 9.831 (rad) Isp = 5.9728×10−4(TU)
ṙi = 0 (DU/TU) Ta,max = 0.02 (DU/TU2)
θ̇i = 1 (rad/TU) # of DPs = 22

ṙ f = 0 (DU/TU) T = 13.447 (TU)

θ̇ f = 0.5318 (rad/TU)

respected TA history.
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Figure 3.2: Earth to Mars trajectory
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Figure 3.3: Earth to Mars thrust profile

Two parameters affect the accuracy of the solution: the number of DPs and the number

of terms in the FFS. The distribution of discretization points is selected to be uniform in

time. The number of descetization points per revolution is NDP = 11 and the total DPs is

calculated according to (Nrev+1)NDP which results in 22 DPs. If the number of DPs is less

than 15, it will not be possible to fully capture the trajectory topologies and the solver does

not converge. If the number of DPs is more than 80 points, no better accuracy is attained

due to an increase in the residuals. It has been observed that increasing the number of FFS

terms, up to a limit, improves the solution accuracy. Beyond this limit, the accuracy may

get degraded because of the round off errors.

3.3.2 LEO to GEO orbit transfer (rendezvous)

The transfer maneuver from a low-Earth circular orbit to a geostationary circular orbit is

considered. The initial and final radii are: ri = 6,570Km and r f = 42,160Km [41]. The
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original finite burn problem, solved in a Cartesian coordinate system, has a total time of

flight of about 120,000 seconds [41]. The practical LEO to GEO orbit transfer problem

is an orbit raising problem, in which the final value of the polar angle, θ f , is free. In this

section, we will fix the final value of the polar angle by assuming θ0 = π . The problem

becomes a rendezvous-like problem. The Modulated thrust FFS method is implemented in

this LEO to GEO transfer problem. The input parameters and BCs are listed in Table 3.2,

where the shown value of θ f corresponds to θ0 = π . The time of flight is assumed to be

120,000 seconds.

Table 3.2

Input parameters and boundary conditions for the LEO-GEO problem

BCs Input parameters

ri = 1.0313 (DU) Nrev = 7

θi = 0 (rad) nr = 20

r f = 6.61 (DU) nθ = 30

θ f = 47.123 (rad) Isp = 3.7183 (TU)

ṙi = 0 (DU/TU) # of DPs = 40

θ̇i = 0.95652 (rad/TU) Ta,max = 0.0153 (DU/TU2)
ṙ f = 0 (DU/TU) T = 148.73 (TU)

θ̇ f = 0.058842 (rad/TU)

the thrust acceleration is constrained to be less than Ta,max = 0.15m/s2 =

0.0153DU/TU2.The trajectories and TA for solutions are depicted in Figures 3.4 and 3.5.
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Figure 3.4: LEO to GEO thrust acceleration profile using FFS method
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Figure 3.5: LEO to GEO trajectory profile using FFS method

3.3.3 LEO Phasing Maneuver

The on/off thrust FFS method is applied to the phasing problem. The spacecraft is in a

200km altitude orbit. The required phasing, between initial and final positions, is 90o [43].

Because of the low altitude, some solution trajectories that attempt to go to a lower altitude

for phasing may go below the Earth radius and are obviously infeasible. The problem BCs

and input parameters are listed in Table 3.3. In addition: Nrev = 1, Isp = 3.7183 (TU),
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nr = 6, nθ = 30. The solution results are shown in Fig. 3.6 and in Fig. 3.7.

Table 3.3

Input parameters and BCs for the phasing problem

Parameters & BCs Value

Ta,max (DU/TU2) 0.0204

# of DPs 60

T (TU) 8.924

ri (DU) 1.0313

ṙi (DU/TU) 0

θi (rad) 0

θ̇i (rad/TU) 0.9548

r f (DU) 1.0313

ṙ f (DU/TU) 0

θ f (rad) 7.8539

θ̇ f (rad/TU) 0.9548
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Figure 3.6: Phasing trajectory - 90o phasing
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Figure 3.7: Phasing thrust profile - 90o phasing

3.4 Conclusions

A new method is developed to provide feasible low-thrust trajectories based on using the

finite Fourier series to approximate the shape of the trajectories inversely. Besides the

fast construction of space trajectories that satisfy given thrust constraints, the proposed

method has the capability of generating on/off thrust profiles. This was possible by forcing

the constraint slack variables to take only one of three discrete values. The three test cases

presented in this Note demonstrated this capability. The drawback is that the computational

time of the proposed on/off thrust finite Fourier series trajectory approximation is 3 to

4 orders of magnitude higher than that of the original finite Fourier series trajectory

approximation method.
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Chapter 4

Finite Fourier Series:

Three-dimensional

4.1 Introduction

The main contribution of this chapter is the extension of the FFS approximation to

the three-dimensional (3D) dynamic models 1. In addition, a general reduced Fourier

representation of the states and their associated derivatives is derived which diminishes

the computational intensity. The proposed method provides initial trajectory guess that

satisfies thrust constrains, the EoM, and the problem BCs. In essence, BCs are used to

1The material of this chapter will be submitted to the AIAA Journal of Spacecraft and Rockets
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evaluate some of the FFS coefficients. The fourier approximation of the states are used

to calculate the thrust acceleration inversely. The resulting thrust acceleration is evaluated

at equally space distributed points in time to make a set of thrust acceleration constraints.

The objective is to minimize ∆V , which is calculated through numerical integration of the

thrust acceleration over time. Therefore, the problem converts to a NLP problem with

Fourier coefficients as the unknown parameters.

The chapter is organized as follows. In section 4.2, the theory, EoM, objective function and

TA constraints are explained. In addition, the initial FFS representation (and its reduced

form) for the states is presented. The use of FFS and discretization notions reduces the

problem to a system of algebraic equations in the FFS coefficients. A brief description of

the overall problem along with the definition of independent and dependent design variables

are given in sections 4.2.3. An efficient technique for the initialization of the unknown

Fourier coefficients are explained in Section 4.3. Application of the proposed method on

several missions is investigated is section4.4. Finally, section 4.5 presents a conclusion of

the chapter.

4.2 Finite Fourier Series Method

In general, any periodic function can be written in terms of an infinite sum of sine and

cosine functions (Fourier series). If Fourier representations of two different functions
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are considered, the only difference is in the coefficients of the sine and cosine functions

and perhaps the number of terms in the Finite Fourier Series (FFS). In this paper, it is

suggested that a 3D trajectory shape is approximated by a FFS, with enough terms (free

coefficients), rather than a fixed shape function which is a common practice among the

existing SB methods. The coefficients in a FFS representation will not only satisfy the BCs,

the EoM, and any other constraints such as TA constraints, but also they can be varied to

represent different solutions and different trajectory shapes. The following sections explain

the details of the solution procedure.

4.2.1 Coordinate System and Equations of Motion

Cylindrical coordinates are considered as the reference coordinate system mainly due to the

fact that the dynamic EoM are simpler and involve fewer nonlinear terms compared to other

coordinate systems. In addition, the polar and radial coordinates make the 3D approach

quite similar to its planar two dimensional counterpart. The EoM in the cylindrical

coordinates are as follows:

r̈− rθ̇ 2 +
µ

s3
r = fr (4.1)

rθ̈ +2ṙθ̇ = fθ (4.2)
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z̈+
µ

s3
z = fz (4.3)

where s =
√

r2 + z2,µ is the gravitational parameter of the central body. fr, fθ and fz are

the thrust acceleration components of the low-thrust engine.

The construction of Fourier series and their associated derivatives is explained in section

4.2.2. Substituting the states and their respective first- and second-order derivatives into the

left hand side of the EoM (Eq.(4.1),(4.2) and (4.3)), the required thrust acceleration along

any coordinate can be computed. Then, the overall required thrust acceleration, Ta ,can be

computed:

Ta =

√

fr
2 + fθ

2 + fz
2 (4.4)

In addition, the required total ∆V can be computed by numerical integration of the thrust

acceleration over time:

∆V =

T
∫

0

Tadt (4.5)
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4.2.2 States Fourier Approximation

There are two options for approximating the trajectory shape. The first is to assume the

states as a function of the polar angle θ , and expand this function using a FFS. The second

option is to assume the approximation functions in the time domain. In this paper, the

second option is adopted to avoid the introduction of extra constraint for time of flight. The

physical position and velocity BCs are handled more efficiently in the time domain. In this

paper, the cylindrical coordinates, radius, r, polar angle, θ and the axial coordinate, z, are

approximated with Finite Fourier Series (FFS) as follows:

r(τ) =
a0

2
+

nr

∑
n=1

{an cos(nπτ)+bn sin(nπτ)} (4.6)

θ(τ) =
c0

2
+

nθ

∑
n=1

{cn cos(nπτ)+dn sin(nπτ)} (4.7)

z(τ) =
e0

2
+

nz

∑
n=1

{en cos(nπτ)+ fn sin(nπτ)} (4.8)

where 0 ≤ τ = t
T
≤ 1 is the scaled time, T is the corresponding time of flight, nr and nθ

and nz are the number of Fourier terms (sum of sin and cos) for each state. The time of

flight of is scaled to make the required discretization strategy (which is one of the steps

of the solution procedure) independent of the time. In its general form, the Fourier series
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approximations for r, θ and z are constrained to satisfy twelve rendezvous BCs

ri = r (τ = 0) r f = r (τ = 1)

r′i = r′ (τ = 0) r′i = r′ (τ = 1)

θi = θ (τ = 0) θ f = θ (τ = 1)

θ ′
i = θ ′ (τ = 0) θ ′

f = θ ′ (τ = 1)

zi = z(τ = 0) z f = z(τ = 1)

z′i = z′ (τ = 0) z′ f = z′ (τ = 1)

(4.9)

The prime denotes derivative with respect to the scaled time, τ , and subscripts "i" and "f"

denote the initial and final conditions respectively. The relations between the time and

scaled-time first and second derivatives are

d
dt
= 1

T
d

dτ

d2

dt2 =
1

T 2
d2

dτ2

(4.10)

Therefor, the twelve BCs can be related according to the following relations

ri = ri r f = r f

r′i = T ṙi r′ f = T ṙ f

θi = θi θ f = θ f

θ ′
i = T θ̇i θ ′

f = T θ̇ f

zi = zi z f = z f

z′i = T żi z′ f = T ż f
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It is important to note that twelve BCs are associated with a rendezvous problem and it

is advantageous to remove as much unknown Fourier coefficients as possible from the

unknowns. The main reason of such strategy is that the BCs are physical meaningful

quantities in contrast to the Fourier coefficients. In fact, the direct approximation of Fourier

coefficients is not straightforward because the relation between the resulted value of the

Fourier approximation of different frequencies is not evident. Therefore, it is easier and

more physically meaningful to extract some of the unknown Fourier coefficients in terms

of the physical sensible values and reduce the number of design variables. In general, this

strategy does not affect the entirety of the problem whereas the physically meaningful BCs

can be considered as design variables.

In this work, the first four Fourier coefficients (excluding the first constant number) of

each approximation are derived in terms of the known BCs and the rest of the coefficients

hence nr ≥ 2,nθ ≥ 2 and nz ≥ 2. To express which one of the coefficients in terms of

the others will affect the sensitivity of convergence as the first coefficients play important

roles compared to low-order coefficients [35]. For example, considering the four BCs on

radius (ri,r
′
i,r f ,r

′
f ), four of the coefficients (a1,b1,a2,b2) can be computed in terms of the

given BCs and other coefficients. If these four coefficients are substituted into the Eq.(5.13)

and rearranged, the radius Fourier approximation function can be written in the following

reduced form:

r(τ) = Fr +Ca0
a0 +

nr

∑
n=3

{Can
an +Cbn

bn} (4.11)
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where the BCs appear only in term Fr and is a fixed vector for rendezvous problems. The

equations for different terms and coefficients of the unknown parameters in Eq. (5.17) are

Fr =
1
2

(

ri − r f

)

cos(πτ)+ 1
2π

(

r′i − r′ f

)

sin(πτ)+ 1
2

(

ri + r f

)

cos(2πτ)

+ 1
4π

(

r′i + r′ f

)

sin(2πτ)

Ca0
= 1

2
[1− cos(2πτ)]

Can
=















cos(nπτ)− cos(πτ); odd

cos(nπτ)− cos(2πτ); even

Cbn
=















sin(nπτ)−nsin(πτ); odd

sin(nπτ)− n
2

sin(2πτ); even

(4.12)

As can be seen, the coefficients of the unknown Fourier parameters (Can
and Cbn

;n =

3 · · ·nr) depend on the discretization of the scaled-time variable ,τ , and can be used for

reducing the computation time. Likewise, for the other two coordinates (θ and z) and their

associated first and second τ-derivatives similar equations can be written (see Appendix

C.1).

4.2.3 Problem description

The overall problem is to find a feasible low-thrust trajectory within the existing TA

capability of the on-board propulsion system of a spacecraft. Equations. (4.1), (4.2) and

(4.3) are true at all times. However, numerical integration is required for calculating total
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∆V and it is required to evaluate the TA constraint at some discrete points. To solve

for the unknown Fourier coefficients, each one of the thrust acceleration equations will

be computed at m Discretization Points (DPs). The DPs are calculated according to the

following relation

m = (Nrev +1)× ppre (4.13)

where Nrev is the number of revolutions and ppr is the corresponding points per revolution.

For the current study Legendre-Gauss distribution of DPs is adopted,

τ0 = 0 < τ1 < · · ·< τm−1 = 1 (4.14)

Because the EoM are discretized at the DPs, the number of DPs should not be too low, in

order to guarantee a feasible smooth solution. The minimum number of DPs depends on

the problem and the duration of the maneuver. It is also possible to figure out the minimum

number of DPs for a specific problem after a few trials. It is also assumed that these DPs

are fixed throughout the overall optimization. Since the number of DPs is fixed and the

scaled-time vector is represented as a column vector, states and their associated first and

second τ-derivatives can be written in a compact matrix notation form (See Appendix D.2).

For instance r becomes

[r]m×1 = [Ar]m×(2nr−3)[Xr](2nr−3)×1 +[Fr]m×1 (4.15)
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where

[Ar]m×(2nr−3) =

[

Ca0
Ca3

Cb3 Ca4
Cb4

· · · Canr
Cbnr

]

m×(2nr−3)

[Xr](2nr−3)×1 =

[

a0 a3 b3 · · · anr
bnr

]T

(4.16)

and [Fr] is defined in Eq. (5.18). Altogether, for all of the states and their

associated τ-derivatives the coefficient matrix of the unknown Fourier coefficients

([Ar] , [Ar′] , [Ar′′] , [Aθ ] , [Aθ ′] , [Aθ ′′], [Az] , [Az′ ] , [Az′′]) are computed and will be stored once

for later use in the solver for the evaluation of the objective functions and constraints. It

should be noted that the BCs are fixed and no update of the F() vectors of the states and

their associated derivatives is needed i.e. Fr,Fr′,Fr′′,Fθ ,Fθ ′,Fθ ′′,Fz,Fz′,Fz′′ .

In addition, once the number of Fourier terms (nr) and Discretization Points (DPs)

are determined the coefficient terms (Ca0
,Ca3

,Cb3
, · · · ,Canr

,Cbnr
) (see Appendix D.2)

become fixed. These coefficients also can be calculated and stored once to enhance the

computational efficiency. They also make the calculation of objective and constraints

gradients easy. Note that sin(πτ),sin(2πτ),cos(πτ) and cos(2πτ) appear in the

coefficients of the unknown parameters of the compact forms of states i.e. r(τ) ,θ(τ)

and z(τ) (see Appendix D.2).

The thrust acceleration equations can be written, using the matrix notation form of the
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states and their associated first and second derivatives, in the following form,

[ fr] = fr (Xr, [r] , [r
′′] , [θ ′] , [z] , [z′′])

[ fθ ] = fθ (Xθ , [r] , [r
′] , [θ ′] , [θ ′′])

[ fz] = fz (Xz, [r] , [z] , [z
′′])

(4.17)

likewise the thrust acceleration Eq. (4.4) can be written as

[Ta] =

√

[ fr]
2 +[ fθ ]

2 +[ fz]
2 ≤ Ta,max (4.18)

The resulting NLP problem can be written in the following form

min
Xr,Xθ ,Xz

∆V

s.t. Ta ≤ Ta,max

where Xr, Xθ and Xz are the unknown Fourier parameters and Ta,max is the maximum limit

of the TA value. Given the number of Fourier terms, the total number of unknown Fourier

parameters becomes 2(nr +nθ +nz)−9.
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4.3 Unknown Fourier Coefficients Initialization

In this section initialization technique is explained. The basic idea is to provide an

approximation of the states (r and θ ) at some discrete points and fit the considered Fourier

series functions to these set of discrete points and calculate the Fourier parameters. In other

words, this in similar to the curve-fitting of a Finite Fourier series to a set of known data

points with the exception that some of the BCs have already been forced to be satisfied

(or a boundary-forced data fitting). For instance, consider a case where the number of

Fourier terms (nr, nθ and nz) have already been specified. The radius fourier approximation

function (see Appendix D.2) can be written in the following form,

[Xr](2nr−3)×1 =
(

[Ar]nApp×(2nr−3)

)−1(
[

rApp

]

nApp×1
− [Fr]nApp×1

)

(4.19)

where rApp is the vector of discretized approximation radius and nApp is the number of

discretized data points. The relation used for calculating nApp is

nApp = (Nrev +1)×100 (4.20)
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In this paper, Cubic Polynomial (CP) is used for the approximation of both rApp and θApp

as follows:

rApp(τ) = aτ3 +bτ2 + cτ +d

θApp(τ) = eτ3 + f τ2 +gτ +h

(4.21)

The BCs are used to compute all of the coefficients (see Appendix D.3). Legnedre-Gauss

discretization of points is considered and the scaled time vector becomes

τApp,0 = 0 < τApp,1 < · · ·< τApp,(nApp−1) = 1 (4.22)

Substituting τ = τApp,CP into Eq.(4.21) provides the discrete approximation data values of

the states of i.e.
[

rApp

]

and
[

θApp

]

. The inverse matrix multiplication procedure is used to

get an initial guess for the respected unknown Fourier series parameters

[Xr](2nr−3)×1 =
(

[Ar]nApp×(2nr−3)

)−1(
[

rApp

]

nApp×1
− [Fr]nApp×1

)

(4.23)

matrix multiplication. For the polar angle, θ , these steps repeat with a polar approximation,

[Xθ ](2nθ−3)×1 =
(

[Aθ ]nApp×(2nθ−3)

)−1(
[

θApp

]

nApp×1
− [Fθ ]nApp×1

)

(4.24)

The initial coefficients of the axial coordinate are set to zero in all of the cases. The

initialization is performed once and the initial guess for the unknown Fourier coefficients
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are fed into the solver.

4.4 Results

Several missions are considered in order to assess the performance of the developed

method. They are chosen from Reference [44] to be able to compare the results with the

3D spherical and pseudo-equinoctial shape-based methods. Target bodies represent a wide

range of small to large eccentricities and inclinations. In addition, the suitability of the

solution of 3D FFS method for a direct solver is evaluated by providing it as an initial

guess. The selected direct solver is GPOPS [45] which is a MATLAB software intended

to solve general nonlinear optimal control problems. In practice, the usual constraint is on

the thrust value instead of the TA. Therefore, the resulting TA of the 3d FFS is used to

calculate the mass of the spacecraft, m, over the time. Then, the maximum thrust value,

Tmax = max(Ta,max × m), is calculated. A minimum-fuel low-thrust trajectory problem

subject to the maximum thrust value of Tmax is defined and solved in GPOPS using the

solution of the 3D FFS as an initial guess. The thrust profile along with the propellant ratio

of the direct solver is presented for each test case.

In all of the cases, Canonical units are used, such that one distance unit (DU) is equal

to the astronautical unit and 2 × π Time Unit(TU) is 1 year. For all of the cases, the

specific impulse is Isp = 3000 seconds. MATLAB Fmincon function is used as the solver,
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respectively, without any first- or second-order derivative information. This method does

not provide a solution to any thrust acceleration level that is defined as a constraint. Thus, if

a solution exists, the FFS method finds it in a reasonable time. However, if a solution does

not exit, the constraint FFS method needs more time to confirm that there is no solution.

This drawback can be overcome by defining a maximum number of iterations for the solver.

The maximum number of iterations is set to 5000. All of the cases have been performed on

an Intel Xeon Pentium 4 1.86 GHz with Windows XP and 8GB of RAM and the reported

computation times of the 3D FFS are calculated by using the MATLAB tic-toc command.

The Earth and Mars, Keplerian orbital elements, with respect to Earth are calculated [46].

For the asteroids 1989ML, Dionysus and comet Tempel-1, the orbital elements are taken

from JPL Solar System Dynamics 2 and can be found in Table.4.1.

Table 4.1

Keplerian orbital elements of asteroids 1989ML, Dionysus and comet

Tempel-1

a e i Ω ω M Epoch

[AU] [deg] [deg] [deg] [deg] [MJD]

1989ML 1.2721 0.13649 4.3782 104.3571 183.3249 117.36689 53900

Tempel-1 3.14009 0.51159 10.5025 68.8818 179.3031 203.23760 56717

Dionysus 2.2 0.542 13.6 82.2 204.2 114.4232 53400

2data available online at http://ssd.jpl.nasa.gov [retrieved July 16, 2014]
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4.4.1 Earth to Mars

It is desired to find a low-thrust trajectory from Earth to Mars. The launch window and time

of flight ranges are the same as Reference [44] with the exception that the discretization step

for both of them is selected to be 50 days. The TA maximum limit is set to Ta,max = 1.5e−

4m/s2 and the initial mass of the spacecraft is assumed to be 4000 kg. The considered

Fourier terms and number of points per revolution are nr = 6, nθ = 6, nz = 4 and ppr = 10

respectively. The range of number of revolutions is Nmax = 1− 4. Figure 4.1 shows the

contour of total change of the velocity (∆V ) for different departure dates and times of

flights. It is easy to recognize periodic regions of lower total ∆V . This period is equivalent
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Figure 4.1: ∆V contour for Earth to Mars mission

to the synodic period of the Earth-Mars system. It is important to mention that all of the

solutions are feasible with respect to the defined TA limit. Figure 4.2 shows the trajectory

of the best solution that performs one revolution around Sun and takes 950 days. Figure
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4.3 depicts the components of the TA vector as well as its total value. It shows that the

solution is within the constraint limit. Normal component makes a great portion of the

total TA and the radial component of TA (which results in gravity losses) is very small

indicating the near-optimality of the trajectory. The axial component of the TA exhibits

an oscillatory behavior. The maximum thrust value of the 3D FFS is equal to 0.15 N and
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Figure 4.3: TA of the best Earth to Mars solution
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is used in the direct solver as the limit. Figure 4.4 shows the thrust profile of the solution

of direct solver and 3D FFS method. The thrust profile of 3D FFS is clearly not optimal

and different from the bang-bang optimal control. However, the required ∆V of 3D FFS

is only 0.4 percent different from the optimal solution. Table 4.2 provides the comparison
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Figure 4.4: Comparison between the thrust profile of the best solution of

3D-FFS and GPOPS for Earth to Mars rendezvous mission

between the solutions of the 3D-FFS method and the direct solver, GPOPS, to the best

solutions of Spherical and Pseudo-equinoctial techniques [44]. It is important to note that

Table 4.2

Comparison of the best solutions of the Earth to Mars rendezvous mission

Method ∆V Ta,max Tmax

[km/s] 1e-4 [m/s2] [N]

3D-FFS 5.7294 1.5 0.15

GPOPS 5.7077 - 0.15

Spherical 5.74 0.22

Pseudo-equinoctial 5.83 0.16

the maximum thrust value of the 3D FFS is less than the reported peak thrust values of the
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Spherical (0.22 N) and Pseudo-equinoctial (0.16 N) techniques [44]. In addition, the total

∆V of 3D FFS (5.7294 km/s) is less than the ∆V of the best trajectories of the Spherical

(5.74 km/s) and Pseudo-equinoctial (5.83 km/s) techniques. The computation time of 3D

FFS trajectories is on average 0.7 seconds. In another attempt, the capability of the method

to solve a more difficult task is considered. The magnitude of the TA limit is decreased

down to a point below which our method is not capable of producing any feasible solution.

Ta,max = 0.86e−4m/s2 is the lowest achievable TA constraint level. Figure 4.5 shows the

thrust profile of this case. It is interesting to note that the TA profile is almost saturated

over the whole transfer time except for two intervals at the end of the trajectory.
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Figure 4.5: Earth to Mars TA profile of the lowest feasible TA limit
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4.4.2 Earth to Asteroid 1989ML

It is desired to find a low-thrust trajectory from Earth to the near-Earth Asteroid 1989ML.

The eccentricity and inclination of the target body qualifies as a moderate target (see

Table.4.1). The launch window and time of flight ranges are the same as Reference [44]

and the grid steps of the departure date and time of flight are chosen to be 15 and 20 days

respectively. The considered Fourier terms and number of points per revolution are nr = 8,

nθ = 8, nz = 6 and ppr = 10 respectively. The TA limit is set to Ta,max = 3.1e− 4m/s2

and the initial mass of the spacecraft is assumed to be 1000 kg. The range of number of

revolutions is Nmax = 1− 2. Figure 4.6 shows the contour of total change of the velocity

(∆V ) for different departure dates and times of flights. Again, regions of lower total ∆V
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Figure 4.6: ∆V contour for Earth to Asteroid 1989ML mission

exhibit a periodic trend which is equivalent to the synodic period of Earth-Asteroid1989ML
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system. Figure 4.7 shows the trajectory of the best solution that performs one revolution

around Sun and takes 560 days. Figure 4.8 depicts the components of the TA vector as
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Figure 4.7: Trajectory of the best Earth to asteroid 1989ML solution

well as its total value. It shows that the solution is within the constraint limit. Normal

component makes a great portion of the total TA and the radial component of TA (which

results in gravity losses) is very small indicating the near-optimality of the trajectory. The

axial component of the TA exhibits an oscillatory behavior. The maximum thrust value

of the 3D FFS is equal to 0.3015 N and is used in the direct solver as the limit. Figure

4.9 shows the thrust profile of the solution of direct solver and 3D FFS method. The

thrust profile of 3D FFS is clearly not optimal and different from the bang-bang optimal

control. Table 4.3 provides the comparison between the solution of the 3D-FFS method,

GPOPS, Spherical and Pseudo-equinoctial techniques. The required ∆V of 3D FFS is only

4 percent different from the optimal solution. In addition, in terms of the total required ∆V

and maximum thrust,Tmax, 3D FFS has the best performance. The computation time of 3D

73



0 100 200 300 400 500 550

−2

−1

0

1

2

3

x 10
−4

Time (Days)

T
a
 (

m
/s

2
)

 

 

T
a,r

T
a,θ

T
a,z

T
a

T
a,max

Figure 4.8: TA of the best Earth to asteroid 1989ML solution
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Figure 4.9: Comparison between the thrust profiles of the best solution of

3D-FFS and GPOPS for the Earth to asteroid 1989ML rendezvous mission

FFS trajectories is on average 1.4 seconds.
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Table 4.3

Comparison of the best solutions of the Earth to asteroid 1989ML

rendezvous mission

Method ∆V Ta,max Tmax

[km/s] 1e-4 [m/s2] [N]

3D-FFS 4.2041 3.1 0.3015

GPOPS 4.021 - 0.3015

Spherical 4.47 0.31

Pseudo-equinoctial 4.82 0.33

4.4.3 Earth to comet Tempel-1

In this example, it is desired to find a low-thrust trajectory from Earth to the comet

Tempel-1. The eccentricity and inclination of Tempel-1 is greater than Mars and asteroid

1989ML which qualifies it as a relatively hard target. The launch window and time of flight

ranges are the same as Reference [44] and the grid steps of the departure date and time of

flight are chosen to be 15 and 20 days respectively. The considered Fourier terms and

number of points per revolution are nr = 8, nθ = 8, nz = 6 and ppr = 10 respectively. The

TA limit is set to Ta,max = 11.2e−4m/s2 and the initial mass of the spacecraft is assumed

to be 1000 kg. The range of number of revolutions is Nmax = 0−2. Figure 4.10 shows the

trajectory of the best solution that takes 1040 days. Figure 4.11 depicts the components of

the TA vector as well as its total value. It shows that the solution is within the constraint

limit. Normal component makes a great portion of the total TA and the radial component

of TA (which results in gravity losses) is very small indicating the near-optimality of the

trajectory. The axial component of the TA exhibits an oscillatory behavior. The maximum
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Figure 4.10: Trajectory of the best Earth to comet Tempel1 solution
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Figure 4.11: TA of the best Earth to comet Tempel1 solution

thrust value of the 3D FFS is equal to 0.5912 N and is used in the direct solver as the limit.

Figure 4.12 shows the thrust profile of the solution of direct solver and 3D FFS method.

The thrust profile of 3D FFS is clearly not optimal and different from the bang-bang optimal

control. Table 4.4 provides the comparison between the solutions of the 3D-FFS method

and the direct solver, GPOPS. In this case, the performance of 3D FFS with respect to the
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Figure 4.12: Comparison between the 3D-FFS and GPOPS thrust profile of

the Earth to comet Tempel1 best solution

Table 4.4

Comparison of the best solutions of the Earth to comet Tempel1

rendezvous mission

Method ∆V Ta,max Tmax

[km/s] 1e-4 [m/s2] [N]

3D-FFS 12.69 7.092 0.5912

GPOPS 11.48 - 0.5912

Spherical 11.13 1.4

Pseudo-equinoctial 13.44 1.13

∆V is better than the Pseudo-equinoctial technique and worse than the Spherical. With

respect to the maximum thrust, 3D FFS requires the lowest value. The computation time

of 3D FFS trajectories of this case is on average 1.66 seconds.
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4.4.4 Earth to asteroid Dionysus

In the last case study, it is desired to find a low-thrust trajectory from Earth to the asteroid

Dionysus. This is the hardest target with a high change in both eccentricity and inclination

that requires a higher number of revolutions. The departure date and time of flight are

assumed to be known from Ref. [47]. The departure MJD is 56284 and the time of flight,T ,

is chosen to be 3534 days. The TA limit is set to Ta,max = 8.0e−5m/s2. The initial mass

of the spacecraft is assumed to be 4000 kg and the specific impulse is Is p = 3000 seconds.

The number of revolution is set at Nrev = 4. The considered Fourier terms and number of

points per revolution are nr = 6, nθ = 6, nz = 8 and ppr = 10 respectively. Figure 4.13

shows the trajectory (expressed in the inertial CS). Figure 4.14 depicts the components of
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Figure 4.13: Earth to asteroid Dionysus trajectory

the TA vector as well as its total value. It shows that the solution is within the constraint
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limit. Normal component makes a great portion of the total TA and the radial component

of TA (which results in gravity losses) is very small indicating the near-optimality of the

trajectory. The axial component of the TA exhibits oscillatory behavior. Figure 4.15 shows
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Figure 4.14: Earth to asteroid Dionysus TA profile

the thrust profile of the solution of direct solver and 3D FFS method. The thrust value of

the solution of the 3D FFS method is within the range of acceptable thrust. However, the

thrust profile is not optimal and different from the bang-bang optimal control. Table 4.5

provides the comparison between the solution of the 3D-FFS method and the direct solver,

GPOPS. where m f is the final mass. The computation time of 3D FFS is 2 seconds. For the

Table 4.5

Earth to asteroid Dionysus solution comparison

Method ∆V Ta,max m f

[km/s] 1e-4 [m/s2] [kg]

3D-FFS 16.45 2.5 2230.3203

GPOPS 10.482 - 2801.0501
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high number of revolutions the 3D-FFS solution is significantly different from the optimal

solution. However, it still serves as a good initial guess for the considered direct solver. All

of the considered cases have been re-executed on high performance cpu with 2.7 GHz and

8GB of RAM. On average the 3D-FFS converges in 0.4 up to 0.8 seconds.

4.5 Conclusion

In this chapter, the developed Finite Fourier series approach was applied successfully on

four different low-thrust three-dimensional rendezvous problems from Earth to Mars, the

near Earth asteroid 1989ML, comet Tempel1 and asteroid Dionysus. Satisfaction of the

position and velocity boundary conditions are achieved simply by obtaining some of the

Fourier series coefficients in terms of the boundary conditions. These coefficients are
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then substituted back into the original Fourier series function to form a reduced Fourier

series approximation. The main advantage of such strategy is that there is no need

for defining extra nonlinear equations for the satisfaction of the boundary conditions.

The new representation of the state Fourier approximations not only made the state

computation simpler but also reduced the computational cost of the method. The remaining

Fourier coefficients of the reduced form provided extra flexibility for handling the thrust

acceleration constraint. The explicit thrust constraint handling capability is a key feature

of the presented method. In the considered transfer problems and with respect to the

maximum required thrust, the Finite Fourier series approach outperforms the Spherical

and Pseudo-equinoctial shape-based techniques. In all of the cases except for the Earth

to comet Tempel1, the Finite Fourier series approach required less ∆V compared with the

Spherical and Pseudo-equinoctial shape-based techniques. It is also shown that very low

number of fourier coefficients provided enough flexibility to approximate various feasible

thrust acceleration profiles in reasonable times. The suitability of using the solution of this

technique for high-fidelity direct solvers is also shown.
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Chapter 5

Finite Fourier Series:

Three-Body-Problem

5.1 Introduction

In this chapter1, the Finite Fourier Series approach for three-body dynamic model is

explained. All of the previous aforementioned methods are limited to one central gravity

field. The notable works for finding rapid optimal and near optimal trajectories take several

steps in dividing the problem into simpler subproblems and try to solve each one of them

systematically to reach the final optimal solution by using either of the mentioned direct or

1The material of this chapter are submitted to the AIAA Journal of Guidance, Control and Dynamics and is

still under review
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indirect methods [48, 49, 50, 51].

The main contribution of this chapter is the extension of the FFS approximation to the

two-dimensional three body dynamic models specifically Earth-moon restricted three body

dynamic model. To the authors’s knowledge there is no SB method developed for more

than Two-Body dynamic model. In addition, a general reduced Fourier representation of

the states and their associated derivatives is derived which diminishes the computational

intensity. The proposed method provides initial trajectory guess that satisfies thrust

constrains, the EoM, and the problem BCs. In essence, BCs are used to evaluate some

of the FFS coefficients and the EoM are descretized at specific points and used, along with

the thrust level constraints, to solve for the rest of the FFS coefficients.

The chapter is organized as follows. In section 5.2, the coordinate systems, EoM and TA

constraints are explained. In section 5.3, the initial FFS representation (and its reduced

form) for the states is presented. The use of FFS and discretization notions reduces the

problem to a system of algebraic equations in the FFS coefficients. A brief description of

the overall problem along with the definition of independent and dependent design variables

are given in sections 5.4 and 5.5. A dual-level-solver strategy is proposed and explained in

Section 5.6. Some of the design variables’ boundary limits and an efficient technique for

the initialization of the unknown Fourier coefficients are explained in Section 5.7. Initial

trajectory approximation is explained in section 5.8. Application of the proposed method

on four cases with different levels of TA is investigated is section5.9. Finally, section 5.10
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presents a conclusion of the paper.

5.2 Dynamical Equations and Coordinate Systems

Reviewing the literature on the optimal or near-optimal low-thrust three-body trajectories

suggests not only to divide the problem into three (escape, intermediate and capture) phases

but also to define two coordinate systems centered at each one of the involved primaries

[48, 49, 50, 51]. If there is only one coordinate system (centered at earth), a capture

spiral trajectory around the moon is in effect not a spiral any longer and reflects itself

as small oscillations of polar angle around zero with small changes in radius which is not

a well-behaved function. A dual coordinate system thus removes the apparent problem of

ill-condition states [48]. Therefore, it is assumed that the trajectory consists of an initial

outward escape spiral and a final inward capture spiral connected by an intermediate arc.

For the escape spiral and the intermediate phases the EoM are written in the Earth-Centered

Polar Rotating (ECPR) Coordinate System (CS) while the capture spiral EoM are written

in the Moon-Centered Polar Rotating (MCPR) CS. These coordinate systems are related to

the Earth-Centered Cartesian Rotating (ECCR) Xe −Ye and the Moon-Centered Cartesian

Rotating (MCCR) coordinate systems Xm−Ym respectively and are depicted in Figure 5.1.

Polar angles (θe and θc) are measured counter-clockwise in both coordinate systems. Using

the hamiltonian mechanics [52] and adopting the canonical units (µ = 0.01215, D = 1), the

governing EoM can be derived for each segment. For the escape segment, subscript ’e’ is
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Figure 5.1: Definition of the Earth- and Moon-centered cartesian and polar

coordinate systems

used and the EoM are:

r̈e − re

(

1+ θ̇e

)2
+µ cos(θe)+

1−µ

r2
e

+
µ(re − cos(θe))

r3
Moon−S/C

= Ta,e sin(αe) (5.1)

reθ̈e +2ṙe(1+ θ̇e)−µ sin(θe)(1−
1

r3
Moon−S/C

) = Ta,e cos(αe) (5.2)

where rMoon−S/c =
√

r2
e −2re cos(θe)+1 , Ta,e is the value of the escape Thrust

Acceleration (TA) and αe is the corresponding steering angle. For the intermediate phase

(subscript ’m’) the escape EoM are used. The EoM for the moon capture spiral (subscript

’c’) are

r̈c − rc(1+ θ̇c)
2 − (1−µ)cos(θc)+

(1−µ)(rc + cos(θc))

r3
Earth−S/C

+
µ

r2
c

= Ta,c sin(αc) (5.3)
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rcθ̈c +2ṙc(1+ θ̇c)− (1−µ)sin(θc)

(

1

r3
Earth−S/C

−1

)

= Ta,c cos(αc) (5.4)

where rEarth−S/C =
√

r2
m +1+2rm cos(θm), Ta,c is the value of the capture TA and αc is

the corresponding steering angle. In order to simplify the EoM and reduce the number of

design variables the thrust vector is assumed to be along (positive value, n = 0) or against

(negative value, n = 1) the velocity vector

αe/m/c = γe/m/c +nπ (5.5)

The connection between the overall optimal low-thrust trajectories of the three-body

problem and escape and capture segments that leads to maximum-energies is not fully

established. However, it is shown suitable for a systematic approach toward minimum-fuel

optimal solutions [53]. In addition, for the maximum-energy targeting trajectories, obtained

optimal solutions in a central gravitational field show that "the steering angle oscillates

about the local horizon at a frequency that corresponds to the osculating orbital period"

[49]. Also, the proximity of the thrust steering angle (α) to the flight path angle (γ) is shown

in Reference [53]. Tangential thrust has already been used in some of the previous SB

methods, because it results in the maximum rate of increase (or decrease) of the spacecraft

kinetic energy [31, 15]. Therefore, assuming tangential thrust for the escape segment, Eqs.

(5.1) and (5.2) can be combined into a single equation (see Appendix D.1):

fe(re, ṙe, r̈e,θe, θ̇e, θ̈e,µ) = 0 (5.6)
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The EoM of the intermediate phase can also be written in the following form:

fm(rm, ṙm, r̈m,θm, θ̇m, θ̈m,µ) = 0 (5.7)

and the capture EoM can be written by combining Eqs. (5.3) and (5.4),

fc(rc, ṙc, r̈c,θc, θ̇c, θ̈c,µ) = 0 (5.8)

The TA nonlinear constraint functions for the escape phase (Cu,e and Cl,e) can be written

by rearranging the transversal acceleration relation in the following inequalities:















Cu,e : Ta,e −Ta,max ≤ 0

Cl,e : −Ta,max −Ta,e ≤ 0

(5.9)

where

Ta,e =

[

reθ̈e +2ṙe(1+ θ̇e)−µ sin(θe)(1− 1

r3
Moon−S/c

)

]/

cos(αe);

αe = γe = tan−1
(

ṙe

reθ̇e

)

(5.10)

and Ta,max is the maximum limit of the TA value. The TA relations of the intermediate

phase are the same as the escape phase. Likewise, the TA nonlinear constraint function for

88



the capture phase (Cu,c and Cl,c) can be written as,















Cu,c : Ta,c −Ta,max ≤ 0

Cl,c : −Ta,max −Ta,c ≤ 0

(5.11)

where

Ta,c =

[

rcθ̈c +2ṙc(1+ θ̇c)− (1−µ)sin(θc)

(

1

r3
Earth−S/C

−1

)]/

cos(αc);

αc = γc = tan−1
(

ṙc

rcθ̇c

)

(5.12)

5.3 States Fourier Approximation

The radius, r, and the polar angle, θ , are approximated with Finite Fourier Series (FFS) as

follows:

r(τ) =
a0

2
+

nr

∑
n=1

{an cos(nπτ)+bn sin(nπτ)} (5.13)

θ(τ) =
c0

2
+

nθ

∑
n=1

{cn cos(nπτ)+dn sin(nπτ)} (5.14)

where 0 ≤ τ = t
T
≤ 1 is the scaled time, T is the corresponding time of each segment, nr

and nθ are the number of Fourier terms (sum of sin and cos). The time of flight of each

phase is scaled to make the required discretization strategy (which is one of the steps of
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the solution procedure) independent of the time. The FFS coefficients can vary to represent

different solutions and different trajectory shapes that satisfy the BCs, the EOM and other

path constraints such as maximum TA level. For each phase of the flight, the corresponding

Fourier series approximations for r and θ are constrained to satisfy eight BCs

ri = r (τ = 0) r f = r (τ = 1)

r′i = r′ (τ = 0) r′i = r′ (τ = 1)

θi = θ (τ = 0) θ f = θ (τ = 1)

θ ′
i = θ ′ (τ = 0) θ ′

f = θ ′ (τ = 1)

(5.15)

The prime denotes derivative with respect to the scaled time, τ , and subscripts "i" and "f"

denote the initial and final conditions of each phase respectively. The relations between the

time and scaled-time first and second derivatives are

d
dt
= 1

T
d

dτ

d2

dt2 =
1

T 2
d2

dτ2

(5.16)

Therefor, the eight BCs can be related according to the following relations

ri = ri r f = r f

r′i = T ṙi r′ f = T ṙ f

θi = θi θ f = θ f

θ ′
i = T θ̇i θ ′

f = T θ̇ f
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It is important to note that eight BCs are associated with a rendezvous problem

and it is advantageous to remove as much unknown coefficient as possible from the

Fourier unknown coefficients. The main reason of such strategy is that the BCs are

physical meaningful quantities in contrast to the Fourier coefficients. In fact, the direct

approximation of Fourier coefficients is not straightforward because the relation between

the resulted value of the Fourier approximation of different frequencies is not evident.

Therefore, it is easier and more physically meaningful to extract some of the unknown

Fourier coefficients in terms of the physical sensible values and reduce the number of

design variables. In general, this strategy does not affect the entirety of the problem

whereas the physically meaningful BCs can be considered as design variables.

In this work, the first four Fourier coefficients (excluding the first constant number) of each

approximation are derived in terms of the known BCs and the rest of the coefficients hence

nr ≥ 2,nθ ≥ 2. To express which one of the coefficients in terms of the others will affect

the sensitivity of convergence as the first coefficients play important roles compared to

low-order coefficients [35]. For example, considering the four BCs on radius (ri, ṙi,r f , ṙ f ),

four of the coefficients (a1,b1,a2,b2) can be computed in terms of the given BCs and other

coefficients. If these four coefficients are substituted into the Eq.(5.13) and rearranged, the

radius Fourier approximation function can be written in the following reduced form:

r(τ) = Fr +Ca0
a0 +

nr

∑
n=3

{Can
an +Cbn

bn} (5.17)
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where the BCs appear only in term Fr. The equations for different terms and coefficients of

the unknown parameters in Eq. (5.17) are

Fr =
1
2

(

ri − r f

)

cos(πτ)+ 1
2π

(

r′i − r′ f

)

sin(πτ)+ 1
2

(

ri + r f

)

cos(2πτ)

+ 1
4π

(

r′i + r′ f

)

sin(2πτ)

Ca0
= 1

2
[1− cos(2πτ)]

Can
=















cos(nπτ)− cos(πτ); odd

cos(nπτ)− cos(2πτ); even

Cbn
=















sin(nπτ)−nsin(πτ); odd

sin(nπτ)− n
2

sin(2πτ); even

(5.18)

As can be seen, the coefficients of the unknown Fourier parameters depend on the

discretization of the scaled-time variable ,τ , and can be used for reducing the computation

time. Likewise, for polar angle θ and the required first and second derivatives of the states

similar equations can be written (see Appendix D.2).

5.4 Problem description

The overall problem is to find a feasible low-thrust trajectory from a circular LEO to a

circular moon orbit within the existing TA capability of the on-board propulsion system of

a spacecraft. It is assumed that the altitudes of the initial and final circular orbits are known

and defined as hi and h f . The next two sections explains in details the independent and
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dependant variables and the solution strategy.

5.5 Independent and Dependent Design variables

Assuming a fixed number of Fourier terms for each phase, the time of flight (T ) and the

state BCs form a set of initial design variables. The number of Fourier terms (nr and

nθ ) for each phase depends on several factors and become determined via a trial and

error approach. It is important to distinguish between the physical BCs and the unknown

Fourier parameters. Given the number of Fourier terms of each phase, the initial total

number of unknown Fourier parameters becomes 2(nr + nθ + 1). For each state of each

phase, four BCs are assumed which in turn reduces the total number of unknown Fourier

parameters to 2(nr + nθ − 3). Altogether, there are eight physical BCs, time of flight and

2(nr +nθ )−6 unknown parameters that define a phase completely. The eight BCs of each

phase are further divided into initial and final BCs. Three initial conditions of the escape

phase (ri,e, ṙi,e, θ̇i,e) and three final conditions of the capture phase (r f ,c, ṙ f ,c, θ̇ f ,c) become

determined once the altitudes of the initial and final circular orbits (he,hc) are selected.

For the escape phase, the remaining BCs that have to be determined are r f ,e, ṙ f ,e,θ f ,e and

θ̇ f ,e. For the capture phase, ri,c, ṙi,c,θi,c and θ̇i,c have to be determined. Seven out of the

eight BCs of each one of the escape and capture phases are dependant variables. Initial

polar angle of the escape phase θi,e and final polar angle of the capture phase θ f ,c are free

parameters and belong to the design vector. Knowing the BCs of the escape and capture
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phases defines completely the BCs of the intermediate phase. The details of calculating

the independent BCs are explained in section 5.6. In addition, the developed solution

strategy (see Section 5.6) defines an outer level and an inner level iteration for reducing the

complexity of the problem. Table 5.1 summarizes the dependant and independent variables

of the inner and outer levels for the sake of clarity.

Table 5.1

Independent and dependent variables of outer and inner levels

Level Independent variables Dependent variables

Outer Te,Tm,Tc,θ f ,e,θ f ,c r f ,e, ṙ f ,e, θ̇ f ,e

ri,c, ṙi,c,θi,c, θ̇i,c

Inner Xe,Xm,Xc

In summary, the time of flight of escape, intermediate and capture phases (Te, Tm Tc) are

the independent design variables of the outer loop. In the escape phase, three of the initial

BCs (ri,e, ṙi,e, θ̇i,e) become determined once the initial altitude is selected and three of the

final BCs are obtained using Perkins’ method for Te. In addition, the overall change in the

polar angle can be computed according to Eq. (5.38). Hence, if one of the polar angles

(θi,e or θ f ,e) is known, the other can be calculated. Verifying several existing solutions, the

authors decided to define a range for θ f ,e. Therefore, out of the eight BCs of escape phase

seven are dependant variables. The same condition applies to the capture phase except that

θ f ,c becomes the independent design variable. In this work, constant values are assumed

for these angles so that the inner loop iterates only on the unknown Fourier coefficients.

The number of independent design variables of escape, intermediate and capture phases

become 2(nr,e+nθ ,e−3), 2(nr,m+nθ ,m−3) and 2(nr,c+nθ ,c−3) respectively. The ranges
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for the θ f ,e and θ f ,c is explained in the next section.

5.6 Solution Procedure

In this section, the details of solving the overall problem is explained. A direct solution

strategy would be to set the lower and upper bounds of the BCs of escape and capture

phases and their times of flight independently and try to solve for the unknown Fourier

parameters that result in a feasible solution. However, simultaneous inclusion of the

times of flight, physical BCs and Fourier series unknown parameters of each phases in

the design vector complicates the problem. It is expected, however, that a third-body

gravitational perturbations will not deviate the trajectory from the solution of a two-body

model significantly. As a consequence, the solution of the two-body problem under

tangential thrusting can be used to remove some of the BCs from the original design

variable vector. In other words, there should be a meaningful relation between the time

of flight of each phase from one hand and the final BCs and TA level on the other hand.

There are several candidate methods for providing such a reasonable relation of which

Perkins’ method [54] is the selected one. The considered direction of the thrust along the

velocity vector makes it compatible with our strategy in terms of the thrust direction. The

other advantage of using Perkins’ method is that the final conditions of the escape phase and

initial conditions of the capture phase can be removed from the original independent design
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vector. This is achieved via parametric fitted functions of Perkins’ method that depend only

on the time of flight and can be scaled for different central bodies, initial circular radius and

TA values. A brief description of the Perkins’ method is given in Section. 5.8. Therefore,

it is decided to benefit from a dual-level-solver strategy. The details of each level of this

solution strategy is explained in the following sections.

5.6.1 Preliminary Calculations

Equations. (5.6), (5.7) and (5.8) are true at all times for their corresponding phase. To

solve for the unknown Fourier coefficients, each one of these equations will be computed

at m Discretization Points (DPs). The DPs for escape, intermediate and capture phases are

calculated according to the following relations

me = (Nrev,e,max +1)× ppre

mc = (Nrev,c,max +1)× pprc

(5.19)

where Nrev,e,max and Nrev,c,max are the corresponding maximum number of revolutions

and ppre and pprc are the corresponding points per revolution. The maximum number

of revolutions (Nrev,e,max and Nrev,c,max) can be calculated either by using the formula

in Reference [2] for the escape condition of tangential thrust or by using the following
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relation,

Nrev,max = f loor(
∆θmax

2π
). (5.20)

where ∆θmax is calculated by substituting the dimensionless escape time, TE (see

Section.5.8), into Eq. (5.38) (which is the fitted function for the change in the polar angle

of the Perkins’ approximation). f loor(x) = ⌊x⌋ is the largest integer not greater than x. For

the intermediate phase the DPs are equal to mm. For the current study the DPs are linearly

distributed between zero and one for escape and capture phases whereas Legendre-Gauss

distribution of DPs is adopted for the intermediate phase,

τe,0 = 0 < τe,1 < · · ·< τe,(me−1) = 1

τm,0 = 0 < τm,1 < · · ·< τm,(mm−1) = 1

τc,0 = 0 < τc,1 < · · ·< τc,(mc−1) = 1

(5.21)

Because the EoM are discretized at the DPs, the number of DPs should not be too low, in

order to guarantee a feasible smooth solution. The minimum number of DPs depends on the

problem and the duration of the maneuver. It is possible to figure out the minimum number

of DPs for a specific problem after a few trials. It is also assumed that these DPs are fixed

throughout the overall optimization. Since the number of DPs for each phase in known and

the scaled-time vector is represented as a column vector, states and their associated first

and second derivatives can be written in a compact matrix notation form (See Appendix
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D.3). For instance re becomes

[re]me×1 = [Ar]me×(2nr,e−3)[Xr,e](2nr,e−3)×1 +[Fr,e]me×1 (5.22)

where

[Ar]me×(2nr,e−3) =

[

Ca0
Ca3

Cb3 Ca4
Cb4

· · · Canr,e
Cbnr,e

]

[Xr,e](2nr,e−3)×1
=

[

a0 a3 b3 · · · anr,e bnr,e

]T

(5.23)

and [Fr,e] is defined in Eq. (5.18). Altogether, for all of the states of the three phases

and their respective derivatives the coefficient matrix of the unknown Fourier coefficients

([Ar] , [Ar′] , [Ar′′] , [Aθ ] , [Aθ ′] , [Aθ ′′], six matrices for each phase) are computed and will be

stored once at the outer-level for later use in the inner-level solver for the evaluation of

the objective functions and constraints. It should be noted that the BCs will vary in the

outer-level solver and requires the F() vectors of the states and their associated derivatives

for each phase to be updated i.e. Fr,Fr′,Fr′′,Fθ ,Fθ ′,Fθ ′′ .

In addition, for each phase, once the number of Fourier terms (nr) and Discretization

Points (DPs) are determined the coefficient terms (Ca0
,Ca3

,Cb3
, · · · ,Canr

,Cbnr
) in Eq.(5.18)

become fixed. These coefficients also can be calculated and stored once to enhance the

computational efficiency. They also make the calculation of objective and constraints
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gradients easy. Note that sin(πτ),sin(2πτ),cos(πτ) and cos(2πτ) appear in the

coefficients of the unknown parameters of the compact forms of states of each phase i.e.

r(τ) and θ(τ) (see Eqs. (5.18) and (D.4)).

5.6.2 Outer-level solver

The outer level iterates on the time of flight of each phase i.e. Te, Tb and Tc. The other design

parameters of the outer level are associated with the final polar angle of the escape phase,

θ f ,e, and the final polar angle of the capture phase, θ f ,c. Final polar angle of the escape

phase is considered to vary between 180◦ to 360◦. For the considered case studies of this

work, fixed values are considered for θ f ,c = 270◦. Once, the times of flight are known, the

three of the four final BCs of the escape phase (r f ,e, ṙ f ,e, θ̇ f ,e) and three of the four initial

BCs of the capture phases (ri,c, ṙi,c, θ̇i,c) are obtained through Perkins’ parametric fitted

functions of Eqs. (5.36). Since the total polar angle change in escape and capture phases

can be calculated through Eq. (5.38), θi,e and θi,c can be computed. For the intermediate

phase that connects the escape and capture phases all of the BCs exist. Since the EoM

of the intermediate phase are written in the ECPR CS its initial BCs are simply the final

BCs of the escape phase whereas the calculation of the final BCs of the intermediate phase

requires a coordinate transformation. This transformation is required to express the initial

BCs of the capture phase (expressed in the MCRF) in the ECRF CS. It is important to note

that continuity of the states is satisfied by the adopted strategy and does not appear in the
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form of an extra equality constraint in the algorithm. Up to now, all of the BCs of the three

phases are available. The outer-level solver stops when the feasibility flag of all of the three

phases are true. For the outer-level solver, Genetic Algorithm is used. The advantage of

using an evolutionary algorithm is that no initial guess for the design variables is needed.

5.6.3 Inner-level Solver

The inner level solver seeks to find three feasible phases between the BCs that are generated

in the outer-level. For each phase the solver satisfies the EoM and TA constraint by iterating

on the unknown Fourier coefficients. By substituting the states and their time derivative

approximations (Eqs. (D.9) and (D.11)) for each phase into the corresponding EoM ((5.6),

(5.7) and (5.8)) one can form the function

fe (Xe, [re] , [r
′
e] , [r

′′
e] , [θe] , [θ

′
e] , [θ

′′
e]) = 0

fm (Xm, [rm] , [r
′
m] , [r

′′
m] , [θm] , [θ

′
m] , [θ

′′
m]) = 0

fc (Xc, [rc] , [r
′
c] , [r

′′
c] , [θc] , [θ

′
c] , [θ

′′
c]) = 0

(5.24)

where Xe, Xb and Xc are the vectors of the unknown fourier parameters of each phase. Note

that the first and second order time derivatives are related to their scaled-time derivatives

through Eq.(5.16). Likewise for the TA of each phase the following relations can be written
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by substituting the matrix forms of states and their derivatives into Eqs.(5.10) and (5.12)

Ta,e = Ta,e (Xe, [re] , [r
′
e] , [r

′′
e] , [θe] , [θ

′
e] , [θ

′′
e])

Ta,m = Ta,m (Xm, [rm] , [r
′
m] , [r

′′
m] , [θm] , [θ

′
m] , [θ

′′
m])

Ta,c = Ta,c (Xc, [rc] , [r
′
c] , [r

′′
c] , [θc] , [θ

′
c] , [θ

′′
c])

(5.25)

Now, differential equations and constraints are converted to a set of nonlinear algebraic

equations, in which the only unknowns are the FFS parameters. Because the number of DPs

is selected to be always more than the number of FFS terms, an over-determined system

of equations is constructed. In Eqs.(5.24) and (5.25) the only variables are the design

vectors i.e.Xe, Xb and Xc. For each phase, the solver stops whenever a solution is feasible

with respect to its associated objective function and constraint and returns a feasibility

flag. However, the priority belongs to the intermediate phase and the inner-level solver first

tries to solve this phase. The escape and capture phases are solved accordingly and their

respective flags are considered for the overall feasibility verification of the three segments.

The evaluation of the residuals, fe, fm, fc, and the defined TA constraints of Eqs.(5.9) and

(5.11) continue until the stoping criteria of the algorithms are reached. For each phase, the

objective function evaluates the m algebraic nonlinear equalities subject to m number of

algebraic nonlinear inequality constraints. The problem of nonlinear least-square subject

to nonlinear inequality constraints and can be solved by various solvers. Furthermore, it is

important to provide initial guesses for the vector of the unknown Fourier parameters (Xe,

Xb and Xc) and this is explained in section 5.7. Note that the initialization is performed
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once at the outer-level only.

5.7 Design Variables Limits and Initialization Technique

As explained in the previous sections, the outer- and inner-level solvers iterate on different

design variables. However, upper and lower bounds have been provided for the outer-level

design variables. The ranges for the time of flight of each phase is defined as,

0.8TEe ≤ Te ≤ T Ee

3(days)≤ Tm ≤ 10(days)

0.8TEc ≤ Tc ≤ T Ec

(5.26)

where T Ee and T Ec are obtained by substituting the respective dimensionless thrust

acceleration, a, of the escape and capture phases into the T E relation of Eq.(5.35). In

fact, numerical simulations of many different low-thrust transfers in the restricted circular

three-body problem convinced the authors that the spacecraft is below the escape conditions

of the two body problem near each one of the primaries. In addition, based on the data

presented in Reference [50] for different thrust-to-weight ratios, the intermediate time of

flight ,(Tm), between 3 to 10 days is selected. Note that the units should be consistent and

the proper conversion is achieved via the time relation of Eq.(5.33).
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5.7.1 Fourier Coefficients Initialization: Escape and Capture Phases

In this section initialization technique for the escape and capture phases is explained. For

the escape and capture spirals, Perkins’ fitted approximations of Eq.(5.36) are used. Other

approximations can also be used like the asymptotic expansion of reference [55]. The basic

idea is to provide an approximation of the states (r and θ ) at some discrete points and fit the

considered Fourier series functions to these set of discrete points and calculate the Fourier

parameters. In other words, this in similar to the curve-fitting of a Finite Fourier series to a

set of known data points with the exception that some of the BCs have already been forced

to be satisfied (or a boundary-forced data fitting). For instance, consider the escape phase

for which the number of Fourier terms (nr and nθ ) have already been specified. Eq.(5.17)

can be written in the following form,

[Xr](2nr−3)×1 =
(

[Ar]nApp×(2nr−3)

)−1(
[

rApp

]

nApp×1
− [Fr]nApp×1

)

(5.27)

where rApp is the vector of discretized approximation radius and nApp is the number of

discretized data points. Thus, it is required to evaluate the radius relation of Eq.(5.36) at

nApp discrete points. The relation used for calculating nApp is

nApp = (Nrev,max +1)×100 (5.28)
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where Nrev,max is already defined in Eq.(5.20). Therefore, the discretized scaled time vector

used for the initialization can be written as

τApp,0 = 0 < τApp,1 < · · ·< τApp,(nApp−1) = 1 (5.29)

Note that [Fr] and [Ar] are already defined in Eqs.(5.18) and (5.23) in which τ = τApp. All in

all, the coefficients are achieved via an inverse matrix multiplication. For the polar angle,

θ , these steps repeat with the polar approximation. The same procedure applies to the

capture phase. The initialization is performed once at the outer-level and the initial guess

for the unknown Fourier coefficients are fed into the inner-level solver.

5.7.2 Intermediate Phase Fourier Coefficients Initialization

The shape of the connecting intermediate phase is not similar to the escape and

capture typical spirals of low-thrust transfers thus requiring another method for its

Fourier parameter initialization. For this phase, Cubic Polynomial (CP) is used for the

approximation of both rm and θm as follows:

rApp,CP(τ) = aτ3 +bτ2 + cτ +d

θApp,CP(τ) = eτ3 + f τ2 +gτ +h

(5.30)
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The intermediate phase BCs are used to compute all of the coefficients in Eq.(5.30)( see

Appendix D.4). The number of discretized data points is selected to be nApp,CP = mm.

Legnedre-Gauss discretization of points is considered and the scaled time vector becomes

τApp,CP,0 = 0 < τApp,CP,1 < · · ·< τApp,CP,(nApp−1) = 1 (5.31)

Substituting τ = τApp,CP into Eq.(5.30) provides the discrete approximation data values

of the states of the intermediate phase i.e.
[

rApp,CP

]

and
[

θApp,CP

]

. The inverse matrix

multiplication procedure is used to get an initial guess for the respected unknown Fourier

series parameters

[Xr](2nr−3)×1 =
(

[Ar]nApp,CP×(2nr−3)

)−1(
[

rApp

]

nApp,CP×1
− [Fr]nApp,CP×1

)

[Xθ ](2nθ−3)×1 =
(

[Aθ ]nApp,CP×(2nθ−3)

)−1(
[

θApp

]

nApp,CP×1
− [Fθ ]nApp,CP×1

)

(5.32)

5.8 Initial Trajectory Approximation

The solution strategy in this work, requires a method for determining the terminal

conditions of the earth escape spiral and initial conditions of the moon capture spiral. In

addition, a proper initialization of the Fourier parameters improves the convergence speed

of any solver. The authors decided to use Perkin’s approximate solution to satisfy the above

requirements. For the sake of clarity, a brief introduction of Perkins’ method is given. In
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his work, Perkins defines a set of general non-dimensional differential equations which is

independent of thrust acceleration and the gravity constant. The so-called non-dimensional

"Perkins parameters" are defined

X = a0.5 r
r0

Y = a−0.25 V
V0

T = V0

r0
a0.75t

(5.33)

where r is the radius, r0 is the reference radius, V is velocity, V0 is the reference velocity, t

is the time of flight, X is the dimensionless radius, Y is the dimensionless velocity, T is the

dimensionless time and the dimensionless thrust acceleration a is defined as

a =
Ta
µ

r2
0

(5.34)

He continues by analyzing the trajectories of tangentially directed thrust and concludes

that for dimensionless thrust acceleration values of less than 0.01 (a ≤ 0.01) all of the

trajectories that start from circular orbits (lie on the circle asymptote) follow a mean path

(trajectory). Figure 5.2 shows the circle, escape and infinity asymptotes along with the

solutions of the differential equations with the thrust in the direction of the velocity for

several cases in the non-dimensional parameters. From Figure 5.2, it is easy to verify

that all of the start points that satisfy the above two criteria lie on the mean path. The

primary advantage of this universal mean path is that in order to determine the states of

a spacecraft at any time an accurate approximation (curve fitting) can be used instead
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Figure 5.2: Parametric velocity vs parametric radius

of time consuming numerical integration of the differential equations. In addition, the

intersection of the mean path with the escape asymptote provides the escape conditions i.e.

X = 0.879,Y = 0.509,γ = 39.2◦ as well as the dimensionless escape time,

T E = a−0.25 −0.809 (5.35)

which can be used for defining the lower and upper bounds of some of the design variables.

γ is the flight path angle and T E is the dimensionless escape time. For instance, the

geocentric states of the spacecraft at any time can be written in the following function
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forms

r(t) = P1(rLEO,µE ,Ta; t)

Vr(t) = P2(rLEO,µE ,Ta; t)

Vθ (t) = P3(rLEO,µE ,Ta; t)

(5.36)

where P1, P2 and P3 are non-dimensional parametric curves for radial distance, radial

and transversal velocities of the universal mean path solution. Once the initial circular

orbit radius, the gravitational parameter of the attracting body and the constant thrust

acceleration of the spacecraft are determined the universal low-thrust solution can be scaled

to their dimensional counterparts. It is important to note that the change in the polar angle

can be obtained by integrating the the relation of transversal velocity

∆θ =

t=t f
∫

t=0

Vθ

r
dt (5.37)

but the numerical integration of the above equation is required. Instead, a parametric quintic

function fitting for the overall change of the polar angle is considered

∆θ = aσ 5 +bσ 4 + cσ 3 +dσ 2 + eσ + f (5.38)

where σ = T − T E. The coefficients of the quintic function are a = 8.168e− 06, b =

−0.2496,c= 0.818,d =−0.8943,e= 0.922, f =−1.062. Equations (5.36) and (5.38) make

a set of functions suitable for approximating the states of the escape and capture spirals.
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5.9 Results

In order to test the developed method four test cases of Earth-to-moon transfers with various

levels of TA, initial and final orbits are considered. In all of the cases, Canonical units are

used, such that one distance unit (DU) is equal to the Earth to moon distance of 384400 km

and one time unit (TU) is 4.3424 days and ω = 1rad/TU . The Earth and Moon radia are

assumed to be 6378 and 1637 kms respectively. MATLAB genetic algorithm ga function

is used for the outer-level solver with maximum population and generation numbers of

20 and 10 respectively. MATLAB Fmincon function is used as the inner-level solver,

respectively, without any first- or second-order derivative information. The maximum

number of iterations is set to 4000. All of the cases have been performed on an Intel

Xeon Pentium 4 1.86 GHz with Windows XP and 8GB of RAM.

5.9.1 First Case Study

It is desired to find a low-thrust trajectory from an initial circular altitude of hi = 315

km around the Earth to a final circular prograde orbit of h f = 100 km around the Moon

that satisfies a TA constraint of Ta,max = 0.03237m/s2. The considered Fourier terms and

number of points per revolution are listed in Table.5.2. Nrev,max of the escape and capture

phases are are obtained through Eq.(5.20) to be 12 and 2 respectively. The time of flight of
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Table 5.2

First Case: Input parameters for Earth-Moon problem

Parameter Escape Phase Intermediate Phase Capture Phase

nr 6 10 4

nθ 8 10 6

ppr 10 mm = 20 10

each phase of the solution is Te = 2.1938, Tm = 4.2428 and Tc = 0.4415 days respectively.

Number of the revolutions of the escape and capture spirals are Nrev,e = 12 and Nrev,c =

2. The whole trajectory (expressed in ECRF CS) is depicted in Figure 5.3. In the first
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Figure 5.3: First case trajectory depicted in ECRF CS

few revolutions the gradual outward spiral is taking place until the point where the escape

condition occurs and the radius increases significantly. Then, the intermediate phase starts

where the spacecraft follows a trajectory that requires less TA compared to the escape and

capture spirals. By inspecting the TA variation vs time of the escape phase (shown in Figure

5.4), it is noticed that the spacecraft is utilizing full throttling capability during almost all
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of time up until the end of outward escape spiral phase. Then the capture phase starts and

0 0.5 1 1.5 2
−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

Time (Days)

T
a
,e

 (
m

/s
2
)

Figure 5.4: First case TA profile of the escape phase
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Figure 5.5: First case TA profile of the intermediate phase

after performing two revolutions the spacecraft enters the final LMO. Figure 5.6 shows the

TA variation vs time of the capture phase. The negative value, n=1, of the TA indicates
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deceleration. TA is also close to saturation which means that the spacecraft is using full

throttling capability to reduce the velocity.
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Figure 5.6: First case TA profile of the capture phase

5.9.2 Second Case Study

In the second case study, it is desired to find a low-thrust trajectory from an initial GEO

altitude of hi = 35863 km around the Earth to a final circular retrograde high moon orbit of

h f = 6710 km that satisfies a TA constraint of Ta,max = 0.0027m/s2. The input parameters

are listed in Table.5.3. Nrev,max of the escape and capture phases are 4 and 1 respectively.

The time of flight of each phase of the solution is Te = 7.9314, Tm = 3.821 and Tc = 2.4427

days respectively. Nrev,e and Nrev,c are 3 and 1 respectively. The whole trajectory (expressed

in ECRF CS) is depicted in Figure 5.7. Although the level of the TA is lower than the first

112



Table 5.3

Second Case: Input parameters for Earth-Moon problem

Parameter Escape Phase Intermediate Phase Capture Phase

nr 6 8 4

nθ 6 8 8

ppr 19 mm = 20 50
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Figure 5.7: Second case trajectory depicted in ECRF CS

case, the initial orbit possesses a higher energy compared to the initial altitude of the first

case thus requiring fewer revolutions to reach at a escape condition. TA is fully saturated

as shown in Figure 5.8. Figure 5.9 shows that the TA of the intermediate phase is saturated

at the second half of the period. The profile of the TA of the intermediate phase indicates

that the BCs of the converged solution do not qualify for a near-ballistic phase. Figure

5.10 shows the TA variation vs time of the capture phase has two sign switches. The

switching phenomena of the TA is attributed to the time of flight [15]. In other words,

the converged time of flight of the capture phase (Tc = 2.4427) is such that the spacecraft
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Figure 5.8: Second case TA profile of the escape phase
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Figure 5.9: Second case TA profile of the intermediate phase

needs to accelerate for two intervals i.e an interval of less than 0.4 days and a final very

short interval. This clearly indicates that the obtained capture phase is wasting energy.
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Figure 5.10: Second case TA profile of the capture phase

5.9.3 Third Case Study

In the third case, it is desired to find a low-thrust trajectory from an initial circular altitude

of hi = 407 km around the Earth to a final circular prograde orbit of h f = 100 km around

the Moon that satisfies a TA constraint of Ta,max = 0.00153m/s2. The level of the TA is

lower than the first and second cases. The low level of the TA results in Nrev,max of the

escape and capture phases to be 269 and 50 respectively. The input parameters are listed

in Table.5.4. The high number of revolutions of the escape and capture phases will result

in high number of DPs and slows down the algorithm considerably. In order to avoid

this problem, low number of points per revolution are considered. The time of flight of

each phase of the solution is Te = 54.735, Tm = 9.847 and Tc = 11.27 days respectively.

Nrev,e and Nrev,c are 269 and 50 respectively. The whole trajectory (expressed in ECRF
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Table 5.4

Third Case: Input parameters for Earth-Moon problem

Parameter Escape Phase Intermediate Phase Capture Phase

nr 6 8 4

nθ 8 8 6

ppr 0.2 mm = 30 0.8

CS) is depicted in Figure 5.11. TA profiles of the escape, intermediate and capture phases
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Figure 5.11: Third case trajectory depicted in ECRF CS

are shown in Figures. 5.12, 5.13 and 5.14 respectively. The TA of the capture profile is

saturated for a long period of time and switching phenomenon of the TA profile appears at

a very short terminal interval.
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Figure 5.12: Third case TA profile of the escape phase
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Figure 5.13: Third case TA profile of the intermediate phase
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Figure 5.14: Third case TA profile of the capture phase

5.9.4 Fourth Case Study

In the fourth case, it is desired to find a low-thrust trajectory from an initial circular altitude

of hi = 407 km around the Earth to a final circular prograde orbit of h f = 100 km around

the Moon that satisfies a TA constraint of Ta,max = 5.6e−4m/s2. This case considers the

lowest TA that corresponds to very high number of revolutions for both escape and capture

phases equal to 798 and 149 respectively. The input parameters are listed in Table.5.5. The

Table 5.5

Third Case: Input parameters for Earth-Moon problem

Parameter Escape Phase Intermediate Phase Capture Phase

nr 6 14 6

nθ 6 14 6

ppr 0.2 mm = 50 1
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time of flight of each phase of the solution is Te = 158.6, Tm = 8.5466 and Tc = 34.32

days respectively. Nrev,e and Nrev,c are 798 and 149 respectively. Figure 5.15 depicts the

final solution trajectory expressed in ECRF CS. Figures 5.16,5.17 and 5.18 show the TA

profile of the escape, intermediate and capture phases respectively. The TA profile of the

intermediate phase is negligible and appears to be a ballistic arc. In fact, the intermediate

phases is not purely ballistic and minor TA is needed to correct for the BCs. It is interesting

to note that the FFS approximation shows sufficient flexibility in representing near-ballistic

arcs. Table.5.6 summarizes the solutions of the four cases in terms of their number
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Figure 5.15: Fourth case trajectory depicted in ECRF coordinate system

of revolutions and times of flight of their phases. Fully exploiting the first and second

derivatives of objectives and constraints will significantly reduce the computational time of

this method.
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Figure 5.16: Fourth case TA profile of the escape phase
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Figure 5.17: Fourth case TA profile of the intermediate phase
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Figure 5.18: Fourth case TA profile of the capture phase

Table 5.6

Tabulated results of each case study

Case # Ta,max hi h f Nrev,e Nrev,c Te Tm Tc TOF
m
s2 (km) (km) (days) (days) (days) (days)

First 3.237e-2 315 100 12 2 2.1938 4.2428 0.4415 6.878

Second 2.7e-3 35863 6710 3 1 7.9314 3.821 2.4427 14.195

Third 1.53e-3 407 100 269 50 54.735 9.847 11.27 75.852

Fourth 5.6e-4 407 100 798 149 158.6 8.5466 34.32 201.46

5.10 Conclusion

In this chapter, a systematic method for constructing the low-thrust trajectories in the

restricted three-body dynamical model is suggested based on the Finite Fourier series

approximation technique. New representation of the state Fourier approximations not

only made the state computation simpler but also reduced the computational cost of

the method. The thrust constraint handling capability is a key feature of the presented
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methods. In this work, the ballistic intermediate arc of typical low-thrust problems is

replaced with a Fourier series approximation taking advantage of a cubic polynomial

coefficient initialization technique. The proposed technique was applied on several earth

orbit to moon orbit transfers with various number of revolutions around the primaries. The

method demonstrated capability in establishing both prograde and retrograde final orbits.

In addition, the method presents capability and enough flexibility to approximate various

shapes of the intermediate phase.
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Chapter 6

Thesis Conclusion

6.1 Dissertation summary and contributions

Considering the importance of the availability of an initial guess for high-fidelity solvers,

this thesis deals with the rapid generation of feasible low-thrust trajectories. It is sought

not only to satisfy the equation of motion and boundary conditions of the problem but also

to take one step further and consider the limit on the thrust acceleration value. The focus

of the thesis is on approximating the position states of the low-thrust trajectory problem to

achieve the required criterion of being fast.

First, the concept of FFS is introduced and its application for generating planar low-thrust

trajectories with some examples are presented. It is shown that the fourier series method
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is capable of generating low-thrust trajectories that other existing so-called shape-based

methods are incapable of.

Second, the concept of FFS is extended to modulate the thrust acceleration. Besides the

fast construction of space trajectories that satisfy given thrust constraints, the proposed

method has the capability of generating on/off thrust profiles. This was possible by forcing

the constraint slack variables to take only one of three discrete values. The test cases

demonstrated this capability.

Third, a compact reduced form of the Fourier series is obtained by solving some of the

unknown fourier coefficients in terms of the boundary conditions. Upon substitution of

these coefficients into the original Fourier series, a new representation can be constructed

that made the state computation simpler and reduced the computational cost of the method.

Fourth, FFs is further extended for shaping three-dimensional low-thrust trajectories. The

thrust constraint handling capability is a key feature of the presented method. The Fourier

coefficients of the reduced form will be used to provide extra flexibility for handling the

thrust acceleration constraint. In addition, the method presents capability and enough

flexibility to approximate various thrust acceleration profiles. The method demonstrated

capability in finding feasible solutions to various transfer problems of different level of

difficulty in reasonable time.

Fifth, a systematic method for constructing the low-thrust trajectories in the restricted

124



three-body dynamical model is suggested based on the FFS technique. In this work, the

ballistic intermediate arc of typical low-thrust problems is replaced with a Fourier series

approximation taking advantage of a cubic polynomial coefficient initialization technique.

The proposed technique was applied on several earth orbit to moon orbit transfers with

various number of revolutions around the primaries. The method demonstrated capability

in establishing both prograde and retrograde final orbits. In addition, the method presents

capability and enough flexibility to approximate various shapes of the intermediate phase.

6.2 Suggestions for Future work

Despite the practical and promising results of our proposed methodology, there is always

room for improvement. Some possible aspects worthy of further investigation are presented

below.

† Calculation of the first and second-order derivatives of the objective and

constraints using an efficient technique (symbolic analytic calculations, Automatic

differentiation or Multi-complex methods). Ordinarily the medium-scale

minimization routines use numerical gradients calculated by finite-difference

approximation. This procedure systematically perturbs each of the variables in order

to calculate function and constraint partial derivatives. Alternatively, one can provide

a function to compute partial derivatives analytically. Typically, the problem is solved
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more accurately and efficiently if such a function is provided.

† Various candidates of base functions exist that may provide better convergence

behaviours. For instance, Chebyshev and Legendre polynomials orthogonal

functions can be investigated.

† The concept of using FFs method is applicable to other fields of engineering that

includes trajectory optimization. Trajectory optimization of robots, UAVs and other

vehicles is a future research topic worth trying.
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Appendix B

Planar Finite Fourier Series

B.1 First Eight Fourier Coefficients Formulae:

Rendezvous Case

In a rendezvous problem there are eight BCs (ri,θi,r f ,θ f , ṙi, θ̇i, ṙ f , θ̇ f ) that need to be

satisfied in the given time of flight. Using the FFS representation of states, Eqs.(2.3) and

(2.4), and by taking their derivatives, the following equations can be constructed:

ṙ(t) =
nr

∑
n=1

{

−an

(nπ

T

)

sin
(nπ

T
t
)

+bn

(nπ

T

)

cos
(nπ

T
t
)}

θ̇(t) =
nθ

∑
n=1

{

−cn

(nπ

T
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sin
(nπ

T
t
)

+dn

(nπ

T
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cos
(nπ

T
t
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(B.1)
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Equations (B.1), (2.3), and (2.4) are valid at boundary points, hence one can write the

following relations:

r(t0 = 0) = ri =
a0

2
+

nr

∑
n=1

{an}=
a0

2
+a1 +a2 +

nr

∑
n=3

{an}

θ(t0 = 0) = θi =
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2
+

nθ

∑
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c0

2
+ c1 + c2 +

nθ

∑
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{cn}
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(B.3)

Equations (B.2) and (B.3) can be used to solve for eight of the coefficients in terms of the

rest of the coefficients as well as BCs. Rearranging Eq. (B.2) and (B.3), we can write four
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sets of equations:


















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









b1 +2b2 =
T

π
ṙi −

nr

∑
n=3

{nbn}

2b2 −b1 =
T

π
ṙ f −

nr

∑
n=3

{(−1)n
nbn}



















c1 + c2 = θi −
c0

2
−

nθ

∑
n=3

{cn}

c2 − c1 = θ f −
c0

2
−

nθ

∑
n=3

{(−1)n
cn}



















d1 +2d2 =
T

π
θ̇i −

nθ

∑
n=3

{ndn}

2d2 −d1 =
T

π
θ̇ f −

nθ

∑
n=3

{(−1)n
ndn}

(B.4)
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Solving for the unknown coefficients gives the following relations:

a1 =
ri − r f

2
−

nr

∑
n=3

an;nr ≥ 3,n : odd

a2 =
ri + r f −a0

2
−

nr

∑
n=4

an;nr ≥ 4,n : even

b1 =
T

2π

(

ṙi − ṙ f

)

−
nr

∑
n=3

(nbn);nr ≥ 3,n : odd

b2 =
T

4π

(

ṙi + ṙ f

)

− 1

2

nr

∑
n=4

(nbn);nr ≥ 4,n : even

c1 =
θi −θ f

2
−

nθ

∑
n=3

cn;nθ ≥ 3,n : odd

c2 =
θi +θ f − c0

2
−

nθ

∑
n=4

cn;nθ ≥ 4,n : even

d1 =
T

2π

(

θ̇i − θ̇ f

)

−
nθ

∑
n=3

(ndn);nθ ≥ 3,n : odd

d2 =
T

4π

(

θ̇i + θ̇ f

)

− 1

2

nθ

∑
n=4

(ndn);nθ ≥ 4,n : even

(B.5)

B.2 First Seven Fourier Coefficients Formulae for Orbit

Raising Problems

Assuming that the numbers of revolutions and the total time of flight are specified, the

final value for the polar angle, θ f , is free. As an initial guess for θ f , we assume that
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θ f = 2π ×Nrev. Using this initial θ f , we can implement the same functions described in

section ?? as an initial shape for the trajectory. The number of BCs in this case is seven

(ri,θi,r f , ṙi, θ̇i, ṙ f , θ̇ f ). Following the same methodology as in Appendix B.1 to compute

some of the coefficients, we obtain a1, a2, b1, and b2 as in Eq.(B.5). In addition, the

following three coefficients can be computed:

c1 = θi −
c0

2
−

nθ

∑
n=2

cn;nθ ≥ 2

d1 =
T

2π

(

θ̇i − θ̇ f

)

−
nθ

∑
n=3

(ndn);nθ ≥ 3,n : odd

d2 =
T

4π

(

θ̇i + θ̇ f

)

− 1

2

nθ

∑
n=4

(ndn);nθ ≥ 4,n : even

(B.6)

Compared with the rendezvous case c2 can not be derived as an explicit function of BCs and

the other coefficients. Therefore, this value should be added to the unknown vector of the

solver and its initial value can be calculated according to the aforementioned initialization

procedure.
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B.3 Derivation of the cubic polynomial coefficients

Using the the cubic relation with the BCs one can write the following relations:















































r(t = t0 = 0) = ri = d

r(t = t f ) = r f = at f
3 +bt f

2 + ct f +d

ṙ(t = t0 = 0) = ṙi = c

ṙ(t = t f ) = ṙ f = 3at f
2 +2bt f + c

(B.7)















































θ(t = t0 = 0) = θi = h

θ(t = t f ) = θ f = et f
3 + f t f

2 +gt f +h

θ̇ (t = t0 = 0) = θ̇i = g

θ̇ (t = t f ) = θ̇ f = 3et f
2 +2 f t f +g

(B.8)

solutions of the above equations are:

a =
2
(

ri − r f

)

+
(

ṙi + ṙ f

)

t f

t3
f

; b =−3
(

ri − r f

)

+
(

2ṙi + ṙ f

)

t f

t2
f

; c = ṙ ; d = ri

e =
2
(

θi −θ f

)

+
(

θ̇i + θ̇ f

)

t f

t3
f

; f =−3
(

θi −θ f

)

+
(

2θ̇i + θ̇ f

)

t f

t2
f

; g = θ̇i ; h = θi

(B.9)
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B.4 Derivation of the two jointed cubic polynomials

coefficients

Using the BCs and assuming the time of maximum (or minimum radius) one can write:















































rs1(t = t0 = 0) = ri = ds1

rs1(t = tm) = rm = as1tm
3 +bs1tm

2 + cs1tm+ds1

ṙs1(t = t0 = 0) = ṙi = cs1

ṙs1(t = tm) = ṙm = 0 = 3as1tm
2 +2bs1tm+ cs1

(B.10)















































rs2(t = tm) = rm = as2tm
3 +bs2tm

2 + cs2tm+ds2

rs2(t = t f ) = r f = as2t f
3 +bs2t f

2 + cs2t f +ds2

ṙs2(t = tm) = ṙm = 0 = 3as2tm
2 +2bs2tm+ cs2

ṙs2(t = t f ) = ṙ f = 3as2t f
2 +2bs2t f + cs2

(B.11)

we can solve Equations B.10 and B.11 and derive the following relations for the

145



coefficients:

as1 =
2(ri − rm)+ ṙtm

t3
m

; bs1 =−3(ri − rm)+2ṙitm

t2
m

; cs1 = ṙi ; ds1 = ri

as2 =
2
(

rm − r f

)

+ ṙ f t f − ṙ f tm

D
;

bs2 =−
tm
(

3
(

rm − r f

)

+ ṙ f t f

)

+ ṙ f t
2
f −2ṙ f t

2
m−3t f

(

r f − rm

)

D
;

cs2 =−
ṙ f

(

t3
m−2t2

f tm+ t f tm
(

6
(

r f − rm

)

+ ṙ f tm
)

)

D

ds2 =
rmt3

f −
(

ṙ f t
2
m+3rmtm

)

t2
f +
(

ṙ f tm+3r f

)

t2
mt f − r f t

3
m

D

(B.12)

where D =
(

t f − tm
)3

B.5 Matrix and vector definition for initial coefficients

calculation of r fourier approximation

Calculation of the 2nr + 1 Fourier approximation coefficients can be expressed as a

linear problem i.e. X = A−1B. A is a (2nr + 1) by (2nr + 1) matrix defined according to
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A
=

             

1 2
co

s
(M

t 0
)

co
s
(2

M
t 0
)

··
·

co
s
(n

r
M

t 0
)

si
n
(M

t 0
)

si
n
(2

M
t 0
)

··
·

si
n
(n

r
M

t 0
)

1 2
co

s
(M

t 1
)

co
s
(2

M
t 1
)

··
·

co
s
(n

r
M

t 1
)

si
n
(M

t 1
)

si
n
(2

M
t 1
)

··
·

si
n
(n

r
M

t 1
)

. . .
. . .

. . .
. . .

. . .
. . .

. . .
··
·

. . .

1 2
co

s
(M

t i
)

co
s
(2

M
t i
)

..
.

co
s
(n

r
M

t i
)

si
n
(n

r
M

t i
)

si
n
(n

r
M

t i
)

··
·

si
n
(n

r
M

t i
)

             

(B
.1

3
)
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and B is a (2nr +1) by 1 vector defined according to

B = [Ar(t)]
T

(B.14)

where X =

[

a0 a1 a2 · · · anr
b1 b2 · · · bnr

]T

and i = 0 · · ·(nr−1).

This relation is actually another representation of Eq.(2.19) and Ar(t) can be any of the

three approximation functions (CP, TH or 2CP) in its right hand side.

148



Appendix C

Three-dimensional Fourier Relations

C.1 Reduced Forms of States and Their Derivatives

Following the method of forcing four of the BCs, polar angle (θ ) and the axial coordinate

can also be written in the following compact forms,
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θ(τ) = Fθ +Cc0
c0 +

nθ

∑
n=3

{Ccn
cn +Cdn

dn}

Fθ = 1
2

(

θi −θ f

)

cos(πτ)+ 1
2π

(

θ ′
i −θ ′

f

)

sin(πτ)+ 1
2

(

θi +θ f

)

cos(2πτ)

+ 1
4π

(

θ ′
i +θ ′

f

)

sin(2πτ)

Cc0
= 1

2
[1− cos(2πτ)]

Ccn
=















cos(nπτ)− cos(πτ); odd

cos(nπτ)− cos(2πτ); even

Cdn
=















sin(nπτ)−nsin(πτ); odd

sin(nπτ)− n
2

sin(2πτ); even

(C.1)

The first and second derivatives of the states can be derived easily and are written as follows,

r′(τ) = Fr
′+C′

a0
a0 +

nr

∑
n=3

{C′
an

an +C′
bn

bn}

F ′
r =−1

2

(

ri − r f

)

π sin(πτ)+ 1
2

(

r′i − r′ f

)

cos(πτ)−
(

ri + r f

)

π sin(2πτ)

+1
2

(

r′i + r′ f

)

cos(2πτ)

C′
a0
= π sin(2πτ)

C′
an
=















−nπ sin(nπτ)+π sin(πτ); odd

−nπ sin(nπτ)+2π sin(2πτ); even

C′
bn
=















nπ cos(nπτ)−nπ cos(πτ); odd

nπ cos(nπτ)−nπ cos(2πτ); even

(C.2)
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r′′(τ) = Fr
′′+C′′

a0
a0 +

nr

∑
n=3

{C′′
an

an +C′′
bn

bn}

Fr
′′ =−L2

2

(

ri − r f

)

cos(πτ)− π2

2

(

r′i − r′ f

)

sin(πτ)−2π2
(

ri + r f

)

cos(2πτ)

−π
(

r′i + r′ f

)

sin(2πτ)

C′′
an
=















−(nπ)2
cos(nπτ)+π2 cos(πτ); odd

−(nπ)2 cos(nπτ)+4π2 cos(2πτ); even

C′′
bn
=















−(nπ)2
sin(nπτ)+nπ2 sin(πτ); odd

−(nπ)2
sin(nπτ)+2nπ2 sin(2πτ); even

(C.3)

θ ′(t) = F ′
θ +C′

c0
c0 +

nθ

∑
n=3

{C′
cn

cn +C′
dn

dn}

F ′
θ =−π

2

(

θi −θ f

)

sin(πτ)+ 1
2

(

θ ′
i −θ ′

f

)

cos(πτ)−π
(

θi +θ f

)

sin(2πτ)

+1
2

(

θ ′
i +θ ′

f

)

cos(2πτ)

C′
c0
= π sin(2πτ)

C′
cn
=















−nπ sin(nπτ)+π sin(πτ); odd

−nπ sin(nπτ)+2π sin(2πτ); even

C′
dn
=















nπ cos(nπτ)−nπ cos(πτ); odd

nπ cos(nπτ)−nπ cos(2πτ); even

(C.4)
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θ ′′(t) = F ′′
θ +C′′

a0
c0 +

nθ

∑
n=3

{C′′
an

cn +C′′
bn

dn}

F ′′
θ =−π2

2

(

θi −θ f

)

cos(πτ)− π
2

(

θ ′
i −θ ′

f

)

sin(πτ)−2π2
(

θi +θ f

)

cos(2πτ)

−π
(

θ ′
i +θ ′

f

)

sin(2πτ)

C′′
a0
= 2π2 cos(2πτ)

C′′
cn
=















−(nπ)2
cos(nπτ)+π2 cos(πτ); odd

−(nπ)2
cos(nπτ)+4π2 cos(2πτ); even

C′′
dn
=















−(nπ)2
sin(nπτ)+nπ2 sin(πτ); odd

−(nπ)2 sin(nπτ)+2nπ2 sin(2πτ); even

(C.5)

For the axial coordinate the same relations can be written

z(τ) = Fz +Ca0
e0 +

nz

∑
n=3

{

Cen
en +C fn

fn

}

Fz =
1
2

(

zi − z f

)

cos(πτ)+ 1
2π

(

z′i − z′ f

)

sin(πτ)+ 1
2

(

zi + z f

)

cos(2πτ)

+ 1
4π

(

z′i + z′ f

)

sin(2πτ)

Ce0
= 1

2
[1− cos(2πτ)]

Cen
=















cos(nπτ)− cos(πτ); odd

cos(nπτ)− cos(2πτ); even

C fn
=















sin(nπτ)−nsin(πτ); odd

sin(nπτ)− n
2

sin(2πτ); even

(C.6)
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z′(τ) = Fz
′+C′

e0
e0 +

nz

∑
n=3

{

C′
en

en +C′
fn

bn

}

F ′
z =−1

2

(

zi − z f

)

π sin(πτ)+ 1
2

(

z′i − z′ f

)

cos(πτ)−
(

zi + z f

)

π sin(2πτ)

+1
2

(

z′i + z′ f

)

cos(2πτ)

C′
e0
= π sin(2πτ)

C′
en
=















−nπ sin(nπτ)+π sin(πτ); odd

−nπ sin(nπτ)+2π sin(2πτ); even

C′
fn
=















nπ cos(nπτ)−nπ cos(πτ); odd

nπ cos(nπτ)−nπ cos(2πτ); even

(C.7)

z′′(t) = F ′′
z +C′′

e0
e0 +

nz

∑
n=3

{

C′′
en

en +C′′
fn

fn

}

F ′′
z =−π2

2

(

zi − z f

)

cos(πτ)− π
2

(

z′i − z′ f

)

sin(πτ)−2π2
(

zi + z f

)

cos(2πτ)

−π
(

z′i + z′ f

)

sin(2πτ)

C′′
e0
= 2π2 cos(2πτ)

C′′
en
=















−(nπ)2
cos(nπτ)+π2 cos(πτ); odd

−(nπ)2
cos(nπτ)+4π2 cos(2πτ); even

C′′
fn
=















−(nπ)2 sin(nπτ)+nπ2 sin(πτ); odd

−(nπ)2
sin(nπτ)+2nπ2 sin(2πτ); even

(C.8)
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C.2 Matrix Representation of States and Their

Derivatives

Assuming that there are m DPs and number of Fourier terms (nr, nθ and nz) are known, the

states and their corresponding derivatives can be written in matrix forms,

[r]m×1 = [Ar]m×(2nr−3)[Xr](2nr−3)×1 +[Fr]m×1

[r′]m×1 = [Ar′]m×(2nr−3)[Xr](2nr−3)×1 +[F ′
r]m×1

[r′′]m×1 = [Ar′′]m×(2nr−3)[Xr](2nr−3)×1 +[Fr
′′]m×1

(C.9)

where

[Xr](2nr−3)×1 =

[

a0 a3 b3 · · · anr
bnr

]T

[Ar]m×(2nr−3) =

[

Ca0
Ca3

Cb3 Ca4
Cb4

· · · Canr
Cbnr

]

[Ar′]m×(2nr−3) =

[

C′
a0

C′
a3

C′
b3 C′

a4
C′

b4
· · · C′

anr
C′

bnr

]

[Ar′′]m×(2nr−3) =

[

C′′
a0

C′′
a3

C′′
b3 C′′

a4
C′′

b4
· · · C′′

anr
C′′

bnr

]

(C.10)
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Note that each C(), C′
() and C′′

() is a column-wise vector. Likewise, the polar angle and its

respective derivatives can be written in matrix forms

[θ ]m×1 = [Aθ ]m×(2nθ−3)[Xθ ](2nθ−3)×1 +[Fθ ]m×1

[θ ′]m×1 = [Aθ ′]m×(2nθ−3)[Xθ ](2nθ−3)×1 +[F ′
θ ]m×1

[θ ′′]m×1 = [A′′
θ ]m×(2nθ−3)[Xθ ](2nθ−3)×1 +[F ′′

θ ]m×1

(C.11)

where

[Xθ ](2nθ−3)×1 =

[

c0 c3 d3 · · · cnθ
dnθ

]T

[Aθ ]m×(2nθ−3) =

[

Cc0
Cc3

Cd3 Cc4
Cd4

· · · Ccnθ
Cdnθ

]

[Aθ ′]m×(2nθ−3) =

[

C′
c0

C′
c3

C′
d3 C′

c4
C′

d4
· · · C′

cnθ
C′

dnθ

]

[A′′
θ ]m×(2nθ−3) =

[

C′′
c0

C′′
c3

C′′
d3 C′′

c4
C′′

d4
· · · C′′

cnθ
C′′

dnθ

]

(C.12)

Likewise, for the axial coordinate z, the following relations can be written,

[z]m×1 = [Az]m×(2nz−3)[Xr](2nz−3)×1 +[Fz]m×1

[z′]m×1 = [Az′ ]m×(2nz−3)[Xz](2nz−3)×1 +[F ′
z]m×1

[z′′]m×1 = [A′′
z]m×(2nz−3)[Xz](2nz−3)×1 +[F ′′

z]m×1

(C.13)
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where

[Xz](2nz−3)×1 =

[

e0 e3 b3 · · · anz
bnz

]T

[Az]m×(2nz−3) =

[

Ce0
Ce3

C f3 Ce4
C f4

· · · Cenz
C fnz

]

m×(2nz−3)

[Az′ ]m×(2nz−3) =

[

C′
e0

C′
e3

C′
f3 C′

e4
C′

f4
· · · C′

enz
C′

fnz

]

[A′′
z]m×(2nz−3) =

[

C′′
e0

C′′
e3

C′′
f3 C′′

e4
C′′

f4
· · · C′′

enz
C′′

fnz

]

(C.14)

C.3 Cubic Polynomial Approximation

In general, a cubic polynomial function for each state can be written as

f (τ) = aτ3 +bτ2 + cτ +d (C.15)

where f can represent either radius or polar angle. For instance, if the BCs of the radius

are considered as

r (0) = ri,m; r′(0) = r′i,m = Tmṙi,m

r (1) = r f ,m; r′(1) = r′ f ,m = Tmṙ f ,m
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and are forced on Eq.(D.13), the coefficients of the cubic polynomial can be calculated as

a = r′ f ,m + r′i,m+2
(

ri,m− r f ,m

)

b = 3
(

r f ,m− ri,m

)

−2r′i,m − r′ f ,m

c = r′i,m

d = ri,m

For the polar angle, θm, the same equations apply with different BCs.
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Appendix D

Three-Body Problem Fourier Relations

D.1 Combined Equations of Motion (Escape and Capture

Segments)

For the escape segment and assuming that the thrust is in the direction of velocity vector

i.e. tan(αe) = tan(γe) =
ṙe

reθ̇e
, if we divide Eq. (5.1) by Eq. (5.2) we have

r̈e − re

(

1+ θ̇
)2

+
(1−µ)

r2
e

+ µ

r3
Moon−S/C

(re − cos(θe))

reθ̈ +2ṙe

(

1+ θ̇
)

+ µ

r3
Moon−S/C

sin(θe)
=

ṙe

reθ̇e

(D.1)
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Eq. (D.1) can be further simplified and written in the following form:

fe(re, ṙe, r̈e,θe, θ̇e, θ̈e,µ) = re

(

θ̇er̈e − ṙeθ̈e

)

+ θ̇e

(

(1−µ)
re

− r2
e

(

1+ θ̇e

)2
)

−2ṙ2
e

(

1+ θ̇e

)

+ µ

r3
Moon−S/C

(

reθ̇e (re − cos(θe))− ṙe sin(θe)
)

= 0

(D.2)

Likewise, for the capture segment and assuming that the thrust is in the direction of velocity

vector, if we divide Eq. (5.3) by Eq. (5.4) we have

fc(rc, ṙc, r̈c,θc, θ̇c, θ̈c) =

rcθ̇c

[

r̈c − rc(1+ θ̇c)
2 − (1−µ)cos(θc)+

(1−µ)(rc+cos(θc))

r3
Earth−S/C

+ µ
r2
c

]

−

ṙc

[

rcθ̈c +2ṙc(1+ θ̇c)− (1−µ)sin(θc)

(

1

r3
Earth−S/C

−1

)]

= 0

(D.3)
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D.2 Reduced Forms of States and Their Derivatives

Following the method of forcing four of the BCs, polar angle (θ ) also can be written in the

following compact form,

θ(τ) = Fθ +Cc0
c0 +

nθ

∑
n=3

{Ccn
cn +Cdn

dn}

Fθ = 1
2

(

θi −θ f

)

cos(πτ)+ 1
2π

(

θ ′
i −θ ′

f

)

sin(πτ)+ 1
2

(

θi +θ f

)

cos(2πτ)

+ 1
4π

(

θ ′
i +θ ′

f

)

sin(2πτ)

Cc0
= 1

2
[1− cos(2πτ)]

Ccn
=















cos(nπτ)− cos(πτ); odd

cos(nπτ)− cos(2πτ); even

Cdn
=















sin(nπτ)−nsin(πτ); odd

sin(nπτ)− n
2

sin(2πτ); even

(D.4)
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The first and second derivatives of the states can be derived easily and are written as follows,

r′(τ) = Fr
′+C′

a0
a0 +

nr

∑
n=3

{C′
an

an +C′
bn

bn}

F ′
r =−1

2

(

ri − r f

)

π sin(πτ)+ 1
2

(

r′i − r′ f

)

cos(πτ)−
(

ri + r f

)

π sin(2πτ)

+1
2

(

r′i + r′ f

)

cos(2πτ)

C′
a0
= π sin(2πτ)

C′
an
=















−nπ sin(nπτ)+π sin(πτ); odd

−nπ sin(nπτ)+2π sin(2πτ); even

C′
bn
=















nπ cos(nπτ)−nπ cos(πτ); odd

nπ cos(nπτ)−nπ cos(2πτ); even

(D.5)

r′′(τ) = Fr
′′+C′′

a0
a0 +

nr

∑
n=3

{C′′
an

an +C′′
bn

bn}

Fr
′′ =−L2

2

(

ri − r f

)

cos(πτ)− π2

2

(

r′i − r′ f

)

sin(πτ)−2π2
(

ri + r f

)

cos(2πτ)

−π
(

r′i + r′ f

)

sin(2πτ)

C′′
an
=















−(nπ)2
cos(nπτ)+π2 cos(πτ); odd

−(nπ)2
cos(nπτ)+4π2 cos(2πτ); even

C′′
bn
=















−(nπ)2
sin(nπτ)+nπ2 sin(πτ); odd

−(nπ)2
sin(nπτ)+2nπ2 sin(2πτ); even

(D.6)
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θ ′(t) = F ′
θ +C′

c0
c0 +

nθ

∑
n=3

{C′
cn

cn +C′
dn

dn}

F ′
θ =−π

2

(

θi −θ f

)

sin(πτ)+ 1
2

(

θ ′
i −θ ′

f

)

cos(πτ)−π
(

θi +θ f

)

sin(2πτ)

+1
2

(

θ ′
i +θ ′

f

)

cos(2πτ)

C′
c0
= π sin(2πτ)

C′
cn
=















−nπ sin(nπτ)+π sin(πτ); odd

−nπ sin(nπτ)+2π sin(2πτ); even

C′
dn
=















nπ cos(nπτ)−nπ cos(πτ); odd

nπ cos(nπτ)−nπ cos(2πτ); even

(D.7)

θ ′′(t) = F ′′
θ +C′′

a0
c0 +

nθ

∑
n=3

{C′′
an

cn +C′′
bn

dn}

F ′′
θ =−π2

2

(

θi −θ f

)

cos(πτ)− π
2

(

θ ′
i −θ ′

f

)

sin(πτ)−2π2
(

θi +θ f

)

cos(2πτ)

−π
(

θ ′
i +θ ′

f

)

sin(2πτ)

C′′
a0
= 2π2 cos(2πτ)

C′′
cn
=















−(nπ)2
cos(nπτ)+π2 cos(πτ); odd

−(nπ)2
cos(nπτ)+4π2 cos(2πτ); even

C′′
dn
=















−(nπ)2
sin(nπτ)+nπ2 sin(πτ); odd

−(nπ)2
sin(nπτ)+2nπ2 sin(2πτ); even

(D.8)
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D.3 Matrix Representation of States and Their

Derivatives

Assuming that there are m DPs and number of Fourier terms (nr and nθ ) are known, the

states and their corresponding derivatives can be written in matrix forms,

[r]m×1 = [Ar]m×(2nr−3)[Xr](2nr−3)×1 +[Fr]m×1

[r′]m×1 = [Ar′]m×(2nr−3)[Xr](2nr−3)×1 +[F ′
r]m×1

[r′′]m×1 = [Ar′′]m×(2nr−3)[Xr](2nr−3)×1 +[Fr
′′]m×1

(D.9)

where

[Xr](2nr−3)×1 =

[

a0 a3 b3 · · · anr
bnr

]T

[Ar]m×(2nr−3) =

[

Ca0
Ca3

Cb3 Ca4
Cb4

· · · Canr
Cbnr

]

[Ar′]m×(2nr−3) =

[

C′
a0

C′
a3

C′
b3 C′

a4
C′

b4
· · · C′

anr
C′

bnr

]

[Ar′′]m×(2nr−3) =

[

C′′
a0

C′′
a3

C′′
b3 C′′

a4
C′′

b4
· · · C′′

anr
C′′

bnr

]

(D.10)
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Note that each C(), C′
() and C′′

() is a column-wise vector. Likewise, the polar angle and its

respective derivatives can be written in matrix forms

[θ ]m×1 = [Aθ ]m×(2nθ−3)[Xθ ](2nθ−3)×1 +[Fθ ]m×1

[θ ′]m×1 = [Aθ ′]m×(2nθ−3)[Xθ ](2nθ−3)×1 +[F ′
θ ]m×1

[θ ′′]m×1 = [A′′
θ ]m×(2nθ−3)[Xθ ](2nθ−3)×1 +[F ′′

θ ]m×1

(D.11)

where

[Xθ ](2nθ−3)×1 =

[

c0 c3 d3 · · · cnθ
dnθ

]T

[Aθ ]m×(2nθ−3) =

[

Cc0
Cc3

Cd3 Cc4
Cd4

· · · Ccnθ
Cdnθ

]

[Aθ ′]m×(2nθ−3) =

[

C′
c0

C′
c3

C′
d3 C′

c4
C′

d4
· · · C′

cnθ
C′

dnθ

]

[A′′
θ ] =

[

C′′
c0

C′′
c3

C′′
d3 C′′

c4
C′′

d4
· · · C′′

cnθ
C′′

dnθ

]

(D.12)

D.4 Cubic Polynomial Approximation

In general, a cubic polynomial function for each state of the intermediate phase can be

written as

f (τ) = aτ3 +bτ2 + cτ +d (D.13)
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where f can represent either radius or polar angle. For instance, if the BCs of the radius

are considered as

r (0) = ri,m; r′(0) = r′i,m = Tmṙi,m

r (1) = r f ,m; r′(1) = r′ f ,m = Tmṙ f ,m

and are forced on Eq.(D.13), the coefficients of the cubic polynomial can be calculated as

a = r′ f ,m + r′i,m+2
(

ri,m− r f ,m

)

b = 3
(

r f ,m− ri,m

)

−2r′i,m − r′ f ,m

c = r′i,m

d = ri,m

For the polar angle, θm, the same equations apply with different BCs.
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Appendix E

Copyright Correpondance
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Permission to use the material of the previously published papers in

Chapters 2 and 3
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